Section 1: Introduction 

What is Physics? 
7:12 
 
Intro 
0:00  
 
Objectives 
0:11  
 
What is Physics? 
0:27  
 
Why? 
0:50  
 
 Physics Answers the 'Why' Question 
0:51  
 
Matter 
1:27  
 
 Matter 
1:28  
 
 Mass 
1:43  
 
 Inertial Mass 
1:50  
 
 Gravitational Mass 
2:13  
 
A Spacecraft's Mass 
3:03  
 
 What is the Mass of the Spacecraft? 
3:05  
 
Energy 
3:37  
 
 Energy 
3:38  
 
 Work 
3:45  
 
 Putting Energy and Work Together 
3:50  
 
MassEnergy Equivalence 
4:15  
 
 Relationship between Mass & Energy: E = mc² 
4:16  
 
 Source of Energy on Earth 
4:47  
 
The Study of Everything 
5:00  
 
 Physics is the Study of Everything 
5:01  
 
Mechanics 
5:29  
 
 Topics Covered 
5:30  
 
 Topics Not Covered 
6:07  
 
Next Steps 
6:44  
 
 Three Things You'd Like to Learn About in Physics 
6:45  

Math Review 
1:00:51 
 
Intro 
0:00  
 
Objectives 
0:10  
 
Vectors and Scalars 
1:06  
 
 Scalars 
1:07  
 
 Vectors 
1:27  
 
Vector Representations 
2:00  
 
 Vector Representations 
2:01  
 
Graphical Vector Addition 
2:54  
 
 Graphical Vector Addition 
2:55  
 
Graphical Vector Subtraction 
5:36  
 
 Graphical Vector Subtraction 
5:37  
 
Vector Components 
7:12  
 
 Vector Components 
7:13  
 
Angle of a Vector 
8:56  
 
 tan θ 
9:04  
 
 sin θ 
9:25  
 
 cos θ 
9:46  
 
Vector Notation 
10:10  
 
 Vector Notation 1 
10:11  
 
 Vector Notation 2 
12:59  
 
Example I: Magnitude of the Horizontal & Vertical Component 
16:08  
 
Example II: Magnitude of the Plane's Eastward Velocity 
17:59  
 
Example III: Magnitude of Displacement 
19:33  
 
Example IV: Total Displacement from Starting Position 
21:51  
 
Example V: Find the Angle Theta Depicted by the Diagram 
26:35  
 
Vector Notation, cont. 
27:07  
 
 Unit Vector Notation 
27:08  
 
 Vector Component Notation 
27:25  
 
Vector Multiplication 
28:39  
 
 Dot Product 
28:40  
 
 Cross Product 
28:54  
 
Dot Product 
29:03  
 
 Dot Product 
29:04  
 
Defining the Dot Product 
29:26  
 
 Defining the Dot Product 
29:27  
 
Calculating the Dot Product 
29:42  
 
 Unit Vector Notation 
29:43  
 
 Vector Component Notation 
30:58  
 
Example VI: Calculating a Dot Product 
31:45  
 
 Example VI: Part 1  Find the Dot Product of the Following Vectors 
31:46  
 
 Example VI: Part 2  What is the Angle Between A and B? 
32:20  
 
Special Dot Products 
33:52  
 
 Dot Product of Perpendicular Vectors 
33:53  
 
 Dot Product of Parallel Vectors 
34:03  
 
Dot Product Properties 
34:51  
 
 Commutative 
34:52  
 
 Associative 
35:05  
 
 Derivative of A * B 
35:24  
 
Example VII: Perpendicular Vectors 
35:47  
 
Cross Product 
36:42  
 
 Cross Product of Two Vectors 
36:43  
 
 Direction Using the Righthand Rule 
37:32  
 
 Cross Product of Parallel Vectors 
38:04  
 
Defining the Cross Product 
38:13  
 
 Defining the Cross Product 
38:14  
 
Calculating the Cross Product Unit Vector Notation 
38:41  
 
 Calculating the Cross Product Unit Vector Notation 
38:42  
 
Calculating the Cross Product Matrix Notation 
39:18  
 
 Calculating the Cross Product Matrix Notation 
39:19  
 
Example VII: Find the Cross Product of the Following Vectors 
42:09  
 
Cross Product Properties 
45:16  
 
 Cross Product Properties 
45:17  
 
Units 
46:41  
 
 Fundamental Units 
46:42  
 
 Derived units 
47:13  
 
Example IX: Dimensional Analysis 
47:21  
 
Calculus 
49:05  
 
 Calculus 
49:06  
 
Differential Calculus 
49:49  
 
 Differentiation & Derivative 
49:50  
 
Example X: Derivatives 
51:21  
 
Integral Calculus 
53:03  
 
 Integration 
53:04  
 
 Integral 
53:11  
 
 Integration & Derivation are Inverse Functions 
53:16  
 
 Determine the Original Function 
53:37  
 
Common Integrations 
54:45  
 
 Common Integrations 
54:46  
 
Example XI: Integrals 
55:17  
 
Example XII: Calculus Applications 
58:32  
Section 2: Kinematics 

Describing Motion I 
23:47 
 
Intro 
0:00  
 
Objectives 
0:10  
 
Position / Displacement 
0:39  
 
 Object's Position 
0:40  
 
 Position Vector 
0:45  
 
 Displacement 
0:56  
 
 Position & Displacement are Vectors 
1:05  
 
 Position & Displacement in 1 Dimension 
1:11  
 
Example I: Distance & Displacement 
1:21  
 
Average Speed 
2:14  
 
 Average Speed 
2:15  
 
 Average Speed is Scalar 
2:27  
 
Average Velocity 
2:39  
 
 Average Velocity 
2:40  
 
 Average Velocity is a Vector 
2:57  
 
Example II: Speed vs. Velocity 
3:16  
 
 Example II: Deer's Average Speed 
3:17  
 
 Example II: Deer's Average Velocity 
3:48  
 
Example III: Chuck the Hungry Squirrel 
4:21  
 
 Example III: Chuck's Distance Traveled 
4:22  
 
 Example III: Chuck's Displacement 
4:43  
 
 Example III: Chuck's Average Speed 
5:25  
 
 Example III: Chuck's Average Velocity 
5:39  
 
Acceleration 
6:11  
 
 Acceleration: Definition & Equation 
6:12  
 
 Acceleration: Units 
6:19  
 
 Relationship of Acceleration to Velocity 
6:52  
 
Example IV: Acceleration Problem 
7:05  
 
The Position Vector 
7:39  
 
 The Position Vector 
7:40  
 
Average Velocity 
9:35  
 
 Average Velocity 
9:36  
 
Instantaneous Velocity 
11:20  
 
 Instantaneous Velocity 
11:21  
 
 Instantaneous Velocity is the Derivative of Position with Respect to Time 
11:35  
 
 Area Under the Velocitytime Graph 
12:08  
 
Acceleration 
12:36  
 
 More on Acceleration 
12:37  
 
 Average Acceleration 
13:11  
 
 Velocity vs. Time Graph 
13:14  
 
Graph Transformations 
13:59  
 
 Graphical Analysis of Motion 
14:00  
 
Velocity and acceleration in 2D 
14:35  
 
 Velocity Vector in 2D 
14:39  
 
 Acceleration Vector in 2D 
15:26  
 
Polynomial Derivatives 
16:10  
 
 Polynomial Derivatives 
16:11  
 
Example V: Polynomial Kinematics 
16:31  
 
Example VI: Velocity Function 
17:54  
 
 Example VI: Part A  Determine the Acceleration at t=1 Second 
17:55  
 
 Example VI: Part B  Determine the Displacement between t=0 and t=5 Seconds 
18:33  
 
