Enter your Sign on user name and password.

Forgot password?
Sign In | Subscribe
Start learning today, and be successful in your academic & professional career. Start Today!
Use Chrome browser to play professor video
Bryan Cardella

Bryan Cardella

Biogenesis

Slide Duration:

Table of Contents

I. Introduction to Biology
Scientific Method

26m 23s

Intro
0:00
Origins of the Scientific Method
0:04
Steps of the Scientific Method
3:08
Observe
3:21
Ask a Question
4:00
State a Hypothesis
4:08
Obtain Data (Experiment)
4:25
Interpret Data (Result)
5:01
Analysis (Form Conclusions)
5:38
Scientific Method in Action
6:16
Control vs. Experimental Groups
7:24
Independent vs. Dependent Variables
9:51
Other Factors Remain Constant
11:03
Scientific Method Example
13:58
Scientific Method Illustration
17:35
More on the Scientific Method
22:16
Experiments Need to Duplicate
24:07
Peer Review
24:46
New Discoveries
25:23
Molecular Basis of Biology

46m 22s

Intro
0:00
Building Blocks of Matter
0:06
Matter
0:32
Mass
1:10
Atom
1:48
Ions
5:50
Bonds
8:29
Molecules
9:55
Ionic Bonds
9:57
Covalent Bonds
11:10
Water
12:30
Organic Compounds
17:48
Carbohydrates
18:04
Lipids
19:43
Proteins
20:42
Nucleic Acids
22:21
Carbohydrates
22:54
Sugars
22:56
Functions
23:42
Molecular Representation Formula
26:34
Examples
27:15
Lipids
28:44
Fats
28:46
Triglycerides
29:04
Functions
32:10
Steroids
33:43
Saturated Fats
34:18
Unsaturated Fats
36:08
Proteins
37:26
Amino Acids
37:58
3D Structure Relates to Their Function
38:54
Structural Proteins vs Globular Proteins
39:41
Functions
40:41
Nucleic Acids
42:53
Nucleotides
43:04
DNA and RNA
44:34
Functions
45:07
II. Cells: Structure & Function
Cells: Parts & Characteristics

1h 12m 12s

Intro
0:00
Microscopes
0:06
Anton Van Leeuwenhoek
0:58
Robert Hooke
1:36
Matthias Schleiden
2:52
Theodor Schwann
3:19
Electron Microscopes
4:16
SEM and TEM
4:54
The Cell Theory
5:21
3 Tenets
5:24
All Organisms Are Composed of One Or More Cells
5:46
The Cell is the Basic Unit of Structure and Function for Organisms
6:01
All Cells Comes from Preexisting Cells
6:34
The Characteristics of Life
8:09
Display Organization
8:18
Grow and Develop
9:12
Reproduce
9:33
Respond to Stimuli
9:55
Maintain Homeostasis
10:23
Can Evolve
11:37
Prokaryote vs. Eukaryote
11:53
Prokaryote
12:13
Eukaryote
14:00
Cell Parts
16:53
Plasma Membrane
18:27
Cell Membrane
18:29
Protective and Regulatory
18:52
Semi-Permeable
19:18
Polar Heads with Non-Polar Tails
20:52
Proteins are Imbedded in the Layer
22:46
Nucleus
25:53
Contains the DNA in Nuclear Envelope
26:31
Brain on the Cell
28:12
Nucleolus
28:26
Ribosome
29:02
Protein Synthesis Sites
29:25
Made of RNA and Protein
29:29
Found in Cytoplasm
30:24
Endoplasmic Reticulum
31:49
Adjacent to Nucleus
32:07
Site of Numerous Chemical Reactions
32:37
Rough
32:56
Smooth
33:48
Golgi Apparatus
34:54
Flattened Membranous Sacs
35:10
Function
35:45
Cell Parts Review
37:06
Mitochondrion
39:45
Mitochondria
39:50
Membrane-Bound Organelles
40:07
Outer Double Membrane
40:57
Produces Energy-Storing Molecules
41:46
Chloroplast
43:45
In Plant Cells
43:47
Membrane-Bound Organelles with Their Own DNA and Ribosomes
44:20
Thylakoids
44:59
Produces Sugars Through Photosynthesis
45:46
Vacuoles/ Vesicles
46:44
Vacuoles
47:03
Vesicles
47:59
Lysosome
50:21
Membranous Sac for Breakdown of Molecules
50:34
Contains Digestive Enzymes
51:55
Centrioles
53:15
Found in Pairs
53:18
Made of Cylindrical Ring of Microtubules
53:22
Contained Within Centrosomes
53:51
Functions as Anchors for Spindle Apparatus in Cell Division
54:06
Spindle Apparatus
55:27
Cytoskeleton
55:55
Forms Framework or Scaffolding for Cell
56:05
Provides Network of Protein Fibers for Travel
56:24
Made of Microtubules, Microfilaments, and Intermediate Filaments
57:18
Cilia
59:21
Cilium
59:27
Made of Ring of Microtubules
1:00:00
How They Move
1:00:35
Flagellum
1:02:42
Flagella
1:02:51
Long, Tail-Like Projection from a Cell
1:02:59
How They Move
1:03:27
Cell Wall
1:05:21
Outside of Plasma Membrane
1:05:25
Extra Protection and Rigidity for a Cell
1:05:52
In Plants
1:07:19
In Bacteria
1:07:25
In Fungi
1:07:41
Cytoplasm
1:08:07
Fluid-Filled Region of a Cell
1:08:24
Sight for Majority of the Cellular Reactions
1:08:47
Cytosol
1:09:29
Animal Cell vs. Plant Cell
1:09:10
Cellular Transport

32m 1s

Intro
0:00
Passive Transport
0:05
Movement of Substances in Nature Without the Input of Energy
0:14
High Concentration to Low Concentration
0:36
Opposite of Active Transport
1:41
No Net Movement
3:20
Diffusion
3:55
Definition of Diffusion
3:58
Examples
4:07
Facilitated Diffusion
7:32
Definition of Facilitated Diffusion
7:49
Osmosis
9:34
Definition of Osmosis
9:42
Examples
10:50
Concentration Gradient
15:55
Definition of Concentration Gradient
16:01
Relative Concentrations
17:32
Hypertonic Solution
17:48
Hypotonic Solution
20:07
Isotonic Solution
21:27
Active Transport
22:49
Movement of Molecules Across a Membrane with the Use Energy
22:51
Example
23:30
Endocytosis
25:53
Wrapping Around of Part of the Plasma
26:13
Examples
26:26
Phagocytosis
28:54
Pinocytosis
29:02
Exocytosis
29:40
Releasing Material From Inside of a Cell
29:43
Opposite of Endocytosis
29:50
Cellular Energy, Part I

52m 11s

Intro
0:00
Energy Facts
0:05
Law of Thermodynamics
0:16
Potential Energy
2:27
Kinetic Energy
2:50
Chemical Energy
3:01
Mechanical Energy
3:20
Solar Energy
3:41
ATP Structure
4:07
Adenosine Triphosphate
4:12
Common Energy Source
4:25
ATP Function
6:13
How It Works
7:18
What It Is Used For
7:43
GTP
9:36
ATP Cycle
10:35
ATP Formation
10:49
ATP Use
12:12
Enzyme Basics
13:51
Catalysts
13:59
Protein-Based
14:39
Reaction Occurs
14:51
Enzyme Structure
19:14
Active Site
19:23
Induced Fit
20:15
Enzyme Function
21:22
What Enzymes Help With
21:31
Inhibition
21:57
Ideal Environment to Function Properly
22:57
Enzyme Examples
25:26
Amylase
25:34
Catalase
26:03
DNA Polymerase
26:21
Rubisco
27:06
Photosynthesis
28:19
Process To Make Glucose
28:27
Photoauthotrophs
28:34
Endergonic
30:08
Reaction
30:22
Chloroplast Structure
31:55
Photosynthesis Factories Found in Plant Cells
32:26
Thylakoids
32:29
Stroma
33:18
Chloroplast Micrograph
34:14
Photosystems
34:46
Thylakoid Membranes Are Filled with These Reaction Centers
34:58
Photosystem II and Photosystem I
35:47
Light Reactions
37:09
Light-Dependent Reactions
37:24
Step 1
37:35
Step 2
38:31
Step 3
39:33
Step 4
40:33
Step 5
40:51
Step 6
41:30
Dark Reactions
43:15
Light-Independent Reactions or Calvin Cycle
43:19
Calvin Cycle
44:54
Cellular Energy, Part II

