Dr. Laurie Starkey

Dr. Laurie Starkey

Organic Analysis: Classical & Modern Methods

Slide Duration:

Table of Contents

Section 1: Introduction to Organic Molecules
Introduction and Drawing Structures

49m 51s

Intro
0:00
Organic Chemistry
0:07
Organic
0:08
Inorganic
0:26
Examples of Organic Compounds
1:16
Review Some Chemistry Basics
5:23
Electrons
5:42
Orbitals (s,p,d,f)
6:12
Review Some Chemistry Basics
7:35
Elements & Noble Gases
7:36
Atom & Valance Shell
8:47
Review Some Chemistry Basics
11:33
Electronegative Elements
11:34
Which Is More Electronegative, C or N?
13:45
Ionic & Covalent Bonds
14:07
Ionic Bonds
14:08
Covalent Bonds
16:17
Polar Covalent Bonds
19:35
Polar Covalent Bonds & Electronegativities
19:37
Polarity of Molecules
22:56
Linear molecule
23:07
Bent Molecule
23:53
No Polar Bonds
24:21
Ionic
24:52
Line Drawings
26:36
Line Drawing Overview
26:37
Line Drawing: Example 1
27:12
Line Drawing: Example 2
29:14
Line Drawing: Example 3
29:51
Line Drawing: Example 4
30:34
Line Drawing: Example 5
31:21
Line Drawing: Example 6
32:41
Diversity of Organic Compounds
33:57
Diversity of Organic Compounds
33:58
Diversity of Organic Compounds, cont.
39:16
Diversity of Organic Compounds, cont.
39:17
Examples of Polymers
45:26
Examples of Polymers
45:27
Lewis Structures & Resonance

44m 25s

Intro
0:00
Lewis Structures
0:08
How to Draw a Lewis Structure
0:09
Examples
2:20
Lewis Structures
6:25
Examples: Lewis Structure
6:27
Determining Formal Charges
8:48
Example: Determining Formal Charges for Carbon
10:11
Example: Determining Formal Charges for Oxygen
11:02
Lewis Structures
12:08
Typical, Stable Bonding Patterns: Hydrogen
12:11
Typical, Stable Bonding Patterns: Carbon
12:58
Typical, Stable Bonding Patterns: Nitrogen
13:25
Typical, Stable Bonding Patterns: Oxygen
13:54
Typical, Stable Bonding Patterns: Halogen
14:16
Lewis Structure Example
15:17
Drawing a Lewis Structure for Nitric Acid
15:18
Resonance
21:58
Definition of Resonance
22:00
Delocalization
22:07
Hybrid Structure
22:38
Rules for Estimating Stability of Resonance Structures
26:04
Rule Number 1: Complete Octets
26:10
Rule Number 2: Separation of Charge
28:13
Rule Number 3: Negative and Positive Charges
30:02
Rule Number 4: Equivalent
31:06
Looking for Resonance
32:09
Lone Pair Next to a p Bond
32:10
Vacancy Next to a p Bond
33:53
p Bond Between Two Different Elements
35:00
Other Type of Resonance: Benzene
36:06
Resonance Example
37:29
Draw and Rank Resonance Forms
37:30
Acid-Base Reactions

1h 7m 46s

Intro
0:00
Acid-Base Reactions
0:07
Overview
0:08
Lewis Acid and Lewis Base
0:30
Example 1: Lewis Acid and Lewis Base
1:53
Example 2: Lewis Acid and Lewis Base
3:04
Acid-base Reactions
4:54
Bonsted-Lowry Acid and Bonsted-Lowry Base
4:56
Proton Transfer Reaction
5:36
Acid-Base Equilibrium
8:14
Two Acids in Competition = Equilibrium
8:15
Example: Which is the Stronger Acid?
8:40
Periodic Trends for Acidity
12:40
Across Row
12:41
Periodic Trends for Acidity
19:48
Energy Diagram
19:50
Periodic Trends for Acidity
21:28
Down a Family
21:29
Inductive Effects on Acidity
25:52
Example: Which is the Stronger Acid?
25:54
Other Electron-Withdrawing Group (EWG)
30:37
Inductive Effects on Acidity
32:55
Inductive Effects Decrease with Distance
32:56
Resonance Effects on Acidity
36:35
Examples of Resonance Effects on Acidity
36:36
Resonance Effects on Acidity
41:15
Small and Large Amount of Resonance
41:17
Acid-Base Example
43:10
Which is Most Acidic? Which is the Least Acidic?
43:12
Acid-Base Example
49:26
Which is the Stronger Base?
49:27
Acid-Base Example
53:58
Which is the Strongest Base?
53:59
Common Acids/Bases
1:00:45
Common Acids/Bases
1:00:46
Example: Determine the Direction of Equilibrium
1:04:51
Structures and Properties of Organic Molecules

1h 23m 35s

Intro
0:00
Orbitals and Bonding
0:20
Atomic Orbitals (AO)
0:21
Molecular Orbitals (MO)
1:46
Definition of Molecular Orbitals
1:47
Example 1: Formation of Sigma Bond and Molecular Orbitals
2:20
Molecular Orbitals (MO)
5:25
Example 2: Formation of Pi Bond
5:26
Overlapping E Levels of MO's
7:28
Energy Diagram
7:29
Electronic Transitions
9:18
Electronic Transitions
9:23
Hybrid Orbitals
12:04
Carbon AO
12:06
Hybridization
13:51
Hybrid Orbitals
15:02
Examples of Hybrid Orbitals
15:05
Example: Assign Hybridization
20:31
3-D Sketches
24:05
sp3
24:24
sp2
25:28
sp
27:41
3-D Sketches of Molecules
29:07
3-D Sketches of Molecules 1
29:08
3-D Sketches of Molecules 2
32:29
3-D Sketches of Molecules 3
35:36
3D Sketch
37:20
How to Draw 3D Sketch
37:22
Example 1: Drawing 3D Sketch
37:50
Example 2: Drawing 3D Sketch
43:04
Hybridization and Resonance
46:06
Example: Hybridization and Resonance
46:08
Physical Properties
49:55
Water Solubility, Boiling Points, and Intermolecular Forces
49:56
Types of 'Nonbonding' Interactions
51:47
Dipole-Dipole
52:37
Definition of Dipole-Dipole
52:39
Example: Dipole-Dipole Bonding
53:27
Hydrogen Bonding
57:14
Definition of Hydrogen Bonding
57:15
Example: Hydrogen Bonding
58:05
Van Der Waals/ London Forces
1:03:11
Van Der Waals/ London Forces
1:03:12
Example: Van Der Waals/ London Forces
1:04:59
Water Solubility
1:08:32
Water Solubility
1:08:34
Example: Water Solubility
1:09:05
Example: Acetone
1:11:29
Isomerism
1:13:51
Definition of Isomers
1:13:53
Constitutional Isomers and Example
1:14:17
Stereoisomers and Example
1:15:34
Introduction to Functional Groups
1:17:06
Functional Groups: Example, Abbreviation, and Name
1:17:07
Introduction to Functional Groups
1:20:48
Functional Groups: Example, Abbreviation, and Name
1:20:49
Alkane Structures