Example VII: Tortoise and Hare 
20:14  
 
Example VIII: dt Graphs 
22:40  

Describing Motion II 
36:47 
 
Intro 
0:00  
 
Objectives 
0:09  
 
Special Case: Constant Acceleration 
0:31  
 
 Constant Acceleration & Kinematic Equations 
0:32  
 
Deriving the Kinematic Equations 
1:28  
 
 V = V₀ + at 
1:39  
 
 ∆x = V₀t +(1/2)at² 
2:03  
 
 V² = V₀² +2a∆x 
4:05  
 
Problem Solving Steps 
7:02  
 
 Step 1 
7:13  
 
 Step 2 
7:18  
 
 Step 3 
7:27  
 
 Step 4 
7:30  
 
 Step 5 
7:31  
 
Example IX: Horizontal Kinematics 
7:38  
 
Example X: Vertical Kinematics 
9:45  
 
Example XI: 2 Step Problem 
11:23  
 
Example XII: Acceleration Problem 
15:01  
 
Example XIII: Particle Diagrams 
15:57  
 
Example XIV: Particle Diagrams 
17:36  
 
Example XV: Quadratic Solution 
18:46  
 
Free Fall 
22:56  
 
 Free Fall 
22:57  
 
Air Resistance 
23:24  
 
 Air Resistance 
23:25  
 
Acceleration Due to Gravity 
23:48  
 
 Acceleration Due to Gravity 
23:49  
 
Objects Falling From Rest 
24:18  
 
 Objects Falling From Rest 
24:19  
 
Example XVI: Falling Objects 
24:55  
 
Objects Launched Upward 
26:01  
 
 Objects Launched Upward 
26:02  
 
Example XVII: Ball Thrown Upward 
27:16  
 
Example XVIII: Height of a Jump 
27:48  
 
Example XIX: Ball Thrown Downward 
31:10  
 
Example XX: Maximum Height 
32:27  
 
Example XXI: CatchUp Problem 
33:53  
 
Example XXII: Ranking Max Height 
35:52  

Projectile Motion 
30:34 
 
Intro 
0:00  
 
Objectives 
0:07  
 
What is a Projectile? 
0:28  
 
 What is a Projectile? 
0:29  
 
Path of a Projectile 
0:58  
 
 Path of a Projectile 
0:59  
 
Independence of Motion 
2:45  
 
 Vertical & Horizontal Motion 
2:46  
 
Example I: Horizontal Launch 
3:14  
 
Example II: Parabolic Path 
7:20  
 
Angled Projectiles 
8:01  
 
 Angled Projectiles 
8:02  
 
Example III: Human Cannonball 
10:05  
 
Example IV: Motion Graphs 
14:39  
 
Graphing Projectile Motion 
19:05  
 
 Horizontal Equation 
19:06  
 
 Vertical Equation 
19:46  
 
Example V: Arrow Fired from Tower 
21:28  
 
Example VI: Arrow Fired from Tower 
24:10  
 
Example VII: Launch from a Height 
24:40  
 
Example VIII: Acceleration of a Projectile 
29:49  

Circular & Relative Motion 
30:24 
 
Intro 
0:00  
 
Objectives 
0:08  
 
Radians and Degrees 
0:32  
 
 Degrees 
0:35  
 
 Radians 
0:40  
 
Example I: Radians and Degrees 
1:08  
 
 Example I: Part A  Convert 90 Degrees to Radians 
1:09  
 
 Example I: Part B  Convert 6 Radians to Degrees 
2:08  
 
Linear vs. Angular Displacement 
2:38  
 
 Linear Displacement 
2:39  
 
 Angular Displacement 
2:52  
 
Linear vs. Angular Velocity 
3:18  
 
 Linear Velocity 
3:19  
 
 Angular Velocity 
3:25  
 
Direction of Angular Velocity 
4:36  
 
 Direction of Angular Velocity 
4:37  
 
Converting Linear to Angular Velocity 
5:05  
 
 Converting Linear to Angular Velocity 
5:06  
 
Example II: Earth's Angular Velocity 
6:12  
 
Linear vs. Angular Acceleration 
7:26  
 
 Linear Acceleration 
7:27  
 
 Angular Acceleration 
7:32  
 
Centripetal Acceleration 
8:05  
 
 Expressing Position Vector in Terms of Unit Vectors 
8:06  
 
 Velocity 
10:00  
 
 Centripetal Acceleration 
11:14  
 
 Magnitude of Centripetal Acceleration 
13:24  
 
Example III: Angular Velocity & Centripetal Acceleration 
14:02  
 
Example IV: Moon's Orbit 
15:03  
 
Reference Frames 
17:44  
 
 Reference Frames 
17:45  
 
 Laws of Physics 
18:00  
 
 Motion at Rest vs. Motion at a Constant Velocity 
18:21  
 
Motion is Relative 
19:20  
 
 Reference Frame: Sitting in a Lawn Chair 
19:21  
 
 Reference Frame: Sitting on a Train 
19:56  
 
Calculating Relative Velocities 
20:19  
 
 Calculating Relative Velocities 
20:20  
 
 Example: Calculating Relative Velocities 
20:57  
 
Example V: Man on a Train 
23:19  
 
Example VI: Airspeed 
24:56  
 
Example VII: 2D Relative Motion 
26:12  
 
Example VIII: Relative Velocity w/ Direction 
28:32  
Section 3: Dynamics 

Newton's First Law & Free Body Diagrams 
23:57 
 
Intro 
0:00  
 
Objectives 
0:11  
 
Newton's 1st Law of Motion 
0:28  
 
 Newton's 1st Law of Motion 
0:29  
 
Force 
1:16  
 
 Definition of Force 
1:17  
 
 Units of Force 
1:20  
 
 How Much is a Newton? 
1:25  
 
 Contact Forces 
1:47  
 
 Field Forces 
2:32  
 
What is a Net Force? 
2:53  
 
 What is a Net Force? 
2:54  
 
What Does It Mean? 
4:35  
 
 What Does It Mean? 
4:36  
 
Objects at Rest 
4:52  
 
 Objects at Rest 
4:53  
 
Objects in Motion 
5:12  
 
 Objects in Motion 
5:13  
 
Equilibrium 
6:03  
 
 Static Equilibrium 
6:04  
 
 Mechanical Equilibrium 
6:22  
 
 Translational Equilibrium 
6:38  
 
Inertia 
6:48  
 
 Inertia 
6:49  
 
 Inertial Mass 
6:58  
 
 Gravitational Mass 
7:11  
 
Example I: Inertia 
7:40  
 
Example II: Inertia 
8:03  
 
Example III: Translational Equilibrium 
