Professor Murray

Professor Murray

Addition and Subtraction Formulas

Slide Duration:

Table of Contents

Section 1: Introduction
Introduction to Math Analysis

10m 3s

Intro
0:00
Title of the Course
0:06
Different Names for the Course
0:07
Precalculus
0:12
Math Analysis
0:14
Trigonometry
0:16
Algebra III
0:20
Geometry II
0:24
College Algebra
0:30
Same Concepts
0:36
How do the Lessons Work?
0:54
Introducing Concepts
0:56
Apply Concepts
1:04
Go through Examples
1:25
Who is this Course For?
1:38
Those Who Need eExtra Help with Class Work
1:52
Those Working on Material but not in Formal Class at School
1:54
Those Who Want a Refresher
2:00
Try to Watch the Whole Lesson
2:20
Understanding is So Important
3:56
What to Watch First
5:26
Lesson #2: Sets, Elements, and Numbers
5:30
Lesson #7: Idea of a Function
5:33
Lesson #6: Word Problems
6:04
What to Watch First, cont.
6:46
Lesson #2: Sets, Elements and Numbers
6:56
Lesson #3: Variables, Equations, and Algebra
6:58
Lesson #4: Coordinate Systems
7:00
Lesson #5: Midpoint, Distance, the Pythagorean Theorem and Slope
7:02
Lesson #6: Word Problems
7:10
Lesson #7: Idea of a Function
7:12
Lesson #8: Graphs
7:14
Graphing Calculator Appendix
7:40
What to Watch Last
8:46
Let's get Started!
9:48
Sets, Elements, & Numbers

45m 11s

Intro
0:00
Introduction
0:05
Sets and Elements
1:19
Set
1:20
Element
1:23
Name a Set
2:20
Order The Elements Appear In Has No Effect on the Set
2:55
Describing/ Defining Sets
3:28
Directly Say All the Elements
3:36
Clearly Describing All the Members of the Set
3:55
Describing the Quality (or Qualities) Each member Of the Set Has In Common
4:32
Symbols: 'Element of' and 'Subset of'
6:01
Symbol is ∈
6:03
Subset Symbol is ⊂
6:35
Empty Set
8:07
Symbol is ∅
8:20
Since It's Empty, It is a Subset of All Sets
8:44
Union and Intersection
9:54
Union Symbol is ∪
10:08
Intersection Symbol is ∩
10:18
Sets Can Be Weird Stuff
12:26
Can Have Elements in a Set
12:50
We Can Have Infinite Sets
13:09
Example
13:22
Consider a Set Where We Take a Word and Then Repeat It An Ever Increasing Number of Times
14:08
This Set Has Infinitely Many Distinct Elements
14:40
Numbers as Sets
16:03
Natural Numbers ℕ
16:16
Including 0 and the Negatives ℤ
18:13
Rational Numbers ℚ
19:27
Can Express Rational Numbers with Decimal Expansions
22:05
Irrational Numbers
23:37
Real Numbers ℝ: Put the Rational and Irrational Numbers Together
25:15
Interval Notation and the Real Numbers
26:45
Include the End Numbers
27:06
Exclude the End Numbers
27:33
Example
28:28
Interval Notation: Infinity
29:09
Use -∞ or ∞ to Show an Interval Going on Forever in One Direction or the Other
29:14
Always Use Parentheses
29:50
Examples
30:27
Example 1
31:23
Example 2
35:26
Example 3
38:02
Example 4
42:21
Variables, Equations, & Algebra

35m 31s

Intro
0:00
What is a Variable?
0:05
A Variable is a Placeholder for a Number
0:11
Affects the Output of a Function or a Dependent Variable
0:24
Naming Variables
1:51
Useful to Use Symbols
2:21
What is a Constant?
4:14
A Constant is a Fixed, Unchanging Number
4:28
We Might Refer to a Symbol Representing a Number as a Constant
4:51
What is a Coefficient?
5:33
A Coefficient is a Multiplicative Factor on a Variable
5:37
Not All Coefficients are Constants
5:51
Expressions and Equations
6:42
An Expression is a String of Mathematical Symbols That Make Sense Used Together
7:05
An Equation is a Statement That Two Expression Have the Same Value
8:20
The Idea of Algebra
8:51
Equality
8:59
If Two Things Are the Same *Equal), Then We Can Do the Exact Same Operation to Both and the Results Will Be the Same
9:41
Always Do The Exact Same Thing to Both Sides
12:22
Solving Equations
13:23
When You Are Asked to Solve an Equation, You Are Being Asked to Solve for Something
13:33
Look For What Values Makes the Equation True
13:38
Isolate the Variable by Doing Algebra
14:37
Order of Operations
16:02
Why Certain Operations are Grouped
17:01
When You Don't Have to Worry About Order
17:39
Distributive Property
18:15
It Allows Multiplication to Act Over Addition in Parentheses
18:23
We Can Use the Distributive Property in Reverse to Combine Like Terms
19:05
Substitution
20:03
Use Information From One Equation in Another Equation
20:07
Put Your Substitution in Parentheses
20:44
Example 1
23:17
Example 2
25:49
Example 3
28:11
Example 4
30:02
Coordinate Systems

35m 2s

Intro
0:00
Inherent Order in ℝ
0:05
Real Numbers Come with an Inherent Order
0:11
Positive Numbers
0:21
Negative Numbers
0:58
'Less Than' and 'Greater Than'
2:04
Tip To Help You Remember the Signs
2:56
Inequality
4:06
Less Than or Equal and Greater Than or Equal
4:51
One Dimension: The Number Line
5:36
Graphically Represent ℝ on a Number Line
5:43
Note on Infinities
5:57
With the Number Line, We Can Directly See the Order We Put on ℝ
6:35
Ordered Pairs
7:22
Example
7:34
Allows Us to Talk About Two Numbers at the Same Time
9:41
Ordered Pairs of Real Numbers Cannot be Put Into an Order Like we Did with ℝ
10:41
Two Dimensions: The Plane
13:13
We Can Represent Ordered Pairs with the Plane
13:24
Intersection is known as the Origin
14:31
Plotting the Point
14:32
Plane = Coordinate Plane = Cartesian Plane = ℝ²
17:46
The Plane and Quadrants
18:50
Quadrant I
19:04
Quadrant II
19:21
Quadrant III
20:04
Quadrant IV
20:20
Three Dimensions: Space
21:02
Create Ordered Triplets
21:09
Visually Represent This
21:19
Three-Dimension = Space = ℝ³
21:47
Higher Dimensions
22:24
If We Have n Dimensions, We Call It n-Dimensional Space or ℝ to the nth Power
22:31
We Can Represent Places In This n-Dimensional Space As Ordered Groupings of n Numbers
22:41
Hard to Visualize Higher Dimensional Spaces
23:18
Example 1
25:07
Example 2
26:10
Example 3
28:58
Example 4
31:05
Midpoints, Distance, the Pythagorean Theorem, & Slope

48m 43s

Intro
0:00
Introduction
0:07
Midpoint: One Dimension
2:09
Example of Something More Complex
2:31
Use the Idea of a Middle
3:28
Find the Midpoint of Arbitrary Values a and b
4:17
How They're Equivalent
5:05
Official Midpoint Formula
5:46
Midpoint: Two Dimensions
6:19
The Midpoint Must Occur at the Horizontal Middle and the Vertical Middle
6:38
Arbitrary Pair of Points Example
7:25
Distance: One Dimension
9:26
Absolute Value
10:54
Idea of Forcing Positive
11:06
Distance: One Dimension, Formula
11:47
Distance Between Arbitrary a and b
11:48
Absolute Value Helps When the Distance is Negative
12:41
Distance Formula
12:58
The Pythagorean Theorem
13:24
a²+b²=c²
13:50
Distance: Two Dimensions
14:59
Break Into Horizontal and Vertical Parts and then Use the Pythagorean Theorem
15:16
Distance Between Arbitrary Points (x₁,y₁) and (x₂,y₂)
16:21
Slope
19:30
Slope is the Rate of Change
19:41
m = rise over run
21:27
Slope Between Arbitrary Points (x₁,y₁) and (x₂,y₂)
22:31
Interpreting Slope
24:12
Positive Slope and Negative Slope
25:40
m=1, m=0, m=-1
26:48
Example 1
28:25
Example 2
31:42
Example 3
36:40
Example 4
42:48
Word Problems

56m 31s

Intro
0:00
Introduction
0:05
What is a Word Problem?
0:45
Describes Any Problem That Primarily Gets Its Ideas Across With Words Instead of Math Symbols
0:48
Requires Us to Think
1:32
Why Are They So Hard?
2:11
Reason 1: No Simple Formula to Solve Them
2:16
Reason 2: Harder to Teach Word Problems
2:47
You Can Learn How to Do Them!
3:51
Grades
7:57
'But I'm Never Going to Use This In Real Life'
9:46
Solving Word Problems
12:58
First: Understand the Problem
13:37
Second: What Are You Looking For?
14:33
Third: Set Up Relationships
16:21
Fourth: Solve It!
17:48
Summary of Method
19:04
Examples on Things Other Than Math
20:21
Math-Specific Method: What You Need Now
25:30
Understand What the Problem is Talking About
25:37
Set Up and Name Any Variables You Need to Know
25:56
Set Up Equations Connecting Those Variables to the Information in the Problem Statement
26:02
Use the Equations to Solve for an Answer
26:14
Tip
26:58
Draw Pictures
27:22
Breaking Into Pieces
28:28
Try Out Hypothetical Numbers
29:52
Student Logic
31:27
Jump In!
32:40
Example 1
34:03
Example 2
39:15
Example 3
44:22
Example 4
50:24
Section 2: Functions
Idea of a Function

39m 54s

Intro
0:00
Introduction
0:04
What is a Function?
1:06
A Visual Example and Non-Example
1:30
Function Notation
3:47
f(x)
4:05
Express What Sets the Function Acts On
5:45
Metaphors for a Function
6:17
Transformation
6:28
Map
7:17
Machine
8:56
Same Input Always Gives Same Output
10:01
If We Put the Same Input Into a Function, It Will Always Produce the Same Output
10:11
Example of Something That is Not a Function
11:10
A Non-Numerical Example
12:10
The Functions We Will Use
15:05
Unless Told Otherwise, We Will Assume Every Function Takes in Real Numbers and Outputs Real Numbers
15:11
Usually Told the Rule of a Given Function
15:27
How To Use a Function
16:18
Apply the Rule to Whatever Our Input Value Is
16:28
Make Sure to Wrap Your Substitutions in Parentheses
17:09
Functions and Tables
17:36
Table of Values, Sometimes Called a T-Table
17:46
Example
17:56
Domain: What Goes In
18:55
The Domain is the Set of all Inputs That the Function Can Accept
18:56
Example
19:40
Range: What Comes Out
21:27
The Range is the Set of All Possible Outputs a Function Can Assign
21:34
Example
21:49
Another Example Would Be Our Initial Function From Earlier in This Lesson
22:29
Example 1
23:45
Example 2
25:22
Example 3
27:27
Example 4
29:23
Example 5
33:33
Graphs

58m 26s

Intro
0:00
Introduction
0:04
How to Interpret Graphs
1:17
Input / Independent Variable
1:47
Output / Dependent Variable
2:00
Graph as Input ⇒ Output
2:23
One Way to Think of a Graph: See What Happened to Various Inputs
2:25
Example
2:47
Graph as Location of Solution
4:20
A Way to See Solutions
4:36
Example
5:20
Which Way Should We Interpret?
7:13
Easiest to Think In Terms of How Inputs Are Mapped to Outputs
7:20
Sometimes It's Easier to Think In Terms of Solutions
8:39
Pay Attention to Axes
9:50
Axes Tell Where the Graph Is and What Scale It Has
10:09
Often, The Axes Will Be Square
10:14
Example
12:06
Arrows or No Arrows?
16:07
Will Not Use Arrows at the End of Our Graphs
17:13
Graph Stops Because It Hits the Edge of the Graphing Axes, Not Because the Function Stops
17:18
How to Graph
19:47
Plot Points
20:07
Connect with Curves
21:09
If You Connect with Straight Lines
21:44
Graphs of Functions are Smooth
22:21
More Points ⇒ More Accurate
23:38
Vertical Line Test
27:44
If a Vertical Line Could Intersect More Than One Point On a Graph, It Can Not Be the Graph of a Function
28:41
Every Point on a Graph Tells Us Where the x-Value Below is Mapped
30:07
Domain in Graphs
31:37
The Domain is the Set of All Inputs That a Function Can Accept
31:44
Be Aware That Our Function Probably Continues Past the Edge of Our 'Viewing Window'
33:19
Range in Graphs
33:53
Graphing Calculators: Check the Appendix!
36:55
Example 1
38:37
Example 2
45:19
Example 3
50:41
Example 4
53:28
Example 5
55:50
Properties of Functions

48m 49s

Intro
0:00
Introduction
0:05
Increasing Decreasing Constant
0:43
Looking at a Specific Graph
1:15
Increasing Interval
2:39
Constant Function
4:15
Decreasing Interval
5:10
Find Intervals by Looking at the Graph
5:32
Intervals Show x-values; Write in Parentheses
6:39
Maximum and Minimums
8:48
Relative (Local) Max/Min
10:20
Formal Definition of Relative Maximum
12:44
Formal Definition of Relative Minimum
13:05
Max/Min, More Terms
14:18
Definition of Extrema
15:01
Average Rate of Change
16:11
Drawing a Line for the Average Rate
16:48
Using the Slope of the Secant Line
17:36
Slope in Function Notation
18:45
Zeros/Roots/x-intercepts
19:45
What Zeros in a Function Mean
20:25
Even Functions
22:30
Odd Functions
24:36
Even/Odd Functions and Graphs
26:28
Example of an Even Function
27:12
Example of an Odd Function
28:03
Example 1
29:35
Example 2
33:07
Example 3
40:32
Example 4
42:34
Function Petting Zoo

29m 20s

Intro
0:00
Introduction
0:04
Don't Forget that Axes Matter!
1:44
The Constant Function
2:40
The Identity Function
3:44
The Square Function
4:40
The Cube Function
5:44
The Square Root Function
6:51
The Reciprocal Function
8:11
The Absolute Value Function
10:19
The Trigonometric Functions
11:56
f(x)=sin(x)
12:12
f(x)=cos(x)
12:24
Alternate Axes
12:40
The Exponential and Logarithmic Functions
13:35
Exponential Functions
13:44
Logarithmic Functions
14:24
Alternating Axes
15:17
Transformations and Compositions
16:08
Example 1
17:52
Example 2
18:33
Example 3
20:24
Example 4
26:07
Transformation of Functions

48m 35s

Intro
0:00
Introduction
0:04
Vertical Shift
1:12
Graphical Example
1:21
A Further Explanation
2:16
Vertical Stretch/Shrink
3:34
Graph Shrinks
3:46
Graph Stretches
3:51
A Further Explanation
5:07
Horizontal Shift
6:49
Moving the Graph to the Right
7:28
Moving the Graph to the Left
8:12
A Further Explanation
8:19
Understanding Movement on the x-axis
8:38
Horizontal Stretch/Shrink
12:59
Shrinking the Graph
13:40
Stretching the Graph
13:48
A Further Explanation
13:55
Understanding Stretches from the x-axis
14:12
Vertical Flip (aka Mirror)
16:55
Example Graph
17:07
Multiplying the Vertical Component by -1
17:18
Horizontal Flip (aka Mirror)
18:43
Example Graph
19:01
Multiplying the Horizontal Component by -1
19:54
Summary of Transformations
22:11
Stacking Transformations
24:46
Order Matters
25:20
Transformation Example
25:52
Example 1
29:21
Example 2
34:44
Example 3
38:10
Example 4
43:46
Composite Functions

