Professor Murray

Professor Murray

Sine and Cosine Functions

Slide Duration:

Table of Contents

Section 1: Introduction
Introduction to Math Analysis

10m 3s

Intro
0:00
Title of the Course
0:06
Different Names for the Course
0:07
Precalculus
0:12
Math Analysis
0:14
Trigonometry
0:16
Algebra III
0:20
Geometry II
0:24
College Algebra
0:30
Same Concepts
0:36
How do the Lessons Work?
0:54
Introducing Concepts
0:56
Apply Concepts
1:04
Go through Examples
1:25
Who is this Course For?
1:38
Those Who Need eExtra Help with Class Work
1:52
Those Working on Material but not in Formal Class at School
1:54
Those Who Want a Refresher
2:00
Try to Watch the Whole Lesson
2:20
Understanding is So Important
3:56
What to Watch First
5:26
Lesson #2: Sets, Elements, and Numbers
5:30
Lesson #7: Idea of a Function
5:33
Lesson #6: Word Problems
6:04
What to Watch First, cont.
6:46
Lesson #2: Sets, Elements and Numbers
6:56
Lesson #3: Variables, Equations, and Algebra
6:58
Lesson #4: Coordinate Systems
7:00
Lesson #5: Midpoint, Distance, the Pythagorean Theorem and Slope
7:02
Lesson #6: Word Problems
7:10
Lesson #7: Idea of a Function
7:12
Lesson #8: Graphs
7:14
Graphing Calculator Appendix
7:40
What to Watch Last
8:46
Let's get Started!
9:48
Sets, Elements, & Numbers

45m 11s

Intro
0:00
Introduction
0:05
Sets and Elements
1:19
Set
1:20
Element
1:23
Name a Set
2:20
Order The Elements Appear In Has No Effect on the Set
2:55
Describing/ Defining Sets
3:28
Directly Say All the Elements
3:36
Clearly Describing All the Members of the Set
3:55
Describing the Quality (or Qualities) Each member Of the Set Has In Common
4:32
Symbols: 'Element of' and 'Subset of'
6:01
Symbol is ∈
6:03
Subset Symbol is ⊂
6:35
Empty Set
8:07
Symbol is ∅
8:20
Since It's Empty, It is a Subset of All Sets
8:44
Union and Intersection
9:54
Union Symbol is ∪
10:08
Intersection Symbol is ∩
10:18
Sets Can Be Weird Stuff
12:26
Can Have Elements in a Set
12:50
We Can Have Infinite Sets
13:09
Example
13:22
Consider a Set Where We Take a Word and Then Repeat It An Ever Increasing Number of Times
14:08
This Set Has Infinitely Many Distinct Elements
14:40
Numbers as Sets
16:03
Natural Numbers ℕ
16:16
Including 0 and the Negatives ℤ
18:13
Rational Numbers ℚ
19:27
Can Express Rational Numbers with Decimal Expansions
22:05
Irrational Numbers
23:37
Real Numbers ℝ: Put the Rational and Irrational Numbers Together
25:15
Interval Notation and the Real Numbers
26:45
Include the End Numbers
27:06
Exclude the End Numbers
27:33
Example
28:28
Interval Notation: Infinity
29:09
Use -∞ or ∞ to Show an Interval Going on Forever in One Direction or the Other
29:14
Always Use Parentheses
29:50
Examples
30:27
Example 1
31:23
Example 2
35:26
Example 3
38:02
Example 4
42:21
Variables, Equations, & Algebra

35m 31s

Intro
0:00
What is a Variable?
0:05
A Variable is a Placeholder for a Number
0:11
Affects the Output of a Function or a Dependent Variable
0:24
Naming Variables
1:51
Useful to Use Symbols
2:21
What is a Constant?
4:14
A Constant is a Fixed, Unchanging Number
4:28
We Might Refer to a Symbol Representing a Number as a Constant
4:51
What is a Coefficient?
5:33
A Coefficient is a Multiplicative Factor on a Variable
5:37
Not All Coefficients are Constants
5:51
Expressions and Equations
6:42
An Expression is a String of Mathematical Symbols That Make Sense Used Together
7:05
An Equation is a Statement That Two Expression Have the Same Value
8:20
The Idea of Algebra
8:51
Equality
8:59
If Two Things Are the Same *Equal), Then We Can Do the Exact Same Operation to Both and the Results Will Be the Same
9:41
Always Do The Exact Same Thing to Both Sides
12:22
Solving Equations
13:23
When You Are Asked to Solve an Equation, You Are Being Asked to Solve for Something
13:33
Look For What Values Makes the Equation True
13:38
Isolate the Variable by Doing Algebra
14:37
Order of Operations
16:02
Why Certain Operations are Grouped
17:01
When You Don't Have to Worry About Order
17:39
Distributive Property
18:15
It Allows Multiplication to Act Over Addition in Parentheses
18:23
We Can Use the Distributive Property in Reverse to Combine Like Terms
19:05
Substitution
20:03
Use Information From One Equation in Another Equation
20:07
Put Your Substitution in Parentheses
20:44
Example 1
23:17
Example 2
25:49
Example 3
28:11
Example 4
30:02
Coordinate Systems

35m 2s

Intro
0:00
Inherent Order in ℝ
0:05
Real Numbers Come with an Inherent Order
0:11
Positive Numbers
0:21
Negative Numbers
0:58
'Less Than' and 'Greater Than'
2:04
Tip To Help You Remember the Signs
2:56
Inequality
4:06
Less Than or Equal and Greater Than or Equal
4:51
One Dimension: The Number Line
5:36
Graphically Represent ℝ on a Number Line
5:43
Note on Infinities
5:57
With the Number Line, We Can Directly See the Order We Put on ℝ
6:35
Ordered Pairs
7:22
Example
7:34
Allows Us to Talk About Two Numbers at the Same Time
9:41
Ordered Pairs of Real Numbers Cannot be Put Into an Order Like we Did with ℝ
10:41
Two Dimensions: The Plane
13:13
We Can Represent Ordered Pairs with the Plane
13:24
Intersection is known as the Origin
14:31
Plotting the Point
14:32
Plane = Coordinate Plane = Cartesian Plane = ℝ²
17:46
The Plane and Quadrants
18:50
Quadrant I
19:04
Quadrant II
19:21
Quadrant III
20:04
Quadrant IV
20:20
Three Dimensions: Space
21:02
Create Ordered Triplets
21:09
Visually Represent This
21:19
Three-Dimension = Space = ℝ³
21:47
Higher Dimensions
22:24
If We Have n Dimensions, We Call It n-Dimensional Space or ℝ to the nth Power
22:31
We Can Represent Places In This n-Dimensional Space As Ordered Groupings of n Numbers
22:41
Hard to Visualize Higher Dimensional Spaces
23:18
Example 1
25:07
Example 2
26:10
Example 3
28:58
Example 4
31:05
Midpoints, Distance, the Pythagorean Theorem, & Slope

48m 43s

Intro
0:00
Introduction
0:07
Midpoint: One Dimension
2:09
Example of Something More Complex
2:31
Use the Idea of a Middle
3:28
Find the Midpoint of Arbitrary Values a and b
4:17
How They're Equivalent
5:05
Official Midpoint Formula
5:46
Midpoint: Two Dimensions
6:19
The Midpoint Must Occur at the Horizontal Middle and the Vertical Middle
6:38
Arbitrary Pair of Points Example
7:25
Distance: One Dimension
9:26
Absolute Value
10:54
Idea of Forcing Positive
11:06
Distance: One Dimension, Formula
11:47
Distance Between Arbitrary a and b
11:48
Absolute Value Helps When the Distance is Negative
12:41
Distance Formula
12:58
The Pythagorean Theorem
13:24
a²+b²=c²
13:50
Distance: Two Dimensions
14:59
Break Into Horizontal and Vertical Parts and then Use the Pythagorean Theorem
15:16
Distance Between Arbitrary Points (x₁,y₁) and (x₂,y₂)
16:21
Slope
19:30
Slope is the Rate of Change
19:41
m = rise over run
21:27
Slope Between Arbitrary Points (x₁,y₁) and (x₂,y₂)
22:31
Interpreting Slope
24:12
Positive Slope and Negative Slope
25:40
m=1, m=0, m=-1
26:48
Example 1
28:25
Example 2
31:42
Example 3
36:40
Example 4
42:48
Word Problems

56m 31s

Intro
0:00
Introduction
0:05
What is a Word Problem?
0:45
Describes Any Problem That Primarily Gets Its Ideas Across With Words Instead of Math Symbols
0:48
Requires Us to Think
1:32
Why Are They So Hard?
2:11
Reason 1: No Simple Formula to Solve Them
2:16
Reason 2: Harder to Teach Word Problems
2:47
You Can Learn How to Do Them!
3:51
Grades
7:57
'But I'm Never Going to Use This In Real Life'
9:46
Solving Word Problems
12:58
First: Understand the Problem
13:37
Second: What Are You Looking For?
14:33
Third: Set Up Relationships
16:21
Fourth: Solve It!
17:48
Summary of Method
19:04
Examples on Things Other Than Math
20:21
Math-Specific Method: What You Need Now
25:30
Understand What the Problem is Talking About
25:37
Set Up and Name Any Variables You Need to Know
25:56
Set Up Equations Connecting Those Variables to the Information in the Problem Statement
26:02
Use the Equations to Solve for an Answer
26:14
Tip
26:58
Draw Pictures
27:22
Breaking Into Pieces
28:28
Try Out Hypothetical Numbers
29:52
Student Logic
31:27
Jump In!
32:40
Example 1
34:03
Example 2
39:15
Example 3
44:22
Example 4
50:24
Section 2: Functions
Idea of a Function

39m 54s

Intro
0:00
Introduction
0:04
What is a Function?
1:06
A Visual Example and Non-Example
1:30
Function Notation
3:47
f(x)
4:05
Express What Sets the Function Acts On
5:45
Metaphors for a Function
6:17
Transformation
6:28
Map
7:17
Machine
8:56
Same Input Always Gives Same Output
10:01
If We Put the Same Input Into a Function, It Will Always Produce the Same Output
10:11
Example of Something That is Not a Function
11:10
A Non-Numerical Example
12:10
The Functions We Will Use
15:05
Unless Told Otherwise, We Will Assume Every Function Takes in Real Numbers and Outputs Real Numbers
15:11
Usually Told the Rule of a Given Function
15:27
How To Use a Function
16:18
Apply the Rule to Whatever Our Input Value Is
16:28
Make Sure to Wrap Your Substitutions in Parentheses
17:09
Functions and Tables
17:36
Table of Values, Sometimes Called a T-Table
17:46
Example
17:56
Domain: What Goes In
18:55
The Domain is the Set of all Inputs That the Function Can Accept
18:56
Example
19:40
Range: What Comes Out
21:27
The Range is the Set of All Possible Outputs a Function Can Assign
21:34
Example
21:49
Another Example Would Be Our Initial Function From Earlier in This Lesson
22:29
Example 1
23:45
Example 2
25:22
Example 3
27:27
Example 4
29:23
Example 5
33:33
Graphs

58m 26s

Intro
0:00
Introduction
0:04
How to Interpret Graphs
1:17
Input / Independent Variable
1:47
Output / Dependent Variable
2:00
Graph as Input ⇒ Output
2:23
One Way to Think of a Graph: See What Happened to Various Inputs
2:25
Example
2:47
Graph as Location of Solution
4:20
A Way to See Solutions
4:36
Example
5:20
Which Way Should We Interpret?
7:13
Easiest to Think In Terms of How Inputs Are Mapped to Outputs
7:20
Sometimes It's Easier to Think In Terms of Solutions
8:39
Pay Attention to Axes
9:50
Axes Tell Where the Graph Is and What Scale It Has
10:09
Often, The Axes Will Be Square
10:14
Example
12:06
Arrows or No Arrows?
16:07
Will Not Use Arrows at the End of Our Graphs
17:13
Graph Stops Because It Hits the Edge of the Graphing Axes, Not Because the Function Stops
17:18
How to Graph
19:47
Plot Points
20:07
Connect with Curves
21:09
If You Connect with Straight Lines
21:44
Graphs of Functions are Smooth
22:21
More Points ⇒ More Accurate
23:38
Vertical Line Test
27:44
If a Vertical Line Could Intersect More Than One Point On a Graph, It Can Not Be the Graph of a Function
28:41
Every Point on a Graph Tells Us Where the x-Value Below is Mapped
30:07
Domain in Graphs
31:37
The Domain is the Set of All Inputs That a Function Can Accept
31:44
Be Aware That Our Function Probably Continues Past the Edge of Our 'Viewing Window'
33:19
Range in Graphs
33:53
Graphing Calculators: Check the Appendix!
36:55
Example 1
38:37
Example 2
45:19
Example 3
50:41
Example 4
53:28
Example 5
55:50
Properties of Functions

48m 49s

Intro
0:00
Introduction
0:05
Increasing Decreasing Constant
0:43
Looking at a Specific Graph
1:15
Increasing Interval
2:39
Constant Function
4:15
Decreasing Interval
5:10
Find Intervals by Looking at the Graph
5:32
Intervals Show x-values; Write in Parentheses
6:39
Maximum and Minimums
8:48
Relative (Local) Max/Min
10:20
Formal Definition of Relative Maximum
12:44
Formal Definition of Relative Minimum
13:05
Max/Min, More Terms
14:18
Definition of Extrema
15:01
Average Rate of Change
16:11
Drawing a Line for the Average Rate
16:48
Using the Slope of the Secant Line
17:36
Slope in Function Notation
18:45
Zeros/Roots/x-intercepts
19:45
What Zeros in a Function Mean
20:25
Even Functions
22:30
Odd Functions
24:36
Even/Odd Functions and Graphs
26:28
Example of an Even Function
27:12
Example of an Odd Function
28:03
Example 1
29:35
Example 2
33:07
Example 3
40:32
Example 4
42:34
Function Petting Zoo

29m 20s

Intro
0:00
Introduction
0:04
Don't Forget that Axes Matter!
1:44
The Constant Function
2:40
The Identity Function
3:44
The Square Function
4:40
The Cube Function
5:44
The Square Root Function
6:51
The Reciprocal Function
8:11
The Absolute Value Function
10:19
The Trigonometric Functions
11:56
f(x)=sin(x)
12:12
f(x)=cos(x)
12:24
Alternate Axes
12:40
The Exponential and Logarithmic Functions
13:35
Exponential Functions
13:44
Logarithmic Functions
14:24
Alternating Axes
15:17
Transformations and Compositions
16:08
Example 1
17:52
Example 2
18:33
Example 3
20:24
Example 4
26:07
Transformation of Functions