8:25  
 
Example IV: Net Force 
9:19  
 
Free Body Diagrams 
10:34  
 
 Free Body Diagrams Overview 
10:35  
 
Falling Elephant: Free Body Diagram 
10:53  
 
 Free Body Diagram Neglecting Air Resistance 
10:54  
 
 Free Body Diagram Including Air Resistance 
11:22  
 
Soda on Table 
11:54  
 
 Free Body Diagram for a Glass of Soda Sitting on a Table 
11:55  
 
Free Body Diagram for Box on Ramp 
13:38  
 
 Free Body Diagram for Box on Ramp 
13:39  
 
 Pseudo Free Body Diagram 
15:26  
 
Example V: Translational Equilibrium 
18:35  

Newton's Second & Third Laws of Motion 
23:57 
 
Intro 
0:00  
 
Objectives 
0:09  
 
Newton's 2nd Law of Motion 
0:36  
 
 Newton's 2nd Law of Motion 
0:37  
 
Applying Newton's 2nd Law 
1:12  
 
 Step 1 
1:13  
 
 Step 2 
1:18  
 
 Step 3 
1:27  
 
 Step 4 
1:36  
 
Example I: Block on a Surface 
1:42  
 
Example II: Concurrent Forces 
2:42  
 
Mass vs. Weight 
4:09  
 
 Mass 
4:10  
 
 Weight 
4:28  
 
Example III: Mass vs. Weight 
4:45  
 
Example IV: Translational Equilibrium 
6:43  
 
Example V: Translational Equilibrium 
8:23  
 
Example VI: Determining Acceleration 
10:13  
 
Example VII: Stopping a Baseball 
12:38  
 
Example VIII: Steel Beams 
14:11  
 
Example IX: Tension Between Blocks 
17:03  
 
Example X: Banked Curves 
18:57  
 
Example XI: Tension in Cords 
24:03  
 
Example XII: Graphical Interpretation 
27:13  
 
Example XIII: Force from Velocity 
28:12  
 
Newton's 3rd Law 
29:16  
 
 Newton's 3rd Law 
29:17  
 
Examples  Newton's 3rd Law 
30:01  
 
 Examples  Newton's 3rd Law 
30:02  
 
ActionReaction Pairs 
30:40  
 
 Girl Kicking Soccer Ball 
30:41  
 
 Rocket Ship in Space 
31:02  
 
 Gravity on You 
31:23  
 
Example XIV: Force of Gravity 
32:11  
 
Example XV: Sailboat 
32:38  
 
Example XVI: Hammer and Nail 
33:18  
 
Example XVII: Net Force 
33:47  

Friction 
20:41 
 
Intro 
0:00  
 
Objectives 
0:06  
 
Coefficient of Friction 
0:21  
 
 Coefficient of Friction 
0:22  
 
 Approximate Coefficients of Friction 
0:44  
 
Kinetic or Static? 
1:21  
 
 Sled Sliding Down a Snowy Hill 
1:22  
 
 Refrigerator at Rest that You Want to Move 
1:32  
 
 Car with Tires Rolling Freely 
1:49  
 
 Car Skidding Across Pavement 
2:01  
 
Example I: Car Sliding 
2:21  
 
Example II: Block on Incline 
3:04  
 
Calculating the Force of Friction 
3:33  
 
 Calculating the Force of Friction 
3:34  
 
Example III: Finding the Frictional Force 
4:02  
 
Example IV: Box on Wood Surface 
5:34  
 
Example V: Static vs. Kinetic Friction 
7:35  
 
Example VI: Drag Force on Airplane 
7:58  
 
Example VII: Pulling a Sled 
8:41  
 
Example VIII: APC 2007 FR1 
13:23  
 
 Example VIII: Part A 
13:24  
 
 Example VIII: Part B 
14:40  
 
 Example VIII: Part C 
15:19  
 
 Example VIII: Part D 
17:08  
 
 Example VIII: Part E 
18:24  

Retarding & Drag Forces 
32:10 
 
Intro 
0:00  
 
Objectives 
0:07  
 
Retarding Forces 
0:41  
 
 Retarding Forces 
0:42  
 
The Skydiver 
1:30  
 
 Drag Forces on a Freefalling Object 
1:31  
 
Velocity as a Function of Time 
5:31  
 
 Velocity as a Function of Time 
5:32  
 
Velocity as a Function of Time, cont. 
12:27  
 
 Acceleration 
12:28  
 
Velocity as a Function of Time, cont. 
15:16  
 
 Graph: Acceleration vs. Time 
16:06  
 
 Graph: Velocity vs. Time 
16:40  
 
 Graph: Displacement vs. Time 
17:04  
 
Example I: APC 2005 FR1 
17:43  
 
 Example I: Part A 
17:44  
 
 Example I: Part B 
19:17  
 
 Example I: Part C 
20:17  
 
 Example I: Part D 
21:09  
 
 Example I: Part E 
22:42  
 
Example II: APC 2013 FR2 
24:26  
 
 Example II: Part A 
24:27  
 
 Example II: Part B 
25:25  
 
 Example II: Part C 
26:22  
 
 Example II: Part D 
27:04  
 
 Example II: Part E 
30:50  

Ramps & Inclines 
20:31 
 
Intro 
0:00  
 
Objectives 
0:06  
 
Drawing Free Body Diagrams for Ramps 
0:32  
 
 Step 1: Choose the Object & Draw It as a Dot or Box 
0:33  
 
 Step 2: Draw and Label all the External Forces 
0:39  
 
 Step 3: Sketch a Coordinate System 
0:42  
 
 Example: Object on a Ramp 
0:52  
 
PseudoFree Body Diagrams 
2:06  
 
 PseudoFree Body Diagrams 
2:07  
 
 Redraw Diagram with All Forces Parallel to Axes 
2:18  
 
Box on a Ramp 
4:08  
 
 Free Body Diagram for Box on a Ramp 
4:09  
 
 PseudoFree Body Diagram for Box on a Ramp 
4:54  
 
Example I: Box at Rest 
6:13  
 
Example II: Box Held By Force 
6:35  
 
Example III: Truck on a Hill 
8:46  
 
Example IV: Force Up a Ramp 
9:29  
 
Example V: Acceleration Down a Ramp 
12:01  
 
Example VI: Able of Repose 
13:59  
 
Example VII: Sledding 
17:03  

Atwood Machines 
24:58 
 
Intro 
0:00  
 
Objectives 
0:07  
 
What is an Atwood Machine? 
0:25  
 
 What is an Atwood Machine? 
0:26  
 
Properties of Atwood Machines 
1:03  
 
 Ideal Pulleys are Frictionless and Massless 
1:04  
 
 Tension is Constant 