40m 50s

Intro
0:00
Aerobic Respiration
0:05
Process of Breaking Down Carbohydrates to Make ATP
0:45
Glycolysis
1:44
Krebs Cycle
1:48
Oxidative Phosphorylation
2:06
Produces About 36 ATP
2:24
Glycolysis
3:35
Breakdown of Sugar Into Pyruvates
4:16
Occurs in the Cytoplasm
4:30
Krebs Cycle
11:40
Citric Acid Cycle
11:42
Acetyl-CoA
12:04
How Pyruvate Gets Modified into acetyl-CoA
12:35
Oxidative Phosphorylation
22:45
Anaerobic Respiration
29:44
Lactic Acid Fermentation
31:06
Alcohol Fermentation
31:51
Produces Only the ATP From Glycolysis
32:09
Aerobic Respiration vs. Photosynthesis
36:43
Cell Division

1h 9m 12s

Intro
0:00
Purposes of Cell Division
0:05
Growth and Development
0:17
Tissue Regeneration
0:51
Reproduction
1:51
Cell Size Limitations
4:01
Surface-to-Volume Ratio
5:33
Genome-to-Volume Ratio
10:29
The Cell Cycle
12:20
Interphase
13:23
Mitosis
14:08
Cytokinesis
14:21
Chromosome Structure
16:08
Sister Chromatids
19:00
Centromere
19:22
Chromatin
19:48
Interphase
21:38
Growth Phase #1
22:25
Synthesis of DNA
23:09
Growth Phase #2
23:52
Mitosis
25:13
4 Main Phases
25:21
Purpose of Mitosis
26:40
Prophase
28:46
Condense DNA
28:56
Nuclear Envelope Breaks Down
29:44
Nucleolus Disappears
30:04
Centriole Pairs Move to Poles
30:31
Spindle Apparatus Forms
31:22
Metaphase
32:36
Chromosomes Line Up Along Equator
32:43
Metaphase Plate
33:29
Anaphase
34:21
Sister Chromatids are Separated
34:26
Sister Chromatids Migrate Towards Poles
36:59
Telophase
37:17
Chromatids Become De-Condensed
37:31
Nuclear Envelope Reforms
37:59
Nucleoli Reappears
38:22
Spindle Apparatus Breaks Down
38:32
Cytokinesis
39:01
In Animal Cells
39:31
In Plant Cells
40:38
Cancer in Relation to Mitosis
41:59
Cancer Can Occur in Multicellular Organism
42:31
Particular Genes Control the Pace
43:11
Benign vs. Malignant
45:13
Metastasis
46:45
Natural Killer Cells
47:33
Meiosis
48:17
Produces 4 Cells with Half the Number of Chromosomes
49:02
Produces Genetically Unique Daughter Cells
51:56
Meiosis I
52:39
Prophase I
53:14
Metaphase I
57:44
Anaphase I
59:10
Telophase I
1:00:00
Meiosis II
1:01:04
Prophase II
1:01:08
Metaphase II
1:01:32
Anaphase II
1:02:08
Telophase II
1:02:43
Meiosis Overview
1:03:39
Products of Meiosis
1:06:00
Gametes
1:06:10
Sperm and Egg
1:06:17
Different Process for Spermatogenesis vs. Oogenesis
1:06:27
III. From DNA to Protein
DNA

51m 42s

Intro
0:00
DNA: Its Role and Characteristics
0:05
Deoxyribonucleic Acid
0:17
Double Helix
1:28
Nucleotides
2:31
Anti-parallel
2:46
Self-Replicating
3:36
Codons, Genes, Chromosomes
3:56
DNA: The Discovery
5:13
DNA First Mentioned
5:50
Bacterial Transformation with DNA
6:32
Base Pairing Rule
8:06
DNA is Hereditary Material
9:44
X-Ray Crystallography Images
10:46
DNA Structure
11:49
Nucleotides
12:54
The Double Helix
16:34
Hydrogen Bonding
16:40
Backbone of Phosphates and Sugars
19:25
Strands are Anti-Parallel
19:37
Nitrogenous Bases
20:52
Purines
21:38
Pyrimidines
22:46
DNA Replication Overview
24:33
DNA Must Duplicate Every Time a Cell is Going to Divide
24:34
Semiconservative Replication
24:49
How Does it Occur?
27:34
DNA Replication Steps
28:39
DNA Helicase Unzips Double Stranded DNA
28:49
RNA Primer is Laid Down
29:10
DNA Polymerase Attaches Complementary Bases in Continuous Manner
30:07
DNA Polymerase Attaches Complementary Bases in Fragments
31:06
DNA Polymerase Replaces RNA Primers
31:22
DNA Ligase Connects Fragments Together
31:44
DNA Replication Illustration
32:25
'Junk' DNA
45:02
Only 2% of the Human Genome Codes for Protein
45:11
What Does Junk DNA Mean to Us?
46:52
DNA Technology Uses These Sequences
49:20
RNA

51m 59s

Intro
0:00
The Central Dogma
0:04
Transcription
0:57
Translation
1:11
RNA: Its Role and Characteristics
2:02
Ribonucleic Acid
2:06
How It Is Different From DNA
2:59
DNA and RNA Differences
5:00
Types of RNA
6:01
Messenger RNA
6:15
Ribosomal RNA
6:49
Transfer RNA
7:52
Others
8:54
Transcription
9:26
Process in Which RNA is Made From a Gene in DNA
9:30
How It's Done
9:55
Summary of Steps
10:35
Transcription Steps
11:54
Initiation
11:57
Elongation
15:57
Termination
18:10
RNA Processing
21:35
Pre-mRNA
21:37
Modifications
21:53
Translation
27:01
Process in Which mRNA Binds with a Ribosome and tRNA and rRNA Assist
27:03
Summary of Steps
28:39
Translation the mRNA Code
28:59
Every Codon in mRNA Gets Translated to an Amino Acid
29:14
Chart Providing the Resulting Translation
29:19
Translation Steps
32:20
Initiation
32:23
Elongation
35:31
Termination
38:43
Mutations
40:22
Code in DNA is Subject to Change
41:00
Why Mutations Happen
41:23
Point Mutation
43:16
Insertion / Deletion
47:58
Duplications
50:03
Genetics, Part I

1h 15m 17s

Intro
0:00
Gregor Mendel
0:05
Father of Genetics
0:39
Experimented with Crossing Peas
1:02
Discovered Consistent Patterns
2:37
Mendel's Laws of Genetics
3:10
Law of Segregation
3:20
Law of Independent Assortment
5:07
Genetics Vocabulary #1
6:28
Gene
6:42
Allele
7:18
Homozygous
8:25
Heterozygous
9:39
Genotype
10:15
Phenotype
11:01
Hybrid
11:53
Pure Breeding
12:28
Generation Vocabulary
13:03
Parental Generation
13:25
1st Filial
13:58
2nd Filial
14:06
Punnett Squares
15:07
Monohybrid Cross
18:52
Mating Pure-Breeding Peas in the P Generation
19:09
F1 Cross
21:31
Dihybrid Cross Introduction
23:42
Traced Inheritance of 2 Genes in Pea Plants
23:50
Dihybrid Cross Example
26:07
Phenotypic Ratio
31:34
Incomplete Dominance
32:02
Blended Inheritance
32:27
Example
32:35
Epistasis
35:05
Occurs When a Gene Has the Ability to Completely Cancel Out the Expression of Another Gene
35:10
Example
35:30
Multiple Alleles
40:12
More Than Two Forms of Alleles
40:23
Example
41:06
Polygenic Inheritance
46:50
Many Traits Get Phenotype From the Inheritance of Numerous Genes
46:58
Example
47:26
Test Cross
51:53
In Cases of Complete Dominance
52:03
Test Cross Demonstrates Which Genotype They Have
52:52
Sex-Linked Traits
53:56
Autosomes
54:21
Sex Chromosomes
54:57
Genetic Disorders
59:31
Autosomal Recessive
1:00:00
Autosomal Dominant
1:06:17
Sex-Linked Recessive
1:09:19
Sex-Linked Dominant
1:13:41
Genetics, Part II

49m 57s

Intro
0:00
Karotyping
0:04
Process to Check Chromosomes for Abnormal Characteristics
0:08
Done with Cells From a Fetus
0:58
Amniocentesis
1:02
Normal Karotype
2:43
Abnormal Karotype
4:20
Nondisjunction
5:14
Failure of Chromosomes to Properly Separate During Meiosis
5:16
Nondisjunction
5:45
Typically Causes Chromosomal Disorders Upon Fertilization
6:33
Chromosomal Disorders
10:52
Autosome Disorders
11:01
Sex Chromosome Disorders
14:06
Pedigrees
20:29
Visual Depiction of an Inheritance Pattern for One Gene in a Family's History
20:30
Symbols
20:46
Trait Being Traced is Depicted by Coloring in the Individual
21:58
Pedigree Example #1
22:26
Pedigree Example #2
25:02
Pedigree Example #3
27:23
Environmental Impact
30:24
Gene Expression Is Often Influenced by Environment
30:25
Twin Studies
30:35
Examples
31:45
Genetic Engineering
36:03
Genetic Transformation
36:17
Restriction Enzymes
39:09
Recombinant DNA
40:37
Gene Cloning
41:58
Polymerase Chain Reaction
43:13
Gel Electrophoresis
44:37
Transgenic Organisms
48:03
IV. History of Life
Evolution