33m 24s

Intro
0:00
Introduction
0:04
Arithmetic Combinations
0:40
Basic Operations
1:20
Definition of the Four Arithmetic Combinations
1:40
Composite Functions
2:53
The Function as a Machine
3:32
Function Compositions as Multiple Machines
3:59
Notation for Composite Functions
4:46
Two Formats
6:02
Another Visual Interpretation
7:17
How to Use Composite Functions
8:21
Example of on Function acting on Another
9:17
Example 1
11:03
Example 2
15:27
Example 3
21:11
Example 4
27:06
Piecewise Functions

51m 42s

Intro
0:00
Introduction
0:04
Analogies to a Piecewise Function
1:16
Different Potatoes
1:41
Factory Production
2:27
Notations for Piecewise Functions
3:39
Notation Examples from Analogies
6:11
Example of a Piecewise (with Table)
7:24
Example of a Non-Numerical Piecewise
11:35
Graphing Piecewise Functions
14:15
Graphing Piecewise Functions, Example
16:26
Continuous Functions
16:57
Statements of Continuity
19:30
Example of Continuous and Non-Continuous Graphs
20:05
Interesting Functions: the Step Function
22:00
Notation for the Step Function
22:40
How the Step Function Works
22:56
Graph of the Step Function
25:30
Example 1
26:22
Example 2
28:49
Example 3
36:50
Example 4
46:11
Inverse Functions

49m 37s

Intro
0:00
Introduction
0:04
Analogy by picture
1:10
How to Denote the inverse
1:40
What Comes out of the Inverse
1:52
Requirement for Reversing
2:02
The Basketball Factory
2:12
The Importance of Information
2:45
One-to-One
4:04
Requirement for Reversibility
4:21
When a Function has an Inverse
4:43
One-to-One
5:13
Not One-to-One
5:50
Not a Function
6:19
Horizontal Line Test
7:01
How to the test Works
7:12
One-to-One
8:12
Not One-to-One
8:45
Definition: Inverse Function
9:12
Formal Definition
9:21
Caution to Students
10:02
Domain and Range
11:12
Finding the Range of the Function Inverse
11:56
Finding the Domain of the Function Inverse
12:11
Inverse of an Inverse
13:09
Its just x!
13:26
Proof
14:03
Graphical Interpretation
17:07
Horizontal Line Test
17:20
Graph of the Inverse
18:04
Swapping Inputs and Outputs to Draw Inverses
19:02
How to Find the Inverse
21:03
What We Are Looking For
21:21
Reversing the Function
21:38
A Method to Find Inverses
22:33
Check Function is One-to-One
23:04
Swap f(x) for y
23:25
Interchange x and y
23:41
Solve for y
24:12
Replace y with the inverse
24:40
Some Comments
25:01
Keeping Step 2 and 3 Straight
25:44
Switching to Inverse
26:12
Checking Inverses
28:52
How to Check an Inverse
29:06
Quick Example of How to Check
29:56
Example 1
31:48
Example 2
34:56
Example 3
39:29
Example 4
46:19
Variation Direct and Inverse

28m 49s

Intro
0:00
Introduction
0:06
Direct Variation
1:14
Same Direction
1:21
Common Example: Groceries
1:56
Different Ways to Say that Two Things Vary Directly
2:28
Basic Equation for Direct Variation
2:55
Inverse Variation
3:40
Opposite Direction
3:50
Common Example: Gravity
4:53
Different Ways to Say that Two Things Vary Indirectly
5:48
Basic Equation for Indirect Variation
6:33
Joint Variation
7:27
Equation for Joint Variation
7:53
Explanation of the Constant
8:48
Combined Variation
9:35
Gas Law as a Combination
9:44
Single Constant
10:33
Example 1
10:49
Example 2
13:34
Example 3
15:39
Example 4
19:48
Section 3: Polynomials
Intro to Polynomials

38m 41s

Intro
0:00
Introduction
0:04
Definition of a Polynomial
1:04
Starting Integer
2:06
Structure of a Polynomial
2:49
The a Constants
3:34
Polynomial Function
5:13
Polynomial Equation
5:23
Polynomials with Different Variables
5:36
Degree
6:23
Informal Definition
6:31
Find the Largest Exponent Variable
6:44
Quick Examples
7:36
Special Names for Polynomials
8:59
Based on the Degree
9:23
Based on the Number of Terms
10:12
Distributive Property (aka 'FOIL')
11:37
Basic Distributive Property
12:21
Distributing Two Binomials
12:55
Longer Parentheses
15:12
Reverse: Factoring
17:26
Long-Term Behavior of Polynomials
17:48
Examples
18:13
Controlling Term--Term with the Largest Exponent
19:33
Positive and Negative Coefficients on the Controlling Term
20:21
Leading Coefficient Test
22:07
Even Degree, Positive Coefficient
22:13
Even Degree, Negative Coefficient
22:39
Odd Degree, Positive Coefficient
23:09
Odd Degree, Negative Coefficient
23:27
Example 1
25:11
Example 2
27:16
Example 3
31:16
Example 4
34:41
Roots (Zeros) of Polynomials

41m 7s

Intro
0:00
Introduction
0:05
Roots in Graphs
1:17
The x-intercepts
1:33
How to Remember What 'Roots' Are
1:50
Naïve Attempts
2:31
Isolating Variables
2:45
Failures of Isolating Variables
3:30
Missing Solutions
4:59
Factoring: How to Find Roots
6:28
How Factoring Works
6:36
Why Factoring Works
7:20
Steps to Finding Polynomial Roots
9:21
Factoring: How to Find Roots CAUTION
10:08
Factoring is Not Easy
11:32
Factoring Quadratics
13:08
Quadratic Trinomials
13:21
Form of Factored Binomials
13:38
Factoring Examples
14:40
Factoring Quadratics, Check Your Work
16:58
Factoring Higher Degree Polynomials
18:19
Factoring a Cubic
18:32
Factoring a Quadratic
19:04
Factoring: Roots Imply Factors
19:54
Where a Root is, A Factor Is
20:01
How to Use Known Roots to Make Factoring Easier
20:35
Not all Polynomials Can be Factored
22:30
Irreducible Polynomials
23:27
Complex Numbers Help
23:55
Max Number of Roots/Factors
24:57
Limit to Number of Roots Equal to the Degree
25:18
Why there is a Limit
25:25
Max Number of Peaks/Valleys
26:39
Shape Information from Degree
26:46
Example Graph
26:54
Max, But Not Required
28:00
Example 1
28:37
Example 2
31:21
Example 3
36:12
Example 4
38:40
Completing the Square and the Quadratic Formula

39m 43s

Intro
0:00
Introduction
0:05
Square Roots and Equations
0:51
Taking the Square Root to Find the Value of x
0:55
Getting the Positive and Negative Answers
1:05
Completing the Square: Motivation
2:04
Polynomials that are Easy to Solve
2:20
Making Complex Polynomials Easy to Solve
3:03
Steps to Completing the Square
4:30
Completing the Square: Method
7:22
Move C over
7:35
Divide by A
7:44
Find r
7:59
Add to Both Sides to Complete the Square
8:49
Solving Quadratics with Ease
9:56
The Quadratic Formula
11:38
Derivation
11:43
Final Form
12:23
Follow Format to Use Formula
13:38
How Many Roots?
14:53
The Discriminant
15:47
What the Discriminant Tells Us: How Many Roots
15:58
How the Discriminant Works
16:30
Example 1: Complete the Square
18:24
Example 2: Solve the Quadratic
22:00
Example 3: Solve for Zeroes
25:28
Example 4: Using the Quadratic Formula
30:52
Properties of Quadratic Functions

45m 34s

Intro
0:00
Introduction
0:05
Parabolas
0:35
Examples of Different Parabolas
1:06
Axis of Symmetry and Vertex
1:28
Drawing an Axis of Symmetry
1:51
Placing the Vertex
2:28
Looking at the Axis of Symmetry and Vertex for other Parabolas
3:09
Transformations
4:18
Reviewing Transformation Rules
6:28
Note the Different Horizontal Shift Form
7:45
An Alternate Form to Quadratics
8:54
The Constants: k, h, a
9:05
Transformations Formed
10:01
Analyzing Different Parabolas
10:10
Switching Forms by Completing the Square
11:43
Vertex of a Parabola
16:30
Vertex at (h, k)
16:47
Vertex in Terms of a, b, and c Coefficients
17:28
Minimum/Maximum at Vertex
18:19
When a is Positive
18:25
When a is Negative
18:52
Axis of Symmetry
19:54
Incredibly Minor Note on Grammar
20:52
Example 1
21:48
Example 2
26:35
Example 3
28:55
Example 4
31:40
Intermediate Value Theorem and Polynomial Division

46m 8s

Intro
0:00
Introduction
0:05
Reminder: Roots Imply Factors
1:32
The Intermediate Value Theorem
3:41
The Basis: U between a and b
4:11
U is on the Function
4:52
Intermediate Value Theorem, Proof Sketch
5:51
If Not True, the Graph Would Have to Jump
5:58
But Graph is Defined as Continuous
6:43
Finding Roots with the Intermediate Value Theorem
7:01
Picking a and b to be of Different Signs
7:10
Must Be at Least One Root
7:46
Dividing a Polynomial
8:16
Using Roots and Division to Factor
8:38
Long Division Refresher
9:08
The Division Algorithm
12:18
How It Works to Divide Polynomials
12:37
The Parts of the Equation
13:24
Rewriting the Equation
14:47
Polynomial Long Division
16:20
Polynomial Long Division In Action
16:29
One Step at a Time
20:51
Synthetic Division
22:46
Setup
23:11
Synthetic Division, Example
24:44
Which Method Should We Use
26:39
Advantages of Synthetic Method
26:49
Advantages of Long Division
27:13
Example 1
29:24
Example 2
31:27
Example 3
36:22
Example 4
40:55
Complex Numbers

45m 36s

Intro
0:00
Introduction
0:04
A Wacky Idea
1:02
The Definition of the Imaginary Number
1:22
How it Helps Solve Equations
2:20
Square Roots and Imaginary Numbers
3:15
Complex Numbers
5:00
Real Part and Imaginary Part
5:20
When Two Complex Numbers are Equal
6:10
Addition and Subtraction
6:40
Deal with Real and Imaginary Parts Separately
7:36
Two Quick Examples
7:54
Multiplication
9:07
FOIL Expansion
9:14
Note What Happens to the Square of the Imaginary Number
9:41
Two Quick Examples
10:22
Division
11:27
Complex Conjugates
13:37
Getting Rid of i
14:08
How to Denote the Conjugate
14:48
Division through Complex Conjugates
16:11
Multiply by the Conjugate of the Denominator
16:28
Example
17:46
Factoring So-Called 'Irreducible' Quadratics
19:24
Revisiting the Quadratic Formula
20:12
Conjugate Pairs
20:37
But Are the Complex Numbers 'Real'?
21:27
What Makes a Number Legitimate
25:38
Where Complex Numbers are Used
27:20
Still, We Won't See Much of C
29:05
Example 1
30:30
Example 2
33:15
Example 3
38:12
Example 4
42:07
Fundamental Theorem of Algebra

19m 9s

Intro
0:00
Introduction
0:05
Idea: Hidden Roots
1:16
Roots in Complex Form
1:42
All Polynomials Have Roots
2:08
Fundamental Theorem of Algebra
2:21
Where Are All the Imaginary Roots, Then?
3:17
All Roots are Complex
3:45
Real Numbers are a Subset of Complex Numbers
3:59
The n Roots Theorem
5:01
For Any Polynomial, Its Degree is Equal to the Number of Roots
5:11
Equivalent Statement
5:24
Comments: Multiplicity
6:29
Non-Distinct Roots
6:59
Denoting Multiplicity
7:20
Comments: Complex Numbers Necessary
7:41
Comments: Complex Coefficients Allowed
8:55
Comments: Existence Theorem
9:59
Proof Sketch of n Roots Theorem
10:45
First Root
11:36
Second Root
13:23
Continuation to Find all Roots
16:00
Section 4: Rational Functions
Rational Functions and Vertical Asymptotes

33m 22s

Intro
0:00
Introduction
0:05
Definition of a Rational Function
1:20
Examples of Rational Functions
2:30
Why They are Called 'Rational'
2:47
Domain of a Rational Function
3:15
Undefined at Denominator Zeros
3:25
Otherwise all Reals
4:16
Investigating a Fundamental Function
4:50
The Domain of the Function
5:04
What Occurs at the Zeroes of the Denominator
5:20
Idea of a Vertical Asymptote
6:23
What's Going On?
6:58
Approaching x=0 from the left
7:32
Approaching x=0 from the right
8:34
Dividing by Very Small Numbers Results in Very Large Numbers
9:31
Definition of a Vertical Asymptote
10:05
Vertical Asymptotes and Graphs
11:15
Drawing Asymptotes by Using a Dashed Line
11:27
The Graph Can Never Touch Its Undefined Point
12:00
Not All Zeros Give Asymptotes
13:02
Special Cases: When Numerator and Denominator Go to Zero at the Same Time
14:58
Cancel out Common Factors
15:49
How to Find Vertical Asymptotes
16:10
Figure out What Values Are Not in the Domain of x
16:24
Determine if the Numerator and Denominator Share Common Factors and Cancel
16:45
Find Denominator Roots
17:33
Note if Asymptote Approaches Negative or Positive Infinity
18:06
Example 1
18:57
Example 2
21:26
Example 3
23:04
Example 4
30:01
Horizontal Asymptotes

34m 16s

Intro
0:00
Introduction
0:05
Investigating a Fundamental Function
0:53
What Happens as x Grows Large
1:00
Different View
1:12
Idea of a Horizontal Asymptote
1:36
What's Going On?
2:24
What Happens as x Grows to a Large Negative Number
2:49
What Happens as x Grows to a Large Number
3:30
Dividing by Very Large Numbers Results in Very Small Numbers
3:52
Example Function
4:41
Definition of a Vertical Asymptote
8:09
Expanding the Idea
9:03
What's Going On?
9:48
What Happens to the Function in the Long Run?
9:51
Rewriting the Function
10:13
Definition of a Slant Asymptote
12:09
Symbolical Definition
12:30
Informal Definition
12:45
Beyond Slant Asymptotes
13:03
Not Going Beyond Slant Asymptotes
14:39
Horizontal/Slant Asymptotes and Graphs
15:43
How to Find Horizontal and Slant Asymptotes
16:52
How to Find Horizontal Asymptotes
17:12
Expand the Given Polynomials
17:18
Compare the Degrees of the Numerator and Denominator
17:40
How to Find Slant Asymptotes
20:05
Slant Asymptotes Exist When n+m=1
20:08
Use Polynomial Division
20:24
Example 1
24:32
Example 2
25:53
Example 3
26:55
Example 4
29:22
Graphing Asymptotes in a Nutshell