1:14  
 
Setup for Atwood Machines 
1:26  
 
 Setup for Atwood Machines 
1:27  
 
Solving Atwood Machine Problems 
1:52  
 
 Solving Atwood Machine Problems 
1:53  
 
Alternate Solution 
5:24  
 
 Analyze the System as a Whole 
5:25  
 
Example I: Basic Atwood Machine 
7:31  
 
Example II: Moving Masses 
9:59  
 
Example III: Masses and Pulley on a Table 
13:32  
 
Example IV: Mass and Pulley on a Ramp 
15:47  
 
Example V: Ranking Atwood Machines 
19:50  
Section 4: Work, Energy, & Power 

Work 
37:34 
 
Intro 
0:00  
 
Objectives 
0:07  
 
What is Work? 
0:36  
 
 What is Work? 
0:37  
 
 Units of Work 
1:09  
 
Work in One Dimension 
1:31  
 
 Work in One Dimension 
1:32  
 
Examples of Work 
2:19  
 
 Stuntman in a Jet Pack 
2:20  
 
 A Girl Struggles to Push Her Stalled Car 
2:50  
 
 A Child in a Ghost Costume Carries a Bag of Halloween Candy Across the Yard 
3:24  
 
Example I: Moving a Refrigerator 
4:03  
 
Example II: Liberating a Car 
4:53  
 
Example III: Lifting Box 
5:30  
 
Example IV: Pulling a Wagon 
6:13  
 
Example V: Ranking Work on Carts 
7:13  
 
NonConstant Forces 
12:21  
 
 NonConstant Forces 
12:22  
 
Force vs. Displacement Graphs 
13:49  
 
 Force vs. Displacement Graphs 
13:50  
 
Hooke's Law 
14:41  
 
 Hooke's Law 
14:42  
 
Determining the Spring Constant 
15:38  
 
 Slope of the Graph Gives the Spring Constant, k 
15:39  
 
Work Done in Compressing the Spring 
16:34  
 
 Find the Work Done in Compressing the String 
16:35  
 
Example VI: Finding Spring Constant 
17:21  
 
Example VII: Calculating Spring Constant 
19:48  
 
Example VIII: Hooke's Law 
20:30  
 
Example IX: NonLinear Spring 
22:18  
 
Work in Multiple Dimensions 
23:52  
 
 Work in Multiple Dimensions 
23:53  
 
WorkEnergy Theorem 
25:25  
 
 WorkEnergy Theorem 
25:26  
 
Example X: WorkEnergy Theorem 
28:35  
 
Example XI: Work Done on Moving Carts 
30:46  
 
Example XII: Velocity from an Fd Graph 
35:01  

Energy & Conservative Forces 
28:04 
 
Intro 
0:00  
 
Objectives 
0:08  
 
Energy Transformations 
0:31  
 
 Energy Transformations 
0:32  
 
 WorkEnergy Theorem 
0:57  
 
Kinetic Energy 
1:12  
 
 Kinetic Energy: Definition 
1:13  
 
 Kinetic Energy: Equation 
1:55  
 
Example I: FrogOCycle 
2:07  
 
Potential Energy 
2:46  
 
 Types of Potential Energy 
2:47  
 
 A Potential Energy Requires an Interaction between Objects 
3:29  
 
Internal energy 
3:50  
 
 Internal Energy 
3:51  
 
Types of Energy 
4:37  
 
 Types of Potential & Kinetic Energy 
4:38  
 
Gravitational Potential Energy 
5:42  
 
 Gravitational Potential Energy 
5:43  
 
Example II: Potential Energy 
7:27  
 
Example III: Kinetic and Potential Energy 
8:16  
 
Example IV: Pendulum 
9:09  
 
Conservative Forces 
11:37  
 
 Conservative Forces Overview 
11:38  
 
 Type of Conservative Forces 
12:42  
 
 Types of Nonconservative Forces 
13:02  
 
Work Done by Conservative Forces 
13:28  
 
 Work Done by Conservative Forces 
13:29  
 
Newton's Law of Universal Gravitation 
14:18  
 
 Gravitational Force of Attraction between Any Two Objects with Mass 
14:19  
 
Gravitational Potential Energy 
15:27  
 
 Gravitational Potential Energy 
15:28  
 
Elastic Potential Energy 
17:36  
 
 Elastic Potential Energy 
17:37  
 
Force from Potential Energy 
18:51  
 
 Force from Potential Energy 
18:52  
 
Gravitational Force from the Gravitational Potential Energy 
20:46  
 
 Gravitational Force from the Gravitational Potential Energy 
20:47  
 
Hooke's Law from Potential Energy 
22:04  
 
 Hooke's Law from Potential Energy 
22:05  
 
Summary 
23:16  
 
 Summary 
23:17  
 
Example V: Kinetic Energy of a Mass 
24:40  
 
Example VI: Force from Potential Energy 
25:48  
 
Example VII: Work on a Spinning Disc 
26:54  

Conservation of Energy 
54:56 
 
Intro 
0:00  
 
Objectives 
0:09  
 
Conservation of Mechanical Energy 
0:32  
 
 Consider a Single Conservative Force Doing Work on a Closed System 
0:33  
 
NonConservative Forces 
1:40  
 
 NonConservative Forces 
1:41  
 
 Work Done by a Nonconservative Force 
1:47  
 
 Formula: Total Energy 
1:54  
 
 Formula: Total Mechanical Energy 
2:04  
 
Example I: Falling Mass 
2:15  
 
Example II: Law of Conservation of Energy 
4:07  
 
Example III: The Pendulum 
6:34  
 
Example IV: Cart Compressing a Spring 
10:12  
 
Example V: Cart Compressing a Spring 
11:12  
 
 Example V: Part A  Potential Energy Stored in the Compressed Spring 
11:13  
 
 Example V: Part B  Maximum Vertical Height 
12:01  
 
Example VI: Car Skidding to a Stop 
13:05  
 
Example VII: Block on Ramp 
14:22  
 
Example VIII: Energy Transfers 
16:15  
 
Example IX: Roller Coaster 
20:04  
 
Example X: Bungee Jumper 
23:32  
 
 Example X: Part A  Speed of the Jumper at a Height of 15 Meters Above the Ground 
24:48  
 