1h 13m 38s

Intro
0:00
Nomenclature of Alkanes
0:12
Nomenclature of Alkanes and IUPAC Rules
0:13
Examples: Nomenclature of Alkanes
4:38
Molecular Formula and Degrees of Unsaturation (DU)
17:24
Alkane Formula
17:25
Example: Heptane
17:58
Why '2n+2' Hydrogens?
18:35
Adding a Ring
19:20
Adding a p Bond
19:42
Example 1: Determine Degrees of Unsaturation (DU)
20:17
Example 2: Determine Degrees of Unsaturation (DU)
21:35
Example 3: Determine DU of Benzene
23:30
Molecular Formula and Degrees of Unsaturation (DU)
24:41
Example 4: Draw Isomers
24:42
Physical properties of Alkanes
29:17
Physical properties of Alkanes
29:18
Conformations of Alkanes
33:40
Conformational Isomers
33:42
Conformations of Ethane: Eclipsed and Staggered
34:40
Newman Projection of Ethane
36:15
Conformations of Ethane
40:38
Energy and Degrees Rotated Diagram
40:41
Conformations of Butane
42:28
Butane
42:29
Newman Projection of Butane
43:35
Conformations of Butane
44:25
Energy and Degrees Rotated Diagram
44:30
Cycloalkanes
51:26
Cyclopropane and Cyclobutane
51:27
Cyclopentane
53:56
Cycloalkanes
54:56
Cyclohexane: Chair, Boat, and Twist Boat Conformations
54:57
Drawing a Cyclohexane Chair
57:58
Drawing a Cyclohexane Chair
57:59
Newman Projection of Cyclohexane
1:02:14
Cyclohexane Chair Flips
1:04:06
Axial and Equatorial Groups
1:04:10
Example: Chair Flip on Methylcyclohexane
1:06:44
Cyclohexane Conformations Example
1:09:01
Chair Conformations of cis-1-t-butyl-4-methylcyclohexane
1:09:02
Stereochemistry

1h 40m 54s

Intro
0:00
Stereochemistry
0:10
Isomers
0:11
Stereoisomer Examples
1:30
Alkenes
1:31
Cycloalkanes
2:35
Stereoisomer Examples
4:00
Tetrahedral Carbon: Superimposable (Identical)
4:01
Tetrahedral Carbon: Non-Superimposable (Stereoisomers)
5:18
Chirality
7:18
Stereoisomers
7:19
Chiral
8:05
Achiral
8:29
Example: Achiral and Chiral
8:45
Chirality
20:11
Superimposable, Non-Superimposable, Chiral, and Achiral
20:12
Nomenclature
23:00
Cahn-Ingold-Prelog Rules
23:01
Nomenclature
29:39
Example 1: Nomenclature
29:40
Example 2: Nomenclature
31:49
Example 3: Nomenclature
33:24
Example 4: Nomenclature
35:39
Drawing Stereoisomers
36:58
Drawing (S)-2-bromopentane
36:59
Drawing the Enantiomer of (S)-2-bromopentane: Method 1
38:47
Drawing the Enantiomer of (S)-2-bromopentane: Method 2
39:35
Fischer Projections
41:47
Definition of Fischer Projections
41:49
Drawing Fischer Projection
43:43
Use of Fisher Projection: Assigning Configuration
49:13
Molecules with Two Chiral Carbons
51:49
Example A
51:42
Drawing Enantiomer of Example A
53:26
Fischer Projection of A
54:25
Drawing Stereoisomers, cont.
59:40
Drawing Stereoisomers Examples
59:41
Diastereomers
1:01:48
Drawing Stereoisomers
1:06:37
Draw All Stereoisomers of 2,3-dichlorobutane
1:06:38
Molecules with Two Chiral Centers
1:10:22
Draw All Stereoisomers of 2,3-dichlorobutane, cont.
1:10:23
Optical Activity
1:14:10
Chiral Molecules
1:14:11
Angle of Rotation
1:14:51
Achiral Species
1:16:46
Physical Properties of Stereoisomers
1:17:11
Enantiomers
1:17:12
Diastereomers
1:18:01
Example
1:18:26
Physical Properties of Stereoisomers
1:23:05
When Do Enantiomers Behave Differently?
1:23:06
Racemic Mixtures
1:28:18
Racemic Mixtures
1:28:21
Resolution
1:29:52
Unequal Mixtures of Enantiomers
1:32:54
Enantiomeric Excess (ee)
1:32:55
Unequal Mixture of Enantiomers
1:34:43
Unequal Mixture of Enantiomers
1:34:44
Example: Finding ee
1:36:38
Example: Percent of Composition
1:39:46
Section 2: Understanding Organic Reactions
Nomenclature

1h 53m 47s

Intro
0:00
Cycloalkane Nomenclature
0:17
Cycloalkane Nomenclature and Examples
0:18
Alkene Nomenclature
6:28
Alkene Nomenclature and Examples
6:29
Alkene Nomenclature: Stereochemistry
15:07
Alkenes With Two Groups: Cis & Trans
15:08
Alkenes With Greater Than Two Groups: E & Z
18:26
Alkyne Nomenclature
24:46
Alkyne Nomenclature and Examples
24:47
Alkane Has a Higher Priority Than Alkyne
28:25
Alcohol Nomenclature
29:24
Alcohol Nomenclature and Examples
29:25
Alcohol FG Has Priority Over Alkene/yne
33:41
Ether Nomenclature
36:32
Ether Nomenclature and Examples
36:33
Amine Nomenclature
42:59
Amine Nomenclature and Examples
43:00
Amine Nomenclature
49:45
Primary, Secondary, Tertiary, Quaternary Salt
49:46
Aldehyde Nomenclature
51:37
Aldehyde Nomenclature and Examples
51:38
Ketone Nomenclature
58:43
Ketone Nomenclature and Examples
58:44
Aromatic Nomenclature
1:05:02
Aromatic Nomenclature and Examples
1:05:03
Aromatic Nomenclature, cont.
1:09:09
Ortho, Meta, and Para
1:09:10
Aromatic Nomenclature, cont.
1:13:27
Common Names for Simple Substituted Aromatic Compounds
1:13:28
Carboxylic Acid Nomenclature
1:16:35
Carboxylic Acid Nomenclature and Examples
1:16:36
Carboxylic Acid Derivatives
1:22:28
Carboxylic Acid Derivatives
1:22:42
General Structure
1:23:10
Acid Halide Nomenclature
1:24:48
Acid Halide Nomenclature and Examples
1:24:49
Anhydride Nomenclature
1:28:10
Anhydride Nomenclature and Examples
1:28:11
Ester Nomenclature
1:32:50
Ester Nomenclature
1:32:51
Carboxylate Salts
1:38:51
Amide Nomenclature
1:40:02
Amide Nomenclature and Examples
1:40:03
Nitrile Nomenclature
1:45:22
Nitrile Nomenclature and Examples
1:45:23
Chemical Reactions

51m 1s

Intro
0:00
Chemical Reactions
0:06
Reactants and Products
0:07
Thermodynamics
0:50
Equilibrium Constant
1:06
Equation
2:35
Organic Reaction
3:05
Energy vs. Progress of Rxn Diagrams
3:48
Exothermic Reaction
4:02
Endothermic Reaction
6:54
Estimating ΔH rxn
9:15
Bond Breaking
10:03
Bond Formation
10:25
Bond Strength
11:35
Homolytic Cleavage
11:59
Bond Dissociation Energy (BDE) Table
12:29
BDE for Multiple Bonds
14:32
Examples
17:35
Kinetics
20:35
Kinetics
20:36
Examples
21:49
Reaction Rate Variables
23:15
Reaction Rate Variables
23:16
Increasing Temperature, Increasing Rate
24:08
Increasing Concentration, Increasing Rate
25:39
Decreasing Energy of Activation, Increasing Rate
27:49
Two-Step Mechanisms
30:06
E vs. POR Diagram (2-step Mechanism)
30:07
Reactive Intermediates
33:03
Reactive Intermediates
33:04
Example: A Carbocation
35:20
Carbocation Stability
37:24
Relative Stability of Carbocation
37:25
Alkyl groups and Hyperconjugation
38:45
Carbocation Stability
41:57
Carbocation Stabilized by Resonance: Allylic
41:58
Carbocation Stabilized by Resonance: Benzylic
42:59
Overall Carbocation Stability
44:05
Free Radicals
45:05
Definition and Examples of Free Radicals
45:06
Radical Mechanisms
49:40
Example: Regular Arrow
49:41
Example: Fish-Hook Arrow
50:17
Free Radical Halogenation

