Professor Murray

Professor Murray

Double Angle Formulas

Slide Duration:

Table of Contents

Section 1: Introduction
Introduction to Math Analysis

10m 3s

Intro
0:00
Title of the Course
0:06
Different Names for the Course
0:07
Precalculus
0:12
Math Analysis
0:14
Trigonometry
0:16
Algebra III
0:20
Geometry II
0:24
College Algebra
0:30
Same Concepts
0:36
How do the Lessons Work?
0:54
Introducing Concepts
0:56
Apply Concepts
1:04
Go through Examples
1:25
Who is this Course For?
1:38
Those Who Need eExtra Help with Class Work
1:52
Those Working on Material but not in Formal Class at School
1:54
Those Who Want a Refresher
2:00
Try to Watch the Whole Lesson
2:20
Understanding is So Important
3:56
What to Watch First
5:26
Lesson #2: Sets, Elements, and Numbers
5:30
Lesson #7: Idea of a Function
5:33
Lesson #6: Word Problems
6:04
What to Watch First, cont.
6:46
Lesson #2: Sets, Elements and Numbers
6:56
Lesson #3: Variables, Equations, and Algebra
6:58
Lesson #4: Coordinate Systems
7:00
Lesson #5: Midpoint, Distance, the Pythagorean Theorem and Slope
7:02
Lesson #6: Word Problems
7:10
Lesson #7: Idea of a Function
7:12
Lesson #8: Graphs
7:14
Graphing Calculator Appendix
7:40
What to Watch Last
8:46
Let's get Started!
9:48
Sets, Elements, & Numbers

45m 11s

Intro
0:00
Introduction
0:05
Sets and Elements
1:19
Set
1:20
Element
1:23
Name a Set
2:20
Order The Elements Appear In Has No Effect on the Set
2:55
Describing/ Defining Sets
3:28
Directly Say All the Elements
3:36
Clearly Describing All the Members of the Set
3:55
Describing the Quality (or Qualities) Each member Of the Set Has In Common
4:32
Symbols: 'Element of' and 'Subset of'
6:01
Symbol is ∈
6:03
Subset Symbol is ⊂
6:35
Empty Set
8:07
Symbol is ∅
8:20
Since It's Empty, It is a Subset of All Sets
8:44
Union and Intersection
9:54
Union Symbol is ∪
10:08
Intersection Symbol is ∩
10:18
Sets Can Be Weird Stuff
12:26
Can Have Elements in a Set
12:50
We Can Have Infinite Sets
13:09
Example
13:22
Consider a Set Where We Take a Word and Then Repeat It An Ever Increasing Number of Times
14:08
This Set Has Infinitely Many Distinct Elements
14:40
Numbers as Sets
16:03
Natural Numbers ℕ
16:16
Including 0 and the Negatives ℤ
18:13
Rational Numbers ℚ
19:27
Can Express Rational Numbers with Decimal Expansions
22:05
Irrational Numbers
23:37
Real Numbers ℝ: Put the Rational and Irrational Numbers Together
25:15
Interval Notation and the Real Numbers
26:45
Include the End Numbers
27:06
Exclude the End Numbers
27:33
Example
28:28
Interval Notation: Infinity
29:09
Use -∞ or ∞ to Show an Interval Going on Forever in One Direction or the Other
29:14
Always Use Parentheses
29:50
Examples
30:27
Example 1
31:23
Example 2
35:26
Example 3
38:02
Example 4
42:21
Variables, Equations, & Algebra

35m 31s

Intro
0:00
What is a Variable?
0:05
A Variable is a Placeholder for a Number
0:11
Affects the Output of a Function or a Dependent Variable
0:24
Naming Variables
1:51
Useful to Use Symbols
2:21
What is a Constant?
4:14
A Constant is a Fixed, Unchanging Number
4:28
We Might Refer to a Symbol Representing a Number as a Constant
4:51
What is a Coefficient?
5:33
A Coefficient is a Multiplicative Factor on a Variable
5:37
Not All Coefficients are Constants
5:51
Expressions and Equations
6:42
An Expression is a String of Mathematical Symbols That Make Sense Used Together
7:05
An Equation is a Statement That Two Expression Have the Same Value
8:20
The Idea of Algebra
8:51
Equality
8:59
If Two Things Are the Same *Equal), Then We Can Do the Exact Same Operation to Both and the Results Will Be the Same
9:41
Always Do The Exact Same Thing to Both Sides
12:22
Solving Equations
13:23
When You Are Asked to Solve an Equation, You Are Being Asked to Solve for Something
13:33
Look For What Values Makes the Equation True
13:38
Isolate the Variable by Doing Algebra
14:37
Order of Operations
16:02
Why Certain Operations are Grouped
17:01
When You Don't Have to Worry About Order
17:39
Distributive Property
18:15
It Allows Multiplication to Act Over Addition in Parentheses
18:23
We Can Use the Distributive Property in Reverse to Combine Like Terms
19:05
Substitution
20:03
Use Information From One Equation in Another Equation
20:07
Put Your Substitution in Parentheses
20:44
Example 1
23:17
Example 2
25:49
Example 3
28:11
Example 4
30:02
Coordinate Systems

35m 2s

Intro
0:00
Inherent Order in ℝ
0:05
Real Numbers Come with an Inherent Order
0:11
Positive Numbers
0:21
Negative Numbers
0:58
'Less Than' and 'Greater Than'
2:04
Tip To Help You Remember the Signs
2:56
Inequality
4:06
Less Than or Equal and Greater Than or Equal
4:51
One Dimension: The Number Line
5:36
Graphically Represent ℝ on a Number Line
5:43
Note on Infinities
5:57
With the Number Line, We Can Directly See the Order We Put on ℝ
6:35
Ordered Pairs
7:22
Example
7:34
Allows Us to Talk About Two Numbers at the Same Time
9:41
Ordered Pairs of Real Numbers Cannot be Put Into an Order Like we Did with ℝ
10:41
Two Dimensions: The Plane
13:13
We Can Represent Ordered Pairs with the Plane
13:24
Intersection is known as the Origin
14:31
Plotting the Point
14:32
Plane = Coordinate Plane = Cartesian Plane = ℝ²
17:46
The Plane and Quadrants
18:50
Quadrant I
19:04
Quadrant II
19:21
Quadrant III
20:04
Quadrant IV
20:20
Three Dimensions: Space
21:02
Create Ordered Triplets
21:09
Visually Represent This
21:19
Three-Dimension = Space = ℝ³
21:47
Higher Dimensions
22:24
If We Have n Dimensions, We Call It n-Dimensional Space or ℝ to the nth Power
22:31
We Can Represent Places In This n-Dimensional Space As Ordered Groupings of n Numbers
22:41
Hard to Visualize Higher Dimensional Spaces
23:18
Example 1
25:07
Example 2
26:10
Example 3
28:58
Example 4
31:05
Midpoints, Distance, the Pythagorean Theorem, & Slope

48m 43s

Intro
0:00
Introduction
0:07
Midpoint: One Dimension
2:09
Example of Something More Complex
2:31
Use the Idea of a Middle
3:28
Find the Midpoint of Arbitrary Values a and b
4:17
How They're Equivalent
5:05
Official Midpoint Formula
5:46
Midpoint: Two Dimensions
6:19
The Midpoint Must Occur at the Horizontal Middle and the Vertical Middle
6:38
Arbitrary Pair of Points Example
7:25
Distance: One Dimension
9:26
Absolute Value
10:54
Idea of Forcing Positive
11:06
Distance: One Dimension, Formula
11:47
Distance Between Arbitrary a and b
11:48
Absolute Value Helps When the Distance is Negative
12:41
Distance Formula
12:58
The Pythagorean Theorem
13:24
a²+b²=c²
13:50
Distance: Two Dimensions
14:59
Break Into Horizontal and Vertical Parts and then Use the Pythagorean Theorem
15:16
Distance Between Arbitrary Points (x₁,y₁) and (x₂,y₂)
16:21
Slope
19:30
Slope is the Rate of Change
19:41
m = rise over run
21:27
Slope Between Arbitrary Points (x₁,y₁) and (x₂,y₂)
22:31
Interpreting Slope
24:12
Positive Slope and Negative Slope
25:40
m=1, m=0, m=-1
26:48
Example 1
28:25
Example 2
31:42
Example 3
36:40
Example 4
42:48
Word Problems

56m 31s

Intro
0:00
Introduction
0:05
What is a Word Problem?
0:45
Describes Any Problem That Primarily Gets Its Ideas Across With Words Instead of Math Symbols
0:48
Requires Us to Think
1:32
Why Are They So Hard?
2:11
Reason 1: No Simple Formula to Solve Them
2:16
Reason 2: Harder to Teach Word Problems
2:47
You Can Learn How to Do Them!
3:51
Grades
7:57
'But I'm Never Going to Use This In Real Life'
9:46
Solving Word Problems
12:58
First: Understand the Problem
13:37
Second: What Are You Looking For?
14:33
Third: Set Up Relationships
16:21
Fourth: Solve It!
17:48
Summary of Method
19:04
Examples on Things Other Than Math
20:21
Math-Specific Method: What You Need Now
25:30
Understand What the Problem is Talking About
25:37
Set Up and Name Any Variables You Need to Know
25:56
Set Up Equations Connecting Those Variables to the Information in the Problem Statement
26:02
Use the Equations to Solve for an Answer
26:14
Tip
26:58
Draw Pictures
27:22
Breaking Into Pieces
28:28
Try Out Hypothetical Numbers
29:52
Student Logic
31:27
Jump In!
32:40
Example 1
34:03
Example 2
39:15
Example 3
44:22
Example 4
50:24
Section 2: Functions
Idea of a Function

39m 54s

Intro
0:00
Introduction
0:04
What is a Function?
1:06
A Visual Example and Non-Example
1:30
Function Notation
3:47
f(x)
4:05
Express What Sets the Function Acts On
5:45
Metaphors for a Function
6:17
Transformation
6:28
Map
7:17
Machine
8:56
Same Input Always Gives Same Output
10:01
If We Put the Same Input Into a Function, It Will Always Produce the Same Output
10:11
Example of Something That is Not a Function
11:10
A Non-Numerical Example
12:10
The Functions We Will Use
15:05
Unless Told Otherwise, We Will Assume Every Function Takes in Real Numbers and Outputs Real Numbers
15:11
Usually Told the Rule of a Given Function
15:27
How To Use a Function
16:18
Apply the Rule to Whatever Our Input Value Is
16:28
Make Sure to Wrap Your Substitutions in Parentheses
17:09
Functions and Tables
17:36
Table of Values, Sometimes Called a T-Table
17:46
Example
17:56
Domain: What Goes In
18:55
The Domain is the Set of all Inputs That the Function Can Accept
18:56
Example
19:40
Range: What Comes Out
21:27
The Range is the Set of All Possible Outputs a Function Can Assign
21:34
Example
21:49
Another Example Would Be Our Initial Function From Earlier in This Lesson
22:29
Example 1
23:45
Example 2
25:22
Example 3
27:27
Example 4
29:23
Example 5
33:33
Graphs

58m 26s

Intro
0:00
Introduction
0:04
How to Interpret Graphs
1:17
Input / Independent Variable
1:47
Output / Dependent Variable
2:00
Graph as Input ⇒ Output
2:23
One Way to Think of a Graph: See What Happened to Various Inputs
2:25
Example
2:47
Graph as Location of Solution
4:20
A Way to See Solutions
4:36
Example
5:20
Which Way Should We Interpret?
7:13
Easiest to Think In Terms of How Inputs Are Mapped to Outputs
7:20
Sometimes It's Easier to Think In Terms of Solutions
8:39
Pay Attention to Axes
9:50
Axes Tell Where the Graph Is and What Scale It Has
10:09
Often, The Axes Will Be Square
10:14
Example
12:06
Arrows or No Arrows?
16:07
Will Not Use Arrows at the End of Our Graphs
17:13
Graph Stops Because It Hits the Edge of the Graphing Axes, Not Because the Function Stops
17:18
How to Graph
19:47
Plot Points
20:07
Connect with Curves
21:09
If You Connect with Straight Lines
21:44
Graphs of Functions are Smooth
22:21
More Points ⇒ More Accurate
23:38
Vertical Line Test
27:44
If a Vertical Line Could Intersect More Than One Point On a Graph, It Can Not Be the Graph of a Function
28:41
Every Point on a Graph Tells Us Where the x-Value Below is Mapped
30:07
Domain in Graphs
31:37
The Domain is the Set of All Inputs That a Function Can Accept
31:44
Be Aware That Our Function Probably Continues Past the Edge of Our 'Viewing Window'
33:19
Range in Graphs
33:53
Graphing Calculators: Check the Appendix!
36:55
Example 1
38:37
Example 2
45:19
Example 3
50:41
Example 4
53:28
Example 5
55:50
Properties of Functions

48m 49s

Intro
0:00
Introduction
0:05
Increasing Decreasing Constant
0:43
Looking at a Specific Graph
1:15
Increasing Interval
2:39
Constant Function
4:15
Decreasing Interval
5:10
Find Intervals by Looking at the Graph
5:32
Intervals Show x-values; Write in Parentheses
6:39
Maximum and Minimums
8:48
Relative (Local) Max/Min
10:20
Formal Definition of Relative Maximum
12:44
Formal Definition of Relative Minimum
13:05
Max/Min, More Terms
14:18
Definition of Extrema
15:01
Average Rate of Change
16:11
Drawing a Line for the Average Rate
16:48
Using the Slope of the Secant Line
17:36
Slope in Function Notation
18:45
Zeros/Roots/x-intercepts
19:45
What Zeros in a Function Mean
20:25
Even Functions
22:30
Odd Functions
24:36
Even/Odd Functions and Graphs
26:28
Example of an Even Function
27:12
Example of an Odd Function
28:03
Example 1
29:35
Example 2
33:07
Example 3
40:32
Example 4
42:34
Function Petting Zoo