49m 7s

Intro
0:00
Introduction
0:05
A Process for Graphing
1:22
1. Factor Numerator and Denominator
1:50
2. Find Domain
2:53
3. Simplifying the Function
3:59
4. Find Vertical Asymptotes
4:59
5. Find Horizontal/Slant Asymptotes
5:24
6. Find Intercepts
7:35
7. Draw Graph (Find Points as Necessary)
9:21
Draw Graph Example
11:21
Vertical Asymptote
11:41
Horizontal Asymptote
11:50
Other Graphing
12:16
Test Intervals
15:08
Example 1
17:57
Example 2
23:01
Example 3
29:02
Example 4
33:37
Partial Fractions

44m 56s

Intro
0:00
Introduction: Idea
0:04
Introduction: Prerequisites and Uses
1:57
Proper vs. Improper Polynomial Fractions
3:11
Possible Things in the Denominator
4:38
Linear Factors
6:16
Example of Linear Factors
7:03
Multiple Linear Factors
7:48
Irreducible Quadratic Factors
8:25
Example of Quadratic Factors
9:26
Multiple Quadratic Factors
9:49
Mixing Factor Types
10:28
Figuring Out the Numerator
11:10
How to Solve for the Constants
11:30
Quick Example
11:40
Example 1
14:29
Example 2
18:35
Example 3
20:33
Example 4
28:51
Section 5: Exponential & Logarithmic Functions
Understanding Exponents

35m 17s

Intro
0:00
Introduction
0:05
Fundamental Idea
1:46
Expanding the Idea
2:28
Multiplication of the Same Base
2:40
Exponents acting on Exponents
3:45
Different Bases with the Same Exponent
4:31
To the Zero
5:35
To the First
5:45
Fundamental Rule with the Zero Power
6:35
To the Negative
7:45
Any Number to a Negative Power
8:14
A Fraction to a Negative Power
9:58
Division with Exponential Terms
10:41
To the Fraction
11:33
Square Root
11:58
Any Root
12:59
Summary of Rules
14:38
To the Irrational
17:21
Example 1
20:34
Example 2
23:42
Example 3
27:44
Example 4
31:44
Example 5
33:15
Exponential Functions

47m 4s

Intro
0:00
Introduction
0:05
Definition of an Exponential Function
0:48
Definition of the Base
1:02
Restrictions on the Base
1:16
Computing Exponential Functions
2:29
Harder Computations
3:10
When to Use a Calculator
3:21
Graphing Exponential Functions: a>1
6:02
Three Examples
6:13
What to Notice on the Graph
7:44
A Story
8:27
Story Diagram
9:15
Increasing Exponentials
11:29
Story Morals
14:40
Application: Compound Interest
15:15
Compounding Year after Year
16:01
Function for Compounding Interest
16:51
A Special Number: e
20:55
Expression for e
21:28
Where e stabilizes
21:55
Application: Continuously Compounded Interest
24:07
Equation for Continuous Compounding
24:22
Exponential Decay 0<a<1
25:50
Three Examples
26:11
Why they 'lose' value
26:54
Example 1
27:47
Example 2
33:11
Example 3
36:34
Example 4
41:28
Introduction to Logarithms

40m 31s

Intro
0:00
Introduction
0:04
Definition of a Logarithm, Base 2
0:51
Log 2 Defined
0:55
Examples
2:28
Definition of a Logarithm, General
3:23
Examples of Logarithms
5:15
Problems with Unusual Bases
7:38
Shorthand Notation: ln and log
9:44
base e as ln
10:01
base 10 as log
10:34
Calculating Logarithms
11:01
using a calculator
11:34
issues with other bases
11:58
Graphs of Logarithms
13:21
Three Examples
13:29
Slow Growth
15:19
Logarithms as Inverse of Exponentiation
16:02
Using Base 2
16:05
General Case
17:10
Looking More Closely at Logarithm Graphs
19:16
The Domain of Logarithms
20:41
Thinking about Logs like Inverses
21:08
The Alternate
24:00
Example 1
25:59
Example 2
30:03
Example 3
32:49
Example 4
37:34
Properties of Logarithms

42m 33s

Intro
0:00
Introduction
0:04
Basic Properties
1:12
Inverse--log(exp)
1:43
A Key Idea
2:44
What We Get through Exponentiation
3:18
B Always Exists
4:50
Inverse--exp(log)
5:53
Logarithm of a Power
7:44
Logarithm of a Product
10:07
Logarithm of a Quotient
13:48
Caution! There Is No Rule for loga(M+N)
16:12
Summary of Properties
17:42
Change of Base--Motivation
20:17
No Calculator Button
20:59
A Specific Example
21:45
Simplifying
23:45
Change of Base--Formula
24:14
Example 1
25:47
Example 2
29:08
Example 3
31:14
Example 4
34:13
Solving Exponential and Logarithmic Equations

34m 10s

Intro
0:00
Introduction
0:05
One to One Property
1:09
Exponential
1:26
Logarithmic
1:44
Specific Considerations
2:02
One-to-One Property
3:30
Solving by One-to-One
4:11
Inverse Property
6:09
Solving by Inverses
7:25
Dealing with Equations
7:50
Example of Taking an Exponent or Logarithm of an Equation
9:07
A Useful Property
11:57
Bring Down Exponents
12:01
Try to Simplify
13:20
Extraneous Solutions
13:45
Example 1
16:37
Example 2
19:39
Example 3
21:37
Example 4
26:45
Example 5
29:37
Application of Exponential and Logarithmic Functions

48m 46s

Intro
0:00
Introduction
0:06
Applications of Exponential Functions
1:07
A Secret!
2:17
Natural Exponential Growth Model
3:07
Figure out r
3:34
A Secret!--Why Does It Work?
4:44
e to the r Morphs
4:57
Example
5:06
Applications of Logarithmic Functions
8:32
Examples
8:43
What Logarithms are Useful For
9:53
Example 1
11:29
Example 2
15:30
Example 3
26:22
Example 4
32:05
Example 5
39:19
Section 6: Trigonometric Functions
Angles

39m 5s

Intro
0:00
Degrees
0:22
Circle is 360 Degrees
0:48
Splitting a Circle
1:13
Radians
2:08
Circle is 2 Pi Radians
2:31
One Radian
2:52
Half-Circle and Right Angle
4:00
Converting Between Degrees and Radians
6:24
Formulas for Degrees and Radians
6:52
Coterminal, Complementary, Supplementary Angles
7:23
Coterminal Angles
7:30
Complementary Angles
9:40
Supplementary Angles
10:08
Example 1: Dividing a Circle
10:38
Example 2: Converting Between Degrees and Radians
11:56
Example 3: Quadrants and Coterminal Angles
14:18
Extra Example 1: Common Angle Conversions
-1
Extra Example 2: Quadrants and Coterminal Angles
-2
Sine and Cosine Functions

43m 16s

Intro
0:00
Sine and Cosine
0:15
Unit Circle
0:22
Coordinates on Unit Circle
1:03
Right Triangles
1:52
Adjacent, Opposite, Hypotenuse
2:25
Master Right Triangle Formula: SOHCAHTOA
2:48
Odd Functions, Even Functions
4:40
Example: Odd Function
4:56
Example: Even Function
7:30
Example 1: Sine and Cosine
10:27
Example 2: Graphing Sine and Cosine Functions
14:39
Example 3: Right Triangle
21:40
Example 4: Odd, Even, or Neither
26:01
Extra Example 1: Right Triangle
-1
Extra Example 2: Graphing Sine and Cosine Functions
-2
Sine and Cosine Values of Special Angles

33m 5s

Intro
0:00
45-45-90 Triangle and 30-60-90 Triangle
0:08
45-45-90 Triangle
0:21
30-60-90 Triangle
2:06
Mnemonic: All Students Take Calculus (ASTC)
5:21
Using the Unit Circle
5:59
New Angles
6:21
Other Quadrants
9:43
Mnemonic: All Students Take Calculus
10:13
Example 1: Convert, Quadrant, Sine/Cosine
13:11
Example 2: Convert, Quadrant, Sine/Cosine
16:48
Example 3: All Angles and Quadrants
20:21
Extra Example 1: Convert, Quadrant, Sine/Cosine
-1
Extra Example 2: All Angles and Quadrants
-2
Modified Sine Waves: Asin(Bx+C)+D and Acos(Bx+C)+D

52m 3s

Intro
0:00
Amplitude and Period of a Sine Wave
0:38
Sine Wave Graph
0:58
Amplitude: Distance from Middle to Peak
1:18
Peak: Distance from Peak to Peak
2:41
Phase Shift and Vertical Shift
4:13
Phase Shift: Distance Shifted Horizontally
4:16
Vertical Shift: Distance Shifted Vertically
6:48
Example 1: Amplitude/Period/Phase and Vertical Shift
8:04
Example 2: Amplitude/Period/Phase and Vertical Shift
17:39
Example 3: Find Sine Wave Given Attributes
25:23
Extra Example 1: Amplitude/Period/Phase and Vertical Shift
-1
Extra Example 2: Find Cosine Wave Given Attributes
-2
Tangent and Cotangent Functions

36m 4s

Intro
0:00
Tangent and Cotangent Definitions
0:21
Tangent Definition
0:25
Cotangent Definition
0:47
Master Formula: SOHCAHTOA
1:01
Mnemonic
1:16
Tangent and Cotangent Values
2:29
Remember Common Values of Sine and Cosine
2:46
90 Degrees Undefined
4:36
Slope and Menmonic: ASTC
5:47
Uses of Tangent
5:54
Example: Tangent of Angle is Slope
6:09
Sign of Tangent in Quadrants
7:49
Example 1: Graph Tangent and Cotangent Functions
10:42
Example 2: Tangent and Cotangent of Angles
16:09
Example 3: Odd, Even, or Neither
18:56
Extra Example 1: Tangent and Cotangent of Angles
-1
Extra Example 2: Tangent and Cotangent of Angles
-2
Secant and Cosecant Functions

27m 18s

Intro
0:00
Secant and Cosecant Definitions
0:17
Secant Definition
0:18
Cosecant Definition
0:33
Example 1: Graph Secant Function
0:48
Example 2: Values of Secant and Cosecant
6:49
Example 3: Odd, Even, or Neither
12:49
Extra Example 1: Graph of Cosecant Function
-1
Extra Example 2: Values of Secant and Cosecant
-2
Inverse Trigonometric Functions

32m 58s

Intro
0:00
Arcsine Function
0:24
Restrictions between -1 and 1
0:43
Arcsine Notation
1:26
Arccosine Function
3:07
Restrictions between -1 and 1
3:36
Cosine Notation
3:53
Arctangent Function
4:30
Between -Pi/2 and Pi/2
4:44
Tangent Notation
5:02
Example 1: Domain/Range/Graph of Arcsine
5:45
Example 2: Arcsin/Arccos/Arctan Values
10:46
Example 3: Domain/Range/Graph of Arctangent
17:14
Extra Example 1: Domain/Range/Graph of Arccosine
-1
Extra Example 2: Arcsin/Arccos/Arctan Values
-2
Computations of Inverse Trigonometric Functions

31m 8s

Intro
0:00
Inverse Trigonometric Function Domains and Ranges
0:31
Arcsine
0:41
Arccosine
1:14
Arctangent
1:41
Example 1: Arcsines of Common Values
2:44
Example 2: Odd, Even, or Neither
5:57
Example 3: Arccosines of Common Values
12:24
Extra Example 1: Arctangents of Common Values
-1
Extra Example 2: Arcsin/Arccos/Arctan Values
-2
Section 7: Trigonometric Identities
Pythagorean Identity

19m 11s

Intro
0:00
Pythagorean Identity
0:17
Pythagorean Triangle
0:27
Pythagorean Identity
0:45
Example 1: Use Pythagorean Theorem to Prove Pythagorean Identity
1:14
Example 2: Find Angle Given Cosine and Quadrant
4:18
Example 3: Verify Trigonometric Identity
8:00
Extra Example 1: Use Pythagorean Identity to Prove Pythagorean Theorem
-1
Extra Example 2: Find Angle Given Cosine and Quadrant
-2
Identity Tan(squared)x+1=Sec(squared)x

23m 16s

Intro
0:00
Main Formulas
0:19
Companion to Pythagorean Identity
0:27
For Cotangents and Cosecants
0:52
How to Remember
0:58
Example 1: Prove the Identity
1:40
Example 2: Given Tan Find Sec
3:42
Example 3: Prove the Identity
7:45
Extra Example 1: Prove the Identity
-1
Extra Example 2: Given Sec Find Tan
-2
Addition and Subtraction Formulas

52m 52s

Intro
0:00
Addition and Subtraction Formulas
0:09
How to Remember
0:48
Cofunction Identities
1:31
How to Remember Graphically
1:44
Where to Use Cofunction Identities
2:52
Example 1: Derive the Formula for cos(A-B)
3:08
Example 2: Use Addition and Subtraction Formulas
16:03
Example 3: Use Addition and Subtraction Formulas to Prove Identity
25:11
Extra Example 1: Use cos(A-B) and Cofunction Identities
-1
Extra Example 2: Convert to Radians and use Formulas
-2
Double Angle Formulas

29m 5s

Intro
0:00
Main Formula
0:07
How to Remember from Addition Formula
0:18
Two Other Forms
1:35
Example 1: Find Sine and Cosine of Angle using Double Angle
3:16
Example 2: Prove Trigonometric Identity using Double Angle
9:37
Example 3: Use Addition and Subtraction Formulas
12:38
Extra Example 1: Find Sine and Cosine of Angle using Double Angle
-1
Extra Example 2: Prove Trigonometric Identity using Double Angle
-2
Half-Angle Formulas

43m 55s

Intro
0:00
Main Formulas
0:09
Confusing Part
0:34
Example 1: Find Sine and Cosine of Angle using Half-Angle
0:54
Example 2: Prove Trigonometric Identity using Half-Angle
11:51
Example 3: Prove the Half-Angle Formula for Tangents
18:39
Extra Example 1: Find Sine and Cosine of Angle using Half-Angle
-1
Extra Example 2: Prove Trigonometric Identity using Half-Angle
-2
Section 8: Applications of Trigonometry
Trigonometry in Right Angles

25m 43s

Intro
0:00
Master Formula for Right Angles
0:11
SOHCAHTOA
0:15
Only for Right Triangles
1:26
Example 1: Find All Angles in a Triangle
2:19
Example 2: Find Lengths of All Sides of Triangle
7:39
Example 3: Find All Angles in a Triangle
11:00
Extra Example 1: Find All Angles in a Triangle
-1
Extra Example 2: Find Lengths of All Sides of Triangle
-2
Law of Sines

56m 40s

Intro
0:00
Law of Sines Formula
0:18
SOHCAHTOA
0:27
Any Triangle
0:59
Graphical Representation
1:25
Solving Triangle Completely
2:37
When to Use Law of Sines
2:55
ASA, SAA, SSA, AAA
2:59
SAS, SSS for Law of Cosines
7:11
Example 1: How Many Triangles Satisfy Conditions, Solve Completely
8:44
Example 2: How Many Triangles Satisfy Conditions, Solve Completely
15:30
Example 3: How Many Triangles Satisfy Conditions, Solve Completely
28:32
Extra Example 1: How Many Triangles Satisfy Conditions, Solve Completely
-1
Extra Example 2: How Many Triangles Satisfy Conditions, Solve Completely
-2
Law of Cosines