1h 47m 19s

Intro
0:00
The Scientists Behind the Theory
0:04
Fossil Study and Catastrophism
0:18
Gradualism
1:13
Population Growth
2:00
Early Evolution Thought
2:37
Natural Selection As a Sound Theory
8:05
Darwin's Voyage
8:59
Galapagos Islands Stop
9:15
Theory of Natural Selection
11:24
Natural Selection Summary
12:37
Populations have Enormous Reproductive Potential
13:45
Population Sizes Tend to Remain Relatively Stable
14:55
Resources Are Limited
16:51
Individuals Compete for Survival
17:16
There is Much Variation Among Individuals in a Population
17:36
Much Variation is Heritable
18:06
Only the Most Fit Individuals Survive
18:27
Evolution Occurs As Advantageous Traits Accumulate
19:23
Evidence for Evolution
19:47
Molecular Biology
19:53
Homologous Structures
22:55
Analogous Structures
26:20
Embryology
29:36
Paleontology
34:54
Patterns of Evolution
40:14
Divergent Evolution
40:37
Convergent Evolution
43:15
Co-Evolution
46:07
Gradualism vs. Punctuated Equilibrium
49:56
Modes of Selection
52:25
Directional Selection
54:40
Disruptive Selection
56:38
Stabilizing Selection
58:07
Artificial Selection
59:56
Sexual Selection
1:02:13
More on Sexual Selection
1:03:00
Sexual Dimorphism
1:03:26
Examples
1:04:50
Notes on Natural Selection
1:09:41
Phenotype
1:10:01
Only Heritable Traits
1:11:00
Mutations Fuel Natural Selection
11:39
Reproductive Isolation
1:12:00
Temporal Isolation
1:12:59
Behavioral Isolation
1:14:17
Mechanical Isolation
1:15:13
Gametic Isolation
1:16:21
Geographic Isolation
1:16:51
Reproductive Isolation (Post-Zygotic)
1:18:37
Hybrid Sterility
1:18:57
Hybrid Inviability
1:20:08
Hybrid Breakdown
1:20:31
Speciation
1:21:02
Process in Which New Species Forms From an Ancestral Form
1:21:13
Factors That Can Lead to Development of a New Species
1:21:19
Adaptive Radiation
1:24:26
Radiating of Various New Species
1:24:28
Changes in Appearance
1:24:56
Examples
1:24:14
Hardy-Weinberg Theorem
1:27:35
Five Conditions
1:28:15
Equations
1:33:55
Microevolution
1:36:59
Natural Selection
1:37:11
Genetic Drift
1:37:34
Gene Flow
1:40:54
Nonrandom Mating
1:41:06
Clarifications About Evolution
1:41:24
A Single Organism Cannot Evolve
1:41:34
No Single Missing Link with Human Evolution
1:43:01
Humans Did Not Evolve from Chimpanzees
1:46:13
Human Evolution

47m 31s

Intro
0:00
Primates
0:04
Typical Primate Characteristics
1:12
Strepsirrhines
3:26
Haplorhines
4:08
Anthropoids
5:03
New World Monkeys
5:15
Old World Moneys
6:20
Hominoids
6:51
Hominins
7:51
Hominins
8:46
Larger Brains
8:53
Thinner, Flatter Face
9:02
High Manual Dexterity
9:30
Bipedal
9:41
Australopithecines
12:11
Earliest Fossil Evidence for Bipedalism
12:24
Earliest Australopithecines
13:06
Lucy
13:35
The Genus 'Homo'
15:20
Living and Extinct Humans
16:46
Features
16:52
Tool Use
17:09
Homo Habilis
17:38
2.4 - 1.4 mya
18:38
Handy Human
19:19
Found In Africa
19:33
Homo Ergaster
20:11
1.8 - 1.2 mya
20:14
Features
20:25
Found In and Outside of Africa
20:41
Most Likely Hunted
21:03
Homo Erectus
21:32
1.8 - 0.4 mya
22:04
Upright Human
22:49
Found in Africa, Asia, and Europe
22:52
Features
22:57
Used Fire
23:07
Homo Heidelbergensis
23:45
1.3 - 0.2 mya
23:50
Transitional Form
24:22
Features
24:36
Homo Sapiens Neanderthalensis
24:56
0.3 - 0.2 mya
25:23
Neander Valley
25:31
Found in Europe and Asia
21:53
Constructed Complex Structures
27:50
Modern Human and Neanderthal
28:50
Homo Sapiens Sapiens
29:34
195,000 Years Ago - Present
29:37
Humans Most Likely Evolved Once
29:50
Features
30:26
Creative and More Control Over the Environment
30:37
Homo Floresiensis
31:36
18,000 Years Old
31:40
The Hobbit
32:09
Brain and Body Proportions are Similar to Australopithecines
32:16
Human Migration Summary
32:49
Origins of Life

40m 58s

Intro
0:00
Brief History of Earth
0:05
About 4.5 Billion Years Old
0:13
Started Off as a Fiery Ball of Hot Volcanic Activity
1:12
Atmospheric Gas of Early Earth
2:20
Gases Expelled Out of Volcanic Vents
3:10
Building Blocks to Organic Compounds
4:47
Miller-Urey Experiment (1953)
5:41
Stanley Miller and Harold Urey
5:48
Amino Acids Were Found in the Sterile Water Beneath
7:27
Protobionts
8:07
Ancestors of Cells as We Know Them
8:19
Lipid Bubbles with Organic Compounds Inside
8:32
Origin of DNA
12:07
First Cells
12:12
RNA Originally Coded for Protein
12:44
DNA Allows for Retention and a Checking for Errors
12:55
Oxygen Surge
14:57
Photosynthesis Changes Oxygen Gas in Atmosphere
16:36
Cells Absorb Solar Energy with Pigment and Could Make Sugars and Release Oxygen
17:05
Endosymbiotic Theory
18:22
First Eukaryote was Born
19:54
First Proposed by Lynn Margulis
22:43
Multicellular Origins
23:08
Cells That Kept Close Quarters and Stayed Attached Had Safety in Numbers
23:28
Hypothesis
23:45
Cambrian Explosion
26:22
Explosion of Species
27:10
Theory and Snowball Earth
28:24
Timeline of Major Events
32:00
Biogenesis

27m 25s

Intro
0:00
Spontaneous Generation
0:04
Spontaneous Generation
0:14
Pseudoscience
1:45
Individuals Who Sought to Disprove This Theory
2:49
Francesco Redi's Experiment
3:33
17th Century Italian Scientist
3:36
Wanted to Debunk the Theory That Maggots Emerge From Rotting Raw Meat
3:48
Lazzaro Spallanzani's Experiment
6:33
18th Century Italian Scientist
6:36
Wanted to Demonstrate That Microbes Could Be Airborne
6:58
Louis Pasteur's Experiment
9:47
19th Century French Scientist
9:51
Disprove Spontaneous Generation
11:17
Pasteur's Vaccine Discovery
13:47
Motivation to Discover a Way to Immunize People Against Disease
14:00
Cholera Bacteria
14:42
Vaccine Explanation
16:42
Inactive Versions of the Virus are Generated in a Culture
16:47
Antigens Injected Into the Person
17:45
Common Immunizations
22:00
Effectiveness
22:03
No Proof That Vaccines Cause Autism
26:33
V. Diversity of Life
Taxonomy

35m 21s

Intro
0:00
Ancient Classification
0:04
Start of Classification Systems
0:56
How Plants and Animals Were Split Up
2:46
Used in Europe Until 1700s
3:27
Modern Classification
3:52
Carolus Linnaeus
3:58
Taxonomy
5:15
Taxonomic Groups
6:57
Domain
7:14
Kingdom
7:29
Phylum
7:39
Class
7:49
Order
8:02
Family
8:09
Genus
8:25
Species
8:45
Binomial Nomenclature
12:10
Genus Species
12:22
Naming System Rules
12:49
Advantages and Disadvantages to Taxonomy
14:56
Advantages
15:00
Disadvantages
17:53
Domains
20:31
Domain Archaea
21:10
Domain Bacteria
21:19
Domain Eukarya
21:43
Extremophiles
22:48
Kingdoms
25:09
Kingdom Archaebacteria
25:17
Kingdom Eubacteria
25:25
Kingdom Protista
25:52
Kingdom Plantae, Fungi, Animalia
27:18
Cladograms
28:07
Relates Evolution to Phylogeny
28:12
Characteristics Lead to Splitting Off Groups of Organisms
28:20
Viruses