29m 20s

Intro
0:00
Introduction
0:04
Don't Forget that Axes Matter!
1:44
The Constant Function
2:40
The Identity Function
3:44
The Square Function
4:40
The Cube Function
5:44
The Square Root Function
6:51
The Reciprocal Function
8:11
The Absolute Value Function
10:19
The Trigonometric Functions
11:56
f(x)=sin(x)
12:12
f(x)=cos(x)
12:24
Alternate Axes
12:40
The Exponential and Logarithmic Functions
13:35
Exponential Functions
13:44
Logarithmic Functions
14:24
Alternating Axes
15:17
Transformations and Compositions
16:08
Example 1
17:52
Example 2
18:33
Example 3
20:24
Example 4
26:07
Transformation of Functions

48m 35s

Intro
0:00
Introduction
0:04
Vertical Shift
1:12
Graphical Example
1:21
A Further Explanation
2:16
Vertical Stretch/Shrink
3:34
Graph Shrinks
3:46
Graph Stretches
3:51
A Further Explanation
5:07
Horizontal Shift
6:49
Moving the Graph to the Right
7:28
Moving the Graph to the Left
8:12
A Further Explanation
8:19
Understanding Movement on the x-axis
8:38
Horizontal Stretch/Shrink
12:59
Shrinking the Graph
13:40
Stretching the Graph
13:48
A Further Explanation
13:55
Understanding Stretches from the x-axis
14:12
Vertical Flip (aka Mirror)
16:55
Example Graph
17:07
Multiplying the Vertical Component by -1
17:18
Horizontal Flip (aka Mirror)
18:43
Example Graph
19:01
Multiplying the Horizontal Component by -1
19:54
Summary of Transformations
22:11
Stacking Transformations
24:46
Order Matters
25:20
Transformation Example
25:52
Example 1
29:21
Example 2
34:44
Example 3
38:10
Example 4
43:46
Composite Functions

33m 24s

Intro
0:00
Introduction
0:04
Arithmetic Combinations
0:40
Basic Operations
1:20
Definition of the Four Arithmetic Combinations
1:40
Composite Functions
2:53
The Function as a Machine
3:32
Function Compositions as Multiple Machines
3:59
Notation for Composite Functions
4:46
Two Formats
6:02
Another Visual Interpretation
7:17
How to Use Composite Functions
8:21
Example of on Function acting on Another
9:17
Example 1
11:03
Example 2
15:27
Example 3
21:11
Example 4
27:06
Piecewise Functions

51m 42s

Intro
0:00
Introduction
0:04
Analogies to a Piecewise Function
1:16
Different Potatoes
1:41
Factory Production
2:27
Notations for Piecewise Functions
3:39
Notation Examples from Analogies
6:11
Example of a Piecewise (with Table)
7:24
Example of a Non-Numerical Piecewise
11:35
Graphing Piecewise Functions
14:15
Graphing Piecewise Functions, Example
16:26
Continuous Functions
16:57
Statements of Continuity
19:30
Example of Continuous and Non-Continuous Graphs
20:05
Interesting Functions: the Step Function
22:00
Notation for the Step Function
22:40
How the Step Function Works
22:56
Graph of the Step Function
25:30
Example 1
26:22
Example 2
28:49
Example 3
36:50
Example 4
46:11
Inverse Functions

49m 37s

Intro
0:00
Introduction
0:04
Analogy by picture
1:10
How to Denote the inverse
1:40
What Comes out of the Inverse
1:52
Requirement for Reversing
2:02
The Basketball Factory
2:12
The Importance of Information
2:45
One-to-One
4:04
Requirement for Reversibility
4:21
When a Function has an Inverse
4:43
One-to-One
5:13
Not One-to-One
5:50
Not a Function
6:19
Horizontal Line Test
7:01
How to the test Works
7:12
One-to-One
8:12
Not One-to-One
8:45
Definition: Inverse Function
9:12
Formal Definition
9:21
Caution to Students
10:02
Domain and Range
11:12
Finding the Range of the Function Inverse
11:56
Finding the Domain of the Function Inverse
12:11
Inverse of an Inverse
13:09
Its just x!
13:26
Proof
14:03
Graphical Interpretation
17:07
Horizontal Line Test
17:20
Graph of the Inverse
18:04
Swapping Inputs and Outputs to Draw Inverses
19:02
How to Find the Inverse
21:03
What We Are Looking For
21:21
Reversing the Function
21:38
A Method to Find Inverses
22:33
Check Function is One-to-One
23:04
Swap f(x) for y
23:25
Interchange x and y
23:41
Solve for y
24:12
Replace y with the inverse
24:40
Some Comments
25:01
Keeping Step 2 and 3 Straight
25:44
Switching to Inverse
26:12
Checking Inverses
28:52
How to Check an Inverse
29:06
Quick Example of How to Check
29:56
Example 1
31:48
Example 2
34:56
Example 3
39:29
Example 4
46:19
Variation Direct and Inverse

28m 49s

Intro
0:00
Introduction
0:06
Direct Variation
1:14
Same Direction
1:21
Common Example: Groceries
1:56
Different Ways to Say that Two Things Vary Directly
2:28
Basic Equation for Direct Variation
2:55
Inverse Variation
3:40
Opposite Direction
3:50
Common Example: Gravity
4:53
Different Ways to Say that Two Things Vary Indirectly
5:48
Basic Equation for Indirect Variation
6:33
Joint Variation
7:27
Equation for Joint Variation
7:53
Explanation of the Constant
8:48
Combined Variation
9:35
Gas Law as a Combination
9:44
Single Constant
10:33
Example 1
10:49
Example 2
13:34
Example 3
15:39
Example 4
19:48
Section 3: Polynomials
Intro to Polynomials

38m 41s

Intro
0:00
Introduction
0:04
Definition of a Polynomial
1:04
Starting Integer
2:06
Structure of a Polynomial
2:49
The a Constants
3:34
Polynomial Function
5:13
Polynomial Equation
5:23
Polynomials with Different Variables
5:36
Degree
6:23
Informal Definition
6:31
Find the Largest Exponent Variable
6:44
Quick Examples
7:36
Special Names for Polynomials
8:59
Based on the Degree
9:23
Based on the Number of Terms
10:12
Distributive Property (aka 'FOIL')
11:37
Basic Distributive Property
12:21
Distributing Two Binomials
12:55
Longer Parentheses
15:12
Reverse: Factoring
17:26
Long-Term Behavior of Polynomials
17:48
Examples
18:13
Controlling Term--Term with the Largest Exponent
19:33
Positive and Negative Coefficients on the Controlling Term
20:21
Leading Coefficient Test
22:07
Even Degree, Positive Coefficient
22:13
Even Degree, Negative Coefficient
22:39
Odd Degree, Positive Coefficient
23:09
Odd Degree, Negative Coefficient
23:27
Example 1
25:11
Example 2
27:16
Example 3
31:16
Example 4
34:41
Roots (Zeros) of Polynomials

41m 7s

Intro
0:00
Introduction
0:05
Roots in Graphs
1:17
The x-intercepts
1:33
How to Remember What 'Roots' Are
1:50
Naïve Attempts
2:31
Isolating Variables
2:45
Failures of Isolating Variables
3:30
Missing Solutions
4:59
Factoring: How to Find Roots
6:28
How Factoring Works
6:36
Why Factoring Works
7:20
Steps to Finding Polynomial Roots
9:21
Factoring: How to Find Roots CAUTION
10:08
Factoring is Not Easy
11:32
Factoring Quadratics
13:08
Quadratic Trinomials
13:21
Form of Factored Binomials
13:38
Factoring Examples
14:40
Factoring Quadratics, Check Your Work
16:58
Factoring Higher Degree Polynomials
18:19
Factoring a Cubic
18:32
Factoring a Quadratic
19:04
Factoring: Roots Imply Factors
19:54
Where a Root is, A Factor Is
20:01
How to Use Known Roots to Make Factoring Easier
20:35
Not all Polynomials Can be Factored
22:30
Irreducible Polynomials
23:27
Complex Numbers Help
23:55
Max Number of Roots/Factors
24:57
Limit to Number of Roots Equal to the Degree
25:18
Why there is a Limit
25:25
Max Number of Peaks/Valleys
26:39
Shape Information from Degree
26:46
Example Graph
26:54
Max, But Not Required
28:00
Example 1
28:37
Example 2
31:21
Example 3
36:12
Example 4
38:40
Completing the Square and the Quadratic Formula

39m 43s

Intro
0:00
Introduction
0:05
Square Roots and Equations
0:51
Taking the Square Root to Find the Value of x
0:55
Getting the Positive and Negative Answers
1:05
Completing the Square: Motivation
2:04
Polynomials that are Easy to Solve
2:20
Making Complex Polynomials Easy to Solve
3:03
Steps to Completing the Square
4:30
Completing the Square: Method
7:22
Move C over
7:35
Divide by A
7:44
Find r
7:59
Add to Both Sides to Complete the Square
8:49
Solving Quadratics with Ease
9:56
The Quadratic Formula
11:38
Derivation
11:43
Final Form
12:23
Follow Format to Use Formula
13:38
How Many Roots?
14:53
The Discriminant
15:47
What the Discriminant Tells Us: How Many Roots
15:58
How the Discriminant Works
16:30
Example 1: Complete the Square
18:24
Example 2: Solve the Quadratic
22:00
Example 3: Solve for Zeroes
25:28
Example 4: Using the Quadratic Formula
30:52
Properties of Quadratic Functions

45m 34s

Intro
0:00
Introduction
0:05
Parabolas
0:35
Examples of Different Parabolas
1:06
Axis of Symmetry and Vertex
1:28
Drawing an Axis of Symmetry
1:51
Placing the Vertex
2:28
Looking at the Axis of Symmetry and Vertex for other Parabolas
3:09
Transformations
4:18
Reviewing Transformation Rules
6:28
Note the Different Horizontal Shift Form
7:45
An Alternate Form to Quadratics
8:54
The Constants: k, h, a
9:05
Transformations Formed
10:01
Analyzing Different Parabolas
10:10
Switching Forms by Completing the Square
11:43
Vertex of a Parabola
16:30
Vertex at (h, k)
16:47
Vertex in Terms of a, b, and c Coefficients
17:28
Minimum/Maximum at Vertex
18:19
When a is Positive
18:25
When a is Negative
18:52
Axis of Symmetry
19:54
Incredibly Minor Note on Grammar
20:52
Example 1
21:48
Example 2
26:35
Example 3
28:55
Example 4
31:40
Intermediate Value Theorem and Polynomial Division

46m 8s

Intro
0:00
Introduction
0:05
Reminder: Roots Imply Factors
1:32
The Intermediate Value Theorem
3:41
The Basis: U between a and b
4:11
U is on the Function
4:52
Intermediate Value Theorem, Proof Sketch
5:51
If Not True, the Graph Would Have to Jump
5:58
But Graph is Defined as Continuous
6:43
Finding Roots with the Intermediate Value Theorem
7:01
Picking a and b to be of Different Signs
7:10
Must Be at Least One Root
7:46
Dividing a Polynomial
8:16
Using Roots and Division to Factor
8:38
Long Division Refresher
9:08
The Division Algorithm
12:18
How It Works to Divide Polynomials
12:37
The Parts of the Equation
13:24
Rewriting the Equation
14:47
Polynomial Long Division
16:20
Polynomial Long Division In Action
16:29
One Step at a Time
20:51
Synthetic Division
22:46
Setup
23:11
Synthetic Division, Example
24:44
Which Method Should We Use
26:39
Advantages of Synthetic Method
26:49
Advantages of Long Division
27:13
Example 1
29:24
Example 2
31:27
Example 3
36:22
Example 4
40:55
Complex Numbers

45m 36s

Intro
0:00
Introduction
0:04
A Wacky Idea
1:02
The Definition of the Imaginary Number
1:22
How it Helps Solve Equations
2:20
Square Roots and Imaginary Numbers
3:15
Complex Numbers
5:00
Real Part and Imaginary Part
5:20
When Two Complex Numbers are Equal
6:10
Addition and Subtraction
6:40
Deal with Real and Imaginary Parts Separately
7:36
Two Quick Examples
7:54
Multiplication
9:07
FOIL Expansion
9:14
Note What Happens to the Square of the Imaginary Number
9:41
Two Quick Examples
10:22
Division
11:27
Complex Conjugates
13:37
Getting Rid of i
14:08
How to Denote the Conjugate
14:48
Division through Complex Conjugates
16:11
Multiply by the Conjugate of the Denominator
16:28
Example
17:46
Factoring So-Called 'Irreducible' Quadratics
19:24
Revisiting the Quadratic Formula
20:12
Conjugate Pairs
20:37
But Are the Complex Numbers 'Real'?
21:27
What Makes a Number Legitimate
25:38
Where Complex Numbers are Used
27:20
Still, We Won't See Much of C
29:05
Example 1
30:30
Example 2
33:15
Example 3
38:12
Example 4
42:07
Fundamental Theorem of Algebra

19m 9s

Intro
0:00
Introduction
0:05
Idea: Hidden Roots
1:16
Roots in Complex Form
1:42
All Polynomials Have Roots
2:08
Fundamental Theorem of Algebra
2:21
Where Are All the Imaginary Roots, Then?
3:17
All Roots are Complex
3:45
Real Numbers are a Subset of Complex Numbers
3:59
The n Roots Theorem
5:01
For Any Polynomial, Its Degree is Equal to the Number of Roots
5:11
Equivalent Statement
5:24
Comments: Multiplicity
6:29
Non-Distinct Roots
6:59
Denoting Multiplicity
7:20
Comments: Complex Numbers Necessary
7:41
Comments: Complex Coefficients Allowed
8:55
Comments: Existence Theorem
9:59
Proof Sketch of n Roots Theorem
10:45
First Root
11:36
Second Root
13:23
Continuation to Find all Roots
16:00
Section 4: Rational Functions
Rational Functions and Vertical Asymptotes