 Example X: Part B  Speed of the Jumper at a Height of 30 Meters Above the Ground 
26:53  
 
 Example X: Part C  How Close Does the Jumper Get to the Ground? 
28:28  
 
Example XI: APC 2002 FR3 
30:28  
 
 Example XI: Part A 
30:59  
 
 Example XI: Part B 
31:54  
 
 Example XI: Part C 
32:50  
 
 Example XI: Part D & E 
33:52  
 
Example XII: APC 2007 FR3 
35:24  
 
 Example XII: Part A 
35:52  
 
 Example XII: Part B 
36:27  
 
 Example XII: Part C 
37:48  
 
 Example XII: Part D 
39:32  
 
Example XIII: APC 2010 FR1 
41:07  
 
 Example XIII: Part A 
41:34  
 
 Example XIII: Part B 
43:05  
 
 Example XIII: Part C 
45:24  
 
 Example XIII: Part D 
47:18  
 
Example XIV: APC 2013 FR1 
48:25  
 
 Example XIV: Part A 
48:50  
 
 Example XIV: Part B 
49:31  
 
 Example XIV: Part C 
51:27  
 
 Example XIV: Part D 
52:46  
 
 Example XIV: Part E 
53:25  

Power 
16:44 
 
Intro 
0:00  
 
Objectives 
0:06  
 
Defining Power 
0:20  
 
 Definition of Power 
0:21  
 
 Units of Power 
0:27  
 
 Average Power 
0:43  
 
Instantaneous Power 
1:03  
 
 Instantaneous Power 
1:04  
 
Example I: Horizontal Box 
2:07  
 
Example II: Accelerating Truck 
4:48  
 
Example III: Motors Delivering Power 
6:00  
 
Example IV: Power Up a Ramp 
7:00  
 
Example V: Power from Position Function 
8:51  
 
Example VI: Motorcycle Stopping 
10:48  
 
Example VII: APC 2003 FR1 
11:52  
 
 Example VII: Part A 
11:53  
 
 Example VII: Part B 
12:50  
 
 Example VII: Part C 
14:36  
 
 Example VII: Part D 
15:52  
Section 5: Momentum 

Momentum & Impulse 
13:09 
 
Intro 
0:00  
 
Objectives 
0:07  
 
Momentum 
0:39  
 
 Definition of Momentum 
0:40  
 
 Total Momentum 
1:00  
 
 Formula for Momentum 
1:05  
 
 Units of Momentum 
1:11  
 
Example I: Changing Momentum 
1:18  
 
Impulse 
2:27  
 
 Impulse 
2:28  
 
Example II: Impulse 
2:41  
 
Relationship Between Force and ∆p (Impulse) 
3:36  
 
 Relationship Between Force and ∆p (Impulse) 
3:37  
 
Example III: Force from Momentum 
4:37  
 
ImpulseMomentum Theorem 
5:14  
 
 ImpulseMomentum Theorem 
5:15  
 
Example IV: ImpulseMomentum 
6:26  
 
Example V: Water Gun & Horizontal Force 
7:56  
 
Impulse from Ft Graphs 
8:53  
 
 Impulse from Ft Graphs 
8:54  
 
Example VI: Nonconstant Forces 
9:16  
 
Example VII: Ft Graph 
10:01  
 
Example VIII: Impulse from Force 
11:19  

Conservation of Linear Momentum 
46:30 
 
Intro 
0:00  
 
Objectives 
0:08  
 
Conservation of Linear Momentum 
0:28  
 
 In an Isolated System 
0:29  
 
 In Any Closed System 
0:37  
 
 Direct Outcome of Newton's 3rd Law of Motion 
0:47  
 
Collisions and Explosions 
1:07  
 
 Collisions and Explosions 
1:08  
 
 The Law of Conservation of Linear Momentum 
1:25  
 
Solving Momentum Problems 
1:35  
 
 Solving Momentum Problems 
1:36  
 
Types of Collisions 
2:08  
 
 Elastic Collision 
2:09  
 
 Inelastic Collision 
2:34  
 
Example I: Traffic Collision 
3:00  
 
Example II: Collision of Two Moving Objects 
6:55  
 
Example III: Recoil Velocity 
9:47  
 
Example IV: Atomic Collision 
12:12  
 
Example V: Collision in Multiple Dimensions 
18:11  
 
Example VI: APC 2001 FR1 
25:16  
 
 Example VI: Part A 
25:33  
 
 Example VI: Part B 
26:44  
 
 Example VI: Part C 
28:17  
 
 Example VI: Part D 
28:58  
 
Example VII: APC 2002 FR1 
30:10  
 
 Example VII: Part A 
30:20  
 
 Example VII: Part B 
32:14  
 
 Example VII: Part C 
34:25  
 
 Example VII: Part D 
36:17  
 
Example VIII: APC 2014 FR1 
38:55  
 
 Example VIII: Part A 
39:28  
 
 Example VIII: Part B 
41:00  
 
 Example VIII: Part C 
42:57  
 
 Example VIII: Part D 
44:20  

Center of Mass 
28:26 
 
Intro 
0:00  
 
Objectives 
0:07  
 
Center of Mass 
0:45  
 
 Center of Mass 
0:46  
 
Finding Center of Mass by Inspection 
1:25  
 
 For Uniform Density Objects 
1:26  
 
 For Objects with Multiple Parts 
1:36  
 
 For Irregular Objects 
1:44  
 
Example I: Center of Mass by Inspection 
2:06  
 
Calculating Center of Mass for Systems of Particles 
2:25  
 
 Calculating Center of Mass for Systems of Particles 
2:26  
 
Example II: Center of Mass (1D) 
3:15  
 
Example III: Center of Mass of Continuous System 
4:29  
 
Example IV: Center of Mass (2D) 
6:00  
 
Finding Center of Mass by Integration 
7:38  
 
 Finding Center of Mass by Integration 
7:39  
 
Example V: Center of Mass of a Uniform Rod 
8:10  
 
Example VI: Center of Mass of a NonUniform Rod 
11:40  
 
Center of Mass Relationships 
14:44  
 
 Center of Mass Relationships 
14:45  
 
Center of Gravity 
17:36  
 
 Center of Gravity 
17:37  
 
 Uniform Gravitational Field vs. Nonuniform Gravitational Field 
17:53  
 
Example VII: APC 2004 FR1 
18:26  
 
 Example VII: Part A 
18:45  
 
 Example VII: Part B 
19:38  
 
 Example VII: Part C 
21:03  
 
 Example VII: Part D 
22:04  
 
 Example VII: Part E 
24:52  
Section 6: Uniform Circular Motion 

Uniform Circular Motion 
21:36 
 
Intro 
0:00  
 
Objectives 
0:08  
 
Uniform Circular Motion 
0:42  
 
 Distance Around the Circle for Objects Traveling in a Circular Path at Constant Speed 
0:51  
 