48m 35s

Intro
0:00
Introduction
0:04
Vertical Shift
1:12
Graphical Example
1:21
A Further Explanation
2:16
Vertical Stretch/Shrink
3:34
Graph Shrinks
3:46
Graph Stretches
3:51
A Further Explanation
5:07
Horizontal Shift
6:49
Moving the Graph to the Right
7:28
Moving the Graph to the Left
8:12
A Further Explanation
8:19
Understanding Movement on the x-axis
8:38
Horizontal Stretch/Shrink
12:59
Shrinking the Graph
13:40
Stretching the Graph
13:48
A Further Explanation
13:55
Understanding Stretches from the x-axis
14:12
Vertical Flip (aka Mirror)
16:55
Example Graph
17:07
Multiplying the Vertical Component by -1
17:18
Horizontal Flip (aka Mirror)
18:43
Example Graph
19:01
Multiplying the Horizontal Component by -1
19:54
Summary of Transformations
22:11
Stacking Transformations
24:46
Order Matters
25:20
Transformation Example
25:52
Example 1
29:21
Example 2
34:44
Example 3
38:10
Example 4
43:46
Composite Functions

33m 24s

Intro
0:00
Introduction
0:04
Arithmetic Combinations
0:40
Basic Operations
1:20
Definition of the Four Arithmetic Combinations
1:40
Composite Functions
2:53
The Function as a Machine
3:32
Function Compositions as Multiple Machines
3:59
Notation for Composite Functions
4:46
Two Formats
6:02
Another Visual Interpretation
7:17
How to Use Composite Functions
8:21
Example of on Function acting on Another
9:17
Example 1
11:03
Example 2
15:27
Example 3
21:11
Example 4
27:06
Piecewise Functions

51m 42s

Intro
0:00
Introduction
0:04
Analogies to a Piecewise Function
1:16
Different Potatoes
1:41
Factory Production
2:27
Notations for Piecewise Functions
3:39
Notation Examples from Analogies
6:11
Example of a Piecewise (with Table)
7:24
Example of a Non-Numerical Piecewise
11:35
Graphing Piecewise Functions
14:15
Graphing Piecewise Functions, Example
16:26
Continuous Functions
16:57
Statements of Continuity
19:30
Example of Continuous and Non-Continuous Graphs
20:05
Interesting Functions: the Step Function
22:00
Notation for the Step Function
22:40
How the Step Function Works
22:56
Graph of the Step Function
25:30
Example 1
26:22
Example 2
28:49
Example 3
36:50
Example 4
46:11
Inverse Functions

49m 37s

Intro
0:00
Introduction
0:04
Analogy by picture
1:10
How to Denote the inverse
1:40
What Comes out of the Inverse
1:52
Requirement for Reversing
2:02
The Basketball Factory
2:12
The Importance of Information
2:45
One-to-One
4:04
Requirement for Reversibility
4:21
When a Function has an Inverse
4:43
One-to-One
5:13
Not One-to-One
5:50
Not a Function
6:19
Horizontal Line Test
7:01
How to the test Works
7:12
One-to-One
8:12
Not One-to-One
8:45
Definition: Inverse Function
9:12
Formal Definition
9:21
Caution to Students
10:02
Domain and Range
11:12
Finding the Range of the Function Inverse
11:56
Finding the Domain of the Function Inverse
12:11
Inverse of an Inverse
13:09
Its just x!
13:26
Proof
14:03
Graphical Interpretation
17:07
Horizontal Line Test
17:20
Graph of the Inverse
18:04
Swapping Inputs and Outputs to Draw Inverses
19:02
How to Find the Inverse
21:03
What We Are Looking For
21:21
Reversing the Function
21:38
A Method to Find Inverses
22:33
Check Function is One-to-One
23:04
Swap f(x) for y
23:25
Interchange x and y
23:41
Solve for y
24:12
Replace y with the inverse
24:40
Some Comments
25:01
Keeping Step 2 and 3 Straight
25:44
Switching to Inverse
26:12
Checking Inverses
28:52
How to Check an Inverse
29:06
Quick Example of How to Check
29:56
Example 1
31:48
Example 2
34:56
Example 3
39:29
Example 4
46:19
Variation Direct and Inverse

28m 49s

Intro
0:00
Introduction
0:06
Direct Variation
1:14
Same Direction
1:21
Common Example: Groceries
1:56
Different Ways to Say that Two Things Vary Directly
2:28
Basic Equation for Direct Variation
2:55
Inverse Variation
3:40
Opposite Direction
3:50
Common Example: Gravity
4:53
Different Ways to Say that Two Things Vary Indirectly
5:48
Basic Equation for Indirect Variation
6:33
Joint Variation
7:27
Equation for Joint Variation
7:53
Explanation of the Constant
8:48
Combined Variation
9:35
Gas Law as a Combination
9:44
Single Constant
10:33
Example 1
10:49
Example 2
13:34
Example 3
15:39
Example 4
19:48
Section 3: Polynomials
Intro to Polynomials

38m 41s

Intro
0:00
Introduction
0:04
Definition of a Polynomial
1:04
Starting Integer
2:06
Structure of a Polynomial
2:49
The a Constants
3:34
Polynomial Function
5:13
Polynomial Equation
5:23
Polynomials with Different Variables
5:36
Degree
6:23
Informal Definition
6:31
Find the Largest Exponent Variable
6:44
Quick Examples
7:36
Special Names for Polynomials
8:59
Based on the Degree
9:23
Based on the Number of Terms
10:12
Distributive Property (aka 'FOIL')
11:37
Basic Distributive Property
12:21
Distributing Two Binomials
12:55
Longer Parentheses
15:12
Reverse: Factoring
17:26
Long-Term Behavior of Polynomials
17:48
Examples
18:13
Controlling Term--Term with the Largest Exponent
19:33
Positive and Negative Coefficients on the Controlling Term
20:21
Leading Coefficient Test
22:07
Even Degree, Positive Coefficient
22:13
Even Degree, Negative Coefficient
22:39
Odd Degree, Positive Coefficient
23:09
Odd Degree, Negative Coefficient
23:27
Example 1
25:11
Example 2
27:16
Example 3
31:16
Example 4
34:41
Roots (Zeros) of Polynomials

41m 7s

Intro
0:00
Introduction
0:05
Roots in Graphs
1:17
The x-intercepts
1:33
How to Remember What 'Roots' Are
1:50
Naïve Attempts
2:31
Isolating Variables
2:45
Failures of Isolating Variables
3:30
Missing Solutions
4:59
Factoring: How to Find Roots
6:28
How Factoring Works
6:36
Why Factoring Works
7:20
Steps to Finding Polynomial Roots
9:21
Factoring: How to Find Roots CAUTION
10:08
Factoring is Not Easy
11:32
Factoring Quadratics
13:08
Quadratic Trinomials
13:21
Form of Factored Binomials
13:38
Factoring Examples
14:40
Factoring Quadratics, Check Your Work
16:58
Factoring Higher Degree Polynomials
18:19
Factoring a Cubic
18:32
Factoring a Quadratic
19:04
Factoring: Roots Imply Factors
19:54
Where a Root is, A Factor Is
20:01
How to Use Known Roots to Make Factoring Easier
20:35
Not all Polynomials Can be Factored
22:30
Irreducible Polynomials
23:27
Complex Numbers Help
23:55
Max Number of Roots/Factors
24:57
Limit to Number of Roots Equal to the Degree
25:18
Why there is a Limit
25:25
Max Number of Peaks/Valleys
26:39
Shape Information from Degree
26:46
Example Graph
26:54
Max, But Not Required
28:00
Example 1
28:37
Example 2
31:21
Example 3
36:12
Example 4
38:40
Completing the Square and the Quadratic Formula

39m 43s

Intro
0:00
Introduction
0:05
Square Roots and Equations
0:51
Taking the Square Root to Find the Value of x
0:55
Getting the Positive and Negative Answers
1:05
Completing the Square: Motivation
2:04
Polynomials that are Easy to Solve
2:20
Making Complex Polynomials Easy to Solve
3:03
Steps to Completing the Square
4:30
Completing the Square: Method
7:22
Move C over
7:35
Divide by A
7:44
Find r
7:59
Add to Both Sides to Complete the Square
8:49
Solving Quadratics with Ease
9:56
The Quadratic Formula
11:38
Derivation
11:43
Final Form
12:23
Follow Format to Use Formula
13:38
How Many Roots?
14:53
The Discriminant
15:47
What the Discriminant Tells Us: How Many Roots
15:58
How the Discriminant Works
16:30
Example 1: Complete the Square
18:24
Example 2: Solve the Quadratic
22:00
Example 3: Solve for Zeroes
25:28
Example 4: Using the Quadratic Formula
30:52
Properties of Quadratic Functions

45m 34s

Intro
0:00
Introduction
0:05
Parabolas
0:35
Examples of Different Parabolas
1:06
Axis of Symmetry and Vertex
1:28
Drawing an Axis of Symmetry
1:51
Placing the Vertex
2:28
Looking at the Axis of Symmetry and Vertex for other Parabolas
3:09
Transformations
4:18
Reviewing Transformation Rules
6:28
Note the Different Horizontal Shift Form
7:45
An Alternate Form to Quadratics
8:54
The Constants: k, h, a
9:05
Transformations Formed
10:01
Analyzing Different Parabolas
10:10
Switching Forms by Completing the Square
11:43
Vertex of a Parabola
16:30
Vertex at (h, k)
16:47
Vertex in Terms of a, b, and c Coefficients
17:28
Minimum/Maximum at Vertex
18:19
When a is Positive
18:25
When a is Negative
18:52
Axis of Symmetry
19:54
Incredibly Minor Note on Grammar
20:52
Example 1
21:48
Example 2
26:35
Example 3
28:55
Example 4
31:40
Intermediate Value Theorem and Polynomial Division

46m 8s

Intro
0:00
Introduction
0:05
Reminder: Roots Imply Factors
1:32
The Intermediate Value Theorem
3:41
The Basis: U between a and b
4:11
U is on the Function
4:52
Intermediate Value Theorem, Proof Sketch
5:51
If Not True, the Graph Would Have to Jump
5:58
But Graph is Defined as Continuous
6:43
Finding Roots with the Intermediate Value Theorem
7:01
Picking a and b to be of Different Signs
7:10
Must Be at Least One Root
7:46
Dividing a Polynomial
8:16
Using Roots and Division to Factor
8:38
Long Division Refresher
9:08
The Division Algorithm
12:18
How It Works to Divide Polynomials
12:37
The Parts of the Equation
13:24
Rewriting the Equation
14:47
Polynomial Long Division
16:20
Polynomial Long Division In Action
16:29
One Step at a Time
20:51
Synthetic Division
22:46
Setup
23:11
Synthetic Division, Example
24:44
Which Method Should We Use
26:39
Advantages of Synthetic Method
26:49
Advantages of Long Division
27:13
Example 1
29:24
Example 2
31:27
Example 3
36:22
Example 4
40:55
Complex Numbers

45m 36s

Intro
0:00
Introduction
0:04
A Wacky Idea
1:02
The Definition of the Imaginary Number
1:22
How it Helps Solve Equations
2:20
Square Roots and Imaginary Numbers
3:15
Complex Numbers
5:00
Real Part and Imaginary Part
5:20
When Two Complex Numbers are Equal
6:10
Addition and Subtraction
6:40
Deal with Real and Imaginary Parts Separately
7:36
Two Quick Examples
7:54
Multiplication
9:07
FOIL Expansion
9:14
Note What Happens to the Square of the Imaginary Number
9:41
Two Quick Examples
10:22
Division
11:27
Complex Conjugates
13:37
Getting Rid of i
14:08
How to Denote the Conjugate
14:48
Division through Complex Conjugates
16:11
Multiply by the Conjugate of the Denominator
16:28
Example
17:46
Factoring So-Called 'Irreducible' Quadratics
19:24
Revisiting the Quadratic Formula
20:12
Conjugate Pairs
20:37
But Are the Complex Numbers 'Real'?
21:27
What Makes a Number Legitimate
25:38
Where Complex Numbers are Used
27:20
Still, We Won't See Much of C
29:05
Example 1
30:30
Example 2
33:15
Example 3
38:12
Example 4
42:07
Fundamental Theorem of Algebra

19m 9s

Intro
0:00
Introduction
0:05
Idea: Hidden Roots
1:16
Roots in Complex Form
1:42
All Polynomials Have Roots
2:08
Fundamental Theorem of Algebra
2:21
Where Are All the Imaginary Roots, Then?
3:17
All Roots are Complex
3:45
Real Numbers are a Subset of Complex Numbers
3:59
The n Roots Theorem
5:01
For Any Polynomial, Its Degree is Equal to the Number of Roots
5:11
Equivalent Statement
5:24
Comments: Multiplicity
6:29
Non-Distinct Roots
6:59
Denoting Multiplicity
7:20
Comments: Complex Numbers Necessary
7:41
Comments: Complex Coefficients Allowed
8:55
Comments: Existence Theorem
9:59
Proof Sketch of n Roots Theorem
10:45
First Root
11:36
Second Root
13:23
Continuation to Find all Roots
16:00
Section 4: Rational Functions
Rational Functions and Vertical Asymptotes

33m 22s

Intro
0:00
Introduction
0:05
Definition of a Rational Function
1:20
Examples of Rational Functions
2:30
Why They are Called 'Rational'
2:47
Domain of a Rational Function
3:15
Undefined at Denominator Zeros
3:25
Otherwise all Reals
4:16
Investigating a Fundamental Function
4:50
The Domain of the Function
5:04
What Occurs at the Zeroes of the Denominator
5:20
Idea of a Vertical Asymptote
6:23
What's Going On?
6:58
Approaching x=0 from the left
7:32
Approaching x=0 from the right
8:34
Dividing by Very Small Numbers Results in Very Large Numbers
9:31
Definition of a Vertical Asymptote
10:05
Vertical Asymptotes and Graphs
11:15
Drawing Asymptotes by Using a Dashed Line
11:27
The Graph Can Never Touch Its Undefined Point
12:00
Not All Zeros Give Asymptotes
13:02
Special Cases: When Numerator and Denominator Go to Zero at the Same Time
14:58
Cancel out Common Factors
15:49
How to Find Vertical Asymptotes
16:10
Figure out What Values Are Not in the Domain of x
16:24
Determine if the Numerator and Denominator Share Common Factors and Cancel
16:45
Find Denominator Roots
17:33
Note if Asymptote Approaches Negative or Positive Infinity
18:06
Example 1
18:57
Example 2
21:26
Example 3
23:04
Example 4
30:01
Horizontal Asymptotes