33m 22s

Intro
0:00
Introduction
0:05
Definition of a Rational Function
1:20
Examples of Rational Functions
2:30
Why They are Called 'Rational'
2:47
Domain of a Rational Function
3:15
Undefined at Denominator Zeros
3:25
Otherwise all Reals
4:16
Investigating a Fundamental Function
4:50
The Domain of the Function
5:04
What Occurs at the Zeroes of the Denominator
5:20
Idea of a Vertical Asymptote
6:23
What's Going On?
6:58
Approaching x=0 from the left
7:32
Approaching x=0 from the right
8:34
Dividing by Very Small Numbers Results in Very Large Numbers
9:31
Definition of a Vertical Asymptote
10:05
Vertical Asymptotes and Graphs
11:15
Drawing Asymptotes by Using a Dashed Line
11:27
The Graph Can Never Touch Its Undefined Point
12:00
Not All Zeros Give Asymptotes
13:02
Special Cases: When Numerator and Denominator Go to Zero at the Same Time
14:58
Cancel out Common Factors
15:49
How to Find Vertical Asymptotes
16:10
Figure out What Values Are Not in the Domain of x
16:24
Determine if the Numerator and Denominator Share Common Factors and Cancel
16:45
Find Denominator Roots
17:33
Note if Asymptote Approaches Negative or Positive Infinity
18:06
Example 1
18:57
Example 2
21:26
Example 3
23:04
Example 4
30:01
Horizontal Asymptotes

34m 16s

Intro
0:00
Introduction
0:05
Investigating a Fundamental Function
0:53
What Happens as x Grows Large
1:00
Different View
1:12
Idea of a Horizontal Asymptote
1:36
What's Going On?
2:24
What Happens as x Grows to a Large Negative Number
2:49
What Happens as x Grows to a Large Number
3:30
Dividing by Very Large Numbers Results in Very Small Numbers
3:52
Example Function
4:41
Definition of a Vertical Asymptote
8:09
Expanding the Idea
9:03
What's Going On?
9:48
What Happens to the Function in the Long Run?
9:51
Rewriting the Function
10:13
Definition of a Slant Asymptote
12:09
Symbolical Definition
12:30
Informal Definition
12:45
Beyond Slant Asymptotes
13:03
Not Going Beyond Slant Asymptotes
14:39
Horizontal/Slant Asymptotes and Graphs
15:43
How to Find Horizontal and Slant Asymptotes
16:52
How to Find Horizontal Asymptotes
17:12
Expand the Given Polynomials
17:18
Compare the Degrees of the Numerator and Denominator
17:40
How to Find Slant Asymptotes
20:05
Slant Asymptotes Exist When n+m=1
20:08
Use Polynomial Division
20:24
Example 1
24:32
Example 2
25:53
Example 3
26:55
Example 4
29:22
Graphing Asymptotes in a Nutshell

49m 7s

Intro
0:00
Introduction
0:05
A Process for Graphing
1:22
1. Factor Numerator and Denominator
1:50
2. Find Domain
2:53
3. Simplifying the Function
3:59
4. Find Vertical Asymptotes
4:59
5. Find Horizontal/Slant Asymptotes
5:24
6. Find Intercepts
7:35
7. Draw Graph (Find Points as Necessary)
9:21
Draw Graph Example
11:21
Vertical Asymptote
11:41
Horizontal Asymptote
11:50
Other Graphing
12:16
Test Intervals
15:08
Example 1
17:57
Example 2
23:01
Example 3
29:02
Example 4
33:37
Partial Fractions

44m 56s

Intro
0:00
Introduction: Idea
0:04
Introduction: Prerequisites and Uses
1:57
Proper vs. Improper Polynomial Fractions
3:11
Possible Things in the Denominator
4:38
Linear Factors
6:16
Example of Linear Factors
7:03
Multiple Linear Factors
7:48
Irreducible Quadratic Factors
8:25
Example of Quadratic Factors
9:26
Multiple Quadratic Factors
9:49
Mixing Factor Types
10:28
Figuring Out the Numerator
11:10
How to Solve for the Constants
11:30
Quick Example
11:40
Example 1
14:29
Example 2
18:35
Example 3
20:33
Example 4
28:51
Section 5: Exponential & Logarithmic Functions
Understanding Exponents

35m 17s

Intro
0:00
Introduction
0:05
Fundamental Idea
1:46
Expanding the Idea
2:28
Multiplication of the Same Base
2:40
Exponents acting on Exponents
3:45
Different Bases with the Same Exponent
4:31
To the Zero
5:35
To the First
5:45
Fundamental Rule with the Zero Power
6:35
To the Negative
7:45
Any Number to a Negative Power
8:14
A Fraction to a Negative Power
9:58
Division with Exponential Terms
10:41
To the Fraction
11:33
Square Root
11:58
Any Root
12:59
Summary of Rules
14:38
To the Irrational
17:21
Example 1
20:34
Example 2
23:42
Example 3
27:44
Example 4
31:44
Example 5
33:15
Exponential Functions

47m 4s

Intro
0:00
Introduction
0:05
Definition of an Exponential Function
0:48
Definition of the Base
1:02
Restrictions on the Base
1:16
Computing Exponential Functions
2:29
Harder Computations
3:10
When to Use a Calculator
3:21
Graphing Exponential Functions: a>1
6:02
Three Examples
6:13
What to Notice on the Graph
7:44
A Story
8:27
Story Diagram
9:15
Increasing Exponentials
11:29
Story Morals
14:40
Application: Compound Interest
15:15
Compounding Year after Year
16:01
Function for Compounding Interest
16:51
A Special Number: e
20:55
Expression for e
21:28
Where e stabilizes
21:55
Application: Continuously Compounded Interest
24:07
Equation for Continuous Compounding
24:22
Exponential Decay 0<a<1
25:50
Three Examples
26:11
Why they 'lose' value
26:54
Example 1
27:47
Example 2
33:11
Example 3
36:34
Example 4
41:28
Introduction to Logarithms

40m 31s

Intro
0:00
Introduction
0:04
Definition of a Logarithm, Base 2
0:51
Log 2 Defined
0:55
Examples
2:28
Definition of a Logarithm, General
3:23
Examples of Logarithms
5:15
Problems with Unusual Bases
7:38
Shorthand Notation: ln and log
9:44
base e as ln
10:01
base 10 as log
10:34
Calculating Logarithms
11:01
using a calculator
11:34
issues with other bases
11:58
Graphs of Logarithms
13:21
Three Examples
13:29
Slow Growth
15:19
Logarithms as Inverse of Exponentiation
16:02
Using Base 2
16:05
General Case
17:10
Looking More Closely at Logarithm Graphs
19:16
The Domain of Logarithms
20:41
Thinking about Logs like Inverses
21:08
The Alternate
24:00
Example 1
25:59
Example 2
30:03
Example 3
32:49
Example 4
37:34
Properties of Logarithms

42m 33s

Intro
0:00
Introduction
0:04
Basic Properties
1:12
Inverse--log(exp)
1:43
A Key Idea
2:44
What We Get through Exponentiation
3:18
B Always Exists
4:50
Inverse--exp(log)
5:53
Logarithm of a Power
7:44
Logarithm of a Product
10:07
Logarithm of a Quotient
13:48
Caution! There Is No Rule for loga(M+N)
16:12
Summary of Properties
17:42
Change of Base--Motivation
20:17
No Calculator Button
20:59
A Specific Example
21:45
Simplifying
23:45
Change of Base--Formula
24:14
Example 1
25:47
Example 2
29:08
Example 3
31:14
Example 4
34:13
Solving Exponential and Logarithmic Equations

34m 10s

Intro
0:00
Introduction
0:05
One to One Property
1:09
Exponential
1:26
Logarithmic
1:44
Specific Considerations
2:02
One-to-One Property
3:30
Solving by One-to-One
4:11
Inverse Property
6:09
Solving by Inverses
7:25
Dealing with Equations
7:50
Example of Taking an Exponent or Logarithm of an Equation
9:07
A Useful Property
11:57
Bring Down Exponents
12:01
Try to Simplify
13:20
Extraneous Solutions
13:45
Example 1
16:37
Example 2
19:39
Example 3
21:37
Example 4
26:45
Example 5
29:37
Application of Exponential and Logarithmic Functions

48m 46s

Intro
0:00
Introduction
0:06
Applications of Exponential Functions
1:07
A Secret!
2:17
Natural Exponential Growth Model
3:07
Figure out r
3:34
A Secret!--Why Does It Work?
4:44
e to the r Morphs
4:57
Example
5:06
Applications of Logarithmic Functions
8:32
Examples
8:43
What Logarithms are Useful For
9:53
Example 1
11:29
Example 2
15:30
Example 3
26:22
Example 4
32:05
Example 5
39:19
Section 6: Trigonometric Functions
Angles

39m 5s

Intro
0:00
Degrees
0:22
Circle is 360 Degrees
0:48
Splitting a Circle
1:13
Radians
2:08
Circle is 2 Pi Radians
2:31
One Radian
2:52
Half-Circle and Right Angle
4:00
Converting Between Degrees and Radians
6:24
Formulas for Degrees and Radians
6:52
Coterminal, Complementary, Supplementary Angles
7:23
Coterminal Angles
7:30
Complementary Angles
9:40
Supplementary Angles
10:08
Example 1: Dividing a Circle
10:38
Example 2: Converting Between Degrees and Radians
11:56
Example 3: Quadrants and Coterminal Angles
14:18
Extra Example 1: Common Angle Conversions
-1
Extra Example 2: Quadrants and Coterminal Angles
-2
Sine and Cosine Functions

43m 16s

Intro
0:00
Sine and Cosine
0:15
Unit Circle
0:22
Coordinates on Unit Circle
1:03
Right Triangles
1:52
Adjacent, Opposite, Hypotenuse
2:25
Master Right Triangle Formula: SOHCAHTOA
2:48
Odd Functions, Even Functions
4:40
Example: Odd Function
4:56
Example: Even Function
7:30
Example 1: Sine and Cosine
10:27
Example 2: Graphing Sine and Cosine Functions
14:39
Example 3: Right Triangle
21:40
Example 4: Odd, Even, or Neither
26:01
Extra Example 1: Right Triangle
-1
Extra Example 2: Graphing Sine and Cosine Functions
-2
Sine and Cosine Values of Special Angles

33m 5s

Intro
0:00
45-45-90 Triangle and 30-60-90 Triangle
0:08
45-45-90 Triangle
0:21
30-60-90 Triangle
2:06
Mnemonic: All Students Take Calculus (ASTC)
5:21
Using the Unit Circle
5:59
New Angles
6:21
Other Quadrants
9:43
Mnemonic: All Students Take Calculus
10:13
Example 1: Convert, Quadrant, Sine/Cosine
13:11
Example 2: Convert, Quadrant, Sine/Cosine
16:48
Example 3: All Angles and Quadrants
20:21
Extra Example 1: Convert, Quadrant, Sine/Cosine
-1
Extra Example 2: All Angles and Quadrants
-2
Modified Sine Waves: Asin(Bx+C)+D and Acos(Bx+C)+D

52m 3s

Intro
0:00
Amplitude and Period of a Sine Wave
0:38
Sine Wave Graph
0:58
Amplitude: Distance from Middle to Peak
1:18
Peak: Distance from Peak to Peak
2:41
Phase Shift and Vertical Shift
4:13
Phase Shift: Distance Shifted Horizontally
4:16
Vertical Shift: Distance Shifted Vertically
6:48
Example 1: Amplitude/Period/Phase and Vertical Shift
8:04
Example 2: Amplitude/Period/Phase and Vertical Shift
17:39
Example 3: Find Sine Wave Given Attributes
25:23
Extra Example 1: Amplitude/Period/Phase and Vertical Shift
-1
Extra Example 2: Find Cosine Wave Given Attributes
-2
Tangent and Cotangent Functions

36m 4s

Intro
0:00
Tangent and Cotangent Definitions
0:21
Tangent Definition
0:25
Cotangent Definition
0:47
Master Formula: SOHCAHTOA
1:01
Mnemonic
1:16
Tangent and Cotangent Values
2:29
Remember Common Values of Sine and Cosine
2:46
90 Degrees Undefined
4:36
Slope and Menmonic: ASTC
5:47
Uses of Tangent
5:54
Example: Tangent of Angle is Slope
6:09
Sign of Tangent in Quadrants
7:49
Example 1: Graph Tangent and Cotangent Functions
10:42
Example 2: Tangent and Cotangent of Angles
16:09
Example 3: Odd, Even, or Neither
18:56
Extra Example 1: Tangent and Cotangent of Angles
-1
Extra Example 2: Tangent and Cotangent of Angles
-2
Secant and Cosecant Functions

27m 18s

Intro
0:00
Secant and Cosecant Definitions
0:17
Secant Definition
0:18
Cosecant Definition
0:33
Example 1: Graph Secant Function
0:48
Example 2: Values of Secant and Cosecant
6:49
Example 3: Odd, Even, or Neither
12:49
Extra Example 1: Graph of Cosecant Function
-1
Extra Example 2: Values of Secant and Cosecant
-2
Inverse Trigonometric Functions

32m 58s

Intro
0:00
Arcsine Function
0:24
Restrictions between -1 and 1
0:43
Arcsine Notation
1:26
Arccosine Function
3:07
Restrictions between -1 and 1
3:36
Cosine Notation
3:53
Arctangent Function
4:30
Between -Pi/2 and Pi/2
4:44
Tangent Notation
5:02
Example 1: Domain/Range/Graph of Arcsine
5:45
Example 2: Arcsin/Arccos/Arctan Values
10:46
Example 3: Domain/Range/Graph of Arctangent
17:14
Extra Example 1: Domain/Range/Graph of Arccosine
-1
Extra Example 2: Arcsin/Arccos/Arctan Values
-2
Computations of Inverse Trigonometric Functions