44m 25s

Intro
0:00
Virus Basics
0:04
Non-Living Structures have the Potential to Harm Life on Earth
0:14
Made of Nucleic Acids Wrapped in a Protein Coat
2:15
5 to 300 nm Wide
3:12
Virus Structure
4:29
Icosahedral
4:41
Spherical
5:33
Bacteriophage
6:20
Helical
8:56
How Do They Invade Cells?
11:24
Viruses Can Fool Cells to Let Them In
11:27
Viruses Use the Organelles of the Host
12:29
Viruses are Host Specific
12:57
Viral Cycle
16:18
Lytic Cycle
16:34
Lysogenic Cycle
18:53
Connection Between Lytic/ Lysogenic
23:01
Retroviruses
30:04
Process is Backwards
30:52
Reverse Transcriptase
31:08
Example
31:47
HIV/ AIDS
32:38
Human Immunodeficiency Virus
32:42
Acquired Immunodeficiency Syndrome
36:27
Smallpox: A Brief History
37:06
One of the Most Harmful Viral Diseases in Human History
37:09
History
37:53
Prions
41:32
Infectious Proteins That Damage the Nervous System
41:33
Cause Transmittable Spongiform Encephalopathies
41:51
No Known Cure
43:42
Bacteria

46m 1s

Intro
0:00
Archaebacteria
0:04
Thermophiles
1:10
Halophiles
2:06
Acidophiles
2:29
Methanogens
2:59
Archaea and Bacteria Compared to Eukarya
4:25
Archaea and Eukarya
4:36
Bacteria and Eukarya
5:37
Eubacteria
6:35
Nucleoid Region
7:02
Peptidoglycan
7:21
Binary Fission
8:08
No Membrane-Bound Organelles
8:59
Bacterial Shapes
10:19
Coccus
10:26
Bacillus
12:07
Spirillum
12:44
Bacterial Cell Walls
13:17
Gram Positive
13:47
Gram Negative
15:09
Bacterial Adaptations
16:13
Capsule
16:18
Fimbriae
17:51
Conjugation
18:30
Endospore
21:30
Flagella
23:49
Metabolism
24:36
Benefits of Bacteria
27:28
Mutualism
27:32
Connections to Human Life
30:56
Diseases Caused by Bacteria
35:05
STDs
35:15
Respiratory
36:04
Skin
37:15
Digestive Tract
38:00
Nervous System
38:27
Systemic Diseases
39:09
Antibiotics
40:26
Drugs That Block Protein Synthesis
40:40
Drugs That Block Cell Wall Production
41:07
Increased Bacterial Resistance
41:36
Protists

32m 46s

Intro
0:00
Kingdom Protista Basics
0:04
Unicellular and Multicellular
0:28
Asexual and Sexual
0:48
Water and Land
1:06
Resemble Other Life Forms
1:32
Protist Origin
2:04
Evolutionary Bridge Between Bacteria and Multicellular Eukaryotes
2:06
Protist Ancestors
2:27
Protist Debate
4:18
One Kingdom
4:30
Some Scientists Group Into Separate Kingdoms Based on Genetic Links
4:37
Plant-like Protists
6:03
Photoautotrophs
6:12
Green Algae
6:44
Red Algae
7:12
Brown Algae
7:57
Golden Algae
9:10
Dinoflagellates
9:20
Diatoms
9:41
Euglena
10:17
Euglena Structure
10:39
Ulva Life Cycle
12:08
Fungi-Like Protists
15:39
Heterotrophs That Feed on Decaying Organic Matter
15:41
Found Anywhere with Moisture and Warmth
16:04
Cellular Slime Mold Life Cycle
17:34
Animal-like Protists
21:45
Heterotrophs That Eat Live Cells
21:50
Motile
22:03
Amoeba Life Cycle
25:24
How Protists Impact Humans
29:09
Good
29:16
Bad
32:18
Plants, Part I

54m 22s

Intro
0:00
Kingdom Plantae Characteristics
0:05
Cuticle
0:38
Vascular Bundles
1:18
Stomata
2:51
Alternation of Generations
4:16
Plant Origins
5:58
Common Ancestor with Green Algae
6:03
Appeared on Earth 400 Million Years Ago
7:28
Non-Vascular Plants
8:17
Bryophytes
8:45
Anthoworts
9:12
Hepaticophytes
9:19
Bryophyte (Moss) Life Cycle
9:30
Dominant Gametophyte
9:38
Illustration Explanation
9:58
Seedless Vascular Plants
15:26
Do Not Reproduce With Seeds
15:33
Sori
15:42
Lycophytes
15:54
Pterophytes
16:30
Pterophyte (Fern) Life Cycle
17:05
Dominant Generation
17:08
Produce Motile Sperm
17:17
Seed Plants
23:17
Most Vascular Plants Have Seeds
23:25
Cotyledons
23:43
Gymnosperm vs. Angiosperm
24:50
Divisions
25:48
Coniferophytes (Cone-Bearing Plants)
27:05
Examples
27:07
Evergreen or Deciduous
27:44
Gymnosperms
28:26
Economic Importance
29:28
Conifer Life Cycle
30:10
Dominant Generation
30:13
Cones Contain the Gametophyte
30:25
Illustration Explanation
30:31
Anthophytes (Flowering Plants)
38:01
Every Plant That Has Flowers
38:03
Angiosperms
38:28
Various Life Spans
38:03
Flower Anatomy
40:25
Female Parts
40:54
Male Parts
42:49
Flowering Plant Life Cycle
44:48
Dominant Generation
44:56
Flowers Contain the Gametophyte
45:05
Plants, Part II

44m 40s

Intro
0:00
Plant Cell Varieties
0:05
Parenchyma
0:11
Collenchyma
1:37
Sclerenchyma
2:03
Specialized Tissues
2:56
Plant Tissues
3:17
Meristematic Tissue
3:21
Dermal Tissue
6:46
Vascular Tissues
8:45
Ground Tissue
13:56
Roots
14:24
Root Cap
15:59
Cortex
16:17
Endodermis
17:02
Pericycle
17:42
Taproot
18:11
Fibrous
18:20
Modified
18:49
Stems
19:49
Tuber
21:43
Rhizome
21:58
Runner
22:12
Bulb and Corm
22:49
Leaves
23:06
Photosynthesis
23:09
Leaf Parts
23:32
Gas Exchange
25:55
Transpiration
26:25
Seeds
27:41
Cotyledons
28:42
Seed Coat
29:29
Endosperm
29:37
Embryo
30:10
Radicle
30:27
Epicotyl
31:57
Fruit
33:49
Fleshy Fruits
34:46
Aggregate Fruits
35:17
Multiple Fruits
35:50
Dry Fruits
36:27
Plant Hormones
37:44
Definition or Hormones
37:48
Examples
38:12
Plant Responses
40:42
Tropisms
41:00
Nastic Responses
43:04
Fungi

26m 20s

Intro
0:00
Fungi Basics
0:03
Characteristics
0:09
Closely Related to Kingdom Animalia
2:33
Fungal Structure
2:58
Hypae
3:03
Mycelium
5:00
Spore
5:24
Reproductive Strategies
6:15
Fragmentation
6:23
Budding
6:35
Spore Production
7:03
Zygomycota (Molds)
7:50
Sexual Reproduction
8:04
Dikaryotic
9:47
Stolons
10:32
Rhizoids
10:53
Ascomycota (Sac Fungi)
11:43
Largest Phylum of Fungi on Earth
11:47
Ascus
12:20
Conidia
12:30
Example
12:46
Basidiomycota (Club Fungi)
14:51
Basidium
15:14
Common Structures In These Fungi
15:37
Examples
16:17
Deuteromycota (Imperfect Fungi)
17:25
No Known Sexual Life Cycle
17:31
Penicillin
18:00
Benefits of Fungi
18:51
Mutualism
18:56
Food
21:41
Medicines
22:30
Decomposition
23:08
Fungal Infections
23:38
Athlete's Foot
23:44
Ringworm
24:09
Yeast Infections
24:27
Candidemia
24:56
Aspergillus
25:15
Fungal Meningitis
25:44
Animals, Part I

35m 28s

Intro
0:00
Animal Basics
0:05
Multicellular Eukaryotes
0:12
Motility
0:27
Heterotrophic
0:47
Sexual Reproduction
0:57
Symmetry
1:14
Gut
1:26
Cephalization
1:40
Segmentation
1:53
Sensory Organs
2:09
Reproductive Strategies
3:07
Gonads
3:17
Fertilization
4:01
Asexual
4:53
Animal Development
7:27
Zygote
7:29
Blastula
7:50
Gastrula
9:07
Embryo
12:57
Symmetry
13:17
Radial Symmetry
14:14
Bilateral Symmetry
15:26
Asymmetry
16:34
Body Cavities
17:22
Coelom
17:24
Acoelomates
18:39
Pseudocoelomates
19:15
Coelomates
19:40
Major Animal Phyla
20:47
Phylum Porifera
21:15
Phylum Cnidaria
21:33
Phylum Platyhelmininthes, Nematoda, and Annelida
21:44
Phylum Rotifera
21:56
Phylum Mollusca
22:13
Phylum Arthropoda
22:34
Phylum Echinodermata
22:48
Phylum Chordata
23:18
Phylum Porifera
25:15
Sponges
25:23
Oceanic or Aquatic
26:07
Adults are Sessile
26:26
Structure
27:09
Sexual or Asexual Reproduction
28:31
Phylum Cnidaria
28:49
Sea Jellies, Anemonse, Hydrozoans, and Corals
28:57
Mostly Oceanic
30:42
Body Types
31:32
Cnidocytes
33:06
Nerve Net
34:55
Animals, Part II