34m 16s

Intro
0:00
Introduction
0:05
Investigating a Fundamental Function
0:53
What Happens as x Grows Large
1:00
Different View
1:12
Idea of a Horizontal Asymptote
1:36
What's Going On?
2:24
What Happens as x Grows to a Large Negative Number
2:49
What Happens as x Grows to a Large Number
3:30
Dividing by Very Large Numbers Results in Very Small Numbers
3:52
Example Function
4:41
Definition of a Vertical Asymptote
8:09
Expanding the Idea
9:03
What's Going On?
9:48
What Happens to the Function in the Long Run?
9:51
Rewriting the Function
10:13
Definition of a Slant Asymptote
12:09
Symbolical Definition
12:30
Informal Definition
12:45
Beyond Slant Asymptotes
13:03
Not Going Beyond Slant Asymptotes
14:39
Horizontal/Slant Asymptotes and Graphs
15:43
How to Find Horizontal and Slant Asymptotes
16:52
How to Find Horizontal Asymptotes
17:12
Expand the Given Polynomials
17:18
Compare the Degrees of the Numerator and Denominator
17:40
How to Find Slant Asymptotes
20:05
Slant Asymptotes Exist When n+m=1
20:08
Use Polynomial Division
20:24
Example 1
24:32
Example 2
25:53
Example 3
26:55
Example 4
29:22
Graphing Asymptotes in a Nutshell

49m 7s

Intro
0:00
Introduction
0:05
A Process for Graphing
1:22
1. Factor Numerator and Denominator
1:50
2. Find Domain
2:53
3. Simplifying the Function
3:59
4. Find Vertical Asymptotes
4:59
5. Find Horizontal/Slant Asymptotes
5:24
6. Find Intercepts
7:35
7. Draw Graph (Find Points as Necessary)
9:21
Draw Graph Example
11:21
Vertical Asymptote
11:41
Horizontal Asymptote
11:50
Other Graphing
12:16
Test Intervals
15:08
Example 1
17:57
Example 2
23:01
Example 3
29:02
Example 4
33:37
Partial Fractions

44m 56s

Intro
0:00
Introduction: Idea
0:04
Introduction: Prerequisites and Uses
1:57
Proper vs. Improper Polynomial Fractions
3:11
Possible Things in the Denominator
4:38
Linear Factors
6:16
Example of Linear Factors
7:03
Multiple Linear Factors
7:48
Irreducible Quadratic Factors
8:25
Example of Quadratic Factors
9:26
Multiple Quadratic Factors
9:49
Mixing Factor Types
10:28
Figuring Out the Numerator
11:10
How to Solve for the Constants
11:30
Quick Example
11:40
Example 1
14:29
Example 2
18:35
Example 3
20:33
Example 4
28:51
Section 5: Exponential & Logarithmic Functions
Understanding Exponents

35m 17s

Intro
0:00
Introduction
0:05
Fundamental Idea
1:46
Expanding the Idea
2:28
Multiplication of the Same Base
2:40
Exponents acting on Exponents
3:45
Different Bases with the Same Exponent
4:31
To the Zero
5:35
To the First
5:45
Fundamental Rule with the Zero Power
6:35
To the Negative
7:45
Any Number to a Negative Power
8:14
A Fraction to a Negative Power
9:58
Division with Exponential Terms
10:41
To the Fraction
11:33
Square Root
11:58
Any Root
12:59
Summary of Rules
14:38
To the Irrational
17:21
Example 1
20:34
Example 2
23:42
Example 3
27:44
Example 4
31:44
Example 5
33:15
Exponential Functions

47m 4s

Intro
0:00
Introduction
0:05
Definition of an Exponential Function
0:48
Definition of the Base
1:02
Restrictions on the Base
1:16
Computing Exponential Functions
2:29
Harder Computations
3:10
When to Use a Calculator
3:21
Graphing Exponential Functions: a>1
6:02
Three Examples
6:13
What to Notice on the Graph
7:44
A Story
8:27
Story Diagram
9:15
Increasing Exponentials
11:29
Story Morals
14:40
Application: Compound Interest
15:15
Compounding Year after Year
16:01
Function for Compounding Interest
16:51
A Special Number: e
20:55
Expression for e
21:28
Where e stabilizes
21:55
Application: Continuously Compounded Interest
24:07
Equation for Continuous Compounding
24:22
Exponential Decay 0<a<1
25:50
Three Examples
26:11
Why they 'lose' value
26:54
Example 1
27:47
Example 2
33:11
Example 3
36:34
Example 4
41:28
Introduction to Logarithms

40m 31s

Intro
0:00
Introduction
0:04
Definition of a Logarithm, Base 2
0:51
Log 2 Defined
0:55
Examples
2:28
Definition of a Logarithm, General
3:23
Examples of Logarithms
5:15
Problems with Unusual Bases
7:38
Shorthand Notation: ln and log
9:44
base e as ln
10:01
base 10 as log
10:34
Calculating Logarithms
11:01
using a calculator
11:34
issues with other bases
11:58
Graphs of Logarithms
13:21
Three Examples
13:29
Slow Growth
15:19
Logarithms as Inverse of Exponentiation
16:02
Using Base 2
16:05
General Case
17:10
Looking More Closely at Logarithm Graphs
19:16
The Domain of Logarithms
20:41
Thinking about Logs like Inverses
21:08
The Alternate
24:00
Example 1
25:59
Example 2
30:03
Example 3
32:49
Example 4
37:34
Properties of Logarithms

42m 33s

Intro
0:00
Introduction
0:04
Basic Properties
1:12
Inverse--log(exp)
1:43
A Key Idea
2:44
What We Get through Exponentiation
3:18
B Always Exists
4:50
Inverse--exp(log)
5:53
Logarithm of a Power
7:44
Logarithm of a Product
10:07
Logarithm of a Quotient
13:48
Caution! There Is No Rule for loga(M+N)
16:12
Summary of Properties
17:42
Change of Base--Motivation
20:17
No Calculator Button
20:59
A Specific Example
21:45
Simplifying
23:45
Change of Base--Formula
24:14
Example 1
25:47
Example 2
29:08
Example 3
31:14
Example 4
34:13
Solving Exponential and Logarithmic Equations

34m 10s

Intro
0:00
Introduction
0:05
One to One Property
1:09
Exponential
1:26
Logarithmic
1:44
Specific Considerations
2:02
One-to-One Property
3:30
Solving by One-to-One
4:11
Inverse Property
6:09
Solving by Inverses
7:25
Dealing with Equations
7:50
Example of Taking an Exponent or Logarithm of an Equation
9:07
A Useful Property
11:57
Bring Down Exponents
12:01
Try to Simplify
13:20
Extraneous Solutions
13:45
Example 1
16:37
Example 2
19:39
Example 3
21:37
Example 4
26:45
Example 5
29:37
Application of Exponential and Logarithmic Functions

48m 46s

Intro
0:00
Introduction
0:06
Applications of Exponential Functions
1:07
A Secret!
2:17
Natural Exponential Growth Model
3:07
Figure out r
3:34
A Secret!--Why Does It Work?
4:44
e to the r Morphs
4:57
Example
5:06
Applications of Logarithmic Functions
8:32
Examples
8:43
What Logarithms are Useful For
9:53
Example 1
11:29
Example 2
15:30
Example 3
26:22
Example 4
32:05
Example 5
39:19
Section 6: Trigonometric Functions
Angles

39m 5s

Intro
0:00
Degrees
0:22
Circle is 360 Degrees
0:48
Splitting a Circle
1:13
Radians
2:08
Circle is 2 Pi Radians
2:31
One Radian
2:52
Half-Circle and Right Angle
4:00
Converting Between Degrees and Radians
6:24
Formulas for Degrees and Radians
6:52
Coterminal, Complementary, Supplementary Angles
7:23
Coterminal Angles
7:30
Complementary Angles
9:40
Supplementary Angles
10:08
Example 1: Dividing a Circle
10:38
Example 2: Converting Between Degrees and Radians
11:56
Example 3: Quadrants and Coterminal Angles
14:18
Extra Example 1: Common Angle Conversions
-1
Extra Example 2: Quadrants and Coterminal Angles
-2
Sine and Cosine Functions

43m 16s

Intro
0:00
Sine and Cosine
0:15
Unit Circle
0:22
Coordinates on Unit Circle
1:03
Right Triangles
1:52
Adjacent, Opposite, Hypotenuse
2:25
Master Right Triangle Formula: SOHCAHTOA
2:48
Odd Functions, Even Functions
4:40
Example: Odd Function
4:56
Example: Even Function
7:30
Example 1: Sine and Cosine
10:27
Example 2: Graphing Sine and Cosine Functions
14:39
Example 3: Right Triangle
21:40
Example 4: Odd, Even, or Neither
26:01
Extra Example 1: Right Triangle
-1
Extra Example 2: Graphing Sine and Cosine Functions
-2
Sine and Cosine Values of Special Angles

33m 5s

Intro
0:00
45-45-90 Triangle and 30-60-90 Triangle
0:08
45-45-90 Triangle
0:21
30-60-90 Triangle
2:06
Mnemonic: All Students Take Calculus (ASTC)
5:21
Using the Unit Circle
5:59
New Angles
6:21
Other Quadrants
9:43
Mnemonic: All Students Take Calculus
10:13
Example 1: Convert, Quadrant, Sine/Cosine
13:11
Example 2: Convert, Quadrant, Sine/Cosine
16:48
Example 3: All Angles and Quadrants
20:21
Extra Example 1: Convert, Quadrant, Sine/Cosine
-1
Extra Example 2: All Angles and Quadrants
-2
Modified Sine Waves: Asin(Bx+C)+D and Acos(Bx+C)+D

52m 3s

Intro
0:00
Amplitude and Period of a Sine Wave
0:38
Sine Wave Graph
0:58
Amplitude: Distance from Middle to Peak
1:18
Peak: Distance from Peak to Peak
2:41
Phase Shift and Vertical Shift
4:13
Phase Shift: Distance Shifted Horizontally
4:16
Vertical Shift: Distance Shifted Vertically
6:48
Example 1: Amplitude/Period/Phase and Vertical Shift
8:04
Example 2: Amplitude/Period/Phase and Vertical Shift
17:39
Example 3: Find Sine Wave Given Attributes
25:23
Extra Example 1: Amplitude/Period/Phase and Vertical Shift
-1
Extra Example 2: Find Cosine Wave Given Attributes
-2
Tangent and Cotangent Functions

36m 4s

Intro
0:00
Tangent and Cotangent Definitions
0:21
Tangent Definition
0:25
Cotangent Definition
0:47
Master Formula: SOHCAHTOA
1:01
Mnemonic
1:16
Tangent and Cotangent Values
2:29
Remember Common Values of Sine and Cosine
2:46
90 Degrees Undefined
4:36
Slope and Menmonic: ASTC
5:47
Uses of Tangent
5:54
Example: Tangent of Angle is Slope
6:09
Sign of Tangent in Quadrants
7:49
Example 1: Graph Tangent and Cotangent Functions
10:42
Example 2: Tangent and Cotangent of Angles
16:09
Example 3: Odd, Even, or Neither
18:56
Extra Example 1: Tangent and Cotangent of Angles
-1
Extra Example 2: Tangent and Cotangent of Angles
-2
Secant and Cosecant Functions

27m 18s

Intro
0:00
Secant and Cosecant Definitions
0:17
Secant Definition
0:18
Cosecant Definition
0:33
Example 1: Graph Secant Function
0:48
Example 2: Values of Secant and Cosecant
6:49
Example 3: Odd, Even, or Neither
12:49
Extra Example 1: Graph of Cosecant Function
-1
Extra Example 2: Values of Secant and Cosecant
-2
Inverse Trigonometric Functions

32m 58s

Intro
0:00
Arcsine Function
0:24
Restrictions between -1 and 1
0:43
Arcsine Notation
1:26
Arccosine Function
3:07
Restrictions between -1 and 1
3:36
Cosine Notation
3:53
Arctangent Function
4:30
Between -Pi/2 and Pi/2
4:44
Tangent Notation
5:02
Example 1: Domain/Range/Graph of Arcsine
5:45
Example 2: Arcsin/Arccos/Arctan Values
10:46
Example 3: Domain/Range/Graph of Arctangent
17:14
Extra Example 1: Domain/Range/Graph of Arccosine
-1
Extra Example 2: Arcsin/Arccos/Arctan Values
-2
Computations of Inverse Trigonometric Functions

31m 8s

Intro
0:00
Inverse Trigonometric Function Domains and Ranges
0:31
Arcsine
0:41
Arccosine
1:14
Arctangent
1:41
Example 1: Arcsines of Common Values
2:44
Example 2: Odd, Even, or Neither
5:57
Example 3: Arccosines of Common Values
12:24
Extra Example 1: Arctangents of Common Values
-1
Extra Example 2: Arcsin/Arccos/Arctan Values
-2
Section 7: Trigonometric Identities
Pythagorean Identity

19m 11s

Intro
0:00
Pythagorean Identity
0:17
Pythagorean Triangle
0:27
Pythagorean Identity
0:45
Example 1: Use Pythagorean Theorem to Prove Pythagorean Identity
1:14
Example 2: Find Angle Given Cosine and Quadrant
4:18
Example 3: Verify Trigonometric Identity
8:00
Extra Example 1: Use Pythagorean Identity to Prove Pythagorean Theorem
-1
Extra Example 2: Find Angle Given Cosine and Quadrant
-2
Identity Tan(squared)x+1=Sec(squared)x

23m 16s

Intro
0:00
Main Formulas
0:19
Companion to Pythagorean Identity
0:27
For Cotangents and Cosecants
0:52
How to Remember
0:58
Example 1: Prove the Identity
1:40
Example 2: Given Tan Find Sec
3:42
Example 3: Prove the Identity
7:45
Extra Example 1: Prove the Identity
-1
Extra Example 2: Given Sec Find Tan
-2
Addition and Subtraction Formulas

52m 52s

Intro
0:00
Addition and Subtraction Formulas
0:09
How to Remember
0:48
Cofunction Identities
1:31
How to Remember Graphically
1:44
Where to Use Cofunction Identities
2:52
Example 1: Derive the Formula for cos(A-B)
3:08
Example 2: Use Addition and Subtraction Formulas
16:03
Example 3: Use Addition and Subtraction Formulas to Prove Identity
25:11
Extra Example 1: Use cos(A-B) and Cofunction Identities
-1
Extra Example 2: Convert to Radians and use Formulas
-2
Double Angle Formulas

29m 5s

Intro
0:00
Main Formula
0:07
How to Remember from Addition Formula
0:18
Two Other Forms
1:35
Example 1: Find Sine and Cosine of Angle using Double Angle
3:16
Example 2: Prove Trigonometric Identity using Double Angle
9:37
Example 3: Use Addition and Subtraction Formulas
12:38
Extra Example 1: Find Sine and Cosine of Angle using Double Angle
-1
Extra Example 2: Prove Trigonometric Identity using Double Angle
-2
Half-Angle Formulas

43m 55s

Intro
0:00
Main Formulas
0:09
Confusing Part
0:34
Example 1: Find Sine and Cosine of Angle using Half-Angle
0:54
Example 2: Prove Trigonometric Identity using Half-Angle
11:51
Example 3: Prove the Half-Angle Formula for Tangents
18:39
Extra Example 1: Find Sine and Cosine of Angle using Half-Angle
-1
Extra Example 2: Prove Trigonometric Identity using Half-Angle
-2
Section 8: Applications of Trigonometry
Trigonometry in Right Angles