49m 5s

Intro
0:00
Law of Cosines Formula
0:23
Graphical Representation
0:34
Relates Sides to Angles
1:00
Any Triangle
1:20
Generalization of Pythagorean Theorem
1:32
When to Use Law of Cosines
2:26
SAS, SSS
2:30
Heron's Formula
4:49
Semiperimeter S
5:11
Example 1: How Many Triangles Satisfy Conditions, Solve Completely
5:53
Example 2: How Many Triangles Satisfy Conditions, Solve Completely
15:19
Example 3: Find Area of a Triangle Given All Side Lengths
26:33
Extra Example 1: How Many Triangles Satisfy Conditions, Solve Completely
-1
Extra Example 2: Length of Third Side and Area of Triangle
-2
Finding the Area of a Triangle

27m 37s

Intro
0:00
Master Right Triangle Formula and Law of Cosines
0:19
SOHCAHTOA
0:27
Law of Cosines
1:23
Heron's Formula
2:22
Semiperimeter S
2:37
Example 1: Area of Triangle with Two Sides and One Angle
3:12
Example 2: Area of Triangle with Three Sides
6:11
Example 3: Area of Triangle with Three Sides, No Heron's Formula
8:50
Extra Example 1: Area of Triangle with Two Sides and One Angle
-1
Extra Example 2: Area of Triangle with Two Sides and One Angle
-2
Word Problems and Applications of Trigonometry

34m 25s

Intro
0:00
Formulas to Remember
0:11
SOHCAHTOA
0:15
Law of Sines
0:55
Law of Cosines
1:48
Heron's Formula
2:46
Example 1: Telephone Pole Height
4:01
Example 2: Bridge Length
7:48
Example 3: Area of Triangular Field
14:20
Extra Example 1: Kite Height
-1
Extra Example 2: Roads to a Town
-2
Section 9: Systems of Equations and Inequalities
Systems of Linear Equations

55m 40s

Intro
0:00
Introduction
0:04
Graphs as Location of 'True'
1:49
All Locations that Make the Function True
2:25
Understand the Relationship Between Solutions and the Graph
3:43
Systems as Graphs
4:07
Equations as Lines
4:20
Intersection Point
5:19
Three Possibilities for Solutions
6:17
Independent
6:24
Inconsistent
6:36
Dependent
7:06
Solving by Substitution
8:37
Solve for One Variable
9:07
Substitute into the Second Equation
9:34
Solve for Both Variables
10:12
What If a System is Inconsistent or Dependent?
11:08
No Solutions
11:25
Infinite Solutions
12:30
Solving by Elimination
13:56
Example
14:22
Determining the Number of Solutions
16:30
Why Elimination Makes Sense
17:25
Solving by Graphing Calculator
19:59
Systems with More than Two Variables
23:22
Example 1
25:49
Example 2
30:22
Example 3
34:11
Example 4
38:55
Example 5
46:01
(Non-) Example 6
53:37
Systems of Linear Inequalities

1h 13s

Intro
0:00
Introduction
0:04
Inequality Refresher-Solutions
0:46
Equation Solutions vs. Inequality Solutions
1:02
Essentially a Wide Variety of Answers
1:35
Refresher--Negative Multiplication Flips
1:43
Refresher--Negative Flips: Why?
3:19
Multiplication by a Negative
3:43
The Relationship Flips
3:55
Refresher--Stick to Basic Operations
4:34
Linear Equations in Two Variables
6:50
Graphing Linear Inequalities
8:28
Why It Includes a Whole Section
8:43
How to Show The Difference Between Strict and Not Strict Inequalities
10:08
Dashed Line--Not Solutions
11:10
Solid Line--Are Solutions
11:24
Test Points for Shading
11:42
Example of Using a Point
12:41
Drawing Shading from the Point
13:14
Graphing a System
14:53
Set of Solutions is the Overlap
15:17
Example
15:22
Solutions are Best Found Through Graphing
18:05
Linear Programming-Idea
19:52
Use a Linear Objective Function
20:15
Variables in Objective Function have Constraints
21:24
Linear Programming-Method
22:09
Rearrange Equations
22:21
Graph
22:49
Critical Solution is at the Vertex of the Overlap
23:40
Try Each Vertice
24:35
Example 1
24:58
Example 2
28:57
Example 3
33:48
Example 4
43:10
Nonlinear Systems

41m 1s

Intro
0:00
Introduction
0:06
Substitution
1:12
Example
1:22
Elimination
3:46
Example
3:56
Elimination is Less Useful for Nonlinear Systems
4:56
Graphing
5:56
Using a Graphing Calculator
6:44
Number of Solutions
8:44
Systems of Nonlinear Inequalities
10:02
Graph Each Inequality
10:06
Dashed and/or Solid
10:18
Shade Appropriately
11:14
Example 1
13:24
Example 2
15:50
Example 3
22:02
Example 4
29:06
Example 4, cont.
33:40
Section 10: Vectors and Matrices
Vectors

1h 9m 31s

Intro
0:00
Introduction
0:10
Magnitude of the Force
0:22
Direction of the Force
0:48
Vector
0:52
Idea of a Vector
1:30
How Vectors are Denoted
2:00
Component Form
3:20
Angle Brackets and Parentheses
3:50
Magnitude/Length
4:26
Denoting the Magnitude of a Vector
5:16
Direction/Angle
7:52
Always Draw a Picture
8:50
Component Form from Magnitude & Angle
10:10
Scaling by Scalars
14:06
Unit Vectors
16:26
Combining Vectors - Algebraically
18:10
Combining Vectors - Geometrically
19:54
Resultant Vector
20:46
Alternate Component Form: i, j
21:16
The Zero Vector
23:18
Properties of Vectors
24:20
No Multiplication (Between Vectors)
28:30
Dot Product
29:40
Motion in a Medium
30:10
Fish in an Aquarium Example
31:38
More Than Two Dimensions
33:12
More Than Two Dimensions - Magnitude
34:18
Example 1
35:26
Example 2
38:10
Example 3
45:48
Example 4
50:40
Example 4, cont.
56:07
Example 5
1:01:32
Dot Product & Cross Product

35m 20s

Intro
0:00
Introduction
0:08
Dot Product - Definition
0:42
Dot Product Results in a Scalar, Not a Vector
2:10
Example in Two Dimensions
2:34
Angle and the Dot Product
2:58
The Dot Product of Two Vectors is Deeply Related to the Angle Between the Two Vectors
2:59
Proof of Dot Product Formula
4:14
Won't Directly Help Us Better Understand Vectors
4:18
Dot Product - Geometric Interpretation
4:58
We Can Interpret the Dot Product as a Measure of How Long and How Parallel Two Vectors Are
7:26
Dot Product - Perpendicular Vectors
8:24
If the Dot Product of Two Vectors is 0, We Know They are Perpendicular to Each Other
8:54
Cross Product - Definition
11:08
Cross Product Only Works in Three Dimensions
11:09
Cross Product - A Mnemonic
12:16
The Determinant of a 3 x 3 Matrix and Standard Unit Vectors
12:17
Cross Product - Geometric Interpretations
14:30
The Right-Hand Rule
15:17
Cross Product - Geometric Interpretations Cont.
17:00
Example 1
18:40
Example 2
22:50
Example 3
24:04
Example 4
26:20
Bonus Round
29:18
Proof: Dot Product Formula
29:24
Proof: Dot Product Formula, cont.
30:38
Matrices

54m 7s

Intro
0:00
Introduction
0:08
Definition of a Matrix
3:02
Size or Dimension
3:58
Square Matrix
4:42
Denoted by Capital Letters
4:56
When are Two Matrices Equal?
5:04
Examples of Matrices
6:44
Rows x Columns
6:46
Talking About Specific Entries
7:48
We Use Capitals to Denote a Matrix and Lower Case to Denotes Its Entries
8:32
Using Entries to Talk About Matrices
10:08
Scalar Multiplication
11:26
Scalar = Real Number
11:34
Example
12:36
Matrix Addition
13:08
Example
14:22
Matrix Multiplication
15:00
Example
18:52
Matrix Multiplication, cont.
19:58
Matrix Multiplication and Order (Size)
25:26
Make Sure Their Orders are Compatible
25:27
Matrix Multiplication is NOT Commutative
28:20
Example
30:08
Special Matrices - Zero Matrix (0)
32:48
Zero Matrix Has 0 for All of its Entries
32:49
Special Matrices - Identity Matrix (I)
34:14
Identity Matrix is a Square Matrix That Has 1 for All Its Entries on the Main Diagonal and 0 for All Other Entries
34:15
Example 1
36:16
Example 2
40:00
Example 3
44:54
Example 4
50:08
Determinants & Inverses of Matrices

47m 12s

Intro
0:00
Introduction
0:06
Not All Matrices Are Invertible
1:30
What Must a Matrix Have to Be Invertible?
2:08
Determinant
2:32
The Determinant is a Real Number Associated With a Square Matrix
2:38
If the Determinant of a Matrix is Nonzero, the Matrix is Invertible
3:40
Determinant of a 2 x 2 Matrix
4:34
Think in Terms of Diagonals
5:12
Minors and Cofactors - Minors
6:24
Example
6:46
Minors and Cofactors - Cofactors
8:00
Cofactor is Closely Based on the Minor
8:01
Alternating Sign Pattern
9:04
Determinant of Larger Matrices
10:56
Example
13:00
Alternative Method for 3x3 Matrices
16:46
Not Recommended
16:48
Inverse of a 2 x 2 Matrix
19:02
Inverse of Larger Matrices
20:00
Using Inverse Matrices
21:06
When Multiplied Together, They Create the Identity Matrix
21:24
Example 1
23:45
Example 2
27:21
Example 3
32:49
Example 4
36:27
Finding the Inverse of Larger Matrices
41:59
General Inverse Method - Step 1
43:25
General Inverse Method - Step 2
43:27
General Inverse Method - Step 2, cont.
43:27
General Inverse Method - Step 3
45:15
Using Matrices to Solve Systems of Linear Equations

58m 34s

Intro
0:00
Introduction
0:12
Augmented Matrix
1:44
We Can Represent the Entire Linear System With an Augmented Matrix
1:50
Row Operations
3:22
Interchange the Locations of Two Rows
3:50
Multiply (or Divide) a Row by a Nonzero Number
3:58
Add (or Subtract) a Multiple of One Row to Another
4:12
Row Operations - Keep Notes!
5:50
Suggested Symbols
7:08
Gauss-Jordan Elimination - Idea
8:04
Gauss-Jordan Elimination - Idea, cont.
9:16
Reduced Row-Echelon Form
9:18
Gauss-Jordan Elimination - Method
11:36
Begin by Writing the System As An Augmented Matrix
11:38
Gauss-Jordan Elimination - Method, cont.
13:48
Cramer's Rule - 2 x 2 Matrices
17:08
Cramer's Rule - n x n Matrices
19:24
Solving with Inverse Matrices
21:10
Solving Inverse Matrices, cont.
25:28
The Mighty (Graphing) Calculator
26:38
Example 1
29:56
Example 2
33:56
Example 3
37:00
Example 3, cont.
45:04
Example 4
51:28
Section 11: Alternate Ways to Graph
Parametric Equations

53m 33s

Intro
0:00
Introduction
0:06
Definition
1:10
Plane Curve
1:24
The Key Idea
2:00
Graphing with Parametric Equations
2:52
Same Graph, Different Equations
5:04
How Is That Possible?
5:36
Same Graph, Different Equations, cont.
5:42
Here's Another to Consider
7:56
Same Plane Curve, But Still Different
8:10
A Metaphor for Parametric Equations
9:36
Think of Parametric Equations As a Way to Describe the Motion of An Object
9:38
Graph Shows Where It Went, But Not Speed
10:32
Eliminating Parameters
12:14
Rectangular Equation
12:16
Caution
13:52
Creating Parametric Equations
14:30
Interesting Graphs
16:38
Graphing Calculators, Yay!
19:18
Example 1
22:36
Example 2
28:26
Example 3
37:36
Example 4
41:00
Projectile Motion
44:26
Example 5
47:00
Polar Coordinates

48m 7s

Intro
0:00
Introduction
0:04
Polar Coordinates Give Us a Way To Describe the Location of a Point
0:26
Polar Equations and Functions
0:50
Plotting Points with Polar Coordinates
1:06
The Distance of the Point from the Origin
1:09
The Angle of the Point
1:33
Give Points as the Ordered Pair (r,θ)
2:03
Visualizing Plotting in Polar Coordinates
2:32
First Way We Can Plot
2:39
Second Way We Can Plot
2:50
First, We'll Look at Visualizing r, Then θ
3:09
Rotate the Length Counter-Clockwise by θ
3:38
Alternatively, We Can Visualize θ, Then r
4:06
'Polar Graph Paper'
6:17
Horizontal and Vertical Tick Marks Are Not Useful for Polar
6:42
Use Concentric Circles to Helps Up See Distance From the Pole
7:08
Can Use Arc Sectors to See Angles
7:57
Multiple Ways to Name a Point
9:17
Examples
9:30
For Any Angle θ, We Can Make an Equivalent Angle
10:44
Negative Values for r
11:58
If r Is Negative, We Go In The Direction Opposite the One That The Angle θ Points Out
12:22
Another Way to Name the Same Point: Add π to θ and Make r Negative
13:44
Converting Between Rectangular and Polar
14:37
Rectangular Way to Name
14:43
Polar Way to Name
14:52
The Rectangular System Must Have a Right Angle Because It's Based on a Rectangle
15:08
Connect Both Systems Through Basic Trigonometry
15:38
Equation to Convert From Polar to Rectangular Coordinate Systems
16:55
Equation to Convert From Rectangular to Polar Coordinate Systems
17:13
Converting to Rectangular is Easy
17:20
Converting to Polar is a Bit Trickier
17:21
Draw Pictures
18:55
Example 1
19:50
Example 2
25:17
Example 3
31:05
Example 4
35:56
Example 5
41:49
Polar Equations & Functions

38m 16s

Intro
0:00
Introduction
0:04
Equations and Functions
1:16
Independent Variable
1:21
Dependent Variable
1:30
Examples
1:46
Always Assume That θ Is In Radians
2:44
Graphing in Polar Coordinates
3:29
Graph is the Same Way We Graph 'Normal' Stuff
3:32
Example
3:52
Graphing in Polar - Example, Cont.
6:45
Tips for Graphing
9:23
Notice Patterns
10:19
Repetition
13:39
Graphing Equations of One Variable
14:39
Converting Coordinate Types
16:16
Use the Same Conversion Formulas From the Previous Lesson
16:23
Interesting Graphs
17:48
Example 1
18:03
Example 2
18:34
Graphing Calculators, Yay!
19:07
Plot Random Things, Alter Equations You Understand, Get a Sense for How Polar Stuff Works
19:11
Check Out the Appendix
19:26
Example 1
21:36
Example 2
28:13
Example 3
34:24
Example 4
35:52
Section 12: Complex Numbers and Polar Coordinates
Polar Form of Complex Numbers