31m 8s

Intro
0:00
Inverse Trigonometric Function Domains and Ranges
0:31
Arcsine
0:41
Arccosine
1:14
Arctangent
1:41
Example 1: Arcsines of Common Values
2:44
Example 2: Odd, Even, or Neither
5:57
Example 3: Arccosines of Common Values
12:24
Extra Example 1: Arctangents of Common Values
-1
Extra Example 2: Arcsin/Arccos/Arctan Values
-2
Section 7: Trigonometric Identities
Pythagorean Identity

19m 11s

Intro
0:00
Pythagorean Identity
0:17
Pythagorean Triangle
0:27
Pythagorean Identity
0:45
Example 1: Use Pythagorean Theorem to Prove Pythagorean Identity
1:14
Example 2: Find Angle Given Cosine and Quadrant
4:18
Example 3: Verify Trigonometric Identity
8:00
Extra Example 1: Use Pythagorean Identity to Prove Pythagorean Theorem
-1
Extra Example 2: Find Angle Given Cosine and Quadrant
-2
Identity Tan(squared)x+1=Sec(squared)x

23m 16s

Intro
0:00
Main Formulas
0:19
Companion to Pythagorean Identity
0:27
For Cotangents and Cosecants
0:52
How to Remember
0:58
Example 1: Prove the Identity
1:40
Example 2: Given Tan Find Sec
3:42
Example 3: Prove the Identity
7:45
Extra Example 1: Prove the Identity
-1
Extra Example 2: Given Sec Find Tan
-2
Addition and Subtraction Formulas

52m 52s

Intro
0:00
Addition and Subtraction Formulas
0:09
How to Remember
0:48
Cofunction Identities
1:31
How to Remember Graphically
1:44
Where to Use Cofunction Identities
2:52
Example 1: Derive the Formula for cos(A-B)
3:08
Example 2: Use Addition and Subtraction Formulas
16:03
Example 3: Use Addition and Subtraction Formulas to Prove Identity
25:11
Extra Example 1: Use cos(A-B) and Cofunction Identities
-1
Extra Example 2: Convert to Radians and use Formulas
-2
Double Angle Formulas

29m 5s

Intro
0:00
Main Formula
0:07
How to Remember from Addition Formula
0:18
Two Other Forms
1:35
Example 1: Find Sine and Cosine of Angle using Double Angle
3:16
Example 2: Prove Trigonometric Identity using Double Angle
9:37
Example 3: Use Addition and Subtraction Formulas
12:38
Extra Example 1: Find Sine and Cosine of Angle using Double Angle
-1
Extra Example 2: Prove Trigonometric Identity using Double Angle
-2
Half-Angle Formulas

43m 55s

Intro
0:00
Main Formulas
0:09
Confusing Part
0:34
Example 1: Find Sine and Cosine of Angle using Half-Angle
0:54
Example 2: Prove Trigonometric Identity using Half-Angle
11:51
Example 3: Prove the Half-Angle Formula for Tangents
18:39
Extra Example 1: Find Sine and Cosine of Angle using Half-Angle
-1
Extra Example 2: Prove Trigonometric Identity using Half-Angle
-2
Section 8: Applications of Trigonometry
Trigonometry in Right Angles

25m 43s

Intro
0:00
Master Formula for Right Angles
0:11
SOHCAHTOA
0:15
Only for Right Triangles
1:26
Example 1: Find All Angles in a Triangle
2:19
Example 2: Find Lengths of All Sides of Triangle
7:39
Example 3: Find All Angles in a Triangle
11:00
Extra Example 1: Find All Angles in a Triangle
-1
Extra Example 2: Find Lengths of All Sides of Triangle
-2
Law of Sines

56m 40s

Intro
0:00
Law of Sines Formula
0:18
SOHCAHTOA
0:27
Any Triangle
0:59
Graphical Representation
1:25
Solving Triangle Completely
2:37
When to Use Law of Sines
2:55
ASA, SAA, SSA, AAA
2:59
SAS, SSS for Law of Cosines
7:11
Example 1: How Many Triangles Satisfy Conditions, Solve Completely
8:44
Example 2: How Many Triangles Satisfy Conditions, Solve Completely
15:30
Example 3: How Many Triangles Satisfy Conditions, Solve Completely
28:32
Extra Example 1: How Many Triangles Satisfy Conditions, Solve Completely
-1
Extra Example 2: How Many Triangles Satisfy Conditions, Solve Completely
-2
Law of Cosines

49m 5s

Intro
0:00
Law of Cosines Formula
0:23
Graphical Representation
0:34
Relates Sides to Angles
1:00
Any Triangle
1:20
Generalization of Pythagorean Theorem
1:32
When to Use Law of Cosines
2:26
SAS, SSS
2:30
Heron's Formula
4:49
Semiperimeter S
5:11
Example 1: How Many Triangles Satisfy Conditions, Solve Completely
5:53
Example 2: How Many Triangles Satisfy Conditions, Solve Completely
15:19
Example 3: Find Area of a Triangle Given All Side Lengths
26:33
Extra Example 1: How Many Triangles Satisfy Conditions, Solve Completely
-1
Extra Example 2: Length of Third Side and Area of Triangle
-2
Finding the Area of a Triangle

27m 37s

Intro
0:00
Master Right Triangle Formula and Law of Cosines
0:19
SOHCAHTOA
0:27
Law of Cosines
1:23
Heron's Formula
2:22
Semiperimeter S
2:37
Example 1: Area of Triangle with Two Sides and One Angle
3:12
Example 2: Area of Triangle with Three Sides
6:11
Example 3: Area of Triangle with Three Sides, No Heron's Formula
8:50
Extra Example 1: Area of Triangle with Two Sides and One Angle
-1
Extra Example 2: Area of Triangle with Two Sides and One Angle
-2
Word Problems and Applications of Trigonometry

34m 25s

Intro
0:00
Formulas to Remember
0:11
SOHCAHTOA
0:15
Law of Sines
0:55
Law of Cosines
1:48
Heron's Formula
2:46
Example 1: Telephone Pole Height
4:01
Example 2: Bridge Length
7:48
Example 3: Area of Triangular Field
14:20
Extra Example 1: Kite Height
-1
Extra Example 2: Roads to a Town
-2
Section 9: Systems of Equations and Inequalities
Systems of Linear Equations

55m 40s

Intro
0:00
Introduction
0:04
Graphs as Location of 'True'
1:49
All Locations that Make the Function True
2:25
Understand the Relationship Between Solutions and the Graph
3:43
Systems as Graphs
4:07
Equations as Lines
4:20
Intersection Point
5:19
Three Possibilities for Solutions
6:17
Independent
6:24
Inconsistent
6:36
Dependent
7:06
Solving by Substitution
8:37
Solve for One Variable
9:07
Substitute into the Second Equation
9:34
Solve for Both Variables
10:12
What If a System is Inconsistent or Dependent?
11:08
No Solutions
11:25
Infinite Solutions
12:30
Solving by Elimination
13:56
Example
14:22
Determining the Number of Solutions
16:30
Why Elimination Makes Sense
17:25
Solving by Graphing Calculator
19:59
Systems with More than Two Variables
23:22
Example 1
25:49
Example 2
30:22
Example 3
34:11
Example 4
38:55
Example 5
46:01
(Non-) Example 6
53:37
Systems of Linear Inequalities

1h 13s

Intro
0:00
Introduction
0:04
Inequality Refresher-Solutions
0:46
Equation Solutions vs. Inequality Solutions
1:02
Essentially a Wide Variety of Answers
1:35
Refresher--Negative Multiplication Flips
1:43
Refresher--Negative Flips: Why?
3:19
Multiplication by a Negative
3:43
The Relationship Flips
3:55
Refresher--Stick to Basic Operations
4:34
Linear Equations in Two Variables
6:50
Graphing Linear Inequalities
8:28
Why It Includes a Whole Section
8:43
How to Show The Difference Between Strict and Not Strict Inequalities
10:08
Dashed Line--Not Solutions
11:10
Solid Line--Are Solutions
11:24
Test Points for Shading
11:42
Example of Using a Point
12:41
Drawing Shading from the Point
13:14
Graphing a System
14:53
Set of Solutions is the Overlap
15:17
Example
15:22
Solutions are Best Found Through Graphing
18:05
Linear Programming-Idea
19:52
Use a Linear Objective Function
20:15
Variables in Objective Function have Constraints
21:24
Linear Programming-Method
22:09
Rearrange Equations
22:21
Graph
22:49
Critical Solution is at the Vertex of the Overlap
23:40
Try Each Vertice
24:35
Example 1
24:58
Example 2
28:57
Example 3
33:48
Example 4
43:10
Nonlinear Systems

41m 1s

Intro
0:00
Introduction
0:06
Substitution
1:12
Example
1:22
Elimination
3:46
Example
3:56
Elimination is Less Useful for Nonlinear Systems
4:56
Graphing
5:56
Using a Graphing Calculator
6:44
Number of Solutions
8:44
Systems of Nonlinear Inequalities
10:02
Graph Each Inequality
10:06
Dashed and/or Solid
10:18
Shade Appropriately
11:14
Example 1
13:24
Example 2
15:50
Example 3
22:02
Example 4
29:06
Example 4, cont.
33:40
Section 10: Vectors and Matrices
Vectors

1h 9m 31s

Intro
0:00
Introduction
0:10
Magnitude of the Force
0:22
Direction of the Force
0:48
Vector
0:52
Idea of a Vector
1:30
How Vectors are Denoted
2:00
Component Form
3:20
Angle Brackets and Parentheses
3:50
Magnitude/Length
4:26
Denoting the Magnitude of a Vector
5:16
Direction/Angle
7:52
Always Draw a Picture
8:50
Component Form from Magnitude & Angle
10:10
Scaling by Scalars
14:06
Unit Vectors
16:26
Combining Vectors - Algebraically
18:10
Combining Vectors - Geometrically
19:54
Resultant Vector
20:46
Alternate Component Form: i, j
21:16
The Zero Vector
23:18
Properties of Vectors
24:20
No Multiplication (Between Vectors)
28:30
Dot Product
29:40
Motion in a Medium
30:10
Fish in an Aquarium Example
31:38
More Than Two Dimensions
33:12
More Than Two Dimensions - Magnitude
34:18
Example 1
35:26
Example 2
38:10
Example 3
45:48
Example 4
50:40
Example 4, cont.
56:07
Example 5
1:01:32
Dot Product & Cross Product

35m 20s

Intro
0:00
Introduction
0:08
Dot Product - Definition
0:42
Dot Product Results in a Scalar, Not a Vector
2:10
Example in Two Dimensions
2:34
Angle and the Dot Product
2:58
The Dot Product of Two Vectors is Deeply Related to the Angle Between the Two Vectors
2:59
Proof of Dot Product Formula
4:14
Won't Directly Help Us Better Understand Vectors
4:18
Dot Product - Geometric Interpretation
4:58
We Can Interpret the Dot Product as a Measure of How Long and How Parallel Two Vectors Are
7:26
Dot Product - Perpendicular Vectors
8:24
If the Dot Product of Two Vectors is 0, We Know They are Perpendicular to Each Other
8:54
Cross Product - Definition
11:08
Cross Product Only Works in Three Dimensions
11:09
Cross Product - A Mnemonic
12:16
The Determinant of a 3 x 3 Matrix and Standard Unit Vectors
12:17
Cross Product - Geometric Interpretations
14:30
The Right-Hand Rule
15:17
Cross Product - Geometric Interpretations Cont.
17:00
Example 1
18:40
Example 2
22:50
Example 3
24:04
Example 4
26:20
Bonus Round
29:18
Proof: Dot Product Formula
29:24
Proof: Dot Product Formula, cont.
30:38
Matrices

54m 7s

Intro
0:00
Introduction
0:08
Definition of a Matrix
3:02
Size or Dimension
3:58
Square Matrix
4:42
Denoted by Capital Letters
4:56
When are Two Matrices Equal?
5:04
Examples of Matrices
6:44
Rows x Columns
6:46
Talking About Specific Entries
7:48
We Use Capitals to Denote a Matrix and Lower Case to Denotes Its Entries
8:32
Using Entries to Talk About Matrices
10:08
Scalar Multiplication
11:26
Scalar = Real Number
11:34
Example
12:36
Matrix Addition
13:08
Example
14:22
Matrix Multiplication
15:00
Example
18:52
Matrix Multiplication, cont.
19:58
Matrix Multiplication and Order (Size)
25:26
Make Sure Their Orders are Compatible
25:27
Matrix Multiplication is NOT Commutative
28:20
Example
30:08
Special Matrices - Zero Matrix (0)
32:48
Zero Matrix Has 0 for All of its Entries
32:49
Special Matrices - Identity Matrix (I)
34:14
Identity Matrix is a Square Matrix That Has 1 for All Its Entries on the Main Diagonal and 0 for All Other Entries
34:15
Example 1
36:16
Example 2
40:00
Example 3
44:54
Example 4
50:08
Determinants & Inverses of Matrices