26m 23s

Intro
0:00
Free Radical Halogenation
0:06
Free Radical Halogenation
0:07
Mechanism: Initiation
1:27
Mechanism: Propagation Steps
2:21
Free Radical Halogenation
5:33
Termination Steps
5:36
Example 1: Terminations Steps
6:00
Example 2: Terminations Steps
6:18
Example 3: Terminations Steps
7:43
Example 4: Terminations Steps
8:04
Regiochemistry of Free Radical Halogenation
9:32
Which Site/Region Reacts and Why?
9:34
Bromination and Rate of Reaction
14:03
Regiochemistry of Free Radical Halogenation
14:30
Chlorination
14:31
Why the Difference in Selectivity?
19:58
Allylic Halogenation
20:53
Examples of Allylic Halogenation
20:55
Substitution Reactions

1h 48m 5s

Intro
0:00
Substitution Reactions
0:06
Substitution Reactions Example
0:07
Nucleophile
0:39
Electrophile
1:20
Leaving Group
2:56
General Reaction
4:13
Substitution Reactions
4:43
General Reaction
4:46
Substitution Reaction Mechanisms: Simultaneous
5:08
Substitution Reaction Mechanisms: Stepwise
5:34
SN2 Substitution
6:21
Example of SN2 Mechanism
6:22
SN2 Kinetics
7:58
Rate of SN2
9:10
Sterics Affect Rate of SN2
9:12
Rate of SN2 (By Type of RX)
14:13
SN2: E vs. POR Diagram
17:26
E vs. POR Diagram
17:27
Transition State (TS)
18:24
SN2 Transition State, Kinetics
20:58
SN2 Transition State, Kinetics
20:59
Hybridization of TS Carbon
21:57
Example: Allylic LG
23:34
Stereochemistry of SN2
25:46
Backside Attack and Inversion of Stereochemistry
25:48
SN2 Summary
29:56
Summary of SN2
29:58
Predict Products (SN2)
31:42
Example 1: Predict Products
31:50
Example 2: Predict Products
33:38
Example 3: Predict Products
35:11
Example 4: Predict Products
36:11
Example 5: Predict Products
37:32
SN1 Substitution Mechanism
41:52
Is This Substitution? Could This Be an SN2 Mechanism?
41:54
SN1 Mechanism
43:50
Two Key Steps: 1. Loss of LG
43:53
Two Key Steps: 2. Addition of nu
45:11
SN1 Kinetics
47:17
Kinetics of SN1
47:18
Rate of SN1 (By RX type)
48:44
SN1 E vs. POR Diagram
49:49
E vs. POR Diagram
49:51
First Transition Stage (TS-1)
51:48
Second Transition Stage (TS-2)
52:56
Stereochemistry of SN1
53:44
Racemization of SN1 and Achiral Carbocation Intermediate
53:46
Example
54:29
SN1 Summary
58:25
Summary of SN1
58:26
SN1 or SN2 Mechanisms?
1:00:40
Example 1: SN1 or SN2 Mechanisms
1:00:42
Example 2: SN1 or SN2 Mechanisms
1:03:00
Example 3: SN1 or SN2 Mechanisms
1:04:06
Example 4: SN1 or SN2 Mechanisms
1:06:17
SN1 Mechanism
1:09:12
Three Steps of SN1 Mechanism
1:09:13
SN1 Carbocation Rearrangements
1:14:50
Carbocation Rearrangements Example
1:14:51
SN1 Carbocation Rearrangements
1:20:46
Alkyl Groups Can Also Shift
1:20:48
Leaving Groups
1:24:26
Leaving Groups
1:24:27
Forward or Reverse Reaction Favored?
1:26:00
Leaving Groups
1:29:59
Making poor LG Better: Method 1
1:30:00
Leaving Groups
1:34:18
Making poor LG Better: Tosylate (Method 2)
1:34:19
Synthesis Problem
1:38:15
Example: Provide the Necessary Reagents
1:38:16
Nucleophilicity
1:41:10
What Makes a Good Nucleophile?
1:41:11
Nucleophilicity
1:44:45
Periodic Trends: Across Row
1:44:47
Periodic Trends: Down a Family
1:46:46
Elimination Reactions

1h 11m 43s

Intro
0:00
Elimination Reactions: E2 Mechanism
0:06
E2 Mechanism
0:08
Example of E2 Mechanism
1:01
Stereochemistry of E2
4:48
Anti-Coplanar & Anti-Elimination
4:50
Example 1: Stereochemistry of E2
5:34
Example 2: Stereochemistry of E2
10:39
Regiochemistry of E2
13:04
Refiochemistry of E2 and Zaitsev's Rule
13:05
Alkene Stability
17:39
Alkene Stability
19:20
Alkene Stability Examples
19:22
Example 1: Draw Both E2 Products and Select Major
21:57
Example 2: Draw Both E2 Products and Select Major
25:02
SN2 Vs. E2 Mechanisms
29:06
SN2 Vs. E2 Mechanisms
29:07
When Do They Compete?
30:34
SN2 Vs. E2 Mechanisms
31:23
Compare Rates
31:24
SN2 Vs. E2 Mechanisms
36:34
t-BuBr: What If Vary Base?
36:35
Preference for E2 Over SN2 (By RX Type)
40:42
E1 Elimination Mechanism
41:51
E1 - Elimination Unimolecular
41:52
E1 Mechanism: Step 1
44:14
E1 Mechanism: Step 2
44:48
E1 Kinetics
46:58
Rate = k[RCI]
47:00
E1 Rate (By Type of Carbon Bearing LG)
48:31
E1 Stereochemistry
49:49
Example 1: E1 Stereochemistry
49:51
Example 2: E1 Stereochemistry
52:31
Carbocation Rearrangements
55:57
Carbocation Rearrangements
56:01
Product Mixtures
57:20
Predict the Product: SN2 vs. E2
59:58
Example 1: Predict the Product
1:00:00
Example 2: Predict the Product
1:02:10
Example 3: Predict the Product
1:04:07
Predict the Product: SN2 vs. E2
1:06:06
Example 4: Predict the Product
1:06:07
Example 5: Predict the Product
1:07:29
Example 6: Predict the Product
1:07:51
Example 7: Predict the Product
1:09:18
Section 3: Alkanes, Alkenes, & Alkynes
Alkenes

36m 39s

Intro
0:00
Alkenes
0:12
Definition and Structure of Alkenes
0:13
3D Sketch of Alkenes
1:53
Pi Bonds
3:48
Alkene Stability
4:57
Alkyl Groups Attached
4:58
Trans & Cis
6:20
Alkene Stability
8:42
Pi Bonds & Conjugation
8:43
Bridgehead Carbons & Bredt's Rule
10:22
Measuring Stability: Hydrogenation Reaction
11:40
Alkene Synthesis
12:01
Method 1: E2 on Alkyl Halides
12:02
Review: Stereochemistry
16:17
Review: Regiochemistry
16:50
Review: SN2 vs. E2
17:34
Alkene Synthesis
18:57
Method 2: Dehydration of Alcohols
18:58
Mechanism
20:08
Alkene Synthesis
23:26
Alcohol Dehydration
23:27
Example 1: Comparing Strong Acids
26:59
Example 2: Mechanism for Dehydration Reaction
29:00
Example 3: Transform
32:50
Reactions of Alkenes