40m 43s

Intro
0:00
Polar Coordinates
0:49
Rectangular Form
0:52
Polar Form
1:25
R and Theta
1:51
Polar Form Conversion
2:27
R and Theta
2:35
Optimal Values
4:05
Euler's Formula
4:25
Multiplying Two Complex Numbers in Polar Form
6:10
Multiply r's Together and Add Exponents
6:32
Example 1: Convert Rectangular to Polar Form
7:17
Example 2: Convert Polar to Rectangular Form
13:49
Example 3: Multiply Two Complex Numbers
17:28
Extra Example 1: Convert Between Rectangular and Polar Forms
-1
Extra Example 2: Simplify Expression to Polar Form
-2
DeMoivre's Theorem

57m 37s

Intro
0:00
Introduction to DeMoivre's Theorem
0:10
n nth Roots
3:06
DeMoivre's Theorem: Finding nth Roots
3:52
Relation to Unit Circle
6:29
One nth Root for Each Value of k
7:11
Example 1: Convert to Polar Form and Use DeMoivre's Theorem
8:24
Example 2: Find Complex Eighth Roots
15:27
Example 3: Find Complex Roots
27:49
Extra Example 1: Convert to Polar Form and Use DeMoivre's Theorem
-1
Extra Example 2: Find Complex Fourth Roots
-2
Section 13: Counting & Probability
Counting

31m 36s

Intro
0:00
Introduction
0:08
Combinatorics
0:56
Definition: Event
1:24
Example
1:50
Visualizing an Event
3:02
Branching line diagram
3:06
Addition Principle
3:40
Example
4:18
Multiplication Principle
5:42
Example
6:24
Pigeonhole Principle
8:06
Example
10:26
Draw Pictures
11:06
Example 1
12:02
Example 2
14:16
Example 3
17:34
Example 4
21:26
Example 5
25:14
Permutations & Combinations

44m 3s

Intro
0:00
Introduction
0:08
Permutation
0:42
Combination
1:10
Towards a Permutation Formula
2:38
How Many Ways Can We Arrange the Letters A, B, C, D, and E?
3:02
Towards a Permutation Formula, cont.
3:34
Factorial Notation
6:56
Symbol Is '!'
6:58
Examples
7:32
Permutation of n Objects
8:44
Permutation of r Objects out of n
9:04
What If We Have More Objects Than We Have Slots to Fit Them Into?
9:46
Permutation of r Objects Out of n, cont.
10:28
Distinguishable Permutations
14:46
What If Not All Of the Objects We're Permuting Are Distinguishable From Each Other?
14:48
Distinguishable Permutations, cont.
17:04
Combinations
19:04
Combinations, cont.
20:56
Example 1
23:10
Example 2
26:16
Example 3
28:28
Example 4
31:52
Example 5
33:58
Example 6
36:34
Probability

36m 58s

Intro
0:00
Introduction
0:06
Definition: Sample Space
1:18
Event = Something Happening
1:20
Sample Space
1:36
Probability of an Event
2:12
Let E Be An Event and S Be The Corresponding Sample Space
2:14
'Equally Likely' Is Important
3:52
Fair and Random
5:26
Interpreting Probability
6:34
How Can We Interpret This Value?
7:24
We Can Represent Probability As a Fraction, a Decimal, Or a Percentage
8:04
One of Multiple Events Occurring
9:52
Mutually Exclusive Events
10:38
What If The Events Are Not Mutually Exclusive?
12:20
Taking the Possibility of Overlap Into Account
13:24
An Event Not Occurring
17:14
Complement of E
17:22
Independent Events
19:36
Independent
19:48
Conditional Events
21:28
What Is The Events Are Not Independent Though?
21:30
Conditional Probability
22:16
Conditional Events, cont.
23:51
Example 1
25:27
Example 2
27:09
Example 3
28:57
Example 4
30:51
Example 5
34:15
Section 14: Conic Sections
Parabolas

41m 27s

Intro
0:00
What is a Parabola?
0:20
Definition of a Parabola
0:29
Focus
0:59
Directrix
1:15
Axis of Symmetry
3:08
Vertex
3:33
Minimum or Maximum
3:44
Standard Form
4:59
Horizontal Parabolas
5:08
Vertex Form
5:19
Upward or Downward
5:41
Example: Standard Form
6:06
Graphing Parabolas
8:31
Shifting
8:51
Example: Completing the Square
9:22
Symmetry and Translation
12:18
Example: Graph Parabola
12:40
Latus Rectum
17:13
Length
18:15
Example: Latus Rectum
18:35
Horizontal Parabolas
18:57
Not Functions
20:08
Example: Horizontal Parabola
21:21
Focus and Directrix
24:11
Horizontal
24:48
Example 1: Parabola Standard Form
25:12
Example 2: Graph Parabola
30:00
Example 3: Graph Parabola
33:13
Example 4: Parabola Equation
37:28
Circles

21m 3s

Intro
0:00
What are Circles?
0:08
Example: Equidistant
0:17
Radius
0:32
Equation of a Circle
0:44
Example: Standard Form
1:11
Graphing Circles
1:47
Example: Circle
1:56
Center Not at Origin
3:07
Example: Completing the Square
3:51
Example 1: Equation of Circle
6:44
Example 2: Center and Radius
11:51
Example 3: Radius
15:08
Example 4: Equation of Circle
16:57
Ellipses

46m 51s

Intro
0:00
What Are Ellipses?
0:11
Foci
0:23
Properties of Ellipses
1:43
Major Axis, Minor Axis
1:47
Center
1:54
Length of Major Axis and Minor Axis
3:21
Standard Form
5:33
Example: Standard Form of Ellipse
6:09
Vertical Major Axis
9:14
Example: Vertical Major Axis
9:46
Graphing Ellipses
12:51
Complete the Square and Symmetry
13:00
Example: Graphing Ellipse
13:16
Equation with Center at (h, k)
19:57
Horizontal and Vertical
20:14
Difference
20:27
Example: Center at (h, k)
20:55
Example 1: Equation of Ellipse
24:05
Example 2: Equation of Ellipse
27:57
Example 3: Equation of Ellipse
32:32
Example 4: Graph Ellipse
38:27
Hyperbolas

38m 15s

Intro
0:00
What are Hyperbolas?
0:12
Two Branches
0:18
Foci
0:38
Properties
2:00
Transverse Axis and Conjugate Axis
2:06
Vertices
2:46
Length of Transverse Axis
3:14
Distance Between Foci
3:31
Length of Conjugate Axis
3:38
Standard Form
5:45
Vertex Location
6:36
Known Points
6:52
Vertical Transverse Axis
7:26
Vertex Location
7:50
Asymptotes
8:36
Vertex Location
8:56
Rectangle
9:28
Diagonals
10:29
Graphing Hyperbolas
12:58
Example: Hyperbola
13:16
Equation with Center at (h, k)
16:32
Example: Center at (h, k)
17:21
Example 1: Equation of Hyperbola
19:20
Example 2: Equation of Hyperbola
22:48
Example 3: Graph Hyperbola
26:05
Example 4: Equation of Hyperbola
36:29
Conic Sections

18m 43s

Intro
0:00
Conic Sections
0:16
Double Cone Sections
0:24
Standard Form
1:27
General Form
1:37
Identify Conic Sections
2:16
B = 0
2:50
X and Y
3:22
Identify Conic Sections, Cont.
4:46
Parabola
5:17
Circle
5:51
Ellipse
6:31
Hyperbola
7:10
Example 1: Identify Conic Section
8:01
Example 2: Identify Conic Section
11:03
Example 3: Identify Conic Section
11:38
Example 4: Identify Conic Section
14:50
Section 15: Sequences, Series, & Induction
Introduction to Sequences

57m 45s

Intro
0:00
Introduction
0:06
Definition: Sequence
0:28
Infinite Sequence
2:08
Finite Sequence
2:22
Length
2:58
Formula for the nth Term
3:22
Defining a Sequence Recursively
5:54
Initial Term
7:58
Sequences and Patterns
10:40
First, Identify a Pattern
12:52
How to Get From One Term to the Next
17:38
Tips for Finding Patterns
19:52
More Tips for Finding Patterns
24:14
Even More Tips
26:50
Example 1
30:32
Example 2
34:54
Fibonacci Sequence
34:55
Example 3
38:40
Example 4
45:02
Example 5
49:26
Example 6
51:54
Introduction to Series

40m 27s

Intro
0:00
Introduction
0:06
Definition: Series
1:20
Why We Need Notation
2:48
Simga Notation (AKA Summation Notation)
4:44
Thing Being Summed
5:42
Index of Summation
6:21
Lower Limit of Summation
7:09
Upper Limit of Summation
7:23
Sigma Notation, Example
7:36
Sigma Notation for Infinite Series
9:08
How to Reindex
10:58
How to Reindex, Expanding
12:56
How to Reindex, Substitution
16:46
Properties of Sums
19:42
Example 1
23:46
Example 2
25:34
Example 3
27:12
Example 4
29:54
Example 5
32:06
Example 6
37:16
Arithmetic Sequences & Series

31m 36s

Intro
0:00
Introduction
0:05
Definition: Arithmetic Sequence
0:47
Common Difference
1:13
Two Examples
1:19
Form for the nth Term
2:14
Recursive Relation
2:33
Towards an Arithmetic Series Formula
5:12
Creating a General Formula
10:09
General Formula for Arithmetic Series
14:23
Example 1
15:46
Example 2
17:37
Example 3
22:21
Example 4
24:09
Example 5
27:14
Geometric Sequences & Series

39m 27s

Intro
0:00
Introduction
0:06
Definition
0:48
Form for the nth Term
2:42
Formula for Geometric Series
5:16
Infinite Geometric Series
11:48
Diverges
13:04
Converges
14:48
Formula for Infinite Geometric Series
16:32
Example 1
20:32
Example 2
22:02
Example 3
26:00
Example 4
30:48
Example 5
34:28
Mathematical Induction

49m 53s

Intro
0:00
Introduction
0:06
Belief Vs. Proof
1:22
A Metaphor for Induction
6:14
The Principle of Mathematical Induction
11:38
Base Case
13:24
Inductive Step
13:30
Inductive Hypothesis
13:52
A Remark on Statements
14:18
Using Mathematical Induction
16:58
Working Example
19:58
Finding Patterns
28:46
Example 1
30:17
Example 2
37:50
Example 3
42:38
The Binomial Theorem

1h 13m 13s

Intro
0:00
Introduction
0:06
We've Learned That a Binomial Is An Expression That Has Two Terms
0:07
Understanding Binomial Coefficients
1:20
Things We Notice
2:24
What Goes In the Blanks?
5:52
Each Blank is Called a Binomial Coefficient
6:18
The Binomial Theorem
6:38
Example
8:10
The Binomial Theorem, cont.
10:46
We Can Also Write This Expression Compactly Using Sigma Notation
12:06
Proof of the Binomial Theorem
13:22
Proving the Binomial Theorem Is Within Our Reach
13:24
Pascal's Triangle
15:12
Pascal's Triangle, cont.
16:12
Diagonal Addition of Terms
16:24
Zeroth Row
18:04
First Row
18:12
Why Do We Care About Pascal's Triangle?
18:50
Pascal's Triangle, Example
19:26
Example 1
21:26
Example 2
24:34
Example 3
28:34
Example 4
32:28
Example 5
37:12
Time for the Fireworks!
43:38
Proof of the Binomial Theorem
43:44
We'll Prove This By Induction
44:04
Proof (By Induction)
46:36
Proof, Base Case
47:00
Proof, Inductive Step - Notation Discussion
49:22
Induction Step
49:24
Proof, Inductive Step - Setting Up
52:26
Induction Hypothesis
52:34
What We What To Show
52:44
Proof, Inductive Step - Start
54:18
Proof, Inductive Step - Middle
55:38
Expand Sigma Notations
55:48
Proof, Inductive Step - Middle, cont.
58:40
Proof, Inductive Step - Checking In
1:01:08
Let's Check In With Our Original Goal
1:01:12
Want to Show
1:01:18
Lemma - A Mini Theorem
1:02:18
Proof, Inductive Step - Lemma
1:02:52
Proof of Lemma: Let's Investigate the Left Side
1:03:08
Proof, Inductive Step - Nearly There
1:07:54
Proof, Inductive Step - End!
1:09:18
Proof, Inductive Step - End!, cont.
1:11:01
Section 16: Preview of Calculus
Idea of a Limit

40m 22s

Intro
0:00
Introduction
0:05
Motivating Example
1:26
Fuzzy Notion of a Limit
3:38
Limit is the Vertical Location a Function is Headed Towards
3:44
Limit is What the Function Output is Going to Be
4:15
Limit Notation
4:33
Exploring Limits - 'Ordinary' Function
5:26
Test Out
5:27
Graphing, We See The Answer Is What We Would Expect
5:44
Exploring Limits - Piecewise Function
6:45
If We Modify the Function a Bit
6:49
Exploring Limits - A Visual Conception
10:08
Definition of a Limit
12:07
If f(x) Becomes Arbitrarily Close to Some Number L as x Approaches Some Number c, Then the Limit of f(x) As a Approaches c is L.
12:09
We Are Not Concerned with f(x) at x=c
12:49
We Are Considering x Approaching From All Directions, Not Just One Side
13:10
Limits Do Not Always Exist
15:47
Finding Limits
19:49
Graphs
19:52
Tables
21:48
Precise Methods
24:53
Example 1
26:06
Example 2
27:39
Example 3
30:51
Example 4
33:11
Example 5
37:07
Formal Definition of a Limit

57m 11s

Intro
0:00
Introduction
0:06
New Greek Letters
2:42
Delta
3:14
Epsilon
3:46
Sometimes Called the Epsilon-Delta Definition of a Limit
3:56
Formal Definition of a Limit
4:22
What does it MEAN!?!?
5:00
The Groundwork
5:38
Set Up the Limit
5:39
The Function is Defined Over Some Portion of the Reals
5:58
The Horizontal Location is the Value the Limit Will Approach
6:28
The Vertical Location L is Where the Limit Goes To
7:00
The Epsilon-Delta Part
7:26
The Hard Part is the Second Part of the Definition
7:30
Second Half of Definition
10:04
Restrictions on the Allowed x Values
10:28
The Epsilon-Delta Part, cont.
13:34
Sherlock Holmes and Dr. Watson
15:08
The Adventure of the Delta-Epsilon Limit
15:16
Setting
15:18
We Begin By Setting Up the Game As Follows
15:52
The Adventure of the Delta-Epsilon, cont.
17:24
This Game is About Limits
17:46
What If I Try Larger?
19:39
Technically, You Haven't Proven the Limit
20:53
Here is the Method
21:18
What We Should Concern Ourselves With
22:20
Investigate the Left Sides of the Expressions
25:24
We Can Create the Following Inequalities
28:08
Finally…
28:50
Nothing Like a Good Proof to Develop the Appetite
30:42
Example 1
31:02
Example 1, cont.
36:26
Example 2
41:46
Example 2, cont.
47:50
Finding Limits