47m 12s

Intro
0:00
Introduction
0:06
Not All Matrices Are Invertible
1:30
What Must a Matrix Have to Be Invertible?
2:08
Determinant
2:32
The Determinant is a Real Number Associated With a Square Matrix
2:38
If the Determinant of a Matrix is Nonzero, the Matrix is Invertible
3:40
Determinant of a 2 x 2 Matrix
4:34
Think in Terms of Diagonals
5:12
Minors and Cofactors - Minors
6:24
Example
6:46
Minors and Cofactors - Cofactors
8:00
Cofactor is Closely Based on the Minor
8:01
Alternating Sign Pattern
9:04
Determinant of Larger Matrices
10:56
Example
13:00
Alternative Method for 3x3 Matrices
16:46
Not Recommended
16:48
Inverse of a 2 x 2 Matrix
19:02
Inverse of Larger Matrices
20:00
Using Inverse Matrices
21:06
When Multiplied Together, They Create the Identity Matrix
21:24
Example 1
23:45
Example 2
27:21
Example 3
32:49
Example 4
36:27
Finding the Inverse of Larger Matrices
41:59
General Inverse Method - Step 1
43:25
General Inverse Method - Step 2
43:27
General Inverse Method - Step 2, cont.
43:27
General Inverse Method - Step 3
45:15
Using Matrices to Solve Systems of Linear Equations

58m 34s

Intro
0:00
Introduction
0:12
Augmented Matrix
1:44
We Can Represent the Entire Linear System With an Augmented Matrix
1:50
Row Operations
3:22
Interchange the Locations of Two Rows
3:50
Multiply (or Divide) a Row by a Nonzero Number
3:58
Add (or Subtract) a Multiple of One Row to Another
4:12
Row Operations - Keep Notes!
5:50
Suggested Symbols
7:08
Gauss-Jordan Elimination - Idea
8:04
Gauss-Jordan Elimination - Idea, cont.
9:16
Reduced Row-Echelon Form
9:18
Gauss-Jordan Elimination - Method
11:36
Begin by Writing the System As An Augmented Matrix
11:38
Gauss-Jordan Elimination - Method, cont.
13:48
Cramer's Rule - 2 x 2 Matrices
17:08
Cramer's Rule - n x n Matrices
19:24
Solving with Inverse Matrices
21:10
Solving Inverse Matrices, cont.
25:28
The Mighty (Graphing) Calculator
26:38
Example 1
29:56
Example 2
33:56
Example 3
37:00
Example 3, cont.
45:04
Example 4
51:28
Section 11: Alternate Ways to Graph
Parametric Equations

53m 33s

Intro
0:00
Introduction
0:06
Definition
1:10
Plane Curve
1:24
The Key Idea
2:00
Graphing with Parametric Equations
2:52
Same Graph, Different Equations
5:04
How Is That Possible?
5:36
Same Graph, Different Equations, cont.
5:42
Here's Another to Consider
7:56
Same Plane Curve, But Still Different
8:10
A Metaphor for Parametric Equations
9:36
Think of Parametric Equations As a Way to Describe the Motion of An Object
9:38
Graph Shows Where It Went, But Not Speed
10:32
Eliminating Parameters
12:14
Rectangular Equation
12:16
Caution
13:52
Creating Parametric Equations
14:30
Interesting Graphs
16:38
Graphing Calculators, Yay!
19:18
Example 1
22:36
Example 2
28:26
Example 3
37:36
Example 4
41:00
Projectile Motion
44:26
Example 5
47:00
Polar Coordinates

48m 7s

Intro
0:00
Introduction
0:04
Polar Coordinates Give Us a Way To Describe the Location of a Point
0:26
Polar Equations and Functions
0:50
Plotting Points with Polar Coordinates
1:06
The Distance of the Point from the Origin
1:09
The Angle of the Point
1:33
Give Points as the Ordered Pair (r,θ)
2:03
Visualizing Plotting in Polar Coordinates
2:32
First Way We Can Plot
2:39
Second Way We Can Plot
2:50
First, We'll Look at Visualizing r, Then θ
3:09
Rotate the Length Counter-Clockwise by θ
3:38
Alternatively, We Can Visualize θ, Then r
4:06
'Polar Graph Paper'
6:17
Horizontal and Vertical Tick Marks Are Not Useful for Polar
6:42
Use Concentric Circles to Helps Up See Distance From the Pole
7:08
Can Use Arc Sectors to See Angles
7:57
Multiple Ways to Name a Point
9:17
Examples
9:30
For Any Angle θ, We Can Make an Equivalent Angle
10:44
Negative Values for r
11:58
If r Is Negative, We Go In The Direction Opposite the One That The Angle θ Points Out
12:22
Another Way to Name the Same Point: Add π to θ and Make r Negative
13:44
Converting Between Rectangular and Polar
14:37
Rectangular Way to Name
14:43
Polar Way to Name
14:52
The Rectangular System Must Have a Right Angle Because It's Based on a Rectangle
15:08
Connect Both Systems Through Basic Trigonometry
15:38
Equation to Convert From Polar to Rectangular Coordinate Systems
16:55
Equation to Convert From Rectangular to Polar Coordinate Systems
17:13
Converting to Rectangular is Easy
17:20
Converting to Polar is a Bit Trickier
17:21
Draw Pictures
18:55
Example 1
19:50
Example 2
25:17
Example 3
31:05
Example 4
35:56
Example 5
41:49
Polar Equations & Functions

38m 16s

Intro
0:00
Introduction
0:04
Equations and Functions
1:16
Independent Variable
1:21
Dependent Variable
1:30
Examples
1:46
Always Assume That θ Is In Radians
2:44
Graphing in Polar Coordinates
3:29
Graph is the Same Way We Graph 'Normal' Stuff
3:32
Example
3:52
Graphing in Polar - Example, Cont.
6:45
Tips for Graphing
9:23
Notice Patterns
10:19
Repetition
13:39
Graphing Equations of One Variable
14:39
Converting Coordinate Types
16:16
Use the Same Conversion Formulas From the Previous Lesson
16:23
Interesting Graphs
17:48
Example 1
18:03
Example 2
18:34
Graphing Calculators, Yay!
19:07
Plot Random Things, Alter Equations You Understand, Get a Sense for How Polar Stuff Works
19:11
Check Out the Appendix
19:26
Example 1
21:36
Example 2
28:13
Example 3
34:24
Example 4
35:52
Section 12: Complex Numbers and Polar Coordinates
Polar Form of Complex Numbers

40m 43s

Intro
0:00
Polar Coordinates
0:49
Rectangular Form
0:52
Polar Form
1:25
R and Theta
1:51
Polar Form Conversion
2:27
R and Theta
2:35
Optimal Values
4:05
Euler's Formula
4:25
Multiplying Two Complex Numbers in Polar Form
6:10
Multiply r's Together and Add Exponents
6:32
Example 1: Convert Rectangular to Polar Form
7:17
Example 2: Convert Polar to Rectangular Form
13:49
Example 3: Multiply Two Complex Numbers
17:28
Extra Example 1: Convert Between Rectangular and Polar Forms
-1
Extra Example 2: Simplify Expression to Polar Form
-2
DeMoivre's Theorem

57m 37s

Intro
0:00
Introduction to DeMoivre's Theorem
0:10
n nth Roots
3:06
DeMoivre's Theorem: Finding nth Roots
3:52
Relation to Unit Circle
6:29
One nth Root for Each Value of k
7:11
Example 1: Convert to Polar Form and Use DeMoivre's Theorem
8:24
Example 2: Find Complex Eighth Roots
15:27
Example 3: Find Complex Roots
27:49
Extra Example 1: Convert to Polar Form and Use DeMoivre's Theorem
-1
Extra Example 2: Find Complex Fourth Roots
-2
Section 13: Counting & Probability
Counting

31m 36s

Intro
0:00
Introduction
0:08
Combinatorics
0:56
Definition: Event
1:24
Example
1:50
Visualizing an Event
3:02
Branching line diagram
3:06
Addition Principle
3:40
Example
4:18
Multiplication Principle
5:42
Example
6:24
Pigeonhole Principle
8:06
Example
10:26
Draw Pictures
11:06
Example 1
12:02
Example 2
14:16
Example 3
17:34
Example 4
21:26
Example 5
25:14
Permutations & Combinations

44m 3s

Intro
0:00
Introduction
0:08
Permutation
0:42
Combination
1:10
Towards a Permutation Formula
2:38
How Many Ways Can We Arrange the Letters A, B, C, D, and E?
3:02
Towards a Permutation Formula, cont.
3:34
Factorial Notation
6:56
Symbol Is '!'
6:58
Examples
7:32
Permutation of n Objects
8:44
Permutation of r Objects out of n
9:04
What If We Have More Objects Than We Have Slots to Fit Them Into?
9:46
Permutation of r Objects Out of n, cont.
10:28
Distinguishable Permutations
14:46
What If Not All Of the Objects We're Permuting Are Distinguishable From Each Other?
14:48
Distinguishable Permutations, cont.
17:04
Combinations
19:04
Combinations, cont.
20:56
Example 1
23:10
Example 2
26:16
Example 3
28:28
Example 4
31:52
Example 5
33:58
Example 6
36:34
Probability

36m 58s

Intro
0:00
Introduction
0:06
Definition: Sample Space
1:18
Event = Something Happening
1:20
Sample Space
1:36
Probability of an Event
2:12
Let E Be An Event and S Be The Corresponding Sample Space
2:14
'Equally Likely' Is Important
3:52
Fair and Random
5:26
Interpreting Probability
6:34
How Can We Interpret This Value?
7:24
We Can Represent Probability As a Fraction, a Decimal, Or a Percentage
8:04
One of Multiple Events Occurring
9:52
Mutually Exclusive Events
10:38
What If The Events Are Not Mutually Exclusive?
12:20
Taking the Possibility of Overlap Into Account
13:24
An Event Not Occurring
17:14
Complement of E
17:22
Independent Events
19:36
Independent
19:48
Conditional Events
21:28
What Is The Events Are Not Independent Though?
21:30
Conditional Probability
22:16
Conditional Events, cont.
23:51
Example 1
25:27
Example 2
27:09
Example 3
28:57
Example 4
30:51
Example 5
34:15
Section 14: Conic Sections
Parabolas

41m 27s

Intro
0:00
What is a Parabola?
0:20
Definition of a Parabola
0:29
Focus
0:59
Directrix
1:15
Axis of Symmetry
3:08
Vertex
3:33
Minimum or Maximum
3:44
Standard Form
4:59
Horizontal Parabolas
5:08
Vertex Form
5:19
Upward or Downward
5:41
Example: Standard Form
6:06
Graphing Parabolas
8:31
Shifting
8:51
Example: Completing the Square
9:22
Symmetry and Translation
12:18
Example: Graph Parabola
12:40
Latus Rectum
17:13
Length
18:15
Example: Latus Rectum
18:35
Horizontal Parabolas
18:57
Not Functions
20:08
Example: Horizontal Parabola
21:21
Focus and Directrix
24:11
Horizontal
24:48
Example 1: Parabola Standard Form
25:12
Example 2: Graph Parabola
30:00
Example 3: Graph Parabola
33:13
Example 4: Parabola Equation
37:28
Circles

21m 3s

Intro
0:00
What are Circles?
0:08
Example: Equidistant
0:17
Radius
0:32
Equation of a Circle
0:44
Example: Standard Form
1:11
Graphing Circles
1:47
Example: Circle
1:56
Center Not at Origin
3:07
Example: Completing the Square
3:51
Example 1: Equation of Circle
6:44
Example 2: Center and Radius
11:51
Example 3: Radius
15:08
Example 4: Equation of Circle
16:57
Ellipses

46m 51s

Intro
0:00
What Are Ellipses?
0:11
Foci
0:23
Properties of Ellipses
1:43
Major Axis, Minor Axis
1:47
Center
1:54
Length of Major Axis and Minor Axis
3:21
Standard Form
5:33
Example: Standard Form of Ellipse
6:09
Vertical Major Axis
9:14
Example: Vertical Major Axis
9:46
Graphing Ellipses
12:51
Complete the Square and Symmetry
13:00
Example: Graphing Ellipse
13:16
Equation with Center at (h, k)
19:57
Horizontal and Vertical
20:14
Difference
20:27
Example: Center at (h, k)
20:55
Example 1: Equation of Ellipse
24:05
Example 2: Equation of Ellipse
27:57
Example 3: Equation of Ellipse
32:32
Example 4: Graph Ellipse
38:27
Hyperbolas

38m 15s

Intro
0:00
What are Hyperbolas?
0:12
Two Branches
0:18
Foci
0:38
Properties
2:00
Transverse Axis and Conjugate Axis
2:06
Vertices
2:46
Length of Transverse Axis
3:14
Distance Between Foci
3:31
Length of Conjugate Axis
3:38
Standard Form
5:45
Vertex Location
6:36
Known Points
6:52
Vertical Transverse Axis
7:26
Vertex Location
7:50
Asymptotes
8:36
Vertex Location
8:56
Rectangle
9:28
Diagonals
10:29
Graphing Hyperbolas
12:58
Example: Hyperbola
13:16
Equation with Center at (h, k)
16:32
Example: Center at (h, k)
17:21
Example 1: Equation of Hyperbola
19:20
Example 2: Equation of Hyperbola
22:48
Example 3: Graph Hyperbola
26:05
Example 4: Equation of Hyperbola
36:29
Conic Sections

18m 43s

Intro
0:00
Conic Sections
0:16
Double Cone Sections
0:24
Standard Form
1:27
General Form
1:37
Identify Conic Sections
2:16
B = 0
2:50
X and Y
3:22
Identify Conic Sections, Cont.
4:46
Parabola
5:17
Circle
5:51
Ellipse
6:31
Hyperbola
7:10
Example 1: Identify Conic Section
8:01
Example 2: Identify Conic Section
11:03
Example 3: Identify Conic Section
11:38
Example 4: Identify Conic Section
14:50
Section 15: Sequences, Series, & Induction
Introduction to Sequences