48m 42s

Intro
0:00
Phylum Platyhelminthes
0:04
Flatworms
0:14
Acoelomates
0:33
Terrestrial, Oceanic, or Aquatic
0:46
Simple Nervous System
2:46
Reproduction
3:38
Phylum Nematoda
4:20
Unsegmented Roundworms
4:25
Pseudocoelomates
4:34
Terrestrial, Oceanic, or Aquatic
4:53
Full Digestive Tract
5:29
Reproduction
7:07
C. Elegans
7:24
Phylum Annelida
8:11
Segmented Roundworms
8:20
Terrestrial, Oceanic, or Aquatic
8:42
Full Digestive Tract
8:56
Accordion-like Movement
11:26
Simple Nervous System
12:31
Sexual Reproduction
13:40
Class Oligochaeta
14:47
Class Polychaeta
14:56
Class Hirudinea
15:13
Phylum Rotifera
16:11
Pseudocoelomates
16:26
Terrestrial, Aquatic
16:42
Digestive Tract
16:56
Phylum Mollusca
18:55
Snails, Slugs, Clams, Oysters
19:00
Terrestrial, Oceanic, or Aquatic
19:14
Mantle
19:29
Full Digestive Tract with Specialized Organs
21:10
Sexual Reproduction
24:29
Major Classes
24:58
Phylum Arthropoda
28:16
Insects, Arachnids, Crustaceans
28:19
Terrestrial, Oceanic, or Aquatic
28:41
Head, Thorax, Abdomen
28:50
Excretion with Malpighian Tubes
32:48
Arthropod Groups
34:06
Phylum Echinodermata
38:32
Sea Stars, Sea Urchins, Sand Dollars, Sea Cucumbers
38:37
Oceanic or Aquatic
39:36
Water Vascular System
39:43
Full Digestive Tract
40:38
Sexual Reproduction
42:01
Phylum Chordata
42:16
All Vertebrates
42:22
Terrestrial, Oceanic, or Aquatic
42:40
Main Body Parts
42:49
Mostly in Subphylum Vertebrata
44:54
Examples
45:14
Animals, Part III

35m 45s

Intro
0:00
Characteristics of Subphylum Vertebrata
0:04
Vertebral Column
0:16
Neural Crest
0:38
Internal Organs
1:24
Fish Characteristics
2:05
Oceanic or Aquatic
2:16
Locomotion with Paired Fins
3:15
Gills
4:18
Fertilization
8:14
Movement
8:30
Fish Classes
8:58
Jawless Fishes
9:06
Cartilaginous Fishes
10:07
Bony Fishes
10:46
Amphibian Characteristics
12:22
Tetrapods
12:29
Moist Skin
14:22
Circulation
14:39
Nictitating Membrane
16:36
Tympanic Membrane
16:56
External Fertilization is Typical
17:34
Amphibian Orders
18:20
Order Anura
18:27
Order Caudata
19:15
Order Gymnophiona
19:59
Reptile Characteristics
20:31
Dry, Scaly Skin
20:37
Lungs for Gas Exchange
22:00
Terrestrial, Oceanic, Aquatic
22:12
Ectothermic
23:07
Internal Fertilization
24:13
Reptile Orders
26:28
Order Squamata
26:33
Order Crocodilia
27:32
Order Testudinata
27:55
Order Sphenodonta
28:30
Bird Characteristics
28:43
Feathers
29:42
Lightweight Bones
31:33
Lungs with Air Sacs
32:25
Endothermic
33:47
Internal Fertilization
34:03
Bird Orders
34:13
Order Passeriformes
34:29
Order Ciconiiformes
34:46
Order Sphenisciformes
34:55
Order Strigiformes
35:20
Order Struthioniformes
35:25
Order Anseriformes
35:38
Mammals

38m 39s

Intro
0:00
Mammary Glands and Hair
0:04
Class Mammalia Name
0:20
Hair Functions
1:53
Metabolic Characteristics
3:58
Endothermy
4:01
Feeding
4:48
Mammalian Organs
8:43
Respiratory System
8:47
Circulation
9:26
Brain and Senses
10:29
Glands
11:56
Mammalian Reproduction
12:55
Live Birth
13:03
Placental
13:17
Marsupial
14:41
Gestation Periods
16:07
Infraclass Marsupialia
17:42
Australia
17:59
Uterus/ Pouch
18:33
Origins
18:53
Examples
19:24
Order Monotremata
20:21
Egg Layers
20:25
Platypus, Echidna
20:55
Shoulder Area Has a Reptilian Bone Structure
21:07
Order Insectivora
22:21
Insectivores
22:23
Pointy Snouts
22:32
Burrowing
22:53
Examples
23:10
Order Chiroptera
23:32
True Flying Mammalian Order
23:38
Wings
23:59
Feeding
24:21
Examples
25:08
Order Xenarthra
25:14
Edentata
25:18
No Teeth
25:23
Location
25:50
Examples
25:55
Order Rodentia
26:33
40% of Mammalian Species
26:38
2 Pairs of Incisors
26:45
Examples
27:28
Order Lagomorpha
28:06
Herbivores
28:30
Examples
28:41
Order Carnivora
29:19
Teeth
29:36
Examples
29:42
Order Proboscidea
30:37
Largest Living Terrestrial Mammals
30:40
Trunks
30:48
Tusks
31:12
Examples
31:33
Order Sirenia
32:01
Large, Slow Moving Aquatic Mammals
32:15
Flippers
32:26
Herbivores
32:37
Examples
32:42
Order Cetacea
32:46
Large, Mostly Hairless Aquatic Mammals
32:50
Flippers
33:06
Fluke
33:18
Blowhole
33:29
Examples
34:10
Order Artiodactyla
34:30
Even-Toed Hoofed Mammals
34:33
Herbivores
34:37
Sometimes Grouped with Cetaceans
34:52
Examples
35:35
Order Perissodactyla
35:57
Odd-Toed Hoofed Mammals
36:00
Herbivores
36:12
Examples
36:27
Order Primates
36:30
Largest Brain-to-Body Ratio
36:35
Arboreal
37:03
Nails
37:33
Examples
38:29
Animal Behavior

29m 55s

Intro
0:00
Behavior Overview
0:04
Behavior
0:08
Origin of Behavior
0:36
Competitive Advantage
1:26
Innate Behaviors
2:05
Genetically Based
2:07
Instinct
2:13
Fixed Action Pattern
3:31
Learned Behavior
5:13
Habituation
5:26
Classical Conditioning
6:31
Operant Conditioning
7:51
Imprinting
10:17
Learned Behavior That Can Only Occur in a Specific Time Period
10:20
Sensitive Period
10:28
Cognitive Behaviors
11:53
Thinking, Reasoning, and Processing Information
12:02
Examples
12:22
Competitive Behaviors
14:40
Agonistic Behavior
14:46
Dominance Hierarchies
15:23
Territorial Behaviors
16:19
More Types of Behavior
17:05
Foraging Behaviors
17:08
Migratory Behaviors
17:53
Biological Rhythms
19:15
Communication Behaviors
20:37
Pheromones
20:52
Auditory Communication
22:18
Courting and Nurturing Behaviors
23:42
Courting Behaviors
23:45
Nurturing Behaviors
26:04
Cooperative Behaviors
26:47
Benefit All Members of the Group
27:01
Example
27:08
VI. Ecology
Ecology, Part I

1h 7m 26s

Intro
0:00
Ecology Basics
0:05
Ecology
0:18
Biotic vs. Abiotic Factors
1:25
Population
2:23
Community
2:45
Ecosystem
3:04
Biosphere
3:27
Individuals and Survival
4:13
Habitat
4:23
Niche
4:37
Symbiosis
7:07
Obtaining Energy
11:14
Producers
11:24
Consumers
13:31
Food Chain
17:11
Model to Illustrate How Matter Moves Through Organisms in an Ecosystem
17:15
Examples
18:31
Food Web
20:29
Keystone Species
22:55
Three Ecological Pyramids
27:28
Pyramid of Energy
27:38
Pyramid of Numbers
31:39
Pyramid of Biomass
34:09
The Water Cycle
37:24
The Carbon Cycle
40:19
The Nitrogen Cycle
43:34
The Phosphorus Cycle
46:42
Population Growth
49:35
Reproductive Patterns
51:58
Life History Patterns Vary
52:10
r-Selection
53:30
K-Selection
56:55
Density Factors
59:02
Density-Dependent Factors
59:29
Density-Independent Factors
1:02:21
Predator / Prey Relationships
1:03:59
Ecology, Part II