25m 43s

Intro
0:00
Master Formula for Right Angles
0:11
SOHCAHTOA
0:15
Only for Right Triangles
1:26
Example 1: Find All Angles in a Triangle
2:19
Example 2: Find Lengths of All Sides of Triangle
7:39
Example 3: Find All Angles in a Triangle
11:00
Extra Example 1: Find All Angles in a Triangle
-1
Extra Example 2: Find Lengths of All Sides of Triangle
-2
Law of Sines

56m 40s

Intro
0:00
Law of Sines Formula
0:18
SOHCAHTOA
0:27
Any Triangle
0:59
Graphical Representation
1:25
Solving Triangle Completely
2:37
When to Use Law of Sines
2:55
ASA, SAA, SSA, AAA
2:59
SAS, SSS for Law of Cosines
7:11
Example 1: How Many Triangles Satisfy Conditions, Solve Completely
8:44
Example 2: How Many Triangles Satisfy Conditions, Solve Completely
15:30
Example 3: How Many Triangles Satisfy Conditions, Solve Completely
28:32
Extra Example 1: How Many Triangles Satisfy Conditions, Solve Completely
-1
Extra Example 2: How Many Triangles Satisfy Conditions, Solve Completely
-2
Law of Cosines

49m 5s

Intro
0:00
Law of Cosines Formula
0:23
Graphical Representation
0:34
Relates Sides to Angles
1:00
Any Triangle
1:20
Generalization of Pythagorean Theorem
1:32
When to Use Law of Cosines
2:26
SAS, SSS
2:30
Heron's Formula
4:49
Semiperimeter S
5:11
Example 1: How Many Triangles Satisfy Conditions, Solve Completely
5:53
Example 2: How Many Triangles Satisfy Conditions, Solve Completely
15:19
Example 3: Find Area of a Triangle Given All Side Lengths
26:33
Extra Example 1: How Many Triangles Satisfy Conditions, Solve Completely
-1
Extra Example 2: Length of Third Side and Area of Triangle
-2
Finding the Area of a Triangle

27m 37s

Intro
0:00
Master Right Triangle Formula and Law of Cosines
0:19
SOHCAHTOA
0:27
Law of Cosines
1:23
Heron's Formula
2:22
Semiperimeter S
2:37
Example 1: Area of Triangle with Two Sides and One Angle
3:12
Example 2: Area of Triangle with Three Sides
6:11
Example 3: Area of Triangle with Three Sides, No Heron's Formula
8:50
Extra Example 1: Area of Triangle with Two Sides and One Angle
-1
Extra Example 2: Area of Triangle with Two Sides and One Angle
-2
Word Problems and Applications of Trigonometry

34m 25s

Intro
0:00
Formulas to Remember
0:11
SOHCAHTOA
0:15
Law of Sines
0:55
Law of Cosines
1:48
Heron's Formula
2:46
Example 1: Telephone Pole Height
4:01
Example 2: Bridge Length
7:48
Example 3: Area of Triangular Field
14:20
Extra Example 1: Kite Height
-1
Extra Example 2: Roads to a Town
-2
Section 9: Systems of Equations and Inequalities
Systems of Linear Equations

55m 40s

Intro
0:00
Introduction
0:04
Graphs as Location of 'True'
1:49
All Locations that Make the Function True
2:25
Understand the Relationship Between Solutions and the Graph
3:43
Systems as Graphs
4:07
Equations as Lines
4:20
Intersection Point
5:19
Three Possibilities for Solutions
6:17
Independent
6:24
Inconsistent
6:36
Dependent
7:06
Solving by Substitution
8:37
Solve for One Variable
9:07
Substitute into the Second Equation
9:34
Solve for Both Variables
10:12
What If a System is Inconsistent or Dependent?
11:08
No Solutions
11:25
Infinite Solutions
12:30
Solving by Elimination
13:56
Example
14:22
Determining the Number of Solutions
16:30
Why Elimination Makes Sense
17:25
Solving by Graphing Calculator
19:59
Systems with More than Two Variables
23:22
Example 1
25:49
Example 2
30:22
Example 3
34:11
Example 4
38:55
Example 5
46:01
(Non-) Example 6
53:37
Systems of Linear Inequalities

1h 13s

Intro
0:00
Introduction
0:04
Inequality Refresher-Solutions
0:46
Equation Solutions vs. Inequality Solutions
1:02
Essentially a Wide Variety of Answers
1:35
Refresher--Negative Multiplication Flips
1:43
Refresher--Negative Flips: Why?
3:19
Multiplication by a Negative
3:43
The Relationship Flips
3:55
Refresher--Stick to Basic Operations
4:34
Linear Equations in Two Variables
6:50
Graphing Linear Inequalities
8:28
Why It Includes a Whole Section
8:43
How to Show The Difference Between Strict and Not Strict Inequalities
10:08
Dashed Line--Not Solutions
11:10
Solid Line--Are Solutions
11:24
Test Points for Shading
11:42
Example of Using a Point
12:41
Drawing Shading from the Point
13:14
Graphing a System
14:53
Set of Solutions is the Overlap
15:17
Example
15:22
Solutions are Best Found Through Graphing
18:05
Linear Programming-Idea
19:52
Use a Linear Objective Function
20:15
Variables in Objective Function have Constraints
21:24
Linear Programming-Method
22:09
Rearrange Equations
22:21
Graph
22:49
Critical Solution is at the Vertex of the Overlap
23:40
Try Each Vertice
24:35
Example 1
24:58
Example 2
28:57
Example 3
33:48
Example 4
43:10
Nonlinear Systems

41m 1s

Intro
0:00
Introduction
0:06
Substitution
1:12
Example
1:22
Elimination
3:46
Example
3:56
Elimination is Less Useful for Nonlinear Systems
4:56
Graphing
5:56
Using a Graphing Calculator
6:44
Number of Solutions
8:44
Systems of Nonlinear Inequalities
10:02
Graph Each Inequality
10:06
Dashed and/or Solid
10:18
Shade Appropriately
11:14
Example 1
13:24
Example 2
15:50
Example 3
22:02
Example 4
29:06
Example 4, cont.
33:40
Section 10: Vectors and Matrices
Vectors

1h 9m 31s

Intro
0:00
Introduction
0:10
Magnitude of the Force
0:22
Direction of the Force
0:48
Vector
0:52
Idea of a Vector
1:30
How Vectors are Denoted
2:00
Component Form
3:20
Angle Brackets and Parentheses
3:50
Magnitude/Length
4:26
Denoting the Magnitude of a Vector
5:16
Direction/Angle
7:52
Always Draw a Picture
8:50
Component Form from Magnitude & Angle
10:10
Scaling by Scalars
14:06
Unit Vectors
16:26
Combining Vectors - Algebraically
18:10
Combining Vectors - Geometrically
19:54
Resultant Vector
20:46
Alternate Component Form: i, j
21:16
The Zero Vector
23:18
Properties of Vectors
24:20
No Multiplication (Between Vectors)
28:30
Dot Product
29:40
Motion in a Medium
30:10
Fish in an Aquarium Example
31:38
More Than Two Dimensions
33:12
More Than Two Dimensions - Magnitude
34:18
Example 1
35:26
Example 2
38:10
Example 3
45:48
Example 4
50:40
Example 4, cont.
56:07
Example 5
1:01:32
Dot Product & Cross Product

35m 20s

Intro
0:00
Introduction
0:08
Dot Product - Definition
0:42
Dot Product Results in a Scalar, Not a Vector
2:10
Example in Two Dimensions
2:34
Angle and the Dot Product
2:58
The Dot Product of Two Vectors is Deeply Related to the Angle Between the Two Vectors
2:59
Proof of Dot Product Formula
4:14
Won't Directly Help Us Better Understand Vectors
4:18
Dot Product - Geometric Interpretation
4:58
We Can Interpret the Dot Product as a Measure of How Long and How Parallel Two Vectors Are
7:26
Dot Product - Perpendicular Vectors
8:24
If the Dot Product of Two Vectors is 0, We Know They are Perpendicular to Each Other
8:54
Cross Product - Definition
11:08
Cross Product Only Works in Three Dimensions
11:09
Cross Product - A Mnemonic
12:16
The Determinant of a 3 x 3 Matrix and Standard Unit Vectors
12:17
Cross Product - Geometric Interpretations
14:30
The Right-Hand Rule
15:17
Cross Product - Geometric Interpretations Cont.
17:00
Example 1
18:40
Example 2
22:50
Example 3
24:04
Example 4
26:20
Bonus Round
29:18
Proof: Dot Product Formula
29:24
Proof: Dot Product Formula, cont.
30:38
Matrices

54m 7s

Intro
0:00
Introduction
0:08
Definition of a Matrix
3:02
Size or Dimension
3:58
Square Matrix
4:42
Denoted by Capital Letters
4:56
When are Two Matrices Equal?
5:04
Examples of Matrices
6:44
Rows x Columns
6:46
Talking About Specific Entries
7:48
We Use Capitals to Denote a Matrix and Lower Case to Denotes Its Entries
8:32
Using Entries to Talk About Matrices
10:08
Scalar Multiplication
11:26
Scalar = Real Number
11:34
Example
12:36
Matrix Addition
13:08
Example
14:22
Matrix Multiplication
15:00
Example
18:52
Matrix Multiplication, cont.
19:58
Matrix Multiplication and Order (Size)
25:26
Make Sure Their Orders are Compatible
25:27
Matrix Multiplication is NOT Commutative
28:20
Example
30:08
Special Matrices - Zero Matrix (0)
32:48
Zero Matrix Has 0 for All of its Entries
32:49
Special Matrices - Identity Matrix (I)
34:14
Identity Matrix is a Square Matrix That Has 1 for All Its Entries on the Main Diagonal and 0 for All Other Entries
34:15
Example 1
36:16
Example 2
40:00
Example 3
44:54
Example 4
50:08
Determinants & Inverses of Matrices

47m 12s

Intro
0:00
Introduction
0:06
Not All Matrices Are Invertible
1:30
What Must a Matrix Have to Be Invertible?
2:08
Determinant
2:32
The Determinant is a Real Number Associated With a Square Matrix
2:38
If the Determinant of a Matrix is Nonzero, the Matrix is Invertible
3:40
Determinant of a 2 x 2 Matrix
4:34
Think in Terms of Diagonals
5:12
Minors and Cofactors - Minors
6:24
Example
6:46
Minors and Cofactors - Cofactors
8:00
Cofactor is Closely Based on the Minor
8:01
Alternating Sign Pattern
9:04
Determinant of Larger Matrices
10:56
Example
13:00
Alternative Method for 3x3 Matrices
16:46
Not Recommended
16:48
Inverse of a 2 x 2 Matrix
19:02
Inverse of Larger Matrices
20:00
Using Inverse Matrices
21:06
When Multiplied Together, They Create the Identity Matrix
21:24
Example 1
23:45
Example 2
27:21
Example 3
32:49
Example 4
36:27
Finding the Inverse of Larger Matrices
41:59
General Inverse Method - Step 1
43:25
General Inverse Method - Step 2
43:27
General Inverse Method - Step 2, cont.
43:27
General Inverse Method - Step 3
45:15
Using Matrices to Solve Systems of Linear Equations

58m 34s

Intro
0:00
Introduction
0:12
Augmented Matrix
1:44
We Can Represent the Entire Linear System With an Augmented Matrix
1:50
Row Operations
3:22
Interchange the Locations of Two Rows
3:50
Multiply (or Divide) a Row by a Nonzero Number
3:58
Add (or Subtract) a Multiple of One Row to Another
4:12
Row Operations - Keep Notes!
5:50
Suggested Symbols
7:08
Gauss-Jordan Elimination - Idea
8:04
Gauss-Jordan Elimination - Idea, cont.
9:16
Reduced Row-Echelon Form
9:18
Gauss-Jordan Elimination - Method
11:36
Begin by Writing the System As An Augmented Matrix
11:38
Gauss-Jordan Elimination - Method, cont.
13:48
Cramer's Rule - 2 x 2 Matrices
17:08
Cramer's Rule - n x n Matrices
19:24
Solving with Inverse Matrices
21:10
Solving Inverse Matrices, cont.
25:28
The Mighty (Graphing) Calculator
26:38
Example 1
29:56
Example 2
33:56
Example 3
37:00
Example 3, cont.
45:04
Example 4
51:28
Section 11: Alternate Ways to Graph
Parametric Equations

53m 33s

Intro
0:00
Introduction
0:06
Definition
1:10
Plane Curve
1:24
The Key Idea
2:00
Graphing with Parametric Equations
2:52
Same Graph, Different Equations
5:04
How Is That Possible?
5:36
Same Graph, Different Equations, cont.
5:42
Here's Another to Consider
7:56
Same Plane Curve, But Still Different
8:10
A Metaphor for Parametric Equations
9:36
Think of Parametric Equations As a Way to Describe the Motion of An Object
9:38
Graph Shows Where It Went, But Not Speed
10:32
Eliminating Parameters
12:14
Rectangular Equation
12:16
Caution
13:52
Creating Parametric Equations
14:30
Interesting Graphs
16:38
Graphing Calculators, Yay!
19:18
Example 1
22:36
Example 2
28:26
Example 3
37:36
Example 4
41:00
Projectile Motion
44:26
Example 5
47:00
Polar Coordinates

48m 7s

Intro
0:00
Introduction
0:04
Polar Coordinates Give Us a Way To Describe the Location of a Point
0:26
Polar Equations and Functions
0:50
Plotting Points with Polar Coordinates
1:06
The Distance of the Point from the Origin
1:09
The Angle of the Point
1:33
Give Points as the Ordered Pair (r,θ)
2:03
Visualizing Plotting in Polar Coordinates
2:32
First Way We Can Plot
2:39
Second Way We Can Plot
2:50
First, We'll Look at Visualizing r, Then θ
3:09
Rotate the Length Counter-Clockwise by θ
3:38
Alternatively, We Can Visualize θ, Then r
4:06
'Polar Graph Paper'
6:17
Horizontal and Vertical Tick Marks Are Not Useful for Polar
6:42
Use Concentric Circles to Helps Up See Distance From the Pole
7:08
Can Use Arc Sectors to See Angles
7:57
Multiple Ways to Name a Point
9:17
Examples
9:30
For Any Angle θ, We Can Make an Equivalent Angle
10:44
Negative Values for r
11:58
If r Is Negative, We Go In The Direction Opposite the One That The Angle θ Points Out
12:22
Another Way to Name the Same Point: Add π to θ and Make r Negative
13:44
Converting Between Rectangular and Polar
14:37
Rectangular Way to Name
14:43
Polar Way to Name
14:52
The Rectangular System Must Have a Right Angle Because It's Based on a Rectangle
15:08
Connect Both Systems Through Basic Trigonometry
15:38
Equation to Convert From Polar to Rectangular Coordinate Systems
16:55
Equation to Convert From Rectangular to Polar Coordinate Systems
17:13
Converting to Rectangular is Easy
17:20
Converting to Polar is a Bit Trickier
17:21
Draw Pictures
18:55
Example 1
19:50
Example 2
25:17
Example 3
31:05
Example 4
35:56
Example 5
41:49
Polar Equations & Functions