 Average Speed for Objects Traveling in a Circular Path at Constant Speed 
1:15  
 
Frequency 
1:42  
 
 Definition of Frequency 
1:43  
 
 Symbol of Frequency 
1:46  
 
 Units of Frequency 
1:49  
 
Period 
2:04  
 
 Period 
2:05  
 
Frequency and Period 
2:19  
 
 Frequency and Period 
2:20  
 
Example I: Race Car 
2:32  
 
Example II: Toy Train 
3:22  
 
Example III: RoundABout 
4:07  
 
 Example III: Part A  Period of the Motion 
4:08  
 
 Example III: Part B Frequency of the Motion 
4:43  
 
 Example III: Part C Speed at Which Alan Revolves 
4:58  
 
Uniform Circular Motion 
5:28  
 
 Is an Object Undergoing Uniform Circular Motion Accelerating? 
5:29  
 
Direction of Centripetal Acceleration 
6:21  
 
 Direction of Centripetal Acceleration 
6:22  
 
Magnitude of Centripetal Acceleration 
8:23  
 
 Magnitude of Centripetal Acceleration 
8:24  
 
Example IV: Car on a Track 
8:39  
 
Centripetal Force 
10:14  
 
 Centripetal Force 
10:15  
 
Calculating Centripetal Force 
11:47  
 
 Calculating Centripetal Force 
11:48  
 
Example V: Acceleration 
12:41  
 
Example VI: Direction of Centripetal Acceleration 
13:44  
 
Example VII: Loss of Centripetal Force 
14:03  
 
Example VIII: Bucket in Horizontal Circle 
14:44  
 
Example IX: Bucket in Vertical Circle 
15:24  
 
Example X: Demon Drop 
17:38  
 
 Example X: Question 1 
18:02  
 
 Example X: Question 2 
18:25  
 
 Example X: Question 3 
19:22  
 
 Example X: Question 4 
20:13  
Section 7: Rotational Motion 

Rotational Kinematics 
32:52 
 
Intro 
0:00  
 
Objectives 
0:07  
 
Radians and Degrees 
0:35  
 
 Once Around a Circle: In Degrees 
0:36  
 
 Once Around a Circle: In Radians 
0:48  
 
 Measurement of Radian 
0:51  
 
Example I: Radian and Degrees 
1:08  
 
 Example I: Convert 90° to Radians 
1:09  
 
 Example I: Convert 6 Radians to Degree 
1:23  
 
Linear vs. Angular Displacement 
1:43  
 
 Linear Displacement 
1:44  
 
 Angular Displacement 
1:51  
 
Linear vs. Angular Velocity 
2:04  
 
 Linear Velocity 
2:05  
 
 Angular Velocity 
2:10  
 
Direction of Angular Velocity 
2:28  
 
 Direction of Angular Velocity 
2:29  
 
Converting Linear to Angular Velocity 
2:58  
 
 Converting Linear to Angular Velocity 
2:59  
 
Example II: Angular Velocity of Earth 
3:51  
 
Linear vs. Angular Acceleration 
4:35  
 
 Linear Acceleration 
4:36  
 
 Angular Acceleration 
4:42  
 
Example III: Angular Acceleration 
5:09  
 
Kinematic Variable Parallels 
6:30  
 
 Kinematic Variable Parallels: Translational & Angular 
6:31  
 
Variable Translations 
7:00  
 
 Variable Translations: Translational & Angular 
7:01  
 
Kinematic Equation Parallels 
7:38  
 
 Kinematic Equation Parallels: Translational & Rotational 
7:39  
 
Example IV: Deriving Centripetal Acceleration 
8:29  
 
Example V: Angular Velocity 
13:24  
 
 Example V: Part A 
13:25  
 
 Example V: Part B 
14:15  
 
Example VI: Wheel in Motion 
14:39  
 
Example VII: APC 2003 FR3 
16:23  
 
 Example VII: Part A 
16:38  
 
 Example VII: Part B 
17:34  
 
 Example VII: Part C 
24:02  
 
Example VIII: APC 2014 FR2 
25:35  
 
 Example VIII: Part A 
25:47  
 
 Example VIII: Part B 
26:28  
 
 Example VIII: Part C 
27:48  
 
 Example VIII: Part D 
28:26  
 
 Example VIII: Part E 
29:16  

Moment of Inertia 
24:00 
 
Intro 
0:00  
 
Objectives 
0:07  
 
Types of Inertia 
0:34  
 
 Inertial Mass 
0:35  
 
 Moment of Inertia 
0:44  
 
Kinetic Energy of a Rotating Disc 
1:25  
 
 Kinetic Energy of a Rotating Disc 
1:26  
 
Calculating Moment of Inertia (I) 
5:32  
 
 Calculating Moment of Inertia (I) 
5:33  
 
Moment of Inertia for Common Objects 
5:49  
 
 Moment of Inertia for Common Objects 
5:50  
 
Example I: Point Masses 
6:46  
 
Example II: Uniform Rod 
9:09  
 
Example III: Solid Cylinder 
13:07  
 
Parallel Axis Theorem (PAT) 
17:33  
 
 Parallel Axis Theorem (PAT) 
17:34  
 
Example IV: Calculating I Using the Parallel Axis Theorem 
18:39  
 
Example V: Hollow Sphere 
20:18  
 
Example VI: Long Thin Rod 
20:55  
 
Example VII: Ranking Moment of Inertia 
21:50  
 
Example VIII: Adjusting Moment of Inertia 
22:39  

Torque 
26:09 
 
Intro 
0:00  
 
Objectives 
0:06  
 
Torque 
0:18  
 
 Definition of Torque 
0:19  
 
 Torque & Rotation 
0:26  
 
 Lever Arm ( r ) 
0:30  
 
 Example: Wrench 
0:39  
 
Direction of the Torque Vector 
1:45  
 
 Direction of the Torque Vector 
1:46  
 
 Finding Direction Using the Righthand Rule 
1:53  
 
Newton's 2nd Law: Translational vs. Rotational 
2:20  
 
 Newton's 2nd Law: Translational vs. Rotational 
2:21  
 
Equilibrium 
3:17  
 