50m 50s

Intro
0:00
Mimicry
0:05
Batesian Mimicry
0:38
Müllerian Mimicry
1:53
Camouflage
3:23
Blend In with Surroundings
3:38
Evade Detection by Predators
3:43
Succession
5:22
Primary Succession
5:40
Secondary Succession
7:44
Biomes
9:31
Terrestrial
10:08
Aquatic / Marine
10:05
Desert
11:20
Annual Rainfall
11:24
Flora
13:35
Fauna
14:15
Tundra
14:49
Annual Rainfall
15:00
Permafrost
15:50
Flora
16:06
Fauna
16:40
Taiga (Boreal Forest)
16:59
Annual Rainfall
17:14
Largest Terrestrial Biome
17:33
Flora
18:37
Fauna
18:49
Temperate Grassland
19:07
Annual Rainfall
19:28
Flora
20:14
Fauna
20:18
Tropical Grassland (Savanna)
20:41
Annual Rainfall
21:01
Flora
21:56
Fauna
22:00
Temperate Deciduous Forest
22:19
Annual Rainfall
23:11
Flora
23:45
Fauna
23:50
Tropical Rain Forest
24:11
Annual Rainfall
24:16
Flora
27:15
Fauna
27:49
Lakes
28:05
Eutrophic
28:21
Oligotrophic
28:29
Zones
29:34
Estuaries
32:56
Area Where Freshwater and Salt Water Meet
33:00
Mangrove Swamps
33:12
Nutrient Traps
33:52
Organisms
34:24
Marine
34:50
Euphotic Zone
35:16
Pelagic Zone
37:11
Abyssal Plain
38:15
Conservation Summary
40:03
Biodiversity
40:33
Habitat Loss
44:06
Pollution
44:55
Climate Change
47:03
Global Warming
47:06
Greenhouse Gases
47:48
Polar Ice Caps
49:01
Weather Patterns
50:00
VII. Laboratory
Laboratory Investigation I: Microscope Lab

24m 51s

Intro
0:00
Light Microscope Parts
0:06
Microscope Use
6:25
Mount the Specimen
6:28
Place Slide on Stage
7:29
Ensure Specimen is Above Light Source
8:11
Lowest Objective Lens Faces Downward
8:34
Focus on the Image
9:36
Adjust the Nosepiece If Needed
9:49
Re-Focus
9:57
Human Skin Layers
10:42
Plants Cells
13:43
Human Lung Tissue
15:20
Euglena
18:26
Plant Stem
20:43
Mold
22:57
Laboratory Investigation II: Egg Lab

11m 26s

Intro
0:00
Egg Lab Introduction
0:06
Purpose
0:09
Materials
0:37
Time
1:24
Day 1
1:28
Day 2
3:59
Day 3
6:05
Analysis
7:50
Osmosis Connection
10:24
Hypertonic
10:36
Hypotonic
10:49
Laboratory Investigation III: Carbon Dioxide Production

14m 34s

Intro
0:00
Carbon Dioxide Introduction
0:06
Purpose
0:09
Materials
0:56
Time
2:39
Part I
2:41
Put Water in Large Beaker
3:09
Exhale Into the Water
3:15
Add a Drop of Phenolphthalein
4:31
Add NaOH
5:33
Record the Amount of Drops
6:10
Part II
6:24
Add HCL
6:39
Exercise for Five Minutes
7:26
Return and Re-Do the Exhaling
7:58
Analysis
9:11
Aerobic Respiration Connection
13:18
As Aerobic Respiration Occurs In Cells, Carbon Dioxide Is Produced
13:21
Increase Output of Carbon Dioxide
13:29
Number of Exhalations Increase
14:17
Laboratory Investigation IV: DNA Extraction Lab

10m 38s

Intro
0:00
DNA Lab Introduction
0:06
Purpose
0:09
Materials
0:45
Time
2:03
Part I
2:06
Pour Sports Drink Into the Small Cup
2:08
When Time Expires, Spit Into the Cup
2:53
Add Cell Lysate Solution
3:21
Let it Sit for a Couple Minutes
4:04
Part II
4:10
Slowly Add Cold Ethanol
4:13
DNA Will Creep Up Into the Ethanol Layer
5:01
Analysis
5:59
DNA Structure Connection
8:49
DNA is Microscopic
8:54
Visible DNA
9:39
Extracted DNA
9:49
Laboratory Investigation V: Onion Root Tip Mitosis Lab

13m 12s

Intro
0:00
Mitosis Lab Introduction
0:06
Purpose
0:09
Materials
0:57
Time
1:42
Part I
1:49
Mount the Slide and Zoom Into the Root Apical Meristem
1:50
Zoom In
3:00
Count the Cells in Each Phase
3:09
Record Your Results
3:52
Microscope View Example
3:58
Part II
6:49
Move to Another Part of the Root Apical Meristem
6:55
Count the Phases in this Second Region
7:02
Analysis
9:07
Mitosis Connection
11:17
Rate of Mitosis Varies from Species to Species
11:21
Mitotic Rate Was Higher Since We Used An Actively Dividing Tissue
12:16
Laboratory Investigation VI: Inheritance Lab

13m 55s

Intro
0:00
Inheritance Lab Introduction
0:05
Purpose
0:09
Materials
0:53
Time
2:00
Explanation
2:03
Basic Procedure
5:03
Analysis
8:00
Inheritance Laws Connection
11:23
Law of Segregation
11:31
Law of Independent Assortment
12:49
Laboratory Investigation VII: Allele Frequencies

14m 11s

Intro
0:00
Allele Frequencies Introduction
0:05
Purpose
0:08
Materials
1:34
Time
2:10
Part I
2:12
Part II
7:05
Analysis
7:51
Evolution Connection
10:45
Meant to Stimulate How a Population's Allele Frequencies Change Over Time
10:47
Particular Phenotypes Selected
11:31
Recessive Allele Keeps Dropping
12:18
Laboratory Investigation VIII: Genetic Transformation

16m 42s

Intro
0:00
Genetic Transformation Introduction
0:06
Purpose
0:09
Materials
0:57
Time
3:31
Set-Up
4:18
Starter Culture with E. Coli Colonies
4:21
Just E. Coli
5:37
Ampicillin with No Plasmid
6:24
Ampicillin with Plasmid
7:11
Ampicillin with Plasmid and Arabinose
7:33
Procedure
8:35
Analysis
13:01
Genetic Transformation Connection
14:59
Easier to Transform Bacteria Than a Multicellular Organism
15:03
Desired Trait Can be Expressed from the Bacteria
15:52
Numerous Applications in Medicine
16:04
Loading...
This is a quick preview of the lesson. For full access, please Log In or Sign up.
For more information, please see full course syllabus of Biology
  • Discussion

  • Download Lecture Slides

  • Table of Contents

  • Transcription

  • Related Books

Start Learning Now

Our free lessons will get you started (Adobe Flash® required).
Get immediate access to our entire library.

Sign up for Educator.com

Membership Overview

  • Unlimited access to our entire library of courses.
  • Search and jump to exactly what you want to learn.
  • *Ask questions and get answers from the community and our teachers!
  • Practice questions with step-by-step solutions.
  • Download lesson files for programming and software training practice.
  • Track your course viewing progress.
  • Download lecture slides for taking notes.
  • Learn at your own pace... anytime, anywhere!

Biogenesis

Lecture Slides are screen-captured images of important points in the lecture. Students can download and print out these lecture slide images to do practice problems as well as take notes while watching the lecture.