57m 45s

Intro
0:00
Introduction
0:06
Definition: Sequence
0:28
Infinite Sequence
2:08
Finite Sequence
2:22
Length
2:58
Formula for the nth Term
3:22
Defining a Sequence Recursively
5:54
Initial Term
7:58
Sequences and Patterns
10:40
First, Identify a Pattern
12:52
How to Get From One Term to the Next
17:38
Tips for Finding Patterns
19:52
More Tips for Finding Patterns
24:14
Even More Tips
26:50
Example 1
30:32
Example 2
34:54
Fibonacci Sequence
34:55
Example 3
38:40
Example 4
45:02
Example 5
49:26
Example 6
51:54
Introduction to Series

40m 27s

Intro
0:00
Introduction
0:06
Definition: Series
1:20
Why We Need Notation
2:48
Simga Notation (AKA Summation Notation)
4:44
Thing Being Summed
5:42
Index of Summation
6:21
Lower Limit of Summation
7:09
Upper Limit of Summation
7:23
Sigma Notation, Example
7:36
Sigma Notation for Infinite Series
9:08
How to Reindex
10:58
How to Reindex, Expanding
12:56
How to Reindex, Substitution
16:46
Properties of Sums
19:42
Example 1
23:46
Example 2
25:34
Example 3
27:12
Example 4
29:54
Example 5
32:06
Example 6
37:16
Arithmetic Sequences & Series

31m 36s

Intro
0:00
Introduction
0:05
Definition: Arithmetic Sequence
0:47
Common Difference
1:13
Two Examples
1:19
Form for the nth Term
2:14
Recursive Relation
2:33
Towards an Arithmetic Series Formula
5:12
Creating a General Formula
10:09
General Formula for Arithmetic Series
14:23
Example 1
15:46
Example 2
17:37
Example 3
22:21
Example 4
24:09
Example 5
27:14
Geometric Sequences & Series

39m 27s

Intro
0:00
Introduction
0:06
Definition
0:48
Form for the nth Term
2:42
Formula for Geometric Series
5:16
Infinite Geometric Series
11:48
Diverges
13:04
Converges
14:48
Formula for Infinite Geometric Series
16:32
Example 1
20:32
Example 2
22:02
Example 3
26:00
Example 4
30:48
Example 5
34:28
Mathematical Induction

49m 53s

Intro
0:00
Introduction
0:06
Belief Vs. Proof
1:22
A Metaphor for Induction
6:14
The Principle of Mathematical Induction
11:38
Base Case
13:24
Inductive Step
13:30
Inductive Hypothesis
13:52
A Remark on Statements
14:18
Using Mathematical Induction
16:58
Working Example
19:58
Finding Patterns
28:46
Example 1
30:17
Example 2
37:50
Example 3
42:38
The Binomial Theorem

1h 13m 13s

Intro
0:00
Introduction
0:06
We've Learned That a Binomial Is An Expression That Has Two Terms
0:07
Understanding Binomial Coefficients
1:20
Things We Notice
2:24
What Goes In the Blanks?
5:52
Each Blank is Called a Binomial Coefficient
6:18
The Binomial Theorem
6:38
Example
8:10
The Binomial Theorem, cont.
10:46
We Can Also Write This Expression Compactly Using Sigma Notation
12:06
Proof of the Binomial Theorem
13:22
Proving the Binomial Theorem Is Within Our Reach
13:24
Pascal's Triangle
15:12
Pascal's Triangle, cont.
16:12
Diagonal Addition of Terms
16:24
Zeroth Row
18:04
First Row
18:12
Why Do We Care About Pascal's Triangle?
18:50
Pascal's Triangle, Example
19:26
Example 1
21:26
Example 2
24:34
Example 3
28:34
Example 4
32:28
Example 5
37:12
Time for the Fireworks!
43:38
Proof of the Binomial Theorem
43:44
We'll Prove This By Induction
44:04
Proof (By Induction)
46:36
Proof, Base Case
47:00
Proof, Inductive Step - Notation Discussion
49:22
Induction Step
49:24
Proof, Inductive Step - Setting Up
52:26
Induction Hypothesis
52:34
What We What To Show
52:44
Proof, Inductive Step - Start
54:18
Proof, Inductive Step - Middle
55:38
Expand Sigma Notations
55:48
Proof, Inductive Step - Middle, cont.
58:40
Proof, Inductive Step - Checking In
1:01:08
Let's Check In With Our Original Goal
1:01:12
Want to Show
1:01:18
Lemma - A Mini Theorem
1:02:18
Proof, Inductive Step - Lemma
1:02:52
Proof of Lemma: Let's Investigate the Left Side
1:03:08
Proof, Inductive Step - Nearly There
1:07:54
Proof, Inductive Step - End!
1:09:18
Proof, Inductive Step - End!, cont.
1:11:01
Section 16: Preview of Calculus
Idea of a Limit

40m 22s

Intro
0:00
Introduction
0:05
Motivating Example
1:26
Fuzzy Notion of a Limit
3:38
Limit is the Vertical Location a Function is Headed Towards
3:44
Limit is What the Function Output is Going to Be
4:15
Limit Notation
4:33
Exploring Limits - 'Ordinary' Function
5:26
Test Out
5:27
Graphing, We See The Answer Is What We Would Expect
5:44
Exploring Limits - Piecewise Function
6:45
If We Modify the Function a Bit
6:49
Exploring Limits - A Visual Conception
10:08
Definition of a Limit
12:07
If f(x) Becomes Arbitrarily Close to Some Number L as x Approaches Some Number c, Then the Limit of f(x) As a Approaches c is L.
12:09
We Are Not Concerned with f(x) at x=c
12:49
We Are Considering x Approaching From All Directions, Not Just One Side
13:10
Limits Do Not Always Exist
15:47
Finding Limits
19:49
Graphs
19:52
Tables
21:48
Precise Methods
24:53
Example 1
26:06
Example 2
27:39
Example 3
30:51
Example 4
33:11
Example 5
37:07
Formal Definition of a Limit

57m 11s

Intro
0:00
Introduction
0:06
New Greek Letters
2:42
Delta
3:14
Epsilon
3:46
Sometimes Called the Epsilon-Delta Definition of a Limit
3:56
Formal Definition of a Limit
4:22
What does it MEAN!?!?
5:00
The Groundwork
5:38
Set Up the Limit
5:39
The Function is Defined Over Some Portion of the Reals
5:58
The Horizontal Location is the Value the Limit Will Approach
6:28
The Vertical Location L is Where the Limit Goes To
7:00
The Epsilon-Delta Part
7:26
The Hard Part is the Second Part of the Definition
7:30
Second Half of Definition
10:04
Restrictions on the Allowed x Values
10:28
The Epsilon-Delta Part, cont.
13:34
Sherlock Holmes and Dr. Watson
15:08
The Adventure of the Delta-Epsilon Limit
15:16
Setting
15:18
We Begin By Setting Up the Game As Follows
15:52
The Adventure of the Delta-Epsilon, cont.
17:24
This Game is About Limits
17:46
What If I Try Larger?
19:39
Technically, You Haven't Proven the Limit
20:53
Here is the Method
21:18
What We Should Concern Ourselves With
22:20
Investigate the Left Sides of the Expressions
25:24
We Can Create the Following Inequalities
28:08
Finally…
28:50
Nothing Like a Good Proof to Develop the Appetite
30:42
Example 1
31:02
Example 1, cont.
36:26
Example 2
41:46
Example 2, cont.
47:50
Finding Limits

32m 40s

Intro
0:00
Introduction
0:08
Method - 'Normal' Functions
2:04
The Easiest Limits to Find
2:06
It Does Not 'Break'
2:18
It Is Not Piecewise
2:26
Method - 'Normal' Functions, Example
3:38
Method - 'Normal' Functions, cont.
4:54
The Functions We're Used to Working With Go Where We Expect Them To Go
5:22
A Limit is About Figuring Out Where a Function is 'Headed'
5:42
Method - Canceling Factors
7:18
One Weird Thing That Often Happens is Dividing By 0
7:26
Method - Canceling Factors, cont.
8:16
Notice That The Two Functions Are Identical With the Exception of x=0
8:20
Method - Canceling Factors, cont.
10:00
Example
10:52
Method - Rationalization
12:04
Rationalizing a Portion of Some Fraction
12:05
Conjugate
12:26
Method - Rationalization, cont.
13:14
Example
13:50
Method - Piecewise
16:28
The Limits of Piecewise Functions
16:30
Example 1
17:42
Example 2
18:44
Example 3
20:20
Example 4
22:24
Example 5
24:24
Example 6
27:12
Continuity & One-Sided Limits

32m 43s

Intro
0:00
Introduction
0:06
Motivating Example
0:56
Continuity - Idea
2:14
Continuous Function
2:18
All Parts of Function Are Connected
2:28
Function's Graph Can Be Drawn Without Lifting Pencil
2:36
There Are No Breaks or Holes in Graph
2:56
Continuity - Idea, cont.
3:38
We Can Interpret the Break in the Continuity of f(x) as an Issue With the Function 'Jumping'
3:52
Continuity - Definition
5:16
A Break in Continuity is Caused By the Limit Not Matching Up With What the Function Does
5:18
Discontinuous
6:02
Discontinuity
6:10
Continuity and 'Normal' Functions
6:48
Return of the Motivating Example
8:14
One-Sided Limit
8:48
One-Sided Limit - Definition
9:16
Only Considers One Side
9:20
Be Careful to Keep Track of Which Symbol Goes With Which Side
10:06
One-Sided Limit - Example
10:50
There Does Not Necessarily Need to Be a Connection Between Left or Right Side Limits
11:16
Normal Limits and One-Sided Limits
12:08
Limits of Piecewise Functions
14:12
'Breakover' Points
14:22
We Find the Limit of a Piecewise Function By Checking If the Left and Right Side Limits Agree With Each Other
15:34
Example 1
16:40
Example 2
18:54
Example 3
22:00
Example 4
26:36
Limits at Infinity & Limits of Sequences

32m 49s

Intro
0:00
Introduction
0:06
Definition: Limit of a Function at Infinity
1:44
A Limit at Infinity Works Very Similarly to How a Normal Limit Works
2:38
Evaluating Limits at Infinity
4:08
Rational Functions
4:17
Examples
4:30
For a Rational Function, the Question Boils Down to Comparing the Long Term Growth Rates of the Numerator and Denominator
5:22
There are Three Possibilities
6:36
Evaluating Limits at Infinity, cont.
8:08
Does the Function Grow Without Bound? Will It 'Settle Down' Over Time?
10:06
Two Good Ways to Think About This
10:26
Limit of a Sequence
12:20
What Value Does the Sequence Tend to Do in the Long-Run?
12:41
The Limit of a Sequence is Very Similar to the Limit of a Function at Infinity
12:52
Numerical Evaluation
14:16
Numerically: Plug in Numbers and See What Comes Out
14:24
Example 1
16:42
Example 2
21:00
Example 3
22:08
Example 4
26:14
Example 5
28:10
Example 6
31:06
Instantaneous Slope & Tangents (Derivatives)

51m 13s

Intro
0:00
Introduction
0:08
The Derivative of a Function Gives Us a Way to Talk About 'How Fast' the Function If Changing
0:16
Instantaneous Slop
0:22
Instantaneous Rate of Change
0:28
Slope
1:24
The Vertical Change Divided by the Horizontal
1:40
Idea of Instantaneous Slope
2:10
What If We Wanted to Apply the Idea of Slope to a Non-Line?
2:14
Tangent to a Circle
3:52
What is the Tangent Line for a Circle?
4:42
Tangent to a Curve
5:20
Towards a Derivative - Average Slope
6:36
Towards a Derivative - Average Slope, cont.
8:20
An Approximation
11:24
Towards a Derivative - General Form
13:18
Towards a Derivative - General Form, cont.
16:46
An h Grows Smaller, Our Slope Approximation Becomes Better
18:44
Towards a Derivative - Limits!
20:04
Towards a Derivative - Limits!, cont.
22:08
We Want to Show the Slope at x=1
22:34
Towards a Derivative - Checking Our Slope
23:12
Definition of the Derivative
23:54
Derivative: A Way to Find the Instantaneous Slope of a Function at Any Point
23:58
Differentiation
24:54
Notation for the Derivative
25:58
The Derivative is a Very Important Idea In Calculus
26:04
The Important Idea
27:34
Why Did We Learn the Formal Definition to Find a Derivative?
28:18
Example 1
30:50
Example 2
36:06
Example 3
40:24
The Power Rule
44:16
Makes It Easier to Find the Derivative of a Function
44:24
Examples
45:04
n Is Any Constant Number
45:46
Example 4
46:26
Area Under a Curve (Integrals)

45m 26s

Intro
0:00
Introduction
0:06
Integral
0:12
Idea of Area Under a Curve
1:18
Approximation by Rectangles
2:12
The Easiest Way to Find Area is With a Rectangle
2:18
Various Methods for Choosing Rectangles
4:30
Rectangle Method - Left-Most Point
5:12
The Left-Most Point
5:16
Rectangle Method - Right-Most Point
5:58
The Right-Most Point
6:00
Rectangle Method - Mid-Point
6:42
Horizontal Mid-Point
6:48
Rectangle Method - Maximum (Upper Sum)
7:34
Maximum Height
7:40
Rectangle Method - Minimum
8:54
Minimum Height
9:02
Evaluating the Area Approximation
10:08
Split the Interval Into n Sub-Intervals
10:30
More Rectangles, Better Approximation
12:14
The More We Us , the Better Our Approximation Becomes
12:16
Our Approximation Becomes More Accurate as the Number of Rectangles n Goes Off to Infinity
12:44
Finding Area with a Limit
13:08
If This Limit Exists, It Is Called the Integral From a to b
14:08
The Process of Finding Integrals is Called Integration
14:22
The Big Reveal
14:40
The Integral is Based on the Antiderivative
14:46
The Big Reveal - Wait, Why?
16:28
The Rate of Change for the Area is Based on the Height of the Function
16:50
Height is the Derivative of Area, So Area is Based on the Antiderivative of Height
17:50
Example 1
19:06
Example 2
22:48
Example 3
29:06
Example 3, cont.
35:14
Example 4
40:14
Section 17: Appendix: Graphing Calculators
Buying a Graphing Calculator