32m 40s

Intro
0:00
Introduction
0:08
Method - 'Normal' Functions
2:04
The Easiest Limits to Find
2:06
It Does Not 'Break'
2:18
It Is Not Piecewise
2:26
Method - 'Normal' Functions, Example
3:38
Method - 'Normal' Functions, cont.
4:54
The Functions We're Used to Working With Go Where We Expect Them To Go
5:22
A Limit is About Figuring Out Where a Function is 'Headed'
5:42
Method - Canceling Factors
7:18
One Weird Thing That Often Happens is Dividing By 0
7:26
Method - Canceling Factors, cont.
8:16
Notice That The Two Functions Are Identical With the Exception of x=0
8:20
Method - Canceling Factors, cont.
10:00
Example
10:52
Method - Rationalization
12:04
Rationalizing a Portion of Some Fraction
12:05
Conjugate
12:26
Method - Rationalization, cont.
13:14
Example
13:50
Method - Piecewise
16:28
The Limits of Piecewise Functions
16:30
Example 1
17:42
Example 2
18:44
Example 3
20:20
Example 4
22:24
Example 5
24:24
Example 6
27:12
Continuity & One-Sided Limits

32m 43s

Intro
0:00
Introduction
0:06
Motivating Example
0:56
Continuity - Idea
2:14
Continuous Function
2:18
All Parts of Function Are Connected
2:28
Function's Graph Can Be Drawn Without Lifting Pencil
2:36
There Are No Breaks or Holes in Graph
2:56
Continuity - Idea, cont.
3:38
We Can Interpret the Break in the Continuity of f(x) as an Issue With the Function 'Jumping'
3:52
Continuity - Definition
5:16
A Break in Continuity is Caused By the Limit Not Matching Up With What the Function Does
5:18
Discontinuous
6:02
Discontinuity
6:10
Continuity and 'Normal' Functions
6:48
Return of the Motivating Example
8:14
One-Sided Limit
8:48
One-Sided Limit - Definition
9:16
Only Considers One Side
9:20
Be Careful to Keep Track of Which Symbol Goes With Which Side
10:06
One-Sided Limit - Example
10:50
There Does Not Necessarily Need to Be a Connection Between Left or Right Side Limits
11:16
Normal Limits and One-Sided Limits
12:08
Limits of Piecewise Functions
14:12
'Breakover' Points
14:22
We Find the Limit of a Piecewise Function By Checking If the Left and Right Side Limits Agree With Each Other
15:34
Example 1
16:40
Example 2
18:54
Example 3
22:00
Example 4
26:36
Limits at Infinity & Limits of Sequences

32m 49s

Intro
0:00
Introduction
0:06
Definition: Limit of a Function at Infinity
1:44
A Limit at Infinity Works Very Similarly to How a Normal Limit Works
2:38
Evaluating Limits at Infinity
4:08
Rational Functions
4:17
Examples
4:30
For a Rational Function, the Question Boils Down to Comparing the Long Term Growth Rates of the Numerator and Denominator
5:22
There are Three Possibilities
6:36
Evaluating Limits at Infinity, cont.
8:08
Does the Function Grow Without Bound? Will It 'Settle Down' Over Time?
10:06
Two Good Ways to Think About This
10:26
Limit of a Sequence
12:20
What Value Does the Sequence Tend to Do in the Long-Run?
12:41
The Limit of a Sequence is Very Similar to the Limit of a Function at Infinity
12:52
Numerical Evaluation
14:16
Numerically: Plug in Numbers and See What Comes Out
14:24
Example 1
16:42
Example 2
21:00
Example 3
22:08
Example 4
26:14
Example 5
28:10
Example 6
31:06
Instantaneous Slope & Tangents (Derivatives)

51m 13s

Intro
0:00
Introduction
0:08
The Derivative of a Function Gives Us a Way to Talk About 'How Fast' the Function If Changing
0:16
Instantaneous Slop
0:22
Instantaneous Rate of Change
0:28
Slope
1:24
The Vertical Change Divided by the Horizontal
1:40
Idea of Instantaneous Slope
2:10
What If We Wanted to Apply the Idea of Slope to a Non-Line?
2:14
Tangent to a Circle
3:52
What is the Tangent Line for a Circle?
4:42
Tangent to a Curve
5:20
Towards a Derivative - Average Slope
6:36
Towards a Derivative - Average Slope, cont.
8:20
An Approximation
11:24
Towards a Derivative - General Form
13:18
Towards a Derivative - General Form, cont.
16:46
An h Grows Smaller, Our Slope Approximation Becomes Better
18:44
Towards a Derivative - Limits!
20:04
Towards a Derivative - Limits!, cont.
22:08
We Want to Show the Slope at x=1
22:34
Towards a Derivative - Checking Our Slope
23:12
Definition of the Derivative
23:54
Derivative: A Way to Find the Instantaneous Slope of a Function at Any Point
23:58
Differentiation
24:54
Notation for the Derivative
25:58
The Derivative is a Very Important Idea In Calculus
26:04
The Important Idea
27:34
Why Did We Learn the Formal Definition to Find a Derivative?
28:18
Example 1
30:50
Example 2
36:06
Example 3
40:24
The Power Rule
44:16
Makes It Easier to Find the Derivative of a Function
44:24
Examples
45:04
n Is Any Constant Number
45:46
Example 4
46:26
Area Under a Curve (Integrals)

45m 26s

Intro
0:00
Introduction
0:06
Integral
0:12
Idea of Area Under a Curve
1:18
Approximation by Rectangles
2:12
The Easiest Way to Find Area is With a Rectangle
2:18
Various Methods for Choosing Rectangles
4:30
Rectangle Method - Left-Most Point
5:12
The Left-Most Point
5:16
Rectangle Method - Right-Most Point
5:58
The Right-Most Point
6:00
Rectangle Method - Mid-Point
6:42
Horizontal Mid-Point
6:48
Rectangle Method - Maximum (Upper Sum)
7:34
Maximum Height
7:40
Rectangle Method - Minimum
8:54
Minimum Height
9:02
Evaluating the Area Approximation
10:08
Split the Interval Into n Sub-Intervals
10:30
More Rectangles, Better Approximation
12:14
The More We Us , the Better Our Approximation Becomes
12:16
Our Approximation Becomes More Accurate as the Number of Rectangles n Goes Off to Infinity
12:44
Finding Area with a Limit
13:08
If This Limit Exists, It Is Called the Integral From a to b
14:08
The Process of Finding Integrals is Called Integration
14:22
The Big Reveal
14:40
The Integral is Based on the Antiderivative
14:46
The Big Reveal - Wait, Why?
16:28
The Rate of Change for the Area is Based on the Height of the Function
16:50
Height is the Derivative of Area, So Area is Based on the Antiderivative of Height
17:50
Example 1
19:06
Example 2
22:48
Example 3
29:06
Example 3, cont.
35:14
Example 4
40:14
Section 17: Appendix: Graphing Calculators
Buying a Graphing Calculator

10m 41s

Intro
0:00
Should You Buy?
0:06
Should I Get a Graphing Utility?
0:20
Free Graphing Utilities - Web Based
0:38
Personal Favorite: Desmos
0:58
Free Graphing Utilities - Offline Programs
1:18
GeoGebra
1:31
Microsoft Mathematics
1:50
Grapher
2:18
Other Graphing Utilities - Tablet/Phone
2:48
Should You Buy a Graphing Calculator?
3:22
The Only Real Downside
4:10
Deciding on Buying
4:20
If You Plan on Continuing in Math and/or Science
4:26
If Money is Not Particularly Tight for You
4:32
If You Don't Plan to Continue in Math and Science
5:02
If You Do Plan to Continue and Money Is Tight
5:28
Which to Buy
5:44
Which Graphing Calculator is Best?
5:46
Too Many Factors
5:54
Do Your Research
6:12
The Old Standby
7:10
TI-83 (Plus)
7:16
TI-84 (Plus)
7:18
Tips for Purchasing
9:17
Buy Online
9:19
Buy Used
9:35
Ask Around
10:09
Graphing Calculator Basics

10m 51s

Intro
0:00
Read the Manual
0:06
Skim It
0:20
Play Around and Experiment
0:34
Syntax
0:40
Definition of Syntax in English and Math
0:46
Pay Careful Attention to Your Syntax When Working With a Calculator
2:08
Make Sure You Use Parentheses to Indicate the Proper Order of Operations
2:16
Think About the Results
3:54
Settings
4:58
You'll Almost Never Need to Change the Settings on Your Calculator
5:00
Tell Calculator In Settings Whether the Angles Are In Radians or Degrees
5:26
Graphing Mode
6:32
Error Messages
7:10
Don't Panic
7:11
Internet Search
7:32
So Many Things
8:14
More Powerful Than You Realize
8:18
Other Things Your Graphing Calculator Can Do
8:24
Playing Around
9:16
Graphing Functions, Window Settings, & Table of Values

10m 38s

Intro
0:00
Graphing Functions
0:18
Graphing Calculator Expects the Variable to Be x
0:28
Syntax
0:58
The Syntax We Choose Will Affect How the Function Graphs
1:00
Use Parentheses
1:26
The Viewing Window
2:00
One of the Most Important Ideas When Graphing Is To Think About The Viewing Window
2:01
For Example
2:30
The Viewing Window, cont.
2:36
Window Settings
3:24
Manually Choose Window Settings
4:20
x Min
4:40
x Max
4:42
y Min
4:44
y Max
4:46
Changing the x Scale or y Scale
5:08
Window Settings, cont.
5:44
Table of Values
7:38
Allows You to Quickly Churn Out Values for Various Inputs
7:42
For example
7:44
Changing the Independent Variable From 'Automatic' to 'Ask'
8:50
Finding Points of Interest

9m 45s

Intro
0:00
Points of Interest
0:06
Interesting Points on the Graph
0:11
Roots/Zeros (Zero)
0:18
Relative Minimums (Min)
0:26
Relative Maximums (Max)
0:32
Intersections (Intersection)
0:38
Finding Points of Interest - Process
1:48
Graph the Function
1:49
Adjust Viewing Window
2:12
Choose Point of Interest Type
2:54
Identify Where Search Should Occur
3:04
Give a Guess
3:36
Get Result
4:06
Advanced Technique: Arbitrary Solving
5:10
Find Out What Input Value Causes a Certain Output
5:12
For Example
5:24
Advanced Technique: Calculus
7:18
Derivative
7:22
Integral
7:30
But How Do You Show Work?
8:20
Parametric & Polar Graphs

7m 8s

Intro
0:00
Change Graph Type
0:08
Located in General 'Settings'
0:16
Graphing in Parametric
1:06
Set Up Both Horizontal Function and Vertical Function
1:08
For Example
2:04
Graphing in Polar
4:00
For Example
4:28
Loading...
This is a quick preview of the lesson. For full access, please Log In or Sign up.
For more information, please see full course syllabus of Math Analysis
Bookmark & Share Embed

Share this knowledge with your friends!

Copy & Paste this embed code into your website’s HTML

Please ensure that your website editor is in text mode when you paste the code.
(In Wordpress, the mode button is on the top right corner.)
  ×
  • - Allow users to view the embedded video in full-size.
Since this lesson is not free, only the preview will appear on your website.
  • Discussion

  • Answer Engine

  • Study Guides

  • Download Lecture Slides

  • Table of Contents

  • Transcription

  • Related Books

Lecture Comments (54)

1 answer

Last reply by: Dr. William Murray
Tue Dec 20, 2022 3:12 PM

Post by Hannah Yao on December 17, 2022

At 5:15, you write that the y coordinate of A is cosB. Shouldn't the y coordinate be sinA?

1 answer

Last reply by: Dr. Will Murray
Wed Jul 15, 2020 11:52 AM

Post by Ann Gao on July 13, 2020

Hi professor, what are the common values of sin and cos that we should memorize?

1 answer

Last reply by: Dr. Will Murray
Mon May 25, 2020 10:56 AM

Post by Kevin Liang on May 24, 2020

Hello Professor, I don't get why in extra example 1, you used sin(A-B) for the last example instead of cos(A-B)?

1 answer

Last reply by: Dr. Will Murray
Fri May 1, 2020 9:40 AM

Post by Penny Huang on April 30, 2020

In 9min20sec, why it is (cos(A-B)-1)^2? Why we should minus 1?

1 answer

Last reply by: Dr. William Murray
Fri Aug 17, 2018 7:03 PM

Post by John Stedge on August 9, 2018

Extra Example 2 at 6:17, Bless you.

1 answer

Last reply by: Dr. William Murray
Sat Aug 13, 2016 10:54 AM

Post by tae Sin on August 12, 2016

I know this question is frivolous - I don't mind anyone answering this question if they know this is possible, but I used a calculator when I was bored. And I spammed sincostansincostan() with some random value - I'm pretty sure I used a real number that didn't create undefined value. And I actually got a value, so can you somehow explain how this is possible? if it does relate to the addition and subtraction formulas, please explain them as well?

2 answers

Last reply by: Dr. William Murray
Wed Apr 27, 2016 4:51 PM

Post by Tania Torres on April 26, 2016

Regarding Iris Kim's question, "At 12:14, you wrote that (cos(A-B)-1)^2 equals cos(A-B)^2-2cos(A-B)... shouldn't it be cos(A-B)^2-2cos(A-B)+1?" and your response, why is it not '+ 1'?

2 answers

Last reply by: Dr. William Murray
Wed Jul 1, 2015 8:52 AM

Post by Iris Kim on June 30, 2015

At 12:14, you wrote that (cos(A-B)-1)^2 equals cos(A-B)^2-2cos(A-B)... shouldn't it be cos(A-B)^2-2cos(A-B)+1?

2 answers

Last reply by: Ann Gao
Mon Jul 13, 2020 11:21 AM

Post by olga shevchuk on November 16, 2014

THERE WAS A MISTAKE. IT WAS WRITTEN 2SIN(3X)COS(X) WHEN IT SHOULD HAVE BEEN 2SIN(3X)COS(2X) STARTING @28:10

1 answer

Last reply by: Dr. William Murray
Tue Aug 5, 2014 3:49 PM

Post by Jamal Tischler on July 23, 2014

Very good lesson. I apreciate you derived the formulas ! It helped me.

3 answers

Last reply by: Dr. William Murray
Mon Jun 23, 2014 7:44 PM

Post by Jeffrey Tao on June 21, 2014

In your response to Manfred Berger's question, you stated how it is possible to use the Euler's formula, e^ix=cosx+isinx, to prove the identities,as a way that did not use calculus. But from what I've learned, the derivation of the formula e^ix=cosx+isinx comes from power series, so doesn't this method of proving the identities still use calculus?

1 answer

Last reply by: Dr. William Murray
Tue Dec 10, 2013 11:32 PM

Post by Monis Mirza on December 7, 2013

Write an equivalent expression for sin(2m)cos(n)+ cos(2m) sin(n)

3 answers

Last reply by: Dr. William Murray
Thu Jul 18, 2013 8:20 AM

Post by Manfred Berger on June 28, 2013

Are you going to prove any of the addition formulas in Calc 2?

1 answer

Last reply by: Dr. William Murray
Fri Aug 31, 2012 5:26 PM

Post by Su Jung Leem on August 2, 2012

I know it's a irrelevant question but i wasn't sure where to ask this question. Does anyeone know how to add y+2 over y squared - y -2 and one over 3y+3 ? I keep on getting different answers every time I trying to answer this question. please help!!!