 Static Equilibrium 
3:18  
 
 Dynamic Equilibrium 
3:30  
 
Example I: SeeSaw Problem 
3:46  
 
Example II: Beam Problem 
7:12  
 
Example III: Pulley with Mass 
10:34  
 
Example IV: Net Torque 
13:46  
 
Example V: Ranking Torque 
15:29  
 
Example VI: Ranking Angular Acceleration 
16:25  
 
Example VII: Café Sign 
17:19  
 
Example VIII: APC 2008 FR2 
19:44  
 
 Example VIII: Part A 
20:12  
 
 Example VIII: Part B 
21:08  
 
 Example VIII: Part C 
22:36  
 
 Example VIII: Part D 
24:37  

Rotational Dynamics 
56:58 
 
Intro 
0:00  
 
Objectives 
0:08  
 
Conservation of Energy 
0:48  
 
 Translational Kinetic Energy 
0:49  
 
 Rotational Kinetic Energy 
0:54  
 
 Total Kinetic Energy 
1:03  
 
Example I: Disc Rolling Down an Incline 
1:10  
 
Rotational Dynamics 
4:25  
 
 Rotational Dynamics 
4:26  
 
Example II: Strings with Massive Pulleys 
4:37  
 
Example III: Rolling without Slipping 
9:13  
 
Example IV: Rolling with Slipping 
13:45  
 
Example V: Amusement Park Swing 
22:49  
 
Example VI: APC 2002 FR2 
26:27  
 
 Example VI: Part A 
26:48  
 
 Example VI: Part B 
27:30  
 
 Example VI: Part C 
29:51  
 
 Example VI: Part D 
30:50  
 
Example VII: APC 2006 FR3 
31:39  
 
 Example VII: Part A 
31:49  
 
 Example VII: Part B 
36:20  
 
 Example VII: Part C 
37:14  
 
 Example VII: Part D 
38:48  
 
Example VIII: APC 2010 FR2 
39:40  
 
 Example VIII: Part A 
39:46  
 
 Example VIII: Part B 
40:44  
 
 Example VIII: Part C 
44:31  
 
 Example VIII: Part D 
46:44  
 
Example IX: APC 2013 FR3 
48:27  
 
 Example IX: Part A 
48:47  
 
 Example IX: Part B 
50:33  
 
 Example IX: Part C 
53:28  
 
 Example IX: Part D 
54:15  
 
 Example IX: Part E 
56:20  

Angular Momentum 
33:02 
 
Intro 
0:00  
 
Objectives 
0:09  
 
Linear Momentum 
0:44  
 
 Definition of Linear Momentum 
0:45  
 
 Total Angular Momentum 
0:52  
 
 p = mv 
0:59  
 
Angular Momentum 
1:08  
 
 Definition of Angular Momentum 
1:09  
 
 Total Angular Momentum 
1:21  
 
 A Mass with Velocity v Moving at Some Position r 
1:29  
 
Calculating Angular Momentum 
1:44  
 
 Calculating Angular Momentum 
1:45  
 
Spin Angular Momentum 
4:17  
 
 Spin Angular Momentum 
4:18  
 
Example I: Object in Circular Orbit 
4:51  
 
Example II: Angular Momentum of a Point Particle 
6:34  
 
Angular Momentum and Net Torque 
9:03  
 
 Angular Momentum and Net Torque 
9:04  
 
Conservation of Angular Momentum 
11:53  
 
 Conservation of Angular Momentum 
11:54  
 
Example III: Ice Skater Problem 
12:20  
 
Example IV: Combining Spinning Discs 
13:52  
 
Example V: Catching While Rotating 
15:13  
 
Example VI: Changes in Angular Momentum 
16:47  
 
Example VII: APC 2005 FR3 
17:37  
 
 Example VII: Part A 
18:12  
 
 Example VII: Part B 
18:32  
 
 Example VII: Part C 
19:53  
 
 Example VII: Part D 
21:52  
 
Example VIII: APC 2014 FR3 
24:23  
 
 Example VIII: Part A 
24:31  
 
 Example VIII: Part B 
25:33  
 
 Example VIII: Part C 
26:58  
 
 Example VIII: Part D 
28:24  
 
 Example VIII: Part E 
30:42  
Section 8: Oscillations 

Oscillations 
1:01:12 
 
Intro 
0:00  
 
Objectives 
0:08  
 
Simple Harmonic Motion 
0:45  
 
 Simple Harmonic Motion 
0:46  
 
Circular Motion vs. Simple Harmonic Motion (SHM) 
1:39  
 
 Circular Motion vs. Simple Harmonic Motion (SHM) 
1:40  
 
Position, Velocity, & Acceleration 
4:55  
 
 Position 
4:56  
 
 Velocity 
5:12  
 
 Acceleration 
5:49  
 
Frequency and Period 
6:37  
 
 Frequency 
6:42  
 
 Period 
6:49  
 
Angular Frequency 
7:05  
 
 Angular Frequency 
7:06  
 
Example I: Oscillating System 
7:37  
 
 Example I: Determine the Object's Angular Frequency 
7:38  
 
 Example I: What is the Object's Position at Time t = 10s? 
8:16  
 
 Example I: At What Time is the Object at x = 0.1m? 
9:10  
 
Mass on a Spring 
10:17  
 
 Mass on a Spring 
10:18  
 
Example II: Analysis of SpringBlock System 
11:34  
 
Example III: SpringBlock ranking 
12:53  
 
General Form of Simple Harmonic Motion 
14:41  
 
 General Form of Simple Harmonic Motion 
14:42  
 
Graphing Simple Harmonic Motion (SHM) 
15:22  
 
 Graphing Simple Harmonic Motion (SHM) 
15:23  
 
Energy of Simple Harmonic Motion (SHM) 
15:49  
 
 Energy of Simple Harmonic Motion (SHM) 
15:50  
 
Horizontal Spring Oscillator 
19:24  
 
 Horizontal Spring Oscillator 
19:25  
 
Vertical Spring Oscillator 
20:58  
 
 Vertical Spring Oscillator 
20:59  
 
Springs in Series 
23:30  
 
 Springs in Series 
23:31  
 
Springs in Parallel 
26:08  
 
 Springs in Parallel 
26:09  
 
The Pendulum 
26:59  
 
 The Pendulum 
27:00  
 
Energy and the Simple Pendulum 