  • Intro 0:00
  • Spontaneous Generation 0:04
    • Spontaneous Generation
    • Pseudoscience
    • Individuals Who Sought to Disprove This Theory
  • Francesco Redi's Experiment 3:33
    • 17th Century Italian Scientist
    • Wanted to Debunk the Theory That Maggots Emerge From Rotting Raw Meat
  • Lazzaro Spallanzani's Experiment 6:33
    • 18th Century Italian Scientist
    • Wanted to Demonstrate That Microbes Could Be Airborne
  • Louis Pasteur's Experiment 9:47
    • 19th Century French Scientist
    • Disprove Spontaneous Generation
  • Pasteur's Vaccine Discovery 13:47
    • Motivation to Discover a Way to Immunize People Against Disease
    • Cholera Bacteria
  • Vaccine Explanation 16:42
    • Inactive Versions of the Virus are Generated in a Culture
    • Antigens Injected Into the Person
    • Common Immunizations
    • Effectiveness
    • No Proof That Vaccines Cause Autism

Transcription: Biogenesis

Hi, welcome back to www.educator.com, this is the lesson on biogenesis.0000

To talk about biogenesis which mean life coming from life, that life makes life,0007

let us talk about spontaneous generation.0012

Hundreds of years ago, a belief known as spontaneous generation or abiogenesis was quite common.0014

When you put an A in front of a word like biogenesis, it means not that.0021

Like when you say atypical or asexual, not typical not sexual.0025

Abiogenesis means life is not coming from life.0030

Life is just popping up from out of nothing.0035

We know that cells make cells which make cells, and so on.0038

If you go back to the 1300’s, 1400’s, 1500’s, this was quite common.0044

I have this mouse here because people thought like, if you went to a place where there is like a barn0051

and it would rain out, they thought that when the rain hit the hay, mice would come out of it.0059

I do not mean that just, that mice were hiding. I mean that mice were born out of it, that hay gives rise to mice when it rains.0067

What probably happen was, when it rained, the mice went to it for shelter to get out of the rain.0077

That is why they saw the mice are on the hay.0083

But people were not using scientific method to disprove that, it was just kind of word of mouth thing.0086

Like someone had an idea like that is how that happens, they would tell someone else,0091

it would just kind of get passed around, that is pseudoscience.0096

This was the belief that life could consistently rise from non-living matter.0100

Pseudoscience is false, it is not true, it is not substantiated on actual research, where you have control of the variables.0104

Another belief was that, if you put raw meat outside, maggots would come out of it.0115

Possibly something in the air, some kind of a life force would enter the raw meat and cause maggots to be born.0122

It did not strike them that you would need adult flies to actually land on the meat and lay their little eggs that hatch into maggots.0130

They grow up into more adult flies.0140

This was just something that was a common belief until the scientific revolution.0144

From the start of the scientific revolution, just after the renaissance and that spurred a lot of it more intellectual thinking,0150

you finally get into the 1600’s where there were a lot of advances via the scientific method to disprove some of these things.0159

A few individuals starting with the 1600’s disprove some of these ridiculous things.0168

A few individuals, starting with the 1600’s, sought to disprove this theory, Francesco Redi, Lazzaro Spallanzani, and Louis Pasteur.0174

The amazing thing about these three gentlemen is they lived approximately hundred years apart.0178

Francesco Redi from the 1620’s to 1690’s.0183

Spallanzani from the 1720’s to 1790’s.0187

Louis Pasteur from the 1820’s to 1890’s.0190

Not exactly hundred years apart but pretty darn close.0194

It was this nice progression of getting closer and closer to disproving spontaneous generation.0199

Finally, it was Louis Pasteur that put the nail on the coffin, in terms of laying spontaneous generation to rest.0205

Let us start with Francesco Redi’s experiment, he was a 17th century Italian scientist living in the 1600’s.0214

Interesting thing about him, a crater on Mars is named after Redi.0220

Here he is with his nice little wig.0224

He wanted to debunk the theory that maggots, fly, larvae, emerge from rotting spoiling raw meat.0228

Here is what he did, he used a basic scientific method here.0235

Two jars, one covered with gauze and one not.0239

Here is no gauze and here is our meat at the bottom.0244

This one has a gauze, same kind of meat.0263

He left them out, what happened here is flies could come in and lay their little offspring.0279

Of course, maggots developed there.0294

Here, flies cannot get pass the gauze.0297

They desperately wanted to have this little food source down there and0303

lay their offspring down on this place where they can get some nice nutrition, but they could not.0308

You would think that Francesco Redi is like, done deal I disprove this.0313

This did convince enough people but not everyone.0319

They were still a lot of skeptics at this point because people would say things like,0323

Francesco you see in this particular beaker you have blocked out the vital force in the air.0328

There is a life force, in this particular beaker could not allow the life force to get to the meat.0337

Here you could have the air getting into here, allowing the meat to give rise to these.0343

People are going to be skeptical.0352

He did convince a lot of people but not clear enough.0356

This spontaneous generation idea kept on.0359

Great experiment really, in terms of having a control and having an experimental group0364

where you actually block out those flies from getting to there.0372

They have insisted that this one, the life force that people describe,0378

some kind of stuff was allowed to get into the meat but not here.0383

Somehow he blocked out the life force.0390

Next up, Lazzaro Spallanzani was 18th century Italian scientist, about a hundred years later.0394

Interesting fact about him, he died of bladder cancer.0401

His preserved bladder is still on display in an Italian town.0404

Not many people can claim that their bladder is on display for the public to see.0410

Spallanzani wanted to demonstrate that microbes could actually be in the air.0416

That it could be these living things that we just cannot see, but are in the air.0420

They could end up in broth, in spoiled broth.0426

Here is two containers, here we got chicken broth.0433

Normally it would be more of a brownish but we have got it with the yellow.0444

This one room temp, not boiled, and this one boiled.0453

Here we got bubbles, boiling hot.0467

This one of course is spoiled, it got nasty.0475

I do not have a brown marker to make it look nastier but let us do a sad face.0480

Because if you leave chicken broth or any food out, eventually it is going to spoil.0487

Bacteria are going to get into it, mold, fungal spores will get into it.0495

It will go bad because microorganisms will start to feed off of what is in there and they make offspring.0500

It gets to the point where it tastes and smells pretty nasty.0506

This one went bad, but when he boiled this one and put a cap on it,0510

he killed 99, whatever, percent of the bacteria and this lasted a lot longer because of the boiling.0516

He thought that whatever microbes landed in there, whatever tiny little microscopic beings landed in there,0523

got to the point where he killed them all because of the boiling.0531

He had his critics as well, skeptics, people who said Lazzaro,0536

when you boiled this you have made it so that you have destroyed the life force that could enter this and allow life to occur.0540

They did not think that there actually were living beings that could end up in the air, passed from person to person.0549

They understood that people got sick from each other, they saw there were something doing that.0557

People might have thought it was a spirit or a demon.0563

There were all kinds of theories that run substantiated and superstitious.0567

Once again, pseudoscience prevailed in a lot of people's minds.0572

Lazzaro did not completely disprove the theory beyond people's conceptions, what they thought was true.0576

Finally, along comes Louis Pasteur, 19th century French scientist, about a hundred years after Spallanzani.0588

Pasteurization is named after him.0595

The average store you go to, to get milk, milk is pasteurized.0599

Actually, alcohol beverages tend to be pasteurized as well.0605

Pasteurization is the act of like flash heating, bringing it to a very quick boiling level so that you kill 99.9% of germs.0609

Yes, eventually something like milk will spoil, even if you have milk that you never took the cap off in the refrigerator.0621

Eventually, like if you keep it in there for three months and then you take the cap off, it will probably smell bad,0629

that is why they do write some expiration date on it.0636

Once you take the cap off of pasteurized milk,0640

you have now exposed it to new bacteria in the environment that you have opened up that carton in.0643

Pasteurization is really good at preventing people from getting unnecessary bacterial infections.0649

There is this newer trend I have heard where people go after unpasteurized milk.0656

It is not FDA recommended or approved. Food and Drug Administration, they do a lot of good in terms of monitoring food.0661

A lot of people are kind of anti-pasteurization now.0671

But, it saved a lot of lives.0674

These famous swan neck flask was a perfect way to disprove spontaneous generation.0677

Here is why he had a very skilled glass worker, glassmaker, make this interesting contraption.0681

This is an open end, this tube allows air to go in.0698

Here is your broth inside of here.0703

He made it where this was sterile broth, he knows for a fact there is nothing growing in it.0710

But attaches this part on the glass container so that air can be let in.0717

All of the sudden that you thought because you have prevented air from going in0724

because you have capped it off or you have gauze covering the opening.0730

No, air can freely flow through here.0736

As long as you do not tilt the flask, all the airborne bacteria they settle here,0738

the vast majority of bacteria do not have flagella, the majority of them.0746

Even if they had a tail that they could whip back and forth, they are not going to be able to climb all the way up here.0751

Right in here, probably it ends up pretty dirty after a while.0758

You do not want to take a drink of the flask from there.0762

Yes, he had another flask that if he tilted it over and allowed broth to come into here and let it comeback,0765

that one is going to spoil because you are getting bacteria microbes from this area into the sterile fluid or sterile broth.0773

He showed that it is all good, it did not spoil because I have not allowed microbes from the environment to get into there.0782

This was part of his germ theory that there actually are these microscopic beings,0791

bacteria, fungi, viruses, that cause people to get sick.0800

They cause these illnesses.0805

If we just can find a way to defeat the germ, you would not get sick.0807

This led the way to vaccinations or immunizations.0812

A vaccine is definitely something that he was responsible for making, a common practice today.0818

Pasteur’s vaccine discovery, Pasteur was a skilled microbiologist, love looking in microscopes,0828

love figuring out what are these tiny little beings that are causing illnesses.0835

Three of his children died of typhoid fever.0840

Typhoid, you actually typically get it from fecal contamination,0843

from bacteria that was in the person's body and feces coming out of them, ending up in water or the food supply.0849