38m 16s

Intro
0:00
Introduction
0:04
Equations and Functions
1:16
Independent Variable
1:21
Dependent Variable
1:30
Examples
1:46
Always Assume That θ Is In Radians
2:44
Graphing in Polar Coordinates
3:29
Graph is the Same Way We Graph 'Normal' Stuff
3:32
Example
3:52
Graphing in Polar - Example, Cont.
6:45
Tips for Graphing
9:23
Notice Patterns
10:19
Repetition
13:39
Graphing Equations of One Variable
14:39
Converting Coordinate Types
16:16
Use the Same Conversion Formulas From the Previous Lesson
16:23
Interesting Graphs
17:48
Example 1
18:03
Example 2
18:34
Graphing Calculators, Yay!
19:07
Plot Random Things, Alter Equations You Understand, Get a Sense for How Polar Stuff Works
19:11
Check Out the Appendix
19:26
Example 1
21:36
Example 2
28:13
Example 3
34:24
Example 4
35:52
Section 12: Complex Numbers and Polar Coordinates
Polar Form of Complex Numbers

40m 43s

Intro
0:00
Polar Coordinates
0:49
Rectangular Form
0:52
Polar Form
1:25
R and Theta
1:51
Polar Form Conversion
2:27
R and Theta
2:35
Optimal Values
4:05
Euler's Formula
4:25
Multiplying Two Complex Numbers in Polar Form
6:10
Multiply r's Together and Add Exponents
6:32
Example 1: Convert Rectangular to Polar Form
7:17
Example 2: Convert Polar to Rectangular Form
13:49
Example 3: Multiply Two Complex Numbers
17:28
Extra Example 1: Convert Between Rectangular and Polar Forms
-1
Extra Example 2: Simplify Expression to Polar Form
-2
DeMoivre's Theorem

57m 37s

Intro
0:00
Introduction to DeMoivre's Theorem
0:10
n nth Roots
3:06
DeMoivre's Theorem: Finding nth Roots
3:52
Relation to Unit Circle
6:29
One nth Root for Each Value of k
7:11
Example 1: Convert to Polar Form and Use DeMoivre's Theorem
8:24
Example 2: Find Complex Eighth Roots
15:27
Example 3: Find Complex Roots
27:49
Extra Example 1: Convert to Polar Form and Use DeMoivre's Theorem
-1
Extra Example 2: Find Complex Fourth Roots
-2
Section 13: Counting & Probability
Counting

31m 36s

Intro
0:00
Introduction
0:08
Combinatorics
0:56
Definition: Event
1:24
Example
1:50
Visualizing an Event
3:02
Branching line diagram
3:06
Addition Principle
3:40
Example
4:18
Multiplication Principle
5:42
Example
6:24
Pigeonhole Principle
8:06
Example
10:26
Draw Pictures
11:06
Example 1
12:02
Example 2
14:16
Example 3
17:34
Example 4
21:26
Example 5
25:14
Permutations & Combinations

44m 3s

Intro
0:00
Introduction
0:08
Permutation
0:42
Combination
1:10
Towards a Permutation Formula
2:38
How Many Ways Can We Arrange the Letters A, B, C, D, and E?
3:02
Towards a Permutation Formula, cont.
3:34
Factorial Notation
6:56
Symbol Is '!'
6:58
Examples
7:32
Permutation of n Objects
8:44
Permutation of r Objects out of n
9:04
What If We Have More Objects Than We Have Slots to Fit Them Into?
9:46
Permutation of r Objects Out of n, cont.
10:28
Distinguishable Permutations
14:46
What If Not All Of the Objects We're Permuting Are Distinguishable From Each Other?
14:48
Distinguishable Permutations, cont.
17:04
Combinations
19:04
Combinations, cont.
20:56
Example 1
23:10
Example 2
26:16
Example 3
28:28
Example 4
31:52
Example 5
33:58
Example 6
36:34
Probability

36m 58s

Intro
0:00
Introduction
0:06
Definition: Sample Space
1:18
Event = Something Happening
1:20
Sample Space
1:36
Probability of an Event
2:12
Let E Be An Event and S Be The Corresponding Sample Space
2:14
'Equally Likely' Is Important
3:52
Fair and Random
5:26
Interpreting Probability
6:34
How Can We Interpret This Value?
7:24
We Can Represent Probability As a Fraction, a Decimal, Or a Percentage
8:04
One of Multiple Events Occurring
9:52
Mutually Exclusive Events
10:38
What If The Events Are Not Mutually Exclusive?
12:20
Taking the Possibility of Overlap Into Account
13:24
An Event Not Occurring
17:14
Complement of E
17:22
Independent Events
19:36
Independent
19:48
Conditional Events
21:28
What Is The Events Are Not Independent Though?
21:30
Conditional Probability
22:16
Conditional Events, cont.
23:51
Example 1
25:27
Example 2
27:09
Example 3
28:57
Example 4
30:51
Example 5
34:15
Section 14: Conic Sections
Parabolas

41m 27s

Intro
0:00
What is a Parabola?
0:20
Definition of a Parabola
0:29
Focus
0:59
Directrix
1:15
Axis of Symmetry
3:08
Vertex
3:33
Minimum or Maximum
3:44
Standard Form
4:59
Horizontal Parabolas
5:08
Vertex Form
5:19
Upward or Downward
5:41
Example: Standard Form
6:06
Graphing Parabolas
8:31
Shifting
8:51
Example: Completing the Square
9:22
Symmetry and Translation
12:18
Example: Graph Parabola
12:40
Latus Rectum
17:13
Length
18:15
Example: Latus Rectum
18:35
Horizontal Parabolas
18:57
Not Functions
20:08
Example: Horizontal Parabola
21:21
Focus and Directrix
24:11
Horizontal
24:48
Example 1: Parabola Standard Form
25:12
Example 2: Graph Parabola
30:00
Example 3: Graph Parabola
33:13
Example 4: Parabola Equation
37:28
Circles

21m 3s

Intro
0:00
What are Circles?
0:08
Example: Equidistant
0:17
Radius
0:32
Equation of a Circle
0:44
Example: Standard Form
1:11
Graphing Circles
1:47
Example: Circle
1:56
Center Not at Origin
3:07
Example: Completing the Square
3:51
Example 1: Equation of Circle
6:44
Example 2: Center and Radius
11:51
Example 3: Radius
15:08
Example 4: Equation of Circle
16:57
Ellipses

46m 51s

Intro
0:00
What Are Ellipses?
0:11
Foci
0:23
Properties of Ellipses
1:43
Major Axis, Minor Axis
1:47
Center
1:54
Length of Major Axis and Minor Axis
3:21
Standard Form
5:33
Example: Standard Form of Ellipse
6:09
Vertical Major Axis
9:14
Example: Vertical Major Axis
9:46
Graphing Ellipses
12:51
Complete the Square and Symmetry
13:00
Example: Graphing Ellipse
13:16
Equation with Center at (h, k)
19:57
Horizontal and Vertical
20:14
Difference
20:27
Example: Center at (h, k)
20:55
Example 1: Equation of Ellipse
24:05
Example 2: Equation of Ellipse
27:57
Example 3: Equation of Ellipse
32:32
Example 4: Graph Ellipse
38:27
Hyperbolas

38m 15s

Intro
0:00
What are Hyperbolas?
0:12
Two Branches
0:18
Foci
0:38
Properties
2:00
Transverse Axis and Conjugate Axis
2:06
Vertices
2:46
Length of Transverse Axis
3:14
Distance Between Foci
3:31
Length of Conjugate Axis
3:38
Standard Form
5:45
Vertex Location
6:36
Known Points
6:52
Vertical Transverse Axis
7:26
Vertex Location
7:50
Asymptotes
8:36
Vertex Location
8:56
Rectangle
9:28
Diagonals
10:29
Graphing Hyperbolas
12:58
Example: Hyperbola
13:16
Equation with Center at (h, k)
16:32
Example: Center at (h, k)
17:21
Example 1: Equation of Hyperbola
19:20
Example 2: Equation of Hyperbola
22:48
Example 3: Graph Hyperbola
26:05
Example 4: Equation of Hyperbola
36:29
Conic Sections

18m 43s

Intro
0:00
Conic Sections
0:16
Double Cone Sections
0:24
Standard Form
1:27
General Form
1:37
Identify Conic Sections
2:16
B = 0
2:50
X and Y
3:22
Identify Conic Sections, Cont.
4:46
Parabola
5:17
Circle
5:51
Ellipse
6:31
Hyperbola
7:10
Example 1: Identify Conic Section
8:01
Example 2: Identify Conic Section
11:03
Example 3: Identify Conic Section
11:38
Example 4: Identify Conic Section
14:50
Section 15: Sequences, Series, & Induction
Introduction to Sequences

57m 45s

Intro
0:00
Introduction
0:06
Definition: Sequence
0:28
Infinite Sequence
2:08
Finite Sequence
2:22
Length
2:58
Formula for the nth Term
3:22
Defining a Sequence Recursively
5:54
Initial Term
7:58
Sequences and Patterns
10:40
First, Identify a Pattern
12:52
How to Get From One Term to the Next
17:38
Tips for Finding Patterns
19:52
More Tips for Finding Patterns
24:14
Even More Tips
26:50
Example 1
30:32
Example 2
34:54
Fibonacci Sequence
34:55
Example 3
38:40
Example 4
45:02
Example 5
49:26
Example 6
51:54
Introduction to Series

40m 27s

Intro
0:00
Introduction
0:06
Definition: Series
1:20
Why We Need Notation
2:48
Simga Notation (AKA Summation Notation)
4:44
Thing Being Summed
5:42
Index of Summation
6:21
Lower Limit of Summation
7:09
Upper Limit of Summation
7:23
Sigma Notation, Example
7:36
Sigma Notation for Infinite Series
9:08
How to Reindex
10:58
How to Reindex, Expanding
12:56
How to Reindex, Substitution
16:46
Properties of Sums
19:42
Example 1
23:46
Example 2
25:34
Example 3
27:12
Example 4
29:54
Example 5
32:06
Example 6
37:16
Arithmetic Sequences & Series

31m 36s

Intro
0:00
Introduction
0:05
Definition: Arithmetic Sequence
0:47
Common Difference
1:13
Two Examples
1:19
Form for the nth Term
2:14
Recursive Relation
2:33
Towards an Arithmetic Series Formula
5:12
Creating a General Formula
10:09
General Formula for Arithmetic Series
14:23
Example 1
15:46
Example 2
17:37
Example 3
22:21
Example 4
24:09
Example 5
27:14
Geometric Sequences & Series

39m 27s

Intro
0:00
Introduction
0:06
Definition
0:48
Form for the nth Term
2:42
Formula for Geometric Series
5:16
Infinite Geometric Series
11:48
Diverges
13:04
Converges
14:48
Formula for Infinite Geometric Series
16:32
Example 1
20:32
Example 2
22:02
Example 3
26:00
Example 4
30:48
Example 5
34:28
Mathematical Induction

49m 53s

Intro
0:00
Introduction
0:06
Belief Vs. Proof
1:22
A Metaphor for Induction
6:14
The Principle of Mathematical Induction
11:38
Base Case
13:24
Inductive Step
13:30
Inductive Hypothesis
13:52
A Remark on Statements
14:18
Using Mathematical Induction
16:58
Working Example
19:58
Finding Patterns
28:46
Example 1
30:17
Example 2
37:50
Example 3
42:38
The Binomial Theorem

1h 13m 13s

Intro
0:00
Introduction
0:06
We've Learned That a Binomial Is An Expression That Has Two Terms
0:07
Understanding Binomial Coefficients
1:20
Things We Notice
2:24
What Goes In the Blanks?
5:52
Each Blank is Called a Binomial Coefficient
6:18
The Binomial Theorem
6:38
Example
8:10
The Binomial Theorem, cont.
10:46
We Can Also Write This Expression Compactly Using Sigma Notation
12:06
Proof of the Binomial Theorem
13:22
Proving the Binomial Theorem Is Within Our Reach
13:24
Pascal's Triangle
15:12
Pascal's Triangle, cont.
16:12
Diagonal Addition of Terms
16:24
Zeroth Row
18:04
First Row
18:12
Why Do We Care About Pascal's Triangle?
18:50
Pascal's Triangle, Example
19:26
Example 1
21:26
Example 2
24:34
Example 3
28:34
Example 4
32:28
Example 5
37:12
Time for the Fireworks!
43:38
Proof of the Binomial Theorem
43:44
We'll Prove This By Induction
44:04
Proof (By Induction)
46:36
Proof, Base Case
47:00
Proof, Inductive Step - Notation Discussion
49:22
Induction Step
49:24
Proof, Inductive Step - Setting Up
52:26
Induction Hypothesis
52:34
What We What To Show
52:44
Proof, Inductive Step - Start
54:18
Proof, Inductive Step - Middle
55:38
Expand Sigma Notations
55:48
Proof, Inductive Step - Middle, cont.
58:40
Proof, Inductive Step - Checking In
1:01:08
Let's Check In With Our Original Goal
1:01:12
Want to Show
1:01:18
Lemma - A Mini Theorem
1:02:18
Proof, Inductive Step - Lemma
1:02:52
Proof of Lemma: Let's Investigate the Left Side
1:03:08
Proof, Inductive Step - Nearly There
1:07:54
Proof, Inductive Step - End!
1:09:18
Proof, Inductive Step - End!, cont.
1:11:01
Section 16: Preview of Calculus
Idea of a Limit

40m 22s

Intro
0:00
Introduction
0:05
Motivating Example
1:26
Fuzzy Notion of a Limit
3:38
Limit is the Vertical Location a Function is Headed Towards
3:44
Limit is What the Function Output is Going to Be
4:15
Limit Notation
4:33
Exploring Limits - 'Ordinary' Function
5:26
Test Out
5:27
Graphing, We See The Answer Is What We Would Expect
5:44
Exploring Limits - Piecewise Function
6:45
If We Modify the Function a Bit
6:49
Exploring Limits - A Visual Conception
10:08
Definition of a Limit
12:07
If f(x) Becomes Arbitrarily Close to Some Number L as x Approaches Some Number c, Then the Limit of f(x) As a Approaches c is L.
12:09
We Are Not Concerned with f(x) at x=c
12:49
We Are Considering x Approaching From All Directions, Not Just One Side
13:10
Limits Do Not Always Exist
15:47
Finding Limits
19:49
Graphs
19:52
Tables
21:48
Precise Methods
24:53
Example 1
26:06
Example 2
27:39
Example 3
30:51
Example 4
33:11
Example 5
37:07
Formal Definition of a Limit