27:46  
 
 Energy and the Simple Pendulum 
27:47  
 
Frequency and Period of a Pendulum 
30:16  
 
 Frequency and Period of a Pendulum 
30:17  
 
Example IV: Deriving Period of a Simple Pendulum 
31:42  
 
Example V: Deriving Period of a Physical Pendulum 
35:20  
 
Example VI: Summary of SpringBlock System 
38:16  
 
Example VII: Harmonic Oscillator Analysis 
44:14  
 
 Example VII: Spring Constant 
44:24  
 
 Example VII: Total Energy 
44:45  
 
 Example VII: Speed at the Equilibrium Position 
45:05  
 
 Example VII: Speed at x = 0.30 Meters 
45:37  
 
 Example VII: Speed at x = 0.40 Meter 
46:46  
 
 Example VII: Acceleration at the Equilibrium Position 
47:21  
 
 Example VII: Magnitude of Acceleration at x = 0.50 Meters 
47:35  
 
 Example VII: Net Force at the Equilibrium Position 
48:04  
 
 Example VII: Net Force at x = 0.25 Meter 
48:20  
 
 Example VII: Where does Kinetic Energy = Potential Energy? 
48:33  
 
Example VIII: Ranking Spring Systems 
49:35  
 
Example IX: Vertical Spring Block Oscillator 
51:45  
 
Example X: Ranking Period of Pendulum 
53:50  
 
Example XI: APC 2009 FR2 
54:50  
 
 Example XI: Part A 
54:58  
 
 Example XI: Part B 
57:57  
 
 Example XI: Part C 
59:11  
 
Example XII: APC 2010 FR3 
60:18  
 
 Example XII: Part A 
60:49  
 
 Example XII: Part B 
62:47  
 
 Example XII: Part C 
64:30  
 
 Example XII: Part D 
65:53  
 
 Example XII: Part E 
68:13  
Section 9: Gravity & Orbits 

Gravity & Orbits 
34:59 
 
Intro 
0:00  
 
Objectives 
0:07  
 
Newton's Law of Universal Gravitation 
0:45  
 
 Newton's Law of Universal Gravitation 
0:46  
 
Example I: Gravitational Force Between Earth and Sun 
2:24  
 
Example II: Two Satellites 
3:39  
 
Gravitational Field Strength 
4:23  
 
 Gravitational Field Strength 
4:24  
 
Example III: Weight on Another Planet 
6:22  
 
Example IV: Gravitational Field of a Hollow Shell 
7:31  
 
Example V: Gravitational Field Inside a Solid Sphere 
8:33  
 
Velocity in Circular Orbit 
12:05  
 
 Velocity in Circular Orbit 
12:06  
 
Period and Frequency for Circular Orbits 
13:56  
 
 Period and Frequency for Circular Orbits 
13:57  
 
Mechanical Energy for Circular Orbits 
16:11  
 
 Mechanical Energy for Circular Orbits 
16:12  
 
Escape Velocity 
17:48  
 
 Escape Velocity 
17:49  
 
Kepler's 1st Law of Planetary Motion 
19:41  
 
 Keller's 1st Law of Planetary Motion 
19:42  
 
Kepler's 2nd Law of Planetary Motion 
20:05  
 
 Keller's 2nd Law of Planetary Motion 
20:06  
 
Kepler's 3rd Law of Planetary Motion 
20:57  
 
 Ratio of the Squares of the Periods of Two Planets 
20:58  
 
 Ratio of the Squares of the Periods to the Cubes of Their Semimajor Axes 
21:41  
 
Total Mechanical Energy for an Elliptical Orbit 
21:57  
 
 Total Mechanical Energy for an Elliptical Orbit 
21:58  
 
Velocity and Radius for an Elliptical Orbit 
22:35  
 
 Velocity and Radius for an Elliptical Orbit 
22:36  
 
Example VI: Rocket Launched Vertically 
24:26  
 
Example VII: APC 2007 FR2 
28:16  
 
 Example VII: Part A 
28:35  
 
 Example VII: Part B 
29:51  
 
 Example VII: Part C 
31:14  
 
 Example VII: Part D 
32:23  
 
 Example VII: Part E 
33:16  
Section 10: Sample AP Exam 

1998 AP Practice Exam: Multiple Choice 
28:11 
 
Intro 
0:00  
 
Problem 1 
0:30  
 
Problem 2 
0:51  
 
Problem 3 
1:25  
 
Problem 4 
2:00  
 
Problem 5 
3:05  
 
Problem 6 
4:19  
 
Problem 7 
4:48  
 
Problem 8 
5:18  
 
Problem 9 
5:38  
 
Problem 10 
6:26  
 
Problem 11 
7:21  
 
Problem 12 
8:08  
 
Problem 13 
8:35  
 
Problem 14 
9:20  
 
Problem 15 
10:09  
 
Problem 16 
10:25  
 
Problem 17 
11:30  
 
Problem 18 
12:27  
 
Problem 19 
13:00  
 
Problem 20 
14:40  
 
Problem 21 
15:44  
 
Problem 22 
16:42  
 
Problem 23 
17:35  
 
Problem 24 
17:54  
 
Problem 25 
18:32  
 
Problem 26 
19:08  
 
Problem 27 
20:56  
 
Problem 28 
22:19  
 
Problem 29 
22:36  
 
Problem 30 
23:18  
 
Problem 31 
24:06  
 
Problem 32 
24:40  

1998 AP Practice Exam: Free Response Questions (FRQ) 
28:11 
 
Intro 
0:00  
 
Question 1 
0:15  
 
 Part A: I 
0:16  
 
 Part A: II 
0:46  
 
 Part A: III 
1:13  
 
 Part B 
1:40  
 
 Part C 
2:49  
 
 Part D: I 
4:46  
 
 Part D: II 
5:15  
 
Question 2 
5:46  
 
 Part A: I 
6:13  
 
 Part A: II 
7:05  
 
 Part B: I 
7:48  
 
 Part B: II 
8:42  
 
 Part B: III 
9:03  
 
 Part B: IV 
9:26  
 
 Part B: V 
11:32  
 
Question 3 
13:30  
 
 Part A: I 
13:50  
 
 Part A: II 
14:16  
 
 Part A: III 
14:38  
 
 Part A: IV 
14:56  
 
 Part A: V 
15:36  
 
 Part B 
16:11  
 
 Part C 
17:00  
 
 Part D: I 
19:56  
 
 Part D: II 
21:08  