2h 8m 44s

Intro
0:00
Reactions of Alkenes
0:05
Electrophilic Addition Reaction
0:06
Addition of HX
2:02
Example: Regioselectivity & 2 Steps Mechanism
2:03
Markovnikov Addition
5:30
Markovnikov Addition is Favored
5:31
Graph: E vs. POR
6:33
Example
8:29
Example: Predict and Consider the Stereochemistry
8:30
Hydration of Alkenes
12:31
Acid-catalyzed Addition of Water
12:32
Strong Acid
14:20
Hydration of Alkenes
15:20
Acid-catalyzed Addition of Water: Mechanism
15:21
Hydration vs. Dehydration
19:51
Hydration Mechanism is Exact Reverse of Dehydration
19:52
Example
21:28
Example: Hydration Reaction
21:29
Alternative 'Hydration' Methods
25:26
Oxymercuration-Demercuration
25:27
Oxymercuration Mechanism
28:55
Mechanism of Oxymercuration
28:56
Alternative 'Hydration' Methods
30:51
Hydroboration-Oxidation
30:52
Hydroboration Mechanism
33:22
1-step (concerted)
33:23
Regioselective
34:45
Stereoselective
35:30
Example
35:58
Example: Hydroboration-Oxidation
35:59
Example
40:42
Example: Predict the Major Product
40:43
Synthetic Utility of 'Alternate' Hydration Methods
44:36
Example: Synthetic Utility of 'Alternate' Hydration Methods
44:37
Flashcards
47:28
Tips On Using Flashcards
47:29
Bromination of Alkenes
49:51
Anti-Addition of Br₂
49:52
Bromination Mechanism
53:16
Mechanism of Bromination
53:17
Bromination Mechanism
55:42
Mechanism of Bromination
55:43
Bromination: Halohydrin Formation
58:54
Addition of other Nu: to Bromonium Ion
58:55
Mechanism
1:00:08
Halohydrin: Regiochemistry
1:03:55
Halohydrin: Regiochemistry
1:03:56
Bromonium Ion Intermediate
1:04:26
Example
1:09:28
Example: Predict Major Product
1:09:29
Example Cont.
1:10:59
Example: Predict Major Product Cont.
1:11:00
Catalytic Hydrogenation of Alkenes
1:13:19
Features of Catalytic Hydrogenation
1:13:20
Catalytic Hydrogenation of Alkenes
1:14:48
Metal Surface
1:14:49
Heterogeneous Catalysts
1:15:29
Homogeneous Catalysts
1:16:08
Catalytic Hydrogenation of Alkenes
1:17:44
Hydrogenation & Pi Bond Stability
1:17:45
Energy Diagram
1:19:22
Catalytic Hydrogenation of Dienes
1:20:40
Hydrogenation & Pi Bond Stability
1:20:41
Energy Diagram
1:23:31
Example
1:24:14
Example: Predict Product
1:24:15
Oxidation of Alkenes
1:27:21
Redox Review
1:27:22
Epoxide
1:30:26
Diol (Glycol)
1:30:54
Ketone/ Aldehyde
1:31:13
Epoxidation
1:32:08
Epoxidation
1:32:09
General Mechanism
1:36:32
Alternate Epoxide Synthesis
1:37:38
Alternate Epoxide Synthesis
1:37:39
Dihydroxylation
1:41:10
Dihydroxylation
1:41:12
General Mechanism (Concerted Via Cycle Intermediate)
1:42:38
Ozonolysis
1:44:22
Ozonolysis: Introduction
1:44:23
Ozonolysis: Is It Good or Bad?
1:45:05
Ozonolysis Reaction
1:48:54
Examples
1:51:10
Example 1: Ozonolysis
1:51:11
Example
1:53:25
Radical Addition to Alkenes
1:55:05
Recall: Free-Radical Halogenation
1:55:15
Radical Mechanism
1:55:45
Propagation Steps
1:58:01
Atom Abstraction
1:58:30
Addition to Alkene
1:59:11
Radical Addition to Alkenes
1:59:54
Markovnivok (Electrophilic Addition) & anti-Mark. (Radical Addition)
1:59:55
Mechanism
2:01:03
Alkene Polymerization
2:05:35
Example: Alkene Polymerization
2:05:36
Alkynes

1h 13m 19s

Intro
0:00
Structure of Alkynes
0:04
Structure of Alkynes
0:05
3D Sketch
2:30
Internal and Terminal
4:03
Reductions of Alkynes
4:36
Catalytic Hydrogenation
4:37
Lindlar Catalyst
5:25
Reductions of Alkynes
7:24
Dissolving Metal Reduction
7:25
Oxidation of Alkynes
9:24
Ozonolysis
9:25
Reactions of Alkynes
10:56
Addition Reactions: Bromination
10:57
Addition of HX
12:24
Addition of HX
12:25
Addition of HX
13:36
Addition of HX: Mechanism
13:37
Example
17:38
Example: Transform
17:39
Hydration of Alkynes
23:35
Hydration of Alkynes
23:36
Hydration of Alkynes
26:47
Hydration of Alkynes: Mechanism
26:49
'Hydration' via Hydroboration-Oxidation
32:57
'Hydration' via Hydroboration-Oxidation
32:58
Disiamylborane
33:28
Hydroboration-Oxidation Cont.
34:25
Alkyne Synthesis
36:17
Method 1: Alkyne Synthesis By Dehydrohalogenation
36:19
Alkyne Synthesis
39:06
Example: Transform
39:07
Alkyne Synthesis
41:21
Method 2 & Acidity of Alkynes
41:22
Conjugate Bases
43:06
Preparation of Acetylide Anions
49:55
Preparation of Acetylide Anions
49:57
Alkyne Synthesis
53:40
Synthesis Using Acetylide Anions
53:41
Example 1: Transform
57:04
Example 2: Transform
1:01:07
Example 3: Transform
1:06:22
Section 4: Alcohols
Alcohols, Part I

59m 52s

Intro
0:00
Alcohols
0:11
Attributes of Alcohols
0:12
Boiling Points
2:00
Water Solubility
5:00
Water Solubility (Like Dissolves Like)
5:01
Acidity of Alcohols
9:39
Comparison of Alcohols Acidity
9:41
Preparation of Alkoxides
13:03
Using Strong Base Like Sodium Hydride
13:04
Using Redox Reaction
15:36
Preparation of Alkoxides
17:41
Using K°
17:42
Phenols Are More Acidic Than Other Alcohols
19:51
Synthesis of Alcohols, ROH
21:43
Synthesis of Alcohols from Alkyl Halides, RX (SN2 or SN1)
21:44
Synthesis of Alcohols, ROH
25:08
Unlikely on 2° RX (E2 Favored)
25:09
Impossible on 3° RX (E2) and Phenyl/Vinyl RX (N/R)
25:47
Synthesis of Alcohols, ROH
26:26
SN1 with H₂O 'Solvolysis' or 'Hydrolysis'
26:27
Carbocation Can Rearrange
29:00
Synthesis of Alcohols, ROH
30:08
Synthesis of Alcohols From Alkenes: Hydration
30:09
Synthesis of Alcohols From Alkenes: Oxidation/Diol
32:20
Synthesis of Alcohols, ROH
33:14
Synthesis of Alcohols From Ketones and Aldehydes
33:15
Organometallic Reagents: Preparation
37:03
Grignard (RMgX)
37:04
Organolithium (Rli)
40:03
Organometallic Reagents: Reactions
41:45
Reactions of Organometallic Reagents
41:46
Organometallic Reagents: Reactions as Strong Nu:
46:40
Example 1: Reactions as Strong Nu:
46:41
Example 2: Reactions as Strong Nu:
48:57
Hydride Nu:
50:52
Hydride Nu:
50:53
Examples
53:34
Predict 1
53:35
Predict 2
54:45
Examples
56:43
Transform
56:44
Provide Starting Material
58:18
Alcohols, Part II