57m 11s

Intro
0:00
Introduction
0:06
New Greek Letters
2:42
Delta
3:14
Epsilon
3:46
Sometimes Called the Epsilon-Delta Definition of a Limit
3:56
Formal Definition of a Limit
4:22
What does it MEAN!?!?
5:00
The Groundwork
5:38
Set Up the Limit
5:39
The Function is Defined Over Some Portion of the Reals
5:58
The Horizontal Location is the Value the Limit Will Approach
6:28
The Vertical Location L is Where the Limit Goes To
7:00
The Epsilon-Delta Part
7:26
The Hard Part is the Second Part of the Definition
7:30
Second Half of Definition
10:04
Restrictions on the Allowed x Values
10:28
The Epsilon-Delta Part, cont.
13:34
Sherlock Holmes and Dr. Watson
15:08
The Adventure of the Delta-Epsilon Limit
15:16
Setting
15:18
We Begin By Setting Up the Game As Follows
15:52
The Adventure of the Delta-Epsilon, cont.
17:24
This Game is About Limits
17:46
What If I Try Larger?
19:39
Technically, You Haven't Proven the Limit
20:53
Here is the Method
21:18
What We Should Concern Ourselves With
22:20
Investigate the Left Sides of the Expressions
25:24
We Can Create the Following Inequalities
28:08
Finally…
28:50
Nothing Like a Good Proof to Develop the Appetite
30:42
Example 1
31:02
Example 1, cont.
36:26
Example 2
41:46
Example 2, cont.
47:50
Finding Limits

32m 40s

Intro
0:00
Introduction
0:08
Method - 'Normal' Functions
2:04
The Easiest Limits to Find
2:06
It Does Not 'Break'
2:18
It Is Not Piecewise
2:26
Method - 'Normal' Functions, Example
3:38
Method - 'Normal' Functions, cont.
4:54
The Functions We're Used to Working With Go Where We Expect Them To Go
5:22
A Limit is About Figuring Out Where a Function is 'Headed'
5:42
Method - Canceling Factors
7:18
One Weird Thing That Often Happens is Dividing By 0
7:26
Method - Canceling Factors, cont.
8:16
Notice That The Two Functions Are Identical With the Exception of x=0
8:20
Method - Canceling Factors, cont.
10:00
Example
10:52
Method - Rationalization
12:04
Rationalizing a Portion of Some Fraction
12:05
Conjugate
12:26
Method - Rationalization, cont.
13:14
Example
13:50
Method - Piecewise
16:28
The Limits of Piecewise Functions
16:30
Example 1
17:42
Example 2
18:44
Example 3
20:20
Example 4
22:24
Example 5
24:24
Example 6
27:12
Continuity & One-Sided Limits

32m 43s

Intro
0:00
Introduction
0:06
Motivating Example
0:56
Continuity - Idea
2:14
Continuous Function
2:18
All Parts of Function Are Connected
2:28
Function's Graph Can Be Drawn Without Lifting Pencil
2:36
There Are No Breaks or Holes in Graph
2:56
Continuity - Idea, cont.
3:38
We Can Interpret the Break in the Continuity of f(x) as an Issue With the Function 'Jumping'
3:52
Continuity - Definition
5:16
A Break in Continuity is Caused By the Limit Not Matching Up With What the Function Does
5:18
Discontinuous
6:02
Discontinuity
6:10
Continuity and 'Normal' Functions
6:48
Return of the Motivating Example
8:14
One-Sided Limit
8:48
One-Sided Limit - Definition
9:16
Only Considers One Side
9:20
Be Careful to Keep Track of Which Symbol Goes With Which Side
10:06
One-Sided Limit - Example
10:50
There Does Not Necessarily Need to Be a Connection Between Left or Right Side Limits
11:16
Normal Limits and One-Sided Limits
12:08
Limits of Piecewise Functions
14:12
'Breakover' Points
14:22
We Find the Limit of a Piecewise Function By Checking If the Left and Right Side Limits Agree With Each Other
15:34
Example 1
16:40
Example 2
18:54
Example 3
22:00
Example 4
26:36
Limits at Infinity & Limits of Sequences

32m 49s

Intro
0:00
Introduction
0:06
Definition: Limit of a Function at Infinity
1:44
A Limit at Infinity Works Very Similarly to How a Normal Limit Works
2:38
Evaluating Limits at Infinity
4:08
Rational Functions
4:17
Examples
4:30
For a Rational Function, the Question Boils Down to Comparing the Long Term Growth Rates of the Numerator and Denominator
5:22
There are Three Possibilities
6:36
Evaluating Limits at Infinity, cont.
8:08
Does the Function Grow Without Bound? Will It 'Settle Down' Over Time?
10:06
Two Good Ways to Think About This
10:26
Limit of a Sequence
12:20
What Value Does the Sequence Tend to Do in the Long-Run?
12:41
The Limit of a Sequence is Very Similar to the Limit of a Function at Infinity
12:52
Numerical Evaluation
14:16
Numerically: Plug in Numbers and See What Comes Out
14:24
Example 1
16:42
Example 2
21:00
Example 3
22:08
Example 4
26:14
Example 5
28:10
Example 6
31:06
Instantaneous Slope & Tangents (Derivatives)

51m 13s

Intro
0:00
Introduction
0:08
The Derivative of a Function Gives Us a Way to Talk About 'How Fast' the Function If Changing
0:16
Instantaneous Slop
0:22
Instantaneous Rate of Change
0:28
Slope
1:24
The Vertical Change Divided by the Horizontal
1:40
Idea of Instantaneous Slope
2:10
What If We Wanted to Apply the Idea of Slope to a Non-Line?
2:14
Tangent to a Circle
3:52
What is the Tangent Line for a Circle?
4:42
Tangent to a Curve
5:20
Towards a Derivative - Average Slope
6:36
Towards a Derivative - Average Slope, cont.
8:20
An Approximation
11:24
Towards a Derivative - General Form
13:18
Towards a Derivative - General Form, cont.
16:46
An h Grows Smaller, Our Slope Approximation Becomes Better
18:44
Towards a Derivative - Limits!
20:04
Towards a Derivative - Limits!, cont.
22:08
We Want to Show the Slope at x=1
22:34
Towards a Derivative - Checking Our Slope
23:12
Definition of the Derivative
23:54
Derivative: A Way to Find the Instantaneous Slope of a Function at Any Point
23:58
Differentiation
24:54
Notation for the Derivative
25:58
The Derivative is a Very Important Idea In Calculus
26:04
The Important Idea
27:34
Why Did We Learn the Formal Definition to Find a Derivative?
28:18
Example 1
30:50
Example 2
36:06
Example 3
40:24
The Power Rule
44:16
Makes It Easier to Find the Derivative of a Function
44:24
Examples
45:04
n Is Any Constant Number
45:46
Example 4
46:26
Area Under a Curve (Integrals)

45m 26s

Intro
0:00
Introduction
0:06
Integral
0:12
Idea of Area Under a Curve
1:18
Approximation by Rectangles
2:12
The Easiest Way to Find Area is With a Rectangle
2:18
Various Methods for Choosing Rectangles
4:30
Rectangle Method - Left-Most Point
5:12
The Left-Most Point
5:16
Rectangle Method - Right-Most Point
5:58
The Right-Most Point
6:00
Rectangle Method - Mid-Point
6:42
Horizontal Mid-Point
6:48
Rectangle Method - Maximum (Upper Sum)
7:34
Maximum Height
7:40
Rectangle Method - Minimum
8:54
Minimum Height
9:02
Evaluating the Area Approximation
10:08
Split the Interval Into n Sub-Intervals
10:30
More Rectangles, Better Approximation
12:14
The More We Us , the Better Our Approximation Becomes
12:16
Our Approximation Becomes More Accurate as the Number of Rectangles n Goes Off to Infinity
12:44
Finding Area with a Limit
13:08
If This Limit Exists, It Is Called the Integral From a to b
14:08
The Process of Finding Integrals is Called Integration
14:22
The Big Reveal
14:40
The Integral is Based on the Antiderivative
14:46
The Big Reveal - Wait, Why?
16:28
The Rate of Change for the Area is Based on the Height of the Function
16:50
Height is the Derivative of Area, So Area is Based on the Antiderivative of Height
17:50
Example 1
19:06
Example 2
22:48
Example 3
29:06
Example 3, cont.
35:14
Example 4
40:14
Section 17: Appendix: Graphing Calculators
Buying a Graphing Calculator

10m 41s

Intro
0:00
Should You Buy?
0:06
Should I Get a Graphing Utility?
0:20
Free Graphing Utilities - Web Based
0:38
Personal Favorite: Desmos
0:58
Free Graphing Utilities - Offline Programs
1:18
GeoGebra
1:31
Microsoft Mathematics
1:50
Grapher
2:18
Other Graphing Utilities - Tablet/Phone
2:48
Should You Buy a Graphing Calculator?
3:22
The Only Real Downside
4:10
Deciding on Buying
4:20
If You Plan on Continuing in Math and/or Science
4:26
If Money is Not Particularly Tight for You
4:32
If You Don't Plan to Continue in Math and Science
5:02
If You Do Plan to Continue and Money Is Tight
5:28
Which to Buy
5:44
Which Graphing Calculator is Best?
5:46
Too Many Factors
5:54
Do Your Research
6:12
The Old Standby
7:10
TI-83 (Plus)
7:16
TI-84 (Plus)
7:18
Tips for Purchasing
9:17
Buy Online
9:19
Buy Used
9:35
Ask Around
10:09
Graphing Calculator Basics

10m 51s

Intro
0:00
Read the Manual
0:06
Skim It
0:20
Play Around and Experiment
0:34
Syntax
0:40
Definition of Syntax in English and Math
0:46
Pay Careful Attention to Your Syntax When Working With a Calculator
2:08
Make Sure You Use Parentheses to Indicate the Proper Order of Operations
2:16
Think About the Results
3:54
Settings
4:58
You'll Almost Never Need to Change the Settings on Your Calculator
5:00
Tell Calculator In Settings Whether the Angles Are In Radians or Degrees
5:26
Graphing Mode
6:32
Error Messages
7:10
Don't Panic
7:11
Internet Search
7:32
So Many Things
8:14
More Powerful Than You Realize
8:18
Other Things Your Graphing Calculator Can Do
8:24
Playing Around
9:16
Graphing Functions, Window Settings, & Table of Values

10m 38s

Intro
0:00
Graphing Functions
0:18
Graphing Calculator Expects the Variable to Be x
0:28
Syntax
0:58
The Syntax We Choose Will Affect How the Function Graphs
1:00
Use Parentheses
1:26
The Viewing Window
2:00
One of the Most Important Ideas When Graphing Is To Think About The Viewing Window
2:01
For Example
2:30
The Viewing Window, cont.
2:36
Window Settings
3:24
Manually Choose Window Settings
4:20
x Min
4:40
x Max
4:42
y Min
4:44
y Max
4:46
Changing the x Scale or y Scale
5:08
Window Settings, cont.
5:44
Table of Values
7:38
Allows You to Quickly Churn Out Values for Various Inputs
7:42
For example
7:44
Changing the Independent Variable From 'Automatic' to 'Ask'
8:50
Finding Points of Interest

9m 45s

Intro
0:00
Points of Interest
0:06
Interesting Points on the Graph
0:11
Roots/Zeros (Zero)
0:18
Relative Minimums (Min)
0:26
Relative Maximums (Max)
0:32
Intersections (Intersection)
0:38
Finding Points of Interest - Process
1:48
Graph the Function
1:49
Adjust Viewing Window
2:12
Choose Point of Interest Type
2:54
Identify Where Search Should Occur
3:04
Give a Guess
3:36
Get Result
4:06
Advanced Technique: Arbitrary Solving
5:10
Find Out What Input Value Causes a Certain Output
5:12
For Example
5:24
Advanced Technique: Calculus
7:18
Derivative
7:22
Integral
7:30
But How Do You Show Work?
8:20
Parametric & Polar Graphs

7m 8s

Intro
0:00
Change Graph Type
0:08
Located in General 'Settings'
0:16
Graphing in Parametric
1:06
Set Up Both Horizontal Function and Vertical Function
1:08
For Example
2:04
Graphing in Polar
4:00
For Example
4:28
Loading...
This is a quick preview of the lesson. For full access, please Log In or Sign up.
For more information, please see full course syllabus of Math Analysis
Bookmark & Share Embed

Share this knowledge with your friends!

Copy & Paste this embed code into your website’s HTML

Please ensure that your website editor is in text mode when you paste the code.
(In Wordpress, the mode button is on the top right corner.)
  ×
  • - Allow users to view the embedded video in full-size.
Since this lesson is not free, only the preview will appear on your website.
  • Discussion

  • Answer Engine

  • Study Guides

  • Download Lecture Slides

  • Table of Contents

  • Transcription

  • Related Books

Lecture Comments (52)

1 answer

Last reply by: Dr. Will Murray
Mon Jun 15, 2020 10:24 AM

Post by Victoria Su on June 13, 2020

Hi
For example 4, I understand  why they odd/even based on the graph. However,  I am not too sure how it works with plugging in the x values for f(x ) or g(x). I tried plugging them in but didn't get the correct answer.

1 answer

Last reply by: Dr. Will Murray
Fri Apr 3, 2020 10:03 AM

Post by Cheung Chun Hei on April 1, 2020

I still don't get the part about whether the graph is rotational or mirror symmetry and whether it is odd or even. Can you explain this a bit and thank you so much!

1 answer

Last reply by: Dr. Will Murray
Fri Mar 27, 2020 9:55 AM

Post by Yanping Du on March 25, 2020

What happens when a graph is both mirror symmetric and rotationally symmetric? Is that possible?

1 answer

Last reply by: Dr. William Murray
Sun Mar 8, 2020 10:58 AM

Post by susiexuthus on March 7, 2020

When I try to load the extra examples, it says in the bottom right corner "audio source file does not exist". Is it just my  computer?

1 answer

Last reply by: Dr. William Murray
Wed Apr 17, 2019 1:35 PM

Post by Christopher Wang on April 16, 2019

I don't understand how you derived the fact that cos pi is -1 and sin pi is 0.  

1 answer

Last reply by: Dr. William Murray
Tue Jun 7, 2016 12:31 PM

Post by Bassam Razzaq on June 5, 2016

In example 2, how can the graph has value of x-coordinate more than 2pi. I thought 2pi was the last point as also seen in unit circle.

1 answer

Last reply by: Dr. William Murray
Mon Nov 2, 2015 2:18 PM

Post by Peter Ke on October 30, 2015

In example 4, I DON'T get how g(x) is odd. I thought it was even.

3 answers

Last reply by: Dr. William Murray
Wed Nov 11, 2015 9:23 AM

Post by Peter Ke on October 30, 2015

For example 3 shouldn't Sin = 4/5 be 3/5? Because 3 is the opposite and 4 is adjacent.

1 answer

Last reply by: Dr. William Murray
Thu Feb 19, 2015 3:36 PM

Post by patrick guerin on February 17, 2015

On practice question 2 it said the sin of theta was sqroot of 63 over 12 when i thought  it  was  9 over 12. Could you check it out please. Thanks.