10m 41s

Intro
0:00
Should You Buy?
0:06
Should I Get a Graphing Utility?
0:20
Free Graphing Utilities - Web Based
0:38
Personal Favorite: Desmos
0:58
Free Graphing Utilities - Offline Programs
1:18
GeoGebra
1:31
Microsoft Mathematics
1:50
Grapher
2:18
Other Graphing Utilities - Tablet/Phone
2:48
Should You Buy a Graphing Calculator?
3:22
The Only Real Downside
4:10
Deciding on Buying
4:20
If You Plan on Continuing in Math and/or Science
4:26
If Money is Not Particularly Tight for You
4:32
If You Don't Plan to Continue in Math and Science
5:02
If You Do Plan to Continue and Money Is Tight
5:28
Which to Buy
5:44
Which Graphing Calculator is Best?
5:46
Too Many Factors
5:54
Do Your Research
6:12
The Old Standby
7:10
TI-83 (Plus)
7:16
TI-84 (Plus)
7:18
Tips for Purchasing
9:17
Buy Online
9:19
Buy Used
9:35
Ask Around
10:09
Graphing Calculator Basics

10m 51s

Intro
0:00
Read the Manual
0:06
Skim It
0:20
Play Around and Experiment
0:34
Syntax
0:40
Definition of Syntax in English and Math
0:46
Pay Careful Attention to Your Syntax When Working With a Calculator
2:08
Make Sure You Use Parentheses to Indicate the Proper Order of Operations
2:16
Think About the Results
3:54
Settings
4:58
You'll Almost Never Need to Change the Settings on Your Calculator
5:00
Tell Calculator In Settings Whether the Angles Are In Radians or Degrees
5:26
Graphing Mode
6:32
Error Messages
7:10
Don't Panic
7:11
Internet Search
7:32
So Many Things
8:14
More Powerful Than You Realize
8:18
Other Things Your Graphing Calculator Can Do
8:24
Playing Around
9:16
Graphing Functions, Window Settings, & Table of Values

10m 38s

Intro
0:00
Graphing Functions
0:18
Graphing Calculator Expects the Variable to Be x
0:28
Syntax
0:58
The Syntax We Choose Will Affect How the Function Graphs
1:00
Use Parentheses
1:26
The Viewing Window
2:00
One of the Most Important Ideas When Graphing Is To Think About The Viewing Window
2:01
For Example
2:30
The Viewing Window, cont.
2:36
Window Settings
3:24
Manually Choose Window Settings
4:20
x Min
4:40
x Max
4:42
y Min
4:44
y Max
4:46
Changing the x Scale or y Scale
5:08
Window Settings, cont.
5:44
Table of Values
7:38
Allows You to Quickly Churn Out Values for Various Inputs
7:42
For example
7:44
Changing the Independent Variable From 'Automatic' to 'Ask'
8:50
Finding Points of Interest

9m 45s

Intro
0:00
Points of Interest
0:06
Interesting Points on the Graph
0:11
Roots/Zeros (Zero)
0:18
Relative Minimums (Min)
0:26
Relative Maximums (Max)
0:32
Intersections (Intersection)
0:38
Finding Points of Interest - Process
1:48
Graph the Function
1:49
Adjust Viewing Window
2:12
Choose Point of Interest Type
2:54
Identify Where Search Should Occur
3:04
Give a Guess
3:36
Get Result
4:06
Advanced Technique: Arbitrary Solving
5:10
Find Out What Input Value Causes a Certain Output
5:12
For Example
5:24
Advanced Technique: Calculus
7:18
Derivative
7:22
Integral
7:30
But How Do You Show Work?
8:20
Parametric & Polar Graphs

7m 8s

Intro
0:00
Change Graph Type
0:08
Located in General 'Settings'
0:16
Graphing in Parametric
1:06
Set Up Both Horizontal Function and Vertical Function
1:08
For Example
2:04
Graphing in Polar
4:00
For Example
4:28
Loading...
This is a quick preview of the lesson. For full access, please Log In or Sign up.
For more information, please see full course syllabus of Math Analysis
Bookmark & Share Embed

Share this knowledge with your friends!

Copy & Paste this embed code into your website’s HTML

Please ensure that your website editor is in text mode when you paste the code.
(In Wordpress, the mode button is on the top right corner.)
  ×
  • - Allow users to view the embedded video in full-size.
Since this lesson is not free, only the preview will appear on your website.
  • Discussion

  • Answer Engine

  • Study Guides

  • Download Lecture Slides

  • Table of Contents

  • Transcription

  • Related Books

Lecture Comments (20)

1 answer

Last reply by: Dr. William Murray
Fri Oct 17, 2014 1:13 PM

Post by Thomas Beguiristain on October 16, 2014

Question about the last example.

According to the double angle identity worked from the addition formula;  

sin2x = 2sinXcosX , does that means " 2(sinX) ∙ (cosX) "  or " 2 (sinX ∙ cosX ) "   ?

If you work it out from the addition formula indicates the second option, however, in example 3, when deciding

2sinXcosX  / cosX cosX , is taked as 2(sinX), since the results is 2sinX/ cosX = 2tan?

How come 2tan forms from 2sin and 1 cos ?

Also, one of the cosX from the denominator formed 1 with the one in the numerator, which is not mentioned. Is that what happened ?

1 answer

Last reply by: Dr. William Murray
Wed Nov 20, 2013 11:52 AM

Post by Sergio Trejo on November 13, 2013

i have a dificult time figuring out how you know what steps to incorporate to start, whats the easiest way to figure that? if any help,
thank you

1 answer

Last reply by: Dr. William Murray
Tue Aug 13, 2013 7:20 PM

Post by Taylor Wright on July 24, 2013

For Sin(3x), could you just turn it into sin(2x+x) and then go from there?

1 answer

Last reply by: Dr. William Murray
Tue Apr 2, 2013 12:57 PM

Post by Anurag Agrawal on February 26, 2013

Thanks! that was really helpful :)

1 answer

Last reply by: Dr. William Murray
Mon Jan 14, 2013 7:06 PM

Post by Jorge Sardinas on January 12, 2013

thanks for the video you made me understand the definition of double angle you are a fantastic and spectacular teacher [the third grader speaking!!!!!]

2 answers

Last reply by: Dr. William Murray
Mon Oct 29, 2012 9:05 PM

Post by Dr. William Murray on October 17, 2012

Ashlee, I'm sorry to hear that. As a teacher, I've been doing this stuff for many years, and sometimes it's hard to know just which parts are difficult for students. If you have some clever tricks to make some of this stuff easier, please post them!

I'm always looking for new ways to understand, remember, and calculate with these ideas, and some of my best tricks over the years cave come from my students. They'll show me something, I'll try it out with my next batch of students, and if it helps them too, I incorporate it into my regular repertoire. It would be great if you can add something too!

Thanks, and take care,
Will Murray

1 answer

Last reply by: Dr. William Murray
Mon Jan 14, 2013 7:21 PM

Post by Ashlee Josephs on October 16, 2012

This doesn't really help. You make things harder than my teacher.

1 answer

Last reply by: Dr. William Murray
Mon Jan 14, 2013 7:30 PM

Post by Judith Gleco on June 6, 2011

This video should include all steps. Not all can see what cancels until you brake it down step by step. I have never had trig before and my instructor at school and this video assume that you just have the double angle or the identities memorizied.

2 answers

Last reply by: Dr. William Murray
Mon Jan 14, 2013 7:30 PM

Post by aloosh aloosh on May 12, 2011

you make things so hard

Double Angle Formulas

    Main formulas:

    sin2x
    =
    2 sinx cosx
    cos2x
    =
    cos2 x − sin2 x
    =
    2cos2 x − 1
    =
    1 − 2sin2 x

    You can figure these out quickly from the addition formulas in the previous lecture, so they shouldn't be hard to memorize if you remember the addition formulas.


    Example 1:

    Use the double-angle formulas to find the sine and cosine of (2π /3). Use all three cosine formulas and check that the answers agree. Check that the answers agree with the sine and cosine of (2π /3) derived from the common values.

    Example 2:

    Use the double-angle formulas to prove the following trigonometric identity:
    sin2x = 2 tanx

    1 + tan2 x

    Example 3:

    Use the addition and subtraction formulas to derive a formula for tan2x in terms of tanx. Check the formula on x = (π /6).

    Example 4:

    Use the double-angle formulas to find the sine and cosine of (4π /3). Use all three cosine formulas and check that the answers agree. Check that the answers agree with the sine and cosine of (2π /3) derived from the common values.

    Example 5:

    Use the double-angle formulas to prove the following trigonometric identity:
    sec2x = sec2 x

    2 − sec2 x

Double Angle Formulas

Lecture Slides are screen-captured images of important points in the lecture. Students can download and print out these lecture slide images to do practice problems as well as take notes while watching the lecture.

  • Intro 0:00
  • Main Formula 0:07
    • How to Remember from Addition Formula
    • Two Other Forms
  • Example 1: Find Sine and Cosine of Angle using Double Angle 3:16
  • Example 2: Prove Trigonometric Identity using Double Angle 9:37
  • Example 3: Use Addition and Subtraction Formulas 12:38
  • Extra Example 1: Find Sine and Cosine of Angle using Double Angle
  • Extra Example 2: Prove Trigonometric Identity using Double Angle

Transcription: Double Angle Formulas

Hi we are trying some examples of the double angle formulas for sin and cos.0000

We are going to try to find the sin and cos of 4pi/3.0005

We are going to use all three cos formulas and check that they agree.0010

We are also going to use our common values to find the sin and cos of 4pi/3 to check our answers.0014

Let me write down the double angle formulas that we are going to be using.0021

We are going to use sin 2X = 2 sin X cos X.0025

These are probably worth remembering, but if you do not remember them, you can work them out from the addition formula for sin and cos.0034

Cos(2X) is cos x 2 - sin x 2.0043

Of course, the X here would have to be 2pi/3 because what we are really trying to find is the sin and cos of 4pi/3.0051

So, sin(4pi/3) according to our double angle formula is equal to 2 x sin(2pi/3) x cos(2pi/3).0061

Now, 2pi/3 that is a common value, I remember its sin and cos, its sin is root 3/2 and its cos is -1/2.0078

It is negative because 2pi/3 is in the second quadrant, so its X coordinate is negative.0089

Remember, cos is the X coordinate and this simplifies down to cancel and we will get –root 3/2.0094

cos(4pi/3) is cos(2pi/3)2 - sin(2pi/3)2.0106

So, plug those common values in the cos(2pi/3) is -1/2 and sin(2pi/3) is positive root 3/2.0122

I will get ¼ negative goes away because they got squared – root 3 squared is ¾ and so I get -1/2.0137

That was the first of the three formulas for cos(2x).0151

Let me remind you what the other two formulas are.0154

cos(2x) is equal to 2 cos X 2 - 1 and the other version we have of that formula is 1 – 2 sin X2.0156

These are all different formulas for cos(2x) and we will try each one now.0177

The first one there is cos(4pi/3) is equal to 2 cos(2pi/3) 2 - 1.0183

The cos(2pi/3) is -1/2 because it is in the second quadrant -1, that is (2 x ¼ - 1), which is ½ - 1, which is – ½.0201

If we use the other version of the formula we will get cos(2pi/3) is (1- 2 sin(2pi/3)2) which is (1-2 x (root 3/2)2).0225

2pi/3 is our common value, I remember its sin, (1 – 2 x root 3 squared is 3), 4 in the denominator so 1 – 3 (1/2), and again we will get -1/2.0243

That is very reassuring because if you look at the three different formulas for cos, we got the same answer for all three of them.0262

That was the first point we wanted to check, but now let us check using our common values, there is 0, pi/2, 3pi/2, 2pi.0272

Now, 4pi/3 is bigger than pi, it is down here.0294

4pi/3 is 2/3 around the unit circle to 2pi.0300

That is one of our common triangles, that is the 30, 60, 90 triangles.0306

I know that the length of the sides there are root 3/2 and 1/2, I can figure out the sin and cos from that.0311

I just have to figure what are the positive or negative.0320

Well, the cos(4pi/3) is negative because the X value is negative, so it is – ½.0323

The sin(4pi/3) is also negative because the Y value is also negative there, it is – root 3/2.0334

Those are the answer we get using the common values on the unit answer.0346

But if you look, that is also the answers we got using the double angle formula breaking 4pi/3 up into ((2 x (2pi/3)).0351

We got sin, was – root 3/2, and cos was – ½.0363

It indeed, in fact, agrees with the values that we got from the unit circle.0367

Finally we are going to use the double angle formulas to prove another trigonometric identity.0000

We are going to prove that sec(2x) is equal to (sec X 2) / (2 – sec X 2).0005

We are going to start with the right side because it looks more complicated.0013

The right hand side and we will try to manipulate it to the left hand side.0017

Let me start with the right hand side, (sec X2) / (2 – sec X 2).0022

Again, we do not know what to do with the trigonometric identity, it is often good to start with the more complicated side.0035

Secondly, convert everything to sin and cos.0042

Here I got a lot of sec, I am going to convert it to the definition of sec is (1/cos), this is (1/cos X 2).0046

My denominator, I have 2 – 1/ (cos X 2).0055

I see a lot of cos 2 in the denominator.0064

I think I’m going to try to clear that by multiplying top and bottom by cos X 2.0068

On the top, I will just get 1, on the bottom I get 2 cos X 2 - 1.0077

But look at that, 2 cos X 2 - 1.0090

That is one of the formulas that I remember for cos(2x), this is 1/cos(2x).0094

Now, let us remember by definition, one of our cos is exactly the same as sec.0104