45m 35s

Intro
0:00
Oxidation Reactions
0:08
Oxidizing Agents: Jones, PCC, Swern
0:09
'Jones' Oxidation
0:43
Example 1: Predict Oxidation Reactions
2:29
Example 2: Predict Oxidation Reactions
3:00
Oxidation Reactions
4:11
Selective Oxidizing Agents (PCC and Swern)
4:12
PCC (Pyridiniym Chlorochromate)
5:10
Swern Oxidation
6:05
General [ox] Mechanism
8:32
General [ox] Mechanism
8:33
Oxidation of Alcohols
10:11
Example 1: Oxidation of Alcohols
10:12
Example 2: Oxidation of Alcohols
11:20
Example 3: Oxidation of Alcohols
11:46
Example
13:09
Predict: PCC Oxidation Reactions
13:10
Tosylation of Alcohols
15:22
Introduction to Tosylation of Alcohols
15:23
Example
21:08
Example: Tosylation of Alcohols
21:09
Reductions of Alcohols
23:39
Reductions of Alcohols via SN2 with Hydride
24:22
Reductions of Alcohols via Dehydration
27:12
Conversion of Alcohols to Alkyl Halides
30:12
Conversion of Alcohols to Alkyl Halides via Tosylate
30:13
Conversion of Alcohols to Alkyl Halides
31:17
Using HX
31:18
Mechanism
32:09
Conversion of Alcohols to Alkyl Halides
35:43
Reagents that Provide LG and Nu: in One 'Pot'
35:44
General Mechanisms
37:44
Example 1: General Mechanisms
37:45
Example 2: General Mechanisms
39:25
Example
41:04
Transformation of Alcohols
41:05
Section 5: Ethers, Thiols, Thioethers, & Ketones
Ethers

1h 34m 45s

Intro
0:00
Ethers
0:11
Overview of Ethers
0:12
Boiling Points
1:37
Ethers
4:34
Water Solubility (Grams per 100mL H₂O)
4:35
Synthesis of Ethers
7:53
Williamson Ether Synthesis
7:54
Example: Synthesis of Ethers
9:23
Synthesis of Ethers
10:27
Example: Synthesis of Ethers
10:28
Intramolecular SN2
13:04
Planning an Ether Synthesis
14:45
Example 1: Planning an Ether Synthesis
14:46
Planning an Ether Synthesis
16:16
Example 2: Planning an Ether Synthesis
16:17
Planning an Ether Synthesis
22:04
Example 3: Synthesize Dipropyl Ether
22:05
Planning an Ether Synthesis
26:01
Example 4: Transform
26:02
Synthesis of Epoxides
30:05
Synthesis of Epoxides Via Williamson Ether Synthesis
30:06
Synthesis of Epoxides Via Oxidation
32:42
Reaction of Ethers
33:35
Reaction of Ethers
33:36
Reactions of Ethers with HBr or HI
34:44
Reactions of Ethers with HBr or HI
34:45
Mechanism
35:25
Epoxide Ring-Opening Reaction
39:25
Epoxide Ring-Opening Reaction
39:26
Example: Epoxide Ring-Opening Reaction
42:42
Acid-Catalyzed Epoxide Ring Opening
44:16
Acid-Catalyzed Epoxide Ring Opening Mechanism
44:17
Acid-Catalyzed Epoxide Ring Opening
50:13
Acid-Catalyzed Epoxide Ring Opening Mechanism
50:14
Catalyst Needed for Ring Opening
53:34
Catalyst Needed for Ring Opening
53:35
Stereochemistry of Epoxide Ring Opening
55:56
Stereochemistry: SN2 Mechanism
55:57
Acid or Base Mechanism?
58:30
Example
1:01:03
Transformation
1:01:04
Regiochemistry of Epoxide Ring Openings
1:05:29
Regiochemistry of Epoxide Ring Openings in Base
1:05:30
Regiochemistry of Epoxide Ring Openings in Acid
1:07:34
Example
1:10:26
Example 1: Epoxide Ring Openings in Base
1:10:27
Example 2: Epoxide Ring Openings in Acid
1:12:50
Reactions of Epoxides with Grignard and Hydride
1:15:35
Reactions of Epoxides with Grignard and Hydride
1:15:36
Example
1:21:47
Example: Ethers
1:21:50
Example
1:27:01
Example: Synthesize
1:27:02
Thiols and Thioethers

16m 50s

Intro
0:00
Thiols and Thioethers
0:10
Physical Properties
0:11
Reactions Can Be Oxidized
2:16
Acidity of Thiols
3:11
Thiols Are More Acidic Than Alcohols
3:12
Synthesis of Thioethers
6:44
Synthesis of Thioethers
6:45
Example
8:43
Example: Synthesize the Following Target Molecule
8:44
Example
14:18
Example: Predict
14:19
Ketones

2h 18m 12s

Intro
0:00
Aldehydes & Ketones
0:11
The Carbonyl: Resonance & Inductive
0:12
Reactivity
0:50
The Carbonyl
2:35
The Carbonyl
2:36
Carbonyl FG's
4:10
Preparation/Synthesis of Aldehydes & Ketones
6:18
Oxidation of Alcohols
6:19
Ozonolysis of Alkenes
7:16
Hydration of Alkynes
8:01
Reaction with Hydride Nu:
9:00
Reaction with Hydride Nu:
9:01
Reaction with Carbon Nu:
11:29
Carbanions: Acetylide
11:30
Carbanions: Cyanide
14:23
Reaction with Carbon Nu:
15:32
Organometallic Reagents (RMgX, Rli)
15:33
Retrosynthesis of Alcohols
17:04
Retrosynthesis of Alcohols
17:05
Example
19:30
Example: Transform
19:31
Example
22:57
Example: Transform
22:58
Example
28:19
Example: Transform
28:20
Example
33:36
Example: Transform
33:37
Wittig Reaction
37:39
Wittig Reaction: A Resonance-Stabilized Carbanion (Nu:)
37:40
Wittig Reaction: Mechanism
39:51
Preparation of Wittig Reagent
41:58
Two Steps From RX
41:59
Example: Predict
45:02
Wittig Retrosynthesis
46:19
Wittig Retrosynthesis
46:20
Synthesis
48:09
Reaction with Oxygen Nu:
51:21
Addition of H₂O
51:22
Exception: Formaldehyde is 99% Hydrate in H₂O Solution
54:10
Exception: Hydrate is Favored if Partial Positive Near Carbonyl
55:26
Reaction with Oxygen Nu:
57:45
Addition of ROH
57:46
TsOH: Tosic Acid
58:28
Addition of ROH Cont.
59:09
Example
1:01:43
Predict
1:01:44
Mechanism
1:03:08
Mechanism for Acetal Formation
1:04:10
Mechanism for Acetal Formation
1:04:11
What is a CTI?
1:15:04
Tetrahedral Intermediate
1:15:05
Charged Tetrahedral Intermediate
1:15:45
CTI: Acid-cat
1:16:10
CTI: Base-cat
1:17:01
Acetals & Cyclic Acetals
1:17:49
Overall
1:17:50
Cyclic Acetals
1:18:46
Hydrolysis of Acetals: Regenerates Carbonyl
1:20:01
Hydrolysis of Acetals: Regenerates Carbonyl
1:20:02
Mechanism
1:22:08
Reaction with Nitrogen Nu:
1:30:11
Reaction with Nitrogen Nu:
1:30:12
Example
1:32:18
Mechanism of Imine Formation
1:33:24
Mechanism of Imine Formation
1:33:25
Oxidation of Aldehydes
1:38:12
Oxidation of Aldehydes 1
1:38:13
Oxidation of Aldehydes 2
1:39:52
Oxidation of Aldehydes 3
1:40:10
Reductions of Ketones and Aldehydes
1:40:54
Reductions of Ketones and Aldehydes
1:40:55
Hydride/ Workup
1:41:22
Raney Nickel
1:42:07
Reductions of Ketones and Aldehydes
1:43:24
Clemmensen Reduction & Wolff-Kishner Reduction
1:43:40
Acetals as Protective Groups
1:46:50
Acetals as Protective Groups
1:46:51
Example
1:50:39
Example: Consider the Following Synthesis
1:50:40
Protective Groups
1:54:47
Protective Groups
1:54:48
Example
1:59:02
Example: Transform
1:59:03
Example: Another Route
2:04:54
Example: Transform
2:08:49
Example
2:08:50
Transform
2:08:51
Example
2:11:05
Transform
2:11:06
Example
2:13:45
Transform
2:13:46
Example
2:15:43
Provide the Missing Starting Material
2:15:44
Section 6: Organic Transformation Practice
Transformation Practice Problems