1 answer

Last reply by: Dr. William Murray
Sun May 12, 2013 5:21 PM

Post by Nathan Thomas on January 8, 2012

He didn't include the tangent sum difference formulas which is very important and shouldn't be skipped over.

tan(a + b) =
(tan a + tan b) / (1 - (tan a)(tan b)

tan(a - b) =
(tan a - tan b) / (1 + (tan a)(tan b)

1 answer

Last reply by: Dr. William Murray
Sun May 12, 2013 5:19 PM

Post by Elina Bugar on August 23, 2011

how did he get the coordinates of angle a to be cosA,cosB
and for angle B (SinA, CosB)

3 answers

Last reply by: Dr. William Murray
Sun May 12, 2013 5:15 PM

Post by Marco Zendejo on June 22, 2011

Im kinda confuse in Example II.
How did Pie/12 turn into pie/4 - pie/6
If anyone could explain this I'll be grateful.

2 answers

Last reply by: Dr. William Murray
Sun May 12, 2013 5:11 PM

Post by Judith Gleco on June 11, 2011

Hi,
I was wandering if anyone is having any problems with the recording glitching, or stopping and going back to the begining of the lesson. Help so I know if it is my computer.

7 answers

Last reply by: Dr. William Murray
Sun May 12, 2013 5:07 PM

Post by Mark Mccraney on January 15, 2010

Lecture 3, ex 1: shouldn't the coords written in blue be A=(cosA, sinB) vs A=(cosA, cosB)

Addition and Subtraction Formulas

    Main formulas:

    • Addition and subtraction formulas
      cos(AB)
      =
      cosA cosB + sinA sinB
      cos(A + B)
      =
      cosA cosB − sinA sinB
      sin(AB)
      =
      sinA cosB − cosA sinB
      sin(A + B)
      =
      sinA cosB + cosA sinB
    • Cofunction identities
      cos (π

      2
      x )
      =
      sinx
      sin (π

      2
      x )
      =
      cosx

    Example 1:

    Derive the formula for cos(AB) without using the other addition and subtraction formulas.

    Example 2:

    Use the addition and subtraction formulas to find the cosines and sines of (π/12)R and 105° .

    Example 3:

    Use the addition and subtraction formulas to prove the following identity:
    sin5x + sinx

    cos5x + cosx
    = tan3x

    Example 4:

    Use the formula for cos(AB) and the cofunction identities to derive the other three addition and subtraction formulas.

    Example 5:

    Convert 75°  and -15° to radians and use the addition and subtraction formulas to find their cosines and sines.

Addition and Subtraction Formulas

Lecture Slides are screen-captured images of important points in the lecture. Students can download and print out these lecture slide images to do practice problems as well as take notes while watching the lecture.

  • Intro 0:00
  • Addition and Subtraction Formulas 0:09
    • How to Remember
  • Cofunction Identities 1:31
    • How to Remember Graphically
    • Where to Use Cofunction Identities
  • Example 1: Derive the Formula for cos(A-B) 3:08
  • Example 2: Use Addition and Subtraction Formulas 16:03
  • Example 3: Use Addition and Subtraction Formulas to Prove Identity 25:11
  • Extra Example 1: Use cos(A-B) and Cofunction Identities
  • Extra Example 2: Convert to Radians and use Formulas

Transcription: Addition and Subtraction Formulas

Ok we are here to try more examples of the addition and subtraction formulas.0000

This time we are going to use the formula for cos(A-B) and the co function identities to derive the other three addition and subtraction formulas.0007

If you remember back in the previous set of examples, we proved the formula for cos(A-B).0016

We did it without using the other addition and subtraction formulas.0024

We are not getting trapped in any circular loops of logic.0028

We really did prove the cos(A-B) from scratch.0031

And now that we got that available to us, we are going to start with that formula and we are going to try to derive all the others.0035

Hopefully, it would be easier than the original proof of the cos(A-B) formula.0044

Let us remember what that formula is because we are allowed to use it now.0050

The cos(A+B) is equal to cos A cos B + sin A sin B, we are allowed use that.0055

I want to derive the other three formulas.0070

I'm going to start with cos(A+B) and I'm going to write that as cos((A-(-B)).0073

I'm gong to write in addition, in terms of a subtraction.0079

The point of that is now I can use my subtraction formula.0091

So, this is cos A. I'm just going to invoke this formula above except whenever I see a B, I will change it to (-B).0095

I have cos A cos(-B) + sin A sin(-B).0107

Remember, cosine is not even a function.0125

That means cos(-x) is the same as cos(x).0128

Sine is an odd function, sin(-x) is equal to -sin(x), I got cos A and cos(-B), but cos(-B) is the same as cos B.0137

Now sin A and sin -B, sine is odd so sin(-B) is -sin B.0156

But look, now I got cos(A+B) is equal to cos A cos B - sin A sin B, that is the formula for cos(A+B).0169

I was able to do that much more quickly than we were able to prove the original formula for cos(A-B).0180

Let us see how that works for sin(A+B).0188

Now, I'm going to have to bring in the co function identities, let me remind you what those are.0194

Those say that cos(pi/2)-x is the same as sin(X), sin(pi/2)-x is equal to cos(x).0198

Somehow we are going to use those to derive the sin formulas from the sin formulas.0215

The way we do that is I have sin(A+B), I'm going to use the first co function identity and write that as cos((pi/2-(A+B)).0221

That is by the first co function identity.0238

Now, that is cos(pi/2-A). I am going to group those two terms together and then -B, because it was minus the quantity of A+B.0241

I'm going to use my cos subtraction formula, this one that we started with.0255

cos, I am going to substitute n instead of A-B, I have (pi-2)-(A-B).0263

So, this is cos of the first term, cos(pi/2-A), cos of the second term is B + sin of the first term x sin of the second term.0273

But now, cos(pi/2-A) again using the co function identity is just sin A, sin A cos B.0293

Now, sin(pi/2-A) using the co function identity at the second co function identity is cos A x B.0305

Now we got the addition formula for sin, because we started with sin(A+B) and we reduced it down to sin A cos B + cos A sin B.0318

That is where the addition formula for sin comes in.0330

Finally, sin(A-B) we are going to do the same trick that we did for cos(A+B).0334

We will write this as sin, instead of writing it as a subtraction, we will think of it as adding a negative.0344

This is sin A - (-), I'm sorry A + (-B).0355

The point of that is that we can then invoke the sin formula that we just proved, we got sin(something +something).0365

According to the sin formula that we just proved, it is the sin of the first one x the cos of the second one which is (-B) + cos of the first one x sin of second one which is (-B).0372

Now again, we are going to use the odd and even properties.0390

This is sin A, cos (-B), cos does not even function so that is cos B + cos A.0394

Actually I should have said plus because look we have sin (-B) and sin (-x) is -sin(x). This is -cos A sin B.0406

But now, we started with sin(A-B) and we derived sin A cos B - cos A sin B.0418

That is exactly the subtraction formula for sin.0429

In each one of those identities, we did not use anything external.0434

We just started with the identity for cos(A-B) and then we made some clever substitutions to figure out cos(A+B), sin(A+B), sin(A-B).0438

Just making little substitutions into the one formula that we started with to get the formulas for the other three expressions.0454

Remember, it was a lot of work to prove that original formula for cos(A-B).0464

But once we have that one we can sort of milk it over and over again to get the other three formulas.0469

Extra example 2, which is to convert 75 degrees and -15 degrees to radians and we will use the addition and subtraction formulas to find the cos and sin.0000

So, 75 degrees, we will start out with that one.0014

Remember, the conversion formula is pi/180, that simplifies down to 5pi/12, that is not a common value.0020

I do not know the cos and sin of 5pi/12.0034

I‘m going to write that as a combination of two angles that I do know, that is (pi/4 + pi/6).0040

That is because pi/4 is 3pi/12 and pi/6 is 2pi/12 and you put them together and you got 5pi/12.0044

The key point of that is the pi/4 and pi/6 are common values.0060

I know the sin and cos(pi/4 and pi/6), I have memorized them and hopefully, you have memorized them as well.0066

Once I use my addition and subtraction formulas I can figure out the sin and cos of 5pi/12.0074

Let me remind you the addition and subtraction formulas we will be using.0081

Here, we are going to find cos(A+B) which is(cos A cos B) – (sin A sin B).0085

I’m going to go ahead and write the formula for sin(A+B).0103

It is equal to (sin A cos B) +(cos A sin B).0110

What is invoked those here we are trying to find the cos(5pi/12) which is the same as the cos(pi/4 + pi/6).0122

I’m going to use the cos addition formula cos(pi/4) cos(pi/6) – sin(pi/4) sin(pi/6).0138

All of those are common values, I have got those all computed to memory.0159

This will be very quick to finish from here.0163

This is cos(pi/4) I remember is square root of 2/2, cos(pi/6), I remember is square root of 3/2 – sin(pi/4) is root 2/2, sin(pi/6) is just ½.0166

If I put those together the common denominator there is 4, (root 2 x root 3 is 6) – (root 2 x 1).0182

That is my cos(5pi/12) which is the same as the cos of 75 degrees.0195

Let us find the sin now, sin(5pi/12) is equal to sin(pi/4) + pi/6, which by the addition formula for sin is sin of the first one pi/4, (cos of the second one pi/6) + (cos of the first one x sin of the second one).0202

And now again those are common values, I remember them all.0234

Sin(pi/4) is root 2/2, cos(pi/6) is root 3/2, cos(pi/4) is also root 2/2, sin(pi/6) is just ½.0237

I put these together over common denominator 4 and I get (root 6 + root 2/4).0257

What to remember those two values because we are actually going to use them in the next part.0271

The next part is to figure out -15 degrees, we want to start out by converting that to radians.0277

-15 degrees we multiply that by our conversion factor pi/180, that gives us 15/180, simplifies down to 112, so we get –pi/12 radians.0283

Now, there are two ways we could proceed from here. We can write –pi/12 as (pi/6 – pi/4) and that is because pi/6 is 2pi/12, pi/4 is 3pi/12. You subtract them and you will get –pi/12.0307

We could do at that way or we can write –pi/12 as (5pi/12 – pi/2- 6pi/12).0334

I want to do it that way because I want to practice that plus I think the sin and cos of pi/2 are a little bit easier to remember, I want to practice that method.0341

Let me write the formulas for sin and cos because we are going to be using those.0351

Cos(A-B) is(cos A cos B) + (sin A sin B) and sin(A-B) is equal to (sin A cos B) – (cos A sin B).0356

I’m going to be using those subtraction formulas the cos(-pi/12).0390

If we use the second version that is cos(5pi/12-pi/2).0399

And now by the subtraction formula that is (cos(5pi/12) x cos(pi/2)) +(sin(5pi/12) x sin(pi/2)).0408

Now look at this, the cos(pi/2), remember that is cos 90 degrees, the x coordinate of 90 degrees angle that is 0.0431

That whole term drops out, sin(pi/2) is 1.0441

This whole thing simplifies down to sin(5pi/12) and we worked that out on the previous page.0447

The sin(pi/12) we did this work before, that was the (square root of 2) + (square root of 6)/4.0460

We are invoking previous work there, this would be something that I would not have remembered but because I just work that out in the previous problem I remember the answer now.0470

We are going to try to figure out the sin(-pi/12) the same way.0485

So, sin(-pi/12) is the same as sin(5pi/12) – pi/2, because it is (5pi/12 – 6pi/12).0489

Using the subtraction formula for sin, that is sin of the first one, which is sin(5pi/12) x cos of the second one (pi/2) – cos of the first one (5pi/12) x sin of the second one (pi/2).0506

The point of that is that the pi/2 values are very easy.0526

I know that the cos, just like before is 0 and the sin is 1.0529

This whole thing simplifies down to –cos(5pi/12).0539

Again, I worked out the cos(5pi/12) on the previous page, the cos(5pi/12) in the previous page was (root 6 – root 2)/4.0550

Or we want the negative of that this time, I will just switch those around and I will get root 2 – root 6 divided by 4.0565

The key to doing that problem, well first of all, converting those angle to radians, that is a simple conversion factor of pi/180, that part was fairly easy.0583

Once we figured out how to convert those angle to radians, it was a matter of writing them as either sums or differences using addition or subtraction of common values, pi/6, pi/4, pi/3.0593

Things that you already know the sin and cos of by heart.0608

75 degrees 5pi/12, the key there was to figure out that was pi/4 + pi/6 and then know that you remember the common values, the sin and cos(pi/4) and pi/6.0614

So you can work out the sin and cos of 5pi/12, the -15 degrees converted into –pi/12 and then we can write that as pi/6 – pi/4, that would be one way to do it.0630

Or since we already know the sin and cos of 5pi/12, it is a little bit easier to write it as 5pi/12 – pi/2.0646

Then we can use the addition and subtraction formulas which because of the pi/2, essentially reduced it down to knowing the sin and cos of 5pi/12, which we figured out on the previous page.0654

So, that is how you use the addition and subtraction formulas to find the values of sin and cos of other angles when you already know the sin and cos of the common values.0668

That is the end of the lecture on addition and subtraction formulas.0681

We will use these formulas later on to find the double and half angle formulas that is coming next in the trigonometry lectures on www.educator.com.0684

Hi this is Will Murray for educator.com and we're talking about the addition and subtraction formulas for the sine and cosine functions.0000

The basic formulas are all listed here.0009

We have a formula for cos(a-b), cos(a+b), sin(a-b), and sin(a+b).0012

Unfortunately, you really need to memorize these formulas but it is not quite as bad as it looks.0021

In fact, if you can just remember one each for the cosine and the sine, maybe if you can remember cos(a+b) and sin(a+b), we'll learn later on in the lecture that you can work out the other formulas just by making the right substitution into those starter formulas.0026

If you remember what cos(a+b) is then you can substitute in -b in the place of b, and you can work out what the cos(a-b) is.0047

The same for sin(a+b), if you can remember the formula for sin(a+b), you can substitute in -b for b and find out the formula for sin(a-b).0058

You do have to remember a couple of formulas to get started, but after that you can work out the other formulas by some basic substitutions.0070

It's not as bad as it might sound in terms of memorization here.0078

There's a couple of cofunction identities that we're going to be using as we prove and apply the addition and subtraction formulas.0082

It's good to remember that cos(π/2 - x) is the same as sin(x).0092

The similar identity sin(π/2 - x) is equal to cos(x).0098

Those aren't too hard to remember if you kind of keep a graphical picture in your head.0104

Let me show you how those work out.0111

Let me draw an angle x here.0113

Then the cosine and sine, remember the x and y coordinates of that angle.0117

That's the cosine, and that's the sine.0125

And π/2 - x, well π/2 - x, remember of course is a 90-degree angle, so π/2 - x, we just go back x from π/2.0128

There's x and then that right there is π/2 - x.0139

If we write down the cosine and sine of π/2 - x, this is the same angle except we just switch the x and y coordinates.0147

When you go from x to π/2 - x, you're just switching the sine and cosine.0157

That's kind of how I remember that cos(π/2 - x)=sin(x) and sin(π/2 - x)=cos(x).0164

We'll be using those cofunction identities, both to prove the addition and subtraction formulas later on, and also to figure out the sines and cosines of new angles as a quicker in using these addition and subtraction formulas.0172

Let's get some examples here.0189

The first example is to derive the formula for cos(a-b) without using the other addition and subtraction formulas.0191

There's a key phrase here, it says, without using the other formulas.0199

The point of that is that once you figure out that one of these formulas, you can figure out a lot of the other formulas from the first one.0204