You can imagine it back in the 1800’s, there really was not as much food regulation and sanitary restrictions as there are today.0857

Unfortunately, he saw three of his children die from this typhoid infection.0865

You got to think that, that spurred him into a passionate drive to discover a way to immunize people against diseases.0871

He realized that in this experiment he was doing with chickens,0878

he was studying how cholera, a certain kind of bacterial infection, kills chickens.0881

Yes, he would actually inject the cholera in chickens, they consistently died.0888

In a kind of accidental way, he ended up getting a weakened version of the bacteria.0894

Just to see what would happen, he actually injected the weakened bacteria, the cholera bacteria, into the chickens.0900

They did not die, they did not get sick.0908

What he had done is, by exposing the chickens' immune system to this weakened cholera,0910

you are giving the tools for immunity to this chicken’s immune system, to the white blood cells.0918

The white blood cells see that, here are these proteins, these little things on the surface of the bacterial cells,0924

we are going to make antibodies to those.0932

That is the raw material to stopping an infection from taking over and making someone or an animal like a chicken sick.0934

By injecting the weakened cholera into the chicken, he then subsequently found out that,0944

if he injected the active terrible cholera to the chicken, they did not die, they did not get sick.0950

By giving them the weakened cholera, he had in a sense vaccinated the chickens against that disease.0959

Later applied this knowledge to anthrax and rabies, other infections, measles arthrosis is another terrible bacterium.0967

This is actually cholera, this is cholera bacteria being grown in a petri dish.0978

The amazing thing is each one of these tiny little colonies, over a million bacteria.0984

There is a lot of bacterial cells on this, you do not want to get them too close to your face because it could definitely enter your body.0992

Some vaccine explanation for you.1004

Inactive versions of the virus or toxin are generated in a culture.1006

You can vaccinate somebody against viral infections or bacterial infections.1012

So that the virus, it would be, you can call it dead version of the virus meaning you got the viral envelope,1017

the outer casing of the protein but it is not going to actively infect your cells and actually give you the viral infection.1026

That toxin from the bacteria is enough for your immune system to identify this is the bad stuff,1034

this is a foreign body, let us figure out what this is and retain a memory for how to defeat it later on.1041

That is what your immune system does.1047

The reason why I said dead virus in the vaccine is because viruses are technically not alive, according to the definition of life.1049

More about that, when you see the virus lesson.1058

You generate them in a culture, antigens will be on the surface.1063

Whether we are talking about, let us say a virus that is shaped like this.1068

They look like spikes on the surface, these are protenacious projections.1072

These things are called antigens and they have a certain shape or certain confirmation, based on the virus.1079

Same thing with a bacterium which should be much larger than a virus.1087

They are tiny little proteins that project through the cell wall.1090

Every bacterium, every species of bacteria has slightly different version of these.1097

You can even get different strains of bacterial infections that have slight mutations1102

that cause slight different versions of those proteins.1109

Antigens, sometimes it is the casing itself or just toxins that come from this particular bacterium.1111

Those are injected into the person, that is the vaccination itself.1120

What happens is the moment those end up in your bloodstream, usually being here,1124

the person's primary immune response, I’m going to highlight that.1131

The primary immune response, the first thing that immune system does,1135

causes their B cells, a certain kind of white blood cell, to end up being exposed to those antigens.1139

They are presented to the B cells.1146

It is like, B cells this is something you need to take note of.1149

The B cells notice them and they produce antibodies.1152

Antibodies, there is an antibody, the variable portion of an antibody that and that, gets varied based on the shape of an antigen.1157

If an antigen, the surface of it is like this, then the antibody surface will match it, in terms of the shape.1169

And that allows antibodies to latch on to a virus or bacterium, the next time it is introduced.1179

The primary immune response definitely a significant response,1187

based on presenting these antigens to B cells and producing antibodies that match the antigens.1192

You have these memory cells in your immune system that retain a memory of how to make those antibodies in the future.1198

These memory B cells will allow the body to have a secondary immune response, if ever exposed to the antigen again.1206

There are these graphs that show over time like, on the Y axis is the, let us call it intensity of immune response.1215

Meaning like, how many B cells get activated, how many antibodies get activated?1235

Here is time on the X axis.1243

When you are first injected with that vaccination, this is what happens, that is your primary immune response,1246

the one with a little circle that stands for primary.1257

The second time you are introduced like, when you actually could have gotten sick meaning,1260

let us say you are injected for your primary immune response with a flu vaccine, a flu shot.1265

About two months later, someone with a flu comes up to you and coughs.1273

There are little flu viruses, eggs out of their mouth, you inhale them.1280

This is what happens.1284

Not only is the onset faster, you can see that like here is a gradual increase of immune response.1289

The onset is much faster and much harder, much more intense, this is that secondary immune response.1295

This is how vaccines work that, the second time your body is exposed to it, even the third time,1303

it could have this really intense response.1310

Thanks to those memory cells which retain a memory of how to make those antibodies1312

that match an antigen that they already have been exposed to.1317

A little bit more about vaccines, some common immunizations or vaccines that are given.1322

DPT this stands for diphtheria, pertussis, and tetanus.1326

These are all bacterial infections.1362

Diphtheria is an upper respiratory infection that can be fatal.1365

Pertussis is whooping cough, it is a pain in the butt to get, that has a very peculiar sound that is why it is nicknamed whopping cough.1369

Tetanus, these bacteria can get in the way of your skeletal muscle movement.1379

It can cause like just complete locking of your muscles, to the point where it can kill you.1384

It causes lockjaw among other, prolonged muscle contractions that you just you cannot help.1391

It is the bacteria it is causing that problem .1398

This DPT immunization or vaccination is very common to be given to babies born in first world countries.1401

That saved a lot of lives, it would be very terrible to get sick with those things.1409

Polio, this virus that caused Franklin D. Roosevelt to have some inability, physically, he was in a wheelchair a lot of the time.1413

MMR, measles, mumps, and rubella, these you do not want to get either.1426

That is another common MMR vaccines given to infants.1442

Varicella, this causes chicken pox.1445

Varicella zoster is something that I got sick with when I was young.1450

Back when I was a kid, the chicken pox vaccine was not widely distributed.1456

It is still being made and discovered.1461

Kids these days, actually I ask a class of students not long ago, how many of you have had chicken pox?1464

They are all about 14 to 15, none of them have because they all got vaccinated.1470

When I asked that question 8 years ago, almost half of them have it.1475

We are getting to the point where, now people do not have to worry about getting chicken pox.1480

HBV, this has to do with the hepatitis B vaccine.1484

Hepatitis is definitely a terrible liver disease, you rather not get it.1488

HPV, human papilloma virus, this causes genital warts.1495

Not only as genital warts, something you do not want to get as a sexually transmitted disease.1504

Genital warts, the HPV, this virus, it is been showed that has links to getting certain cancers,1511

cervical cancer and even cancers in males as well.1518

You rather not get this, not only is it unattractive and terrible to get, but the risk for cancer goes up.1522

Meningitis, it can be bacterial, viral, or fungal.1528

There are vaccinations for common forms of meningitis.1534

This is an infection of the meninges tha can be fatal.1537

These things all very common as vaccinations and it saved lives, it is a good thing.1540

Sometimes the effectiveness of vaccines only last several years and a booster maybe required.1548

I actually was vaccinated against meningitis a little over 10 years ago, before I went to college.1554

It is recommended that after about 10 years, you get another booster shot.1561

Supposedly, the effectiveness of how well your memory cells can retain that memory of making those antibodies, it kind of lessens a bit.1567

Getting a little booster is reminding your immune system, here is how to make these antibodies.1576

I should get another meningitis booster.1582

Meningitis is actually transmittable through saliva.1586

Something you have to be careful about.1589

By the way, there is no proof that vaccines cause autism.1591

This was something that was perpetuated through the media for a while, a few years ago.1596

The individual who actually released that study,1604

it has been shown now that the original study that reported has falsified data.1608

Whoever he was, he made up a data that showed this correlation between autism in young children in them getting vaccinations.1613

There is no legitimacy to that.1622

Ask a doctor about vaccinations, they will tell you so much good they have done, millions of lives had been saved.1625

It is a way for your child to not get sick with unnecessary illnesses.1632

It is part of living in a modern day society and one of the benefits that medicine can give us.1638

Thanks for watching www.educator.com.1644

Educator®

Please sign in for full access to this lesson.

Sign-InORCreate Account

Enter your Sign-on user name and password.

Forgot password?

Start Learning Now

Our free lessons will get you started (Adobe Flash® required).
Get immediate access to our entire library.

Sign up for Educator.com

Membership Overview

  • Unlimited access to our entire library of courses.
  • Search and jump to exactly what you want to learn.
  • *Ask questions and get answers from the community and our teachers!
  • Practice questions with step-by-step solutions.
  • Download lesson files for programming and software training practice.
  • Track your course viewing progress.
  • Download lecture slides for taking notes.