38m 58s

Intro
0:00
Practice Problems
0:33
Practice Problem 1: Transform
0:34
Practice Problem 2: Transform
3:57
Practice Problems
7:49
Practice Problem 3: Transform
7:50
Practice Problems
15:32
Practice Problem 4: Transform
15:34
Practice Problem 5: Transform
20:15
Practice Problems
24:08
Practice Problem 6: Transform
24:09
Practice Problem 7: Transform
29:27
Practice Problems
33:08
Practice Problem 8: Transform
33:09
Practice Problem 9: Transform
35:23
Section 7: Carboxylic Acids
Carboxylic Acids

1h 17m 51s

Intro
0:00
Review Reactions of Ketone/Aldehyde
0:06
Carbonyl Reactivity
0:07
Nu: = Hydride (Reduction)
1:37
Nu: = Grignard
2:08
Review Reactions of Ketone/Aldehyde
2:53
Nu: = Alcohol
2:54
Nu: = Amine
3:46
Carboxylic Acids and Their Derivatives
4:37
Carboxylic Acids and Their Derivatives
4:38
Ketone vs. Ester Reactivity
6:33
Ketone Reactivity
6:34
Ester Reactivity
6:55
Carboxylic Acids and Their Derivatives
7:30
Acid Halide, Anhydride, Ester, Amide, and Nitrile
7:43
General Reactions of Acarboxylic Acid Derivatives
9:22
General Reactions of Acarboxylic Acid Derivatives
9:23
Physical Properties of Carboxylic Acids
12:16
Acetic Acid
12:17
Carboxylic Acids
15:46
Aciditiy of Carboxylic Acids, RCO₂H
17:45
Alcohol
17:46
Carboxylic Acid
19:21
Aciditiy of Carboxylic Acids, RCO₂H
21:31
Aciditiy of Carboxylic Acids, RCO₂H
21:32
Aciditiy of Carboxylic Acids, RCO₂H
24:48
Example: Which is the Stronger Acid?
24:49
Aciditiy of Carboxylic Acids, RCO₂H
30:06
Inductive Effects Decrease with Distance
30:07
Preparation of Carboxylic Acids, RCO₂H
31:55
A) By Oxidation
31:56
Preparation of Carboxylic Acids, RCO₂H
34:37
Oxidation of Alkenes/Alkynes - Ozonolysis
34:38
Preparation of Carboxylic Acids, RCO₂H
36:17
B) Preparation of RCO₂H from Organometallic Reagents
36:18
Preparation of Carboxylic Acids, RCO₂H
38:02
Example: Preparation of Carboxylic Acids
38:03
Preparation of Carboxylic Acids, RCO₂H
40:38
C) Preparation of RCO₂H by Hydrolysis of Carboxylic Acid Derivatives
40:39
Hydrolysis Mechanism
42:19
Hydrolysis Mechanism
42:20
Mechanism: Acyl Substitution (Addition/Elimination)
43:05
Hydrolysis Mechanism
47:27
Substitution Reaction
47:28
RO is Bad LG for SN1/SN2
47:39
RO is okay LG for Collapse of CTI
48:31
Hydrolysis Mechanism
50:07
Base-promoted Ester Hydrolysis (Saponification)
50:08
Applications of Carboxylic Acid Derivatives:
53:10
Saponification Reaction
53:11
Ester Hydrolysis
57:15
Acid-Catalyzed Mechanism
57:16
Ester Hydrolysis Requires Acide or Base
1:03:06
Ester Hydrolysis Requires Acide or Base
1:03:07
Nitrile Hydrolysis
1:05:22
Nitrile Hydrolysis
1:05:23
Nitrile Hydrolysis Mechanism
1:06:53
Nitrile Hydrolysis Mechanism
1:06:54
Use of Nitriles in Synthesis
1:12:39
Example: Nitirles in Synthesis
1:12:40
Carboxylic Acid Derivatives

1h 21m 4s

Intro
0:00
Carboxylic Acid Derivatives
0:05
Carboxylic Acid Derivatives
0:06
General Structure
1:00
Preparation of Carboxylic Acid Derivatives
1:19
Which Carbonyl is the Better E+?
1:20
Inductive Effects
1:54
Resonance
3:23
Preparation of Carboxylic Acid Derivatives
6:52
Which is Better E+, Ester or Acid Chloride?
6:53
Inductive Effects
7:02
Resonance
7:20
Preparation of Carboxylic Acid Derivatives
10:45
Which is Better E+, Carboxylic Acid or Anhydride?
10:46
Inductive Effects & Resonance
11:00
Overall: Order of Electrophilicity and Leaving Group
14:49
Order of Electrophilicity and Leaving Group
14:50
Example: Acid Chloride
16:26
Example: Carboxylate
19:17
Carboxylic Acid Derivative Interconversion
20:53
Carboxylic Acid Derivative Interconversion
20:54
Preparation of Acid Halides
24:31
Preparation of Acid Halides
24:32
Preparation of Anhydrides
25:45
A) Dehydration of Acids (For Symmetrical Anhydride)
25:46
Preparation of Anhydrides
27:29
Example: Dehydration of Acids
27:30
Preparation of Anhydrides
29:16
B) From an Acid Chloride (To Make Mixed Anhydride)
29:17
Mechanism
30:03
Preparation of Esters
31:53
A) From Acid Chloride or Anhydride
31:54
Preparation of Esters
33:48
B) From Carboxylic Acids (Fischer Esterification)
33:49
Mechanism
36:55
Preparations of Esters
41:38
Example: Predict the Product
41:39
Preparation of Esters
43:17
C) Transesterification
43:18
Mechanism
45:17
Preparation of Esters
47:58
D) SN2 with Carboxylate
47:59
Mechanism: Diazomethane
49:28
Preparation of Esters
51:01
Example: Transform
51:02
Preparation of Amides
52:27
A) From an Acid Cl or Anhydride
52:28
Preparations of Amides
54:47
B) Partial Hydrolysis of Nitriles
54:48
Preparation of Amides
56:11
Preparation of Amides: Find Alternate Path
56:12
Preparation of Amides
59:04
C) Can't be Easily Prepared from RCO₂H Directly
59:05
Reactions of Carboxylic Acid Derivatives with Nucleophiles
1:01:41
A) Hydride Nu: Review
1:01:42
A) Hydride Nu: Sodium Borohydride + Ester
1:02:43
Reactions of Carboxylic Acid Derivatives with Nucleophiles
1:03:57
Lithium Aluminum Hydride (LAH)
1:03:58
Mechanism
1:04:29
Summary of Hydride Reductions
1:07:09
Summary of Hydride Reductions 1
1:07:10
Summary of Hydride Reductions 2
1:07:36
Hydride Reduction of Amides
1:08:12
Hydride Reduction of Amides Mechanism
1:08:13
Reaction of Carboxylic Acid Derivatives with Organometallics
1:12:04
Review 1
1:12:05
Review 2
1:12:50
Reaction of Carboxylic Acid Derivatives with Organometallics
1:14:22
Example: Lactone
1:14:23
Special Hydride Nu: Reagents
1:16:34
Diisobutylaluminum Hydride
1:16:35
Example
1:17:25
Other Special Hydride
1:18:41
Addition of Organocuprates to Acid Chlorides
1:19:07
Addition of Organocuprates to Acid Chlorides
1:19:08
Section 8: Enols & Enolates
Enols and Enolates, Part 1