If you can figure out one formula, you need one formula to get started because otherwise you kind of get in a circular logic clue.0213

You need one of these formulas to get started and we'll have to go a bit of work to prove that.0221

Figuring out the other formulas from the first one turns out not to be so difficult.0227

What we'll do is we'll work out the formula for cos(a-b).0233

Then in our later example, we'll show how you can work out all the others just from knowing the cos(a-b).0238

This is a bit of a trick, it's probably not something that you would easily think about.0246

It really takes a little bit of ingenuity to prove this.0250

We'll start with a unit circle.0254

There's my unit circle.0269

I'm going to draw an angle a and an angle b.0272

I'm going to draw an angle a over here, so there's a, this big arc here.0274

I'll draw a b a little bit smaller, so there's b.0283

Then (a-b) is the difference between them.0293

This arc between them is going to be (a-b).0296

That's (a-b) in there.0299

Now, I want to write down the coordinates of each of those points.0302

The coordinates there, I'll write them in blue, are cos(a), the x-coordinate, and cos(b), the y-coordinate.0307

That's the coordinates of endpoint of angle a.0318

In red, I'm going to write down the coordinates of the endpoint of angle b, cos(b), sin(b).0324

Now, I'm going to connect those two points up with a straight line.0338

I want to figure out what the distance of that line is, and I'm going to use the Pythagorean formula.0345

Remember, the distance formula that comes from the Pythagorean formula is you look at the differences in the x-coordinates.0350

So, (x2-x1)2+(y2-y1)2, you add those together and you take the square root of the whole thing.0365

That's the distance formula.0379

Here, the x2 and the x1 are the cosines, so my distance is cos(b)-cos(a).0384

Actually, I think I'm going to write that the other way around, this cos(a)-cos(b).0402

It doesn't matter which way I write it because it's going to be squared anyway.0411

Plus [sin(a)-sin(b)]2, then I'll have to take the square root of the whole thing.0416

To get rid of the square root, I'm going to square both sides.0429

I get d2=(cos(a)-cos(b))2+(sin(a)-sin(b))2.0435

That's one way of calculating that distance.0452

Now, I'm going to do something a little different.0455

I'm going to take this line segment d and I'm going to move it over, move it around the circle so that it starts down here at the point (1,0).0458

There's that line segment again.0475

Remember, the line segment was cutting off an arc of the circle exactly equal to (a-b), exactly equal to an angle of the size (a-b), which means that that point right there has coordinates (cos(a-b),sin(a-b)).0481

That point has coordinates (cos(a-b),sin(a-b)).0513

Now, I'm going to apply the distance formula, again, to the new line segment in the new place.0519

That says, again, the change in the x coordinates plus the change in the y coordinates, square each one of those and add them up and take the square root.0525

So, d is equal to change in x coordinates, that's cos(a-b).0535

Now, the old x-coordinate is just 1 because I'm looking at the point (1,0).0543

That quantity squared plus the change in y coordinates, sin(a-b) minus, the old y-coordinate is 0, squared.0547

Then I take the square root of the whole thing.0562

I'm going to square both sides, d2=(cos(a)-1)2+(sin2(a-b)).0566

What I'm going to do is look at these two different expressions here for d2.0590

Well, they're both describing the same d2, they must be equal to each other.0597

That was kind of the geometric insight to figure out to get me an algebraic equation setting a bunch of things equal to each other.0608

From here on, it's just algebra, so we're going to set these two equations equal to each other.0616

The first one is (cos(a)-cos(b))2+(sin(a)-sin(b))2 is equal to the second one, (cos(a-b)-1)2+(sin2(a-b)).0622

Now, I'm just going to manipulate this expression expanded out, cancel few things and it should give us the identity that we want.0652

Remember, the square formula (a-b)2=a2-2ab+b2.0659

We're going to be using that a lot because we have a lot of squares of differences.0671

On the first term we have cos2(a)-2cos(a)cos(b)+cos2(b)+sin2(a)-2sin(a)sin(b)+sin2(b)=cos2(a-b)-2×1×cos(a-b)+sin2(a-b).0679

Now, there's a lot of nice ways to invoke the Pythagorean identity here.0727

If you look at this term, and this term, cos2(a) and sin2(a), that gives me 1-2cos(a)cos(b).0735

Now I have a cos2(b) and a sin2(b), so that's another 1-2sin(a)sin(b), is equal to, now look, cos2(a-b) and sin2(a-b), that's another 1.0749

It looks like I forgot one term on the line above when I was squaring out cos(a-b)-12, I got cos2(a-b)-2cos(a-b), then there should be +12, there's another 1 in there.0772

There's another 1 in there, -2cos(a-b).0793

That's it because we already took care of the sin2(a-b) that got absorbed with the cos(a-b).0800

There's a lot of terms that will cancel now.0807

The 1s will cancel, 1, 1, 1 and 1, those will cancel.0809

We're left with -2, I'll factor that out, cos(a)×cos(b)+sin(a), because I factored out the -2, sin(b), is equal to -2cos(a-b).0814

Now, if we cancel the -2s, look what we have.0838

We have exactly cos(a)×cos(b)+sin(a)×sin(b)=cos(a-b).0840

That's the formula for cos(a-b).0860

That was really quite tricky.0864

The key element to that is that we did not use the other addition and subtraction formulas.0867

We really derived this from scratch, which means that we can use this as our starting point.0873

Later on, we'll derive the other addition and subtraction formulas but we'll be able to use this one to get started.0878

The others will be a lot easier.0884

This one was trickier because we really had to later on geometric ideas from scratch.0887

What we did was we graphed this angle a and angle b.0892

We connected them up with this line segment d, and we found the length of that line segment using the Pythagorean distance formula.0897

Then we did this very clever idea of translating and moving that line segment d over, so that it had a base of one endpoint at (1,0).0905

We found another expression for the length of that line segment or that distance, also using the Pythagorean distance formula but starting and ending at different places.0916

We get these two expressions for the length of that line segment d, and then we set them equal to each other in this line.0929

Then we got this sort of big algebraic and trigonometric mess, but there was no more real geometric insight after that.0937

It was just a matter of sort of expanding out algebraically using the Pythagorean identity to cancel some things that kind of collapse together, sin2+cos2=1.0944

It all reduced down into the formula for cos(a-b).0957

Now, let's try applying the addition and subtraction formulas to actually find the cosines and sines of some values that we wouldn't have been able to do without these formulas.0964

In particular, we're going to find the cosine and sine of π/12 radians and 105 degrees.0975

Let's start out with cosine of π/12 radians.0982

Cos(π/12), that's not one of the common values.0987

I don't have that memorized, instead I'm going to write π/12 as a combination of angles that I do have the common values memorized for.0992

Here's the trick, remember π/12=π/4 - π/6, that's because π/4 is 3π/12 and π6 is 2π/12.1003

You subtract them, and you get π/12.1020

The reason I do it like that is that I know the sines and cosines for π/4 and π/6.1022

I can use my subtraction formulas to figure out what the cosine and sine of π/12 are in terms of π/4 and π/6.1030

I'm going to use my subtraction formula cos(a-b)=cos(a)×cos(b)+sin(a)×sin(b).1042

Here, the (a-b) is π/12, so a and b are π/4 and π/6.1060

This is cos(π/4-π/6), which is cos(π/4)×cos(π/6)+sin(π/4)×sin(π/6).1066

Now, π/4, π/6, those are common angles that I have those sines and cosines absolutely memorized so I can just come up with those very quickly.1095

The cos(π/4) is square root of 2 over 2.1105

The cos(π/6) is square root of 3 over 2.1109

The sin(π/4) is root 2 over 2.1113

The sin(π/6) is 1/2.1115

Those are values that I have memorized, you should have them memorized too.1117

Now, we simply combine these, root 2 times root 3 is root 6.1123

I see I'm going to have a common denominator of 4 here, and root 2 times 1 is just root 2.1130

That gives me the cos(π/12) as root 2 plus root 6 over 4.1139

I'm going to work out sin(π/12) very much the same way, it's the sine of (π/4) - (π/6).1145

I remember my formula for the sin(a-b), it's sin(a)×cos(b)-cos(a)×sin(b).1160

I'll just plug that in as sin(π/4), cos(b) is π/6, minus cos(π/4)×sin(π/6).1177

So, sin(π/4) is root 2 over 2, cos(π/6) is root 3 over 2, minus cos(π/4) is root 2 over 2, and sin(π/6) is 1/2.1196

Again, I have a common denominator of 4, and I get root 2 times root 3 is root 6, minus root 2.1212

What we did there was we just recognized that (π/12) is (π/4)-(π/6), and those are both common values that I know the sine and cosine of.1227

I can invoke my cosine and sine formulas to figure out what the cosine and sine are of (π/12).1238

Now, let's do the same thing with a 105 degrees.1246

We'll do everything in terms of degrees now.1250

I know that 105, well, to break that up to some common values that I recognize, that's 45+60.1254

I'm going to be using my addition formulas now.1264

I'll write those down to review them.1267

cos(a+b)=cos(a)×cos(b)-sin(a)×sin(b), and when I'm at it, I'll remember that the sin(a+b)=sin(a)×cos(b)+cos(a)×sin(b).1269

The cos(105), that's the same as cos(45+60).1300

Using the formulas with a as 45 and b as 60, I get cos(45)×cos(60)-sin(45)×sin(60).1310

Again, 45 and 60 are both common values, I've got the sines and cosines absolutely committed to memory, and hopefully you do too by the time you've gotten this far in trigonometry.1328

Cos(45) is square root of 2 over 2, cos(60) is 1/2, sin(45) is square root of 2 over 2, and the sin(60) is root 3 over 2.1338

I'll put those together.1353

Common denominator is 4, and I get square root of 2 minus the square root of 6, as my cos(105).1355

Sin(105) works very much the same way.1366

We'll write that as sin(45+60), which is sin(45)×cos(60)+cos(45)×sin(60).1371

Now, I'll just plug in the common values that I have committed to memory, root 2 over 2, cos(60) is 1/2, plus cos(45) is root 2 over 2, and sin(60) is root 3 over 2.1391

Common denominator there is 4.1408

This is root 2 over 2 plus root 6 over 4.1413

That was a matter of recognizing that 105 degrees.1422

It's not a common value itself but we can get it from the common values as 45+60.1426

Those both are common values, so I know the sines and cosines, so I can figure out what the sine and cos of 105 is, by using my addition and subtraction formulas.1434

I'll mention one more thing there which is that we could write 105.1443

If we convert that into radians, that's 7π/12 radians.1450

Remember, the way to convert back and forth is you just multiply by π/180.1455

Then, 7π/12, well that's the same as 6π/12, otherwise known as π/2 + 1π/12.1462

We figured out what the sine and cosine of π/12 were on the previous page.1473

Once you know the sine and cosine of π/12, you could work out the sine and cosine of 7π/12 by doing an addition formula on π/2 + π/12.1482

This is really an alternate way we could have solved this problem.1494

Given that we had already figured out the sine and cosine of π/12.1504

Let's try another example there.1509

We're going to use the addition and subtraction formulas to prove a trigonometric identity sin(5x)+sin(x) over cos(5x)+cos(x) is equal to tan(3x).1512

It really may not be obvious how to start with something like this.1525

The trick here is to write 5x, to realize 5x is 3x+2x, and x itself is 3x-2x.1530

If we start with a=3x and b=2x, then 5x=a+b, and x itself is a-b.1544

That's what the connection between this identity and the addition and subtraction formulas is.1561

We're going to use the addition and subtraction formulas to prove this identity.1566

Let me write them down now and show how we can combine them in clever ways.1571

I'm going to write down the formula for sin(a-b).1574

Remember, that's sin(a)×cos(b)-cos(a)×sin(b).1580

Right underneath it, I'll write the formula for sin(a+b) which is the same formula sin(a)×cos(b)+cos(a)×sin(b).1590

Now, I'm going to do something clever here.1608

I'm going to add these two equations together.1613

The point of that is to make the cos(a)×sin(b) cancel.1617

If we add these equations together, on the left-hand side we get sin(a-b)+sin(a+b).1623

Remember, you're thinking in the back of your head, a is going to be 3x and b is going to be 2x.1638

On the left side, we really got now sin(x)+sin(5x), which is looking good because that's what we have in the identity.1644

On the right side, we get 2sin(a)×cos(b), and then the cos(a)×sin(b), they cancel.1650

That was the cleverness of adding these equations together.1667

We get 2sin(a)×cos(b).1669

If I plug in a=3x and b=2x, I will get sin(a-b) is just sin(x), plus sin(a+b) which is 5x.1674

On the right-hand side, I'll get 2sin(a) is 3x, cos(b) is x.1692

That seems kind of hopeful because that's something I can plug in to the left-hand side of my identity and see what happens with it.1703

Before we do that though, I'm going to try and work out a similar kind of formula with the addition and subtraction formulas for cosine.1710

Let me write those down.1718

Cos(a-b) is equal to cos(a)×cos(b) plus, cosine is the one that switches the positive and the negative, plus sin(a)×sin(b).1720

I wanted to figure out cos(a+b).1743

It's just the same thing changing the positives and negatives, so cos(a)×cos(b)-sin(a)×sin(b).1749

I'm going to do the same thing here, I'm going to add them together in order to make them cancel nicely.1760

On the left-hand side, I get cos(a-b)+cos(a+b)=2cos(a)×cos(b).1767

That's it, because the sin(a) and sin(b) cancel with each other.1785

I'm going to plug in a=3x and b=2x, so I get cos(x) plus cos(a+b) is 5x, is equal to 2 cosine, a is 3x, and b is 2x.1791

Let's keep this in mind, I've got an expression for sin(x)+sin(5x), and I've got an expression for cos(x)+cos(5x).1810

I'm going to combine those and see if I can prove the identity.1823

I'll start with the left-hand side of the identity.1832

I'll see if I can transform it into the right-hand side.1836

The left-hand side is sin(5x)+sin(x) over cos(5x)+cos(x).1841

Now, by what we did on the previous page, I have an expression for sin(5x)+sin(x), that's sin(3x)×cos(2x).1860

That's by the work we did on the previous page.1881

Also on the previous page, cos(5x)+cos(x)=2cos(3x)×cos(2x).1890

That was also what we did on the previous page.1901

But now look at this, the cos(2x) is cancelled, and what we get is 2sin(3x) over 2cos(3x).1906

The 2s cancel as well and we get just tan(3x), which is equal to the right-hand side.1920

We finished proving it.1929

The trick there and it really was quite a bit of cleverness that might not be obvious the first time you try one of these problems, but you'll practice more and more and you'll get the hang of it, is to look at this 5x and x, and figure out how to use those in the context in the addition and subtraction formulas.1933

The trick is to let a=3x and b=2x, and the point of that is that (a-b), will then be x, and a+b will be 5x.1951

That gives us the expressions that we had in the identity here.1967

Once we see (a-b) and (a+b), it's worthwhile writing down the sine and the cosine each one of (a-b) and (a+b), and kind of looking at those formulas and kind of mixing and matching them, and finding something that gives us something that shows up in the identity.1974

Once we get that, we start with the left-hand side of the identity, we work it down until we get to the right-hand side of the identity.1997

We'll try some more examples of that later2004