So, this is sec(2x) and that is the left hand side of the identity that we are trying to prove.0110

We proved that we started with the right hand side, we derived the left hand side.0120

The key things to notice in there, the way it worked was, first of all the right hand side is a little more complicated, so we are going to work on that one.0124

When I see a bunch of sec, I try to convert it into sin and cos because I know how to manipulate sin and cos.0131

I got more formulas for them than for sec, tan, cosec, and cot.0138

I converted into sin and cos.0144

I see some cos in the denominator, I decided to multiply by cos X 2 to clear away those denominators.0147

I'm multiplying that thru and there is really some pattern recognition here knowing your identity formulas.0155

When I see that 2 cos X 2 - 1, a little bell goes of in my head, “wait I have seen that somewhere before, oh yes that is equal to cos(2x)”.0162

Now I got 1/cos(2x), that is by definition sec(2x) and so I converted into the left hand side.0174

That is how you can use the double angle identities to prove more complicated trigonometric identities.0184

That is the end of our lecture on double angle identities.0192

These are the trigonometry lectures for www.educator.com.0196

Hi, welcome back to the trigonometry lectures on educator.com.0000

Today, we're going to learn about the double angle formulas, so here they are.0004

The first one is sin(2x)=2sin(x)×cos(x).0008

You may think there's so many formulas to remember in trigonometry.0014

This one, if you have trouble remembering it, you can work it out from the addition formula.0019

You do have to remember something, but if you can remember the sin(a+b)=sin(a)×cos(b)+cos(a)×sin(b).0024

If you remember that one, then you don't really need to learn anything new here because you can work it out so quickly.0041

Just take a and b, both to be x in the addition formula.0046

If a is x and b is x, then what you get here is sin(2x)=sin(x)×cos(x)+cos(x)×sin(x).0052

What you get is just 2sin(x)×cos(x).0068

If you can remember the addition formula, the double angle formulas are really nothing new to remember here, same goes for the cos(2x) formula.0074

If you remember the addition formula for cosine, you might want to try just plugging in x for each of the a's and b's, and you'll see that what you get is exactly cos2(x)-sin2(x).0082

Now, there's two other ways that you often see this formula written as 2cos2(x)-1, and 1-2sin2(x).0096

Those might look different but actually you can figure them out very quickly, or check them very quickly, because 2cos2(x)-1 is 2cos2(x) minus, now remember 1 is the same as sin2(x)+cos2(x).0106

If you work with that a little bit, you have 2cos2-cos2.0126

That's just a single cos2(x)-sin2(x), and so all of a sudden this goes back to the original formula for cos(2x).0132

You could do this, you can check the second formula the exact same way, if you convert the 1 into sin2+cos2, you'll see that it converts back into this original formula for cos(x).0143

Even though it looks like there's 4 new formulas to remember here, really the basic sin(2x) and cos(2x), you can work both of those out from the additional formulas.0158

The other two formulas for cosine, you can just work them out if you remember the original formula for cosine and then the Pythagorean identity, sin2+cos2=1, which certainly any trigonometry student is going to remember the Pythagorean identity.0172

It's really not a lot of new memorization for these formulas.0185

The more interesting question here is how are you going to use them.0190

Let's try them out on some examples.0194

Our first example here is we're just going to get some practice using the sine and cosine of 2x formulas, the double angle formulas.0197

To find the sine and cosine of 2π/3.0206

Even though 2π/3 is a common value, hopefully you can work out the sine and cosine of 2π/3 without using the double angle formulas.0211

We're going to try them out using the double angle formulas, and then we'll just check that the answers we get agree with the values that we know coming from the common values.0219

We'll use that as a check, we won't use that at the beginning.0232

We're also going to use all three of the formulas for cosine and just check and make sure that they all work out, that they all agree with each other.0235

Let's start out by remembering those, actually, four formulas, sin(2x) is 2sin(x)×cos(x), and cos(2x) is cos2(x)-sin2(x).0243

Here, we're being asked to find the sine and cosine of 2π/3.0264

We're going to use x=π/3, that way 2x is 2π/3.0267

So, sin(2π/3), using x=π/3, it's 2sin(π/3)×cos(π/3).0277

I remember that the sin(π/3), that's a common value, so the sin(π/3) is root 3 over 2, cos(π/3) is 1/2, the 2 and that in 1/2 cancel, and what we'll get is root 3 over 2.0294

Now, let's try the cosine, cos(2π/3), is cos2(π/3)-sin2(π/3) according to our formula, but we're going to check it out and see if it works.0314

Now, cos(π/3) is 1/2, so (1/2)2 minus the sin(π/3) is root 3 over 2, we'll square that out.0333

1/2 squared is 1/4, root 3 over 2 squared is, root 3 squared is 3, 2 squared is 4, we get 1/4-3/4=-1/2.0344

Now, there were two other formulas for cos(2x), we want to check out each one of those, cos(2x)=2cos2(x)-1.0357

It was also supposed to be equal to 1-2sin2(x).0370

We're going to check out each one of those.0376

Cos(2π/3), using those other formulas, is equal to 2cos2(π/3)-1, which is 2.0379

Now, cos(π/3), that's a common value, that's 1/2, (1/2)2-1, which is 2×1/4-1, which is 1/2-1, is -1/2.0393

Let's use the other version, 1-2sin2(π/3), we'll use the last cosine formula there.0413

That's 1-2, now, sin(π/3), I remember that's a common value, root 3 over 2.0425

We're going to square that out, that's 1-2 times, root 3 squared is 3, and 22 is a 4.0433

That's 1-3/2=-1/2.0443

The first thing we noticed is that these 3 different formulas for cos(2x) they all gave us the answer -1/2.0452

They do check with each other, that's reassuring.0460

Now, let's work out the sine and cosine of 2π/3 just using the old-fashioned common values.0463

Let me draw my unit circle.0471

There's 0, π/2, π, and 3π/2.0482

2π/3 is 2/3 the way from 0 to π.0490

There it is right there.0493

That's my 30-60-90 triangle, so I know the values there are root 3 over 2 and 1/2.0496

I just have to figure out the sine and cosine, which ones are positive and which ones are negative.0505

I know that the cos(2π/3) because that's the x-value, and the x-value is negative, that's -1/2.0512

The sin(2π/3) is the y-value, which is positive, that's root 3 over 2.0524

We worked those out just looking at the unit circle and remembering the common values but that checks out with the values we got from the formulas there sin(2π/3) and each one of the formulas for cos(π/3).0530

What we're doing there is working out each one of the formulas for sin(2x) and cos(2x) with x=π/3.0545

That separates it out into expressions in terms of sines and cosines of π/3, which I remember so I just plug those in and I get the sine and cosine of 2π/3.0556

All the cosine formulas agree with each other and they all check with the values that I can find just by looking at the unit circle.0567

Our next example is to use the double angle formulas to prove a trigonometric identity.0577

It's not so obvious how to start with this one.0584

We're actually going to start with the right-hand side because it looks more complicated.0588

I'm going to start with the right-hand side and that's 2tan(x)/1+tan2(x).0592

I'm evaluating the right-hand side, I'm going to work with it a bit and hopefully I can simplify it down to the left-hand side, but we'll see how it goes.0605

First thing, I'm going to do is to change everything into sines and cosines.0615

That's a good rule when you're not sure what to do with the trigonometric identity is to change everything into sines and cosines.0619

If you got a tangent or a secant, or a cosecant or a cotangent, convert it into sines or cosines.0626

It will probably make your life easier.0631

I'll write this as 2, tangent, remember is sin/cos, and 1+tan2, that's 1+sin2(x)/cos2(x).0633

Now, I see a lot of cosines in denominators here, I think we're going to try to clear those out.0651

We multiply top and bottom by cos2(x) and see what happens with that.0655

That's multiplying by 1, so that's safe.0662

On the top, I have 2sin(x), now I had a cos(x) in the denominator but I multiplied by cos2, that gives me cos(x) in the numerator.0665

In the bottom, I have cos2 times 1+sin2(x) over cos2, that gives me 1×cos2 is cos2(x), plus the cos2(x) cancels with the denominator sin2(x).0677

Now, look at this, the top is exactly 2sin(x)×cos(x).0695

I remember that, that's my formula for sin(2x).0701

Now the bottom, that's the Pythagorean identity, so that's just 1, cos2+sin2(x) is 1.0709

This converts into sin(2x), but that's equal to the left-hand side of what we were trying to prove.0716

We started with the right-hand side because it looked a little more complicated there.0724

I see a bunch of tangents, I am not so sure what to do with those, I convert them into sines and cosines.0729

I see a lot of cosines in the denominator, so I multiply top and bottom by cos2(x).0736

Then I start noticing some formulas that I recognized, 2sin(x)×cos(x) is a double angle formula, and cos2(x)+sin2(x), that's the Pythagorean identity.0745

It reduces down into the right-hand side.0754

Let's try another example here, we're going to use the addition and subtraction formulas to derive a formula for tan(2x) in terms of tan(x).0760

Remember, we have formulas for sin(2x) and cos(2x), we're going to find a formula for tan(2x) just in terms of tan(x).0771

When we get that, we're going to check the formula on a common value π/6, because I know what the tangent of that is, and I know what the tan(2x) is, so we can check whether our formula works.0780

Let me start out with, tan(2x), don't know much about that except that the definition of tan(2x) is sin(2x)/cos(2x).0793

Now, I'm going to use, well, it's the addition and subtraction formulas but it's really the double angle formulas.0811

Of course, those come from the addition and subtraction formulas.0817

Now, sin(2x) is 2sin(x)×cos(x), that's the double angle formula for sine.0820

Of course, you find that out from the addition formula.0829

Cos(2x) is cos2(x)-sin2(x), that was the first double angle formula for cosine.0832

Now, it's not totally obvious how to proceed next, but I know that I'm trying to get everything in terms of tan(x).0844

Right now, I've got a bunch of cosines lying around, I'd like to move those down into the denominator.0852

The reason is because tangent is sin/cos, so I would like to be dividing by cosines.0858

What I'm going to do is I'm going to divide the top by cos2(x), and I'll divide the bottom by cos2(x).0866

We're dividing top and bottom by cos2(x), that's dividing by 1, so that's legitimate, we'll see what happens.0876

Now, in the numerator, we get 2sin(x), we had a cos(x) before, we divided by cos2, we get 2sin(x)/cos(x).0882

In the bottom, we're dividing everything by cos2(x), we get 1-sin2(x)/cos2(x).0896

That's really nice because now we have sin/cos everywhere and that's tangent.0908

We are asked to find everything in terms of tan(x).0913

What we get here is 2sin/cos is tan(x) over 1-sin2(x)/cos2(x) is tan2(x).0918

Our formula, our double angle formula for tangent is tan(2x)=2tan(x)/(1-tan2(x)).0931

Now, I didn't list this at the beginning of the lecture as one of the main formulas that you really need to memorize.0944

It kind of depends on your trigonometry class, in some classes they will ask you to memorize this formula, this formula for tan(2x).0949

I don't think it's worth memorizing.0957

In my trigonometry classes, I don't require my students to memorize these formulas for tan(2x).0960

I do require them to memorize sin(2x) and cos(2x) and I figure they can work out the other ones from that.0965

You may have a teacher who requires you to memorize the formula for tan(2x).0973

If so, here it is, here is the formula that you want to remember.0979

Let's check that out on a value that I already know the tangent of, let's try x=π/6.0984

The tan(2π/6), according to this formula, would be 2×tan(π/6)/(1-tan2(π/6)).0994

Now, π/6 is a common value, tan(π/6), I remember that, I've got that one memorized, it's root 3 over 3.1011

If you don't have that one memorized, it probably is a good one to memorize, but if you don't have it memorized, you can work it out as long as you remember sine and cosine of π/6.1023

You just divide them together and get the tan(π/6).1034

This is 2 times root 3 over 3, over 1 minus root 3 over 3 squared.1037

Let's do a little over that, that's 2 times root 3 over 3, over 1 minus root 3 over 3 squared, is 3, over 3 squared is 9.1048

That's 3/9 which is 1/3.1063

This is 2 root 3 over 3, divided by 2/3.1067

Remember how you divide fractions, you flip it and multiply, 3/2, that cancels off the 2 and the 3, this whole thing boils down to just a root 3 as tan(2π/6).1076

Of course, 2π/6 is just π/3.1092

π/3 is another common value that I know the tangent of.1101

tan(π/3), I remember, is root 3, that's a common value.1105

Again, if you don't remember that, remember the sine and cosine of π/3, divide them together and you'll get root 3.1112

Look at that, our answers agree.1120

That confirms our formula for tan(2x).1122

To recap the important parts of that problem, we have to figure out tan(2x).1126

We wrote it as sin/cos of 2x.1132

We expanded each one of those using the double angle formulas that we learned at the beginning of the lesson.1135

Then, I was trying to get this in terms of tan(2x).1140

I wanted to get some cosines in the denominator, that's why I divided top and bottom by cos2(x).1144

That converted the thing into something in terms of tan(x).1150

Then we checked that out by plugging in x=π/6, that's something that I know the tangent of, worked through the formula, and we got an answer square root of 3.1156

That checks the common value that I also know tan(π/3) is square root of 3.1170

We'll try some more examples of that later.1176

Educator®

Please sign in to participate in this lecture discussion.

Resetting Your Password?
OR

Start Learning Now

Our free lessons will get you started (Adobe Flash® required).
Get immediate access to our entire library.

Membership Overview

  • Available 24/7. Unlimited Access to Our Entire Library.
  • Search and jump to exactly what you want to learn.
  • *Ask questions and get answers from the community and our teachers!
  • Practice questions with step-by-step solutions.
  • Download lecture slides for taking notes.
  • Track your course viewing progress.
  • Accessible anytime, anywhere with our Android and iOS apps.