1h 26m 22s

Intro
0:00
Enols and Enolates
0:09
The Carbonyl
0:10
Keto-Enol Tautomerization
1:17
Keto-Enol Tautomerization Mechanism
2:28
Tautomerization Mechanism (2 Steps)
2:29
Keto-Enol Tautomerization Mechanism
5:15
Reverse Reaction
5:16
Mechanism
6:07
Formation of Enolates
7:27
Why is a Ketone's α H's Acidic?
7:28
Formation of Other Carbanions
10:05
Alkyne
10:06
Alkane and Alkene
10:53
Formation of an Enolate: Choice of Base
11:27
Example: Choice of Base
11:28
Formation of an Enolate: Choice of Base
13:56
Deprotonate, Stronger Base, and Lithium Diisopropyl Amide (LDA)
13:57
Formation of an Enolate: Choice of Base
15:48
Weaker Base & 'Active' Methylenes
15:49
Why Use NaOEt instead of NaOH?
19:01
Other Acidic 'α' Protons
20:30
Other Acidic 'α' Protons
20:31
Why is an Ester Less Acidic than a Ketone?
24:10
Other Acidic 'α' Protons
25:19
Other Acidic 'α' Protons Continue
25:20
How are Enolates Used
25:54
Enolates
25:55
Possible Electrophiles
26:21
Alkylation of Enolates
27:56
Alkylation of Enolates
27:57
Resonance Form
30:03
α-Halogenation
32:17
α-Halogenation
32:18
Iodoform Test for Methyl Ketones
33:47
α-Halogenation
35:55
Acid-Catalyzed
35:57
Mechanism: 1st Make Enol (2 Steps)
36:14
Whate Other Eloctrophiles ?
39:17
Aldol Condensation
39:38
Aldol Condensation
39:39
Aldol Mechanism
41:26
Aldol Mechanism: In Base, Deprotonate First
41:27
Aldol Mechanism
45:28
Mechanism for Loss of H₂O
45:29
Collapse of CTI and β-elimination Mechanism
47:51
Loss of H₂0 is not E2!
48:39
Aldol Summary
49:53
Aldol Summary
49:54
Base-Catalyzed Mechanism
52:34
Acid-Catalyzed Mechansim
53:01
Acid-Catalyzed Aldol Mechanism
54:01
First Step: Make Enol
54:02
Acid-Catalyzed Aldol Mechanism
56:54
Loss of H₂0 (β elimination)
56:55
Crossed/Mixed Aldol
1:00:55
Crossed/Mixed Aldol & Compound with α H's
1:00:56
Ketone vs. Aldehyde
1:02:30
Crossed/Mixed Aldol & Compound with α H's Continue
1:03:10
Crossed/Mixed Aldol
1:05:21
Mixed Aldol: control Using LDA
1:05:22
Crossed/Mixed Aldol Retrosynthesis
1:08:53
Example: Predic Aldol Starting Material (Aldol Retrosyntheiss)
1:08:54
Claisen Condensation
1:12:54
Claisen Condensation (Aldol on Esters)
1:12:55
Claisen Condensation
1:19:52
Example 1: Claisen Condensation
1:19:53
Claisen Condensation
1:22:48
Example 2: Claisen Condensation
1:22:49
Enols and Enolates, Part 2

50m 57s

Intro
0:00
Conjugate Additions
0:06
α, β-unsaturated Carbonyls
0:07
Conjugate Additions
1:50
'1,2-addition'
1:51
'1,-4-addition' or 'Conjugate Addition'
2:24
Conjugate Additions
4:53
Why can a Nu: Add to this Alkene?
4:54
Typical Alkene
5:09
α, β-unsaturated Alkene
5:39
Electrophilic Alkenes: Michael Acceptors
6:35
Other 'Electrophilic' Alkenes (Called 'Michael Acceptors)
6:36
1,4-Addition of Cuprates (R2CuLi)
8:29
1,4-Addition of Cuprates (R2CuLi)
8:30
1,4-Addition of Cuprates (R2CuLi)
11:23
Use Cuprates in Synthesis
11:24
Preparation of Cuprates
12:25
Prepare Organocuprate From Organolithium
12:26
Cuprates Also Do SN2 with RX E+ (Not True for RMgX, RLi)
13:06
1,4-Addition of Enolates: Michael Reaction
13:50
1,4-Addition of Enolates: Michael Reaction
13:51
Mechanism
15:57
1,4-Addition of Enolates: Michael Reaction
18:47
Example: 1,4-Addition of Enolates
18:48
1,4-Addition of Enolates: Michael Reaction
21:02
Michael Reaction, Followed by Intramolecular Aldol
21:03
Mechanism of the Robinson Annulation
24:26
Mechanism of the Robinson Annulation
24:27
Enols and Enolates: Advanced Synthesis Topics
31:10
Stablized Enolates and the Decarboxylation Reaction
31:11
Mechanism: A Pericyclic Reaction
32:08
Enols and Enolates: Advanced Synthesis Topics
33:32
Example: Advance Synthesis
33:33
Enols and Enolates: Advanced Synthesis Topics
36:10
Common Reagents: Diethyl Malonate
36:11
Common Reagents: Ethyl Acetoacetate
37:27
Enols and Enolates: Advanced Synthesis Topics
38:06
Example: Transform
38:07
Advanced Synthesis Topics: Enamines
41:52
Enamines
41:53
Advanced Synthesis Topics: Enamines
43:06
Reaction with Ketone/Aldehyde
43:07
Example
44:08
Advanced Synthesis Topics: Enamines
45:31
Example: Use Enamines as Nu: (Like Enolate)
45:32
Advanced Synthesis Topics: Enamines
47:56
Example
47:58
Section 9: Aromatic Compounds
Aromatic Compounds: Structure

1h 59s

Intro
0:00
Aromatic Compounds
0:05
Benzene
0:06
3D Sketch
1:33
Features of Benzene
4:41
Features of Benzene
4:42
Aromatic Stability
6:41
Resonance Stabilization of Benzene
6:42
Cyclohexatriene
7:24
Benzene (Actual, Experimental)
8:11
Aromatic Stability
9:03
Energy Graph
9:04
Aromaticity Requirements
9:55
1) Cyclic and Planar
9:56
2) Contiguous p Orbitals
10:49
3) Satisfy Huckel's Rule
11:20
Example: Benzene
12:32
Common Aromatic Compounds
13:28
Example: Pyridine
13:29
Common Aromatic Compounds
16:25
Example: Furan
16:26
Common Aromatic Compounds
19:42
Example: Thiophene
19:43
Example: Pyrrole
20:18
Common Aromatic Compounds
21:09
Cyclopentadienyl Anion
21:10
Cycloheptatrienyl Cation
23:48
Naphthalene
26:04
Determining Aromaticity
27:28
Example: Which of the Following are Aromatic?
27:29
Molecular Orbital (MO) Theory
32:26
What's So Special About '4n + 2' Electrons?
32:27
π bond & Overlapping p Orbitals
32:53
Molecular Orbital (MO) Diagrams
36:56
MO Diagram: Benzene
36:58
Drawing MO Diagrams
44:26
Example: 3-Membered Ring
44:27
Example: 4-Membered Ring
46:04
Drawing MO Diagrams
47:51
Example: 5-Membered Ring
47:52
Example: 8-Membered Ring
49:32
Aromaticity and Reactivity
51:03
Example: Which is More Acidic?
51:04
Aromaticity and Reactivity
56:03
Example: Which has More Basic Nitrogen, Pyrrole or Pyridine?
56:04
Aromatic Compounds: Reactions, Part 1