1 answer

Last reply by: Dr. William Murray
Fri Dec 19, 2014 9:31 AM

Post by katrina williams on December 17, 2014

In the second to last practice problem what amount does n represent? I was able to draw the original graph but got lost by how far to move it over.

1 answer

Last reply by: Dr. William Murray
Mon Aug 4, 2014 7:48 PM

Post by patrick guerin on July 16, 2014

You placed a theta in the triangle that you created when you were defining sine cosine. Could you give me a small explanation on what theta is?

1 answer

Last reply by: Dr. William Murray
Tue Jun 17, 2014 12:08 PM

Post by Austin Cunningham on June 9, 2014

How come at around 8:00, he says that x^2 is the same thing as f(x)?

3 answers

Last reply by: Dr. William Murray
Thu Jun 5, 2014 11:43 AM

Post by Govind Balaji Srinivasa Raghavan on May 29, 2014

I dont know why. But all videos pause after sometime. Then it restarts again instead of continue. Also I cant skip to other part of video. Suppose tonight I watch half of video and go to sleep. Tomorrow morning, I have to watch from first, if i click on the play-head from where I should see, It automatically restarts.

1 answer

Last reply by: Dr. William Murray
Tue Mar 4, 2014 5:00 PM

Post by Damien O Byrne on February 28, 2014

Does sin cos and tan formulas only apply to right angled triangles

1 answer

Last reply by: Dr. William Murray
Wed Jan 22, 2014 3:04 PM

Post by Carroll Fields on January 16, 2014

In extra example I, at 3:30, why is the 'sine, cosine, and tangent of the right angle (alpha) , 1,0 , and undefined?And why for sine is it sin pi/2  ?

1 answer

Last reply by: Dr. William Murray
Mon Oct 21, 2013 7:15 PM

Post by yannick Haberkorn on October 12, 2013

i have to congratulate you Dr.william murray because i actually really feel i am in a learning environment and it feels great . Much thanks

1 answer

Last reply by: Dr. William Murray
Tue Apr 16, 2013 8:35 PM

Post by Dr. William Murray on January 27, 2013

Hi Emily,

Good question. As Jacob says in his post above, it's because we know that the graph of f(x-c) is like the graph of f(x), but shifted c units to the right. But you have to have the negative sign in there for this to work, so when we have f(x+(something)), we write it as f(x-(-something)). Then it's clear that the shift is (-something) units to the right, that is, (something) units to the left.

It's also worth reading Jacob's answer above -- same basic idea, but sometimes having a different person's phrasing helps.

Thanks for taking trigonometry!
Will Murray

1 answer

Last reply by: Dr. William Murray
Tue Apr 16, 2013 8:34 PM

Post by Emily Engle on January 27, 2013

At 28:10 Why do you change Sin (x+ Pi/2) to Sin (x-(- Pi/2)) ?

1 answer

Last reply by: Dr. William Murray
Fri Aug 31, 2012 5:45 PM

1

Post by Andraa Cram on June 25, 2012

@ 21:18, why, when going in the negative direction while graphing for sine (in red), does he draw the graph as (-Pi/2,-1) instead of (-Pi/2,1)? I'm very confused by this.

1 answer

Last reply by: Dr. William Murray
Sun Jan 27, 2013 4:18 PM

Post by Lourdes Johnson on June 3, 2012

Why does the lecture restart around a quarter in?

1 answer

Last reply by: Dr. William Murray
Sun Jan 27, 2013 4:16 PM

Post by Callistus Elue on May 23, 2012

the lecture reverts to the beginning almost as soon as it starts

1 answer

Last reply by: Dr. William Murray
Sun Jan 27, 2013 4:12 PM

Post by Jacob Burley on April 25, 2011

At 26:33 Professor Murray gave the algebraic equation for a graph that has a constant which was f(x-c). Our equation sin(x+pi/2) has a positive where the negative is in the original equation. In order to get the correct sign there we must change the + sign into two - signs because two negatives make a positive.
I know I'm not the greatest at explaining things but hopefully this helps a little bit.

1 answer

Last reply by: Dr. William Murray
Sun Jan 27, 2013 4:10 PM

3

Post by Shannon Bryington on February 28, 2011

At 27:40 on the video: Why was x + pi over 2 changed to x - neg pi over 2?

1 answer

Last reply by: Dr. William Murray
Sun Jan 27, 2013 3:59 PM

Post by Santhini Dheenathayalan on January 19, 2011

Great!

Sine and Cosine Functions

    Main definitions and formulas:

    • When you draw an angle θ (measured in radians) in standard position (i.e. starting on the positive x-axis), the coordinates of its terminal side on the unit circle are the cosine and sine of θ .
    • Master formula for right triangles: SOHCAHTOA!
      sinθ =opposite side

      hypotenuse
          cosθ =adjacent side

      hypotenuse
          tanθ =opposite side

      adjacent side
    • A function f is odd if f(−x) = −f(x), or equivalently, its graph has rotational symmetry around the origin.
    • A function f is odd if f(−x) = f(x), or equivalently, its graph has mirror symmetry across the y-axis.

    Example 1:

    Find the cosine and sine of 0, (π/2), π , (3π/2), and 2π .

    Example 2:

    Draw graphs of the cosine and sine functions. Label all zeroes, maxima, and minima.

    Example 3:

    A right triangle has short sides of lengths 3 and 4. Find the sine, cosine, and tangent of all angles in the triangle.

    Example 4:

    Graph the functions f(x) = sin(x + (π /2)) and g(x) = cos(x − (π/2)). For each one, determine if the function is odd, even, or neither.

    Example 5:

    A right triangle has one leg of lengths 5 and hypotenuse of length 13. Find the sine, cosine, and tangent of all angles in the triangle.

    Example 6:

    Graph the functions f(x) = sin(x −(π /2)) and g(x) = cos(x + (π /2)). For each one, determine if the function is odd, even, or neither.

Sine and Cosine Functions

Lecture Slides are screen-captured images of important points in the lecture. Students can download and print out these lecture slide images to do practice problems as well as take notes while watching the lecture.

  • Intro 0:00
  • Sine and Cosine 0:15
    • Unit Circle
    • Coordinates on Unit Circle
    • Right Triangles
    • Adjacent, Opposite, Hypotenuse
    • Master Right Triangle Formula: SOHCAHTOA
  • Odd Functions, Even Functions 4:40
    • Example: Odd Function
    • Example: Even Function
  • Example 1: Sine and Cosine 10:27
  • Example 2: Graphing Sine and Cosine Functions 14:39
  • Example 3: Right Triangle 21:40
  • Example 4: Odd, Even, or Neither 26:01
  • Extra Example 1: Right Triangle
  • Extra Example 2: Graphing Sine and Cosine Functions

Transcription: Sine and Cosine Functions

Ok we are going to work on some extra examples with you, I hope you have time to practice a little bit on your own.0000

Here we are given a right triangle that has 1 leg of length 5, and a hypotenuse of length 13.0006

What we want to do is find the sin, cos, and tan of all the angles in the triangle.0024

I hope you know that the master formula here is going to be SOHCAHTOA.0029

That is the one we are going to use but in order to use SOHCAHTOA you have to know the lengths of all the sides of the triangle.0035

Let me set a variable for this length, we need to solve x2 + 52 = 132.0044

That is x2 + 25 =169, x2 = 169-25, that is 144, so x=12.0057

That tells us our third side length, it looks like my triangle is not really drawn on the scale because 12 is a lot bigger than 5.0073

But we can still do the calculations here even if we did not draw the triangle perfectly to scale, you can still figure out the calculations.0079

Let me label the angles (theta) and (phi) and we will look at (theta) first.0088

Sin(theta) using SOHCAHTO is opposite/hypotenuse, so that is 12 is the opposite angle of (theta) and the hypotenuse is 13.0094

Cos(theta)=adjacent of the side is 5/13, the tan(theta) =opposite of adjacent that is 12/5.0112

Sin(phi) let us do that one first, is equal to the opposite/hypotenuse.0134

The opposite side to (phi) is 5 and the hypotenuse is still 13.0146

The cos(phi) is equal to the adjacent side, the side adjacent to (phi) is 12/13.0155

The tan(phi) is equal to the opposite of adjacent, the opposite side of (phi) is 5, and the adjacent side is 12.0165

Finally, let me label the right angle (alpha), the sin(alpha), I’m not going to use SOHCAHTOA on this but the sin (alpha) is just the sin (pi/2) is 1.0180

The cos(alpha) is the cos (pi/2) which is 0 and then the tan(alpha).0194

Again we have not really learned about tan yet, but it turns out that the tan of a 90 degree angle or the tan of pi/2 is undefined.0202

I learned why that is true when we get to studying the tan function later on.0211

To recap here, everything came out of the master formula SOHCAHTOA, memorize that word SOHCAHTOA or memorize the phrase Some Old Horse Caught Another Horse Taking Oats Away.0225

That helps you to remember how to figure out all these sin, cos, and tan, once you know the lengths of the sides of the right angle.0237

Our last example here is two functions that we need to graph, two modified sin waves and remember that the way to do that is to start out with sin and cos graphs that you know.0000

Let me start graphing sin(x), there is pi, 2pi, 1, -1, pi/2, 3pi/2.0012

Remember that sin(x) starts at 0, goes up to 1, comes back to 0 down to -1.0035

What I graphed there in black is sin(x), now sin(x)-pi/2 I will do that in blue.0052

Sin(x)-pi/2 that takes the graph and it shifts it over to the right by pi/2 units.0060

I’m going to take this graph in black and shift it over to the right by pi/2 units.0067

Let me extend that a little bit so I will know how to shift it, now I’m going to shift it over to the right by pi/2 units.0077

Now it starts at 0 to pi/2, comes back to 0 to 3pi/2 down to -1, back to 0.0082

What I have drawn there in blue is sin(x) – pi/2, it is just a basic sin graph but moved over by pi/2 units.0104

We have to figure out if its odd, even, or neither0113

Remember that odd has rotational symmetry, even has mirror symmetry across the y axis.0116

Clearly this blue graph that I have drawn here has mirror symmetry across the y axis but not rotational symmetry.0124

This is an even function because it has mirror symmetry across the y axis.0135

Let us move on to g(x), that is cos, again I will start with the cos graph that I have memorized and hopefully you have two.0151

There is pi, 2pi, 3pi/2, pi/2, 0, -pi, -pi/2, 1 and -1, that is a little low, let me draw that a little higher, -1.0163

Remember the cos graph starts at 1 goes down to 0, down to -1 at pi and comes back to 0 and back 1 at 2pi.0189

What I graphed there in black was cos(x), the basic cos curve, cos(x + pi/2), I will do this in red.0210

You want to think about that as cos(x - -pi/2) and I do that to create that negative sign because when you have a shift you always want to have a negative sign there.0222

It helps you figure out which way it is shifting, that means shifting –pi/2 units to the right, which means pi/2 units to the left.0235

I take this graph and I shift it p/2i units to the left, so that means it will start here go down to 0, down to -1, back to 0 up to 1 and back to 0.0244

That was a little bit of too high there, that curve in red is cos(x + pi/2) and if we look at that curve it has rotational symmetry around the origin.0264

If you rotate it back graph, 180 degrees around the origin it would look the same.0286

It definitely does not have a mirror symmetry around the y axis, so this is an odd function.0292

Odd functions have rotational symmetry around the origin, that is an odd function.0303

Remember the way to check whether they are odd or even is to check which kind of symmetry they have or maybe they do not have either kind of symmetry.0310

That is the end of our lessons on sin and cos, this is www.educator.com.0320

Hi, this is educator.com and we are here to talk about sine and cosine functions.0000

I'll start out by giving you the definitions and kind of the master formulas.0007

Then we'll go through and work on a bunch of examples.0010

The definition of sine and cosine of an angle is, you start out with the axis and the unit circle it's important to know that.0015

This is a unit circle meaning the radius is 1.0029

What you do is you draw that angle in standard position, meaning it has one side on the x-axis.0033

There is data right there.0042

Then you look at the coordinates of the point, the x and y coordinates on the unit circle.0044

The x-coordinate is, I'll go over that in red, that's the x coordinate right there.0051

The y-coordinate, that's the one in blue.0060

Those coordinates are, by definition, the...0063

I want to do the cosine, in red, cos(θ) and then, in blue, sin(θ).0071

That's the definition of what an angle is in terms of coordinates on the unit circle.0083

If you know what the angle is, you try to figure out what its x-coordinate and its y-coordinate are.0090

Let's call these cos(θ) and the sin(θ).0097

Now, we'll see some more examples of that later so that you'll know how to actually compute the cosine and sine, but the definition just refers to those coordinates.0101

The most common use of sine and cosine probably is in terms of right triangles.0113

Let me draw a right triangle.0120

Right triangle just means a triangle where one of the angles is a right angle, a 90-degree angle, or in terms of radians, π over 2.0123

What you do is, you let θ be one of the angles that is not the 90-degree angle, so one of the other angles.0130

Then you label each one of the sides in terms of its relationship to θ.0139

The one next to θ is called the adjacent side.0145

The one opposite θ is called the opposite side.0151

The long side is called the hypotenuse.0161

Then we have the master formula for right triangles, which is, the sine of θ is equal to the length of the opposite side divided by the hypotenuse.0168

The cosine of θ is equal to the adjacent side divided by the hypotenuse.0181

The tangent of θ, which is something we haven't officially defined yet, so we'll learn about tangent in a later lesson.0185

I just want to give you the right triangle formula now, because we're going to try to remember them all together.0193

The tangent of θ when we get to it will be the opposite side divided by the adjacent side.0200

We don't want to worry too much about tangent now because we haven't learned about it in detail yet.0205

I'll get to those later.0209

If you put all these formulas together, it's kind of hard to remember their relationships.0211

So people have come up with this acronym.0217

Sine is equal to opposite over hypotenuse.0221

Cosine is equal to adjacent over hypotenuse.0225

Tangent is equal to opposite over adjacent.0227

If you kind of read that quickly, people call it SOH CAH TOA.0233

If you talk to any trigonometry teacher in the world, or any trigonometry student in the world, they should have heard the word SOH CAH TOA,0235

because that's kind of the master formula that helps you remember all these relationships.0242

They're kind of hard to remember on their own, but if you remember SOH CAH TOA, you won't go wrong.0247

If you have trouble remembering that, there is a little mnemonic device that people also use.0253

Some old horse caught another horse taking oats away.0262

If you remember that sentence, if that's easier for you to remember than SOH CAH TOA, then you can remember all these formulas.0268

There is another definition that we need to learn which is, that a function is odd if f(-x) is equal to -f(x).0276

Let's figure out what that means.0289

We're going to talk about odd and even function.0291

Let me give you an example here.0294

F(x) is equal to x3.0299

Well, let's try f(-x) here.0305

I'm going to check this definition of odd function here.0307

So, f(-x), that means you put -x into the function, so that's (-x)3 which is (1)3 times x3,0310