1h 24m 4s

Intro
0:00
Reactions of Benzene
0:07
N/R as Alkenes
0:08
Substitution Reactions
0:50
Electrophilic Aromatic Substitution
1:24
Electrophilic Aromatic Substitution
1:25
Mechanism Step 1: Addition of Electrophile
2:08
Mechanism Step 2: Loss of H+
4:14
Electrophilic Aromatic Substitution on Substituted Benzenes
5:21
Electron Donating Group
5:22
Electron Withdrawing Group
8:02
Halogen
9:23
Effects of Electron-Donating Groups (EDG)
10:23
Effects of Electron-Donating Groups (EDG)
10:24
What Effect Does EDG (OH) Have?
11:40
Reactivity
13:03
Regioselectivity
14:07
Regioselectivity: EDG is o/p Director
14:57
Prove It! Add E+ and Look at Possible Intermediates
14:58
Is OH Good or Bad?
17:38
Effects of Electron-Withdrawing Groups (EWG)
20:20
What Effect Does EWG Have?
20:21
Reactivity
21:28
Regioselectivity
22:24
Regioselectivity: EWG is a Meta Director
23:23
Prove It! Add E+ and Look at Competing Intermediates
23:24
Carbocation: Good or Bad?
26:01
Effects of Halogens on EAS
28:33
Inductive Withdrawal of e- Density vs. Resonance Donation
28:34
Summary of Substituent Effects on EAS
32:33
Electron Donating Group
32:34
Electron Withdrawing Group
33:37
Directing Power of Substituents
34:35
Directing Power of Substituents
34:36
Example
36:41
Electrophiles for Electrophilic Aromatic Substitution
38:43
Reaction: Halogenation
38:44
Electrophiles for Electrophilic Aromatic Substitution
40:27
Reaction: Nitration
40:28
Electrophiles for Electrophilic Aromatic Substitution
41:45
Reaction: Sulfonation
41:46
Electrophiles for Electrophilic Aromatic Substitution
43:19
Reaction: Friedel-Crafts Alkylation
43:20
Electrophiles for Electrophilic Aromatic Substitution
45:43
Reaction: Friedel-Crafts Acylation
45:44
Electrophilic Aromatic Substitution: Nitration
46:52
Electrophilic Aromatic Substitution: Nitration
46:53
Mechanism
48:56
Nitration of Aniline
52:40
Nitration of Aniline Part 1
52:41
Nitration of Aniline Part 2: Why?
54:12
Nitration of Aniline
56:10
Workaround: Protect Amino Group as an Amide
56:11
Electrophilic Aromatic Substitution: Sulfonation
58:16
Electrophilic Aromatic Substitution: Sulfonation
58:17
Example: Transform
59:25
Electrophilic Aromatic Substitution: Friedel-Crafts Alkylation
1:02:24
Electrophilic Aromatic Substitution: Friedel-Crafts Alkylation
1:02:25
Example & Mechanism
1:03:37
Friedel-Crafts Alkylation Drawbacks
1:05:48
A) Can Over-React (Dialkylation)
1:05:49
Friedel-Crafts Alkylation Drawbacks
1:08:21
B) Carbocation Can Rearrange
1:08:22
Mechanism
1:09:33
Friedel-Crafts Alkylation Drawbacks
1:13:35
Want n-Propyl? Use Friedel-Crafts Acylation
1:13:36
Reducing Agents
1:16:45
Synthesis with Electrophilic Aromatic Substitution
1:18:45
Example: Transform
1:18:46
Synthesis with Electrophilic Aromatic Substitution
1:20:59
Example: Transform
1:21:00
Aromatic Compounds: Reactions, Part 2

59m 10s

Intro
0:00
Reagents for Electrophilic Aromatic Substitution
0:07
Reagents for Electrophilic Aromatic Substitution
0:08
Preparation of Diazonium Salt
2:12
Preparation of Diazonium Salt
2:13
Reagents for Sandmeyer Reactions
4:14
Reagents for Sandmeyer Reactions
4:15
Apply Diazonium Salt in Synthesis
6:20
Example: Transform
6:21
Apply Diazonium Salt in Synthesis
9:14
Example: Synthesize Following Target Molecule from Benzene or Toluene
9:15
Apply Diazonium Salt in Synthesis
14:56
Example: Transform
14:57
Reactions of Aromatic Substituents
21:56
A) Reduction Reactions
21:57
Reactions of Aromatic Substituents
23:24
B) Oxidations of Arenes
23:25
Benzylic [ox] Even Breaks C-C Bonds!
25:05
Benzylic Carbon Can't Be Quaternary
25:55
Reactions of Aromatic Substituents
26:21
Example
26:22
Review of Benzoic Acid Synthesis
27:34
Via Hydrolysis
27:35
Via Grignard
28:20
Reactions of Aromatic Substituents
29:15
C) Benzylic Halogenation
29:16
Radical Stabilities
31:55
N-bromosuccinimide (NBS)
32:23
Reactions of Aromatic Substituents
33:08
D) Benzylic Substitutions
33:09
Reactions of Aromatic Side Chains
37:08
Example: Transform
37:09
Nucleophilic Aromatic Substitution
43:13
Nucleophilic Aromatic Substitution
43:14
Nucleophilic Aromatic Substitution
47:08
Example
47:09
Mechanism
48:00
Nucleophilic Aromatic Substitution
50:43
Example
50:44
Nucleophilic Substitution: Benzyne Mechanism
52:46
Nucleophilic Substitution: Benzyne Mechanism
52:47
Nucleophilic Substitution: Benzyne Mechanism
57:31
Example: Predict Product
57:32
Section 10: Dienes & Amines
Conjugated Dienes

1h 9m 12s

Intro
0:00
Conjugated Dienes
0:08
Conjugated π Bonds
0:09
Diene Stability
2:00
Diene Stability: Cumulated
2:01
Diene Stability: Isolated
2:37
Diene Stability: Conjugated
2:51
Heat of Hydrogenation
3:00
Allylic Carbocations and Radicals
5:15
Allylic Carbocations and Radicals
5:16
Electrophilic Additions to Dienes
7:00
Alkenes
7:01
Unsaturated Ketone
7:47
Electrophilic Additions to Dienes
8:28
Conjugated Dienes
8:29
Electrophilic Additions to Dienes
9:46
Mechanism (2-Steps): Alkene
9:47
Electrophilic Additions to Dienes
11:40
Mechanism (2-Steps): Diene
11:41
1,2 'Kinetic' Product
13:08
1,4 'Thermodynamic' Product
14:47
E vs. POR Diagram
15:50
E vs. POR Diagram
15:51
Kinetic vs. Thermodynamic Control
21:56
Kinetic vs. Thermodynamic Control
21:57
How? Reaction is Reversible!
23:51
1,2 (Less Stable product)
23:52
1,4 (More Stable Product)
25:16
Diels Alder Reaction
26:34
Diels Alder Reaction
26:35
Dienophiles (E+)
29:23
Dienophiles (E+)
29:24
Alkyne Diels-Alder Example
30:48
Example: Alkyne Diels-Alder
30:49
Diels-Alder Reaction: Dienes (Nu:)
32:22
Diels-Alder ReactionL Dienes (Nu:)
32:23
Diels-Alder Reaction: Dienes
33:51
Dienes Must Have 's-cis' Conformation
33:52
Example
35:25
Diels-Alder Reaction with Cyclic Dienes
36:08
Cyclic Dienes are Great for Diels-Alder Reaction
36:09
Cyclopentadiene
37:10
Diels-Alder Reaction: Bicyclic Products
40:50
Endo vs. Exo Terminology: Norbornane & Bicyclo Heptane
40:51
Example: Bicyclo Heptane
42:29
Diels-Alder Reaction with Cyclic Dienes
44:15
Example
44:16
Stereochemistry of the Diels-Alder Reaction
47:39
Stereochemistry of the Diels-Alder Reaction
47:40
Example
48:08
Stereochemistry of