(-1)3 is -1, so that's just -x3, and that's negative of the original f(x).0326

For x3, f(-x) is equal to -f(x), which means it's an odd function.0334

There is a way to check this graphically.0342

If you graph f(x)=x3, it looks something like this.0348

That means that if you look at a particular value of x, and you look at f(x) there, and then you look at -x, f(-x)=-f(x).0355

That's what it looks like graphically.0379

What it means is that the graph has what I call rotational symmetry around the origin.0383

If you put a big dot on the origin and if you spun this graph around 180 degrees, it would look the same.0393

That's because f(x) and f(-x) being opposites of each other.0400

If you spin the graph around 180 degrees and it looks the same, if it looks symmetric with itself, that's called an odd function.0408

The way you remember that odd functions have that property is, just remember x3, x to the third, because 3 is an odd number and x3 is an odd function.0417

Something, kind of, has that property that x3 has, then it's an odd function.0428

They're companion definition to that is that f is even if f(-x) equals f(x).0435

The difference there was that negative sign on the odd definition.0443

No negative sign here on the even definition.0447

Let me give you an example of an even one.0450

Let's define f(x) to be x2.0456

Well, f(-x) is equal to, you plugin -x into the function, so (-x)2 well that's just the same as x2, which is the same as the original f(x).0462

So, f(-x) is equal to f(x), that checks the definition, so it's even.0478

Of course you'll notice that x2, the 2 there is an even number, that's no coincidence.0486

That's why we call even functions even is because they sort of behave like x2.0494

If you graph those, let me graph x2 for you.0500

That's a familiar parabola that you learned how to graph in the algebra section.0505

If you take a value of x, and look at f(x),0511

then you take f(-x), f(-x) is not -f(x), it's f(x) itself.0517

It's the same value as f(x) itself.0532

You get this f(-x) is equal to f(x).0537

What that means is that you have a, kind of, symmetry across the y-axis with even functions.0542

If a function is symmetric across the y-axis, if it looks like a mirror image of itself across the y-axis, then that's an even function.0555

That's why I say it has mirror symmetry across the y-axis.0567

That's what an even function looks like.0572

There is a common misconception among students.0575

People think, well with numbers, every number's either odd or even.0578

People think, well, every function is odd or even and that's not necessarily true.0583

Just for example, here's a line but that is not either0590

that does not have a rotational symmetry around the origin nor does it have mirror symmetry around the y-axis.0600

That function, this line, is not an add or an even function.0607

It's a little misleading people think every function has to be an odd or an even function.0612

That's not true.0616

It's just true that some functions are odd, some functions are even, some functions are neither one.0618

We'll practice some examples of that.0624

First, we're going to look at some common angles and we're going to figure out what the cosines and sines are.0626

Let me draw a big unit circle here.0635

That's a circle of radius 1.0646

Let's remember where these angles are, 0, of course is on the positive x-axis.0648

Here's the x-axis, here's the y-axis, there is zero,0655

π over 2, remember that's the same as a 90-degree angle, that's a right angle, so that's up there π over 2;0660

π is over here, that's a 180 degrees;0666

3π over 2, is down here, and 2π is right here.0671

We want to find the cosine and sine of each one of those angles.0676

Now remember, cosine and sine, by definition, are the x and y coordinates of those angles.0680

What are these x and y coordinates?0689

The 0 angle, it's x-coordinate is 1, and it's y-coordinate is 0.0691

That tells us that cos(0) is 1, and that sin(0) is 0.0698

Pi over 2 is up here, and so it's cosine is the x-coordinate,0712

well, the x-coordinate of that point is 0.0726

The y-coordinate is 1, and so that's the sin of π over 2.0730

Pi is over here at (-1,0), so that's the cosine and sine of π.0739

Cos(π) is -1, sin(π) is 0.0748

Finally, 3π over 2 is down here at (0,-1), so that's the cosine and sine of 3π over 2.0760

Cos(0), sin(π/2), is -1.0772

And one more, 2π is back in the same place as 0, so it has the same cosine and sine.0783

Cos(2π) is 1, sin(2π) is 0.0790

That's how you figure out the cosines and sines of angles.0805

As you graph them on the unit circle, and then you look at the x and y coordinates.0808

The x-coordinate is always the cosine, and the y-coordinate is always the sine.0813

By the way, these are very common values, 0, π/2, 3π/2, and 2π.0819

You should really know the sines and cosines of these angles by heart.0826

They come up so often in trigonometry context that it's worth memorizing these things, and being able to sort of regurgitate them very very quickly.0830

If you ever forget them though, if you ever can't quite remember what the cosine of π/2, or the sine of 3π/2 is,0841

Then, what you do is draw yourself a little unit circle, and you figure what the x and y coordinates are and you can always work them out.0849

It's worth memorizing them to know them quickly, but if you ever get confused, you are not quite sure, just draw yourself a unit circle and you'll figure them out quickly.0857

We're going to use these values, so I hope you will remember these values for the next example.0869

In the next example, we're being asked to draw the graphs of the cosine and the sine functions, so let's remember what those values are.0879

We're to label all the zeros, and the maxima and the minima of these functions.0888

Let me set up some axis here.0892

I'm going to label my x-axis in terms of multiples of π.0898

The reason I'm going to do that is because we're talking about cosines and sines of multiples of π.0905

We're really talking about radians here.0910

That's π, that's 2π, that's π/2, and that's 3π/2.0915

That's 0, of course.0929

The y-axis, I'm going to label as 1 and -1.0931

I've set up my scale here, remember that π is about 3.14 so it's a little bit bigger than 3.0940

I've set up my scale here so that the π is about a little bit beyond 3 units on the graph.0945

I'll extend it a little bit on the left here as well.0952

We've got -π, I'll draw that around -3 and -π/2.0955

I want to graph the sine and cosine function according to those values that we figured out.0963

Remember that the sine and cosine function are correspond to the coordinates of angles on the unit circle.0968

So sine and cosine,remember, are the x and y coordinates of angles on the unit circle.0978

Now, those coordinates will never get bigger than 1 or smaller than -1.0986

That's why on my y-axis, I only went up to -1 and 1, because the coordinates will never get bigger than -1 and 1.0994

Let me start out with the cosine function.1004

I'll do that one in blue, y=cos(x).1007

We'll remember the values that we learned in the previous question.1014

Cos(x), cos(0) is 1, cos(π/2) was 0, cos(π) is -1, cos(3π/2) is 0 and cos(2π) is 1.1018

What you get is this smooth curve.1044

After 2π, remember, after you circle 2π radians, then everything starts repeating.1057

What happens after 2π is that it repeats itself.1065

It repeats itself in the negative direction as well.1071

Now we know what the graph of cos(x) looks like.1080

I'll do the sine graph in red.1085

Remember that sin(0) is 0, sin(π/2) is 1, sin(π) was 0 again, sin(3π/2) is -1, sin(2π) is 0.1092

I'm doing this from memory and hopefully you remember these values as well.1110

But if you can't remember these values, you know you can always look back at the unit circle and figure them out again just from their coordinates.1114

The sine graph, I'm going to connect this up into a smooth curve.1122

It repeats itself after this.1139

It repeats in the negative direction as well.1146

That's what y=sin(x) looks like.1151

It actually has the same shape as cos(x) but it's shifted over on the graph.1153

Now, we're asked to label all zeros, maxima and minima.1160

Let me go through and label the zeros first.1163

This is on the cos(x), this is (π/2,0), that's the 0 right there.1167

There is one right there, (3π/2,0).1177

This one, even though I haven't labeled it on the x-axis, is actually (5π/2,0), because it's π/2 beyond 2π,(-π/2,0).1182

Those are the zeros of the cosine graph.1197

The maxima, the high points, remember, cosine and sine never get bigger` than 1 or less than -1.1202

Any time it actually hits 1, it's a maximum.1207

They're the two maxima, at 0 and 2π.1213

The minimum value is -1, so there is (π,-1) and the next one would be at (3π,-1), there is one at (-π,-1).1218

Now, let me do the zeros of this sine graph.1240

There is one (0,0), (-π,0), (π,0), and (2π,0).1245

The maximum value would be 1 and that occurs at π/2, and again at 5π/2.1258

The minimum value would be at 3π/2, where the sine is -1,1273

Remember sine and cosine never go outside that range, -1 to 1,1278

and at -π/2.1282

All these values you should pretty much have memorized there the sort of simplest values, the easiest ones to figure out of sine and cosine.1289

Let's try an example where we're using this trigonometric functions in a triangle.1301

What we're told is that a right triangle has short sides of length 3 and 4.1307

We're asked to find the sine, cosine, and tangent of all angles in the triangle.1317

Remember, I haven't really explained what tangent is yet, but we did learn that formula SOH CAH TOA.1323

That's what we're going to be using here.1327

The first thing we need to figure out here is what the hypotenuse of this triangle is.1330

We have the Pythagorean theorem that says, h2 = 32 + 42, which is 9 plus 16, which is 25.1334

That tells us that the hypotenuse must be 5.1349

Now we're going to find the sine, cosine and tangent of each one of these angles.1354

Let's figure out this angle first, so I'll call it θ, sin(θ), remember SOH CAH TOA,1364

let me write that down for reference here, SOH CAH TOA,1372

sin(θ) is equal to opposite over adjacent1381

That's 4, that's the opposite side from θ over...1386

Sorry, I said sin(θ) is opposite over adjacent, of course, sin(θ) is opposite over hypotenuse, and the hypotenuse is 5.1394

So, sin(θ) there is 4/5.1401

Cos(θ) is equal to adjacent over hypotenuse.1404

Well, the side adjacent to θ is 3, hypotenuse is still 5.1409

Tan(θ) is equal to opposite over adjacent.1416

Again, we haven't really learned what a tangent means yet, but we can still use SOH CAH TOA.1423

The opposite over adjacent is 4/3.1427

Let me call the other angle here φ.1435

Sin(φ) is equal to the opposite over the hypotenuse, so 3/5.1442

Cos(φ) is equal to adjacent over hypotenuse, the adjacent angle beside φ is 4.1451

Tan(θ) is equal to the opposite over adjacent, so that's 3/4.1463

Finally, we have the right angle here, I'll call that α.1472

We can't really use SOH CAH TOA on that, but I know that sin(α),1476

α is a 90-degree angle, or in terms of radians, it's π/2.1480

The sin(π/2), we learned before, is 1.1489

Cos(α) is cos(π/2), and we learned that the cos(π/2) before was 0.1494

Finally, tan(α) is tan(π/2), and we haven't really learned about tangent yet.1505

In particular, we haven't learned what to do with the tan(π/2).1514

But we'll get to that in a later lecture, and we'll learn that that's actually not defined.1518

So we can't give a value to the tangent of π/2.1523

All of these angles were things we worked out just using this one master formula, SOH CAH TOA.1532

That tells you the sine, cosine and tangent of the small angles in the triangle.1541

The SOH CAH TOA does not really apply to the right angle.1548

But we already know the sine and cosine of a right angle, of a 90-degree angle, because we figured them out before.1550

We'll try some more examples here.1558

I want to try graphing the function sin(x + π/2) and cos(x - π/2).1562

Then, I want to determine whether these functions are odd or even, or neither one.1570

Well, something that's really good to remember here from your algebra class, or from the algebra lectures here on educator.com,1576

is that you have a function, and you try to graph f(x) minus a constant,1584

what that does is it moves the graph of the function over by the amount of the constant.1593

That's very useful in the trigonometric setting.1599

Let me start out by graphing f(x)=sin(x).1602

And we did that in the previous example, and I remember what the sine graph looks like.1608

It starts at 0, it peaks at π/2, it goes back to 0 at π, it bottoms out at 3π/2 at -1, and then it goes back to 0 at 2π.1615

What I graphed there was just sin(x), I have not introduced this change yet.1635

What I'm going to do, in blue now, is the sin(x + π/2).1643

What that's going to do is going to move the graph over π/2 units.1651

But remember there was a negative sign in there that I don't have here.1656

This is really like, sin[x - (-π/2)].1661

It moves the graph over -π/2 units, which means it moves it to the left π/2 units.1672

I'm going to take this graph and I'm going to move it over to the left π/2 units.1680

Now it's going to start at -π/2, come back down at π/2, bottom out at π, and come back to 0 at 3π/2.1691

So there is -π/2, 0, π/2, and it comes back at 3π/2.1709

That's what our graph of sin(x + π/2) looks like.1719

Then the question is, is that odd or even, or neither?1725

Well, remember there is a graphic way to look at the graph of a function in determining whether it's odd or even, or neither.1730

An odd function, remember, has rotational symmetry, and even function has mirror symmetry across the y-axis.1738

Well, if you look at this at this graph, it certainly does not have rotational symmetry.1750

If you tried to rotate it around the origin, it would end up down here, and that would be a different graph.1757

However, it does have mirror symmetry around the y-axis.1762

So because it's mirror symmetric around the y-axis, sin(x + π/2).1772

F(x) is an even function because it has mirror symmetry, mirror symmetry across the y-axis.1781

OK, let us move on to the next one, cos(x - π/2).1812

Again, I'm going to start with the basic cosine function that we learned how to graph in a previous example.1816

So that my mark's here, there is π, there is 2π, π/2, 3π/2, 0, -π/2.1829

Now, cosine had zero at 1, then it comes down to 0 at π/2, bottoms out at -1 at π, comes back to 0 at 3π/2, and by 2π, it's back up at 1.1841

What I have just graphed there in black is cos(x).1862

I have not tried to introduce the shift yet.1865

But what we want to do is to graph cos(x - π/2).1871

That's like saying, you see up here is π/2, that's going to shift the graph π/2 units to the right,1878

because it's -π/2, it shifts it to the right.1888

We take this graph and we move it over to the right π/2 units.1890

I drew that a little too high, let me flatten that out a little bit.1904

What we have there is the graph of cos(x - π/2), and of course that keeps going in the other direction there.1910

We see, actually if you look carefully, cos(x - π/2) actually turns out be the same graph as sin(x).1921

That's a familiar function if you remember those graphs.1930

Again, we're being asked whether the function is odd or even, or neither.1935

For odd, we're checking rotational symmetry around the origin.1939

Look at that.1944

If you rotate the graph 180 degrees around the origin, what you'll end up with is exactly the same picture.1946

g(x) is an odd function because it has rotational symmetry around the origin.1953

Is it an even function?1982

Does it have mirror symmetry around the y-axis?1984

No, it does not because it has this kind of bump on the right hand side, and it does not have the same bump on the left hand side, so it's not an odd function.1987

Sorry, it's not an even function.1996

It's just an odd function.1998

What we did there was we started with the sine and cosine graphs that we remembered.2000

it's worth memorizing the basic sine and cosine graphs.2004

Then we examined the shift that each one introduced.2008

Each one got shifted π/2 units to the right or left.2013

Then we drew the new graphs.2016

Then we looked back at them and we checked what kind of symmetry do they have.2019

Do they have rotational symmetry or mirror symmetry?2022

And that tells us whether they are odd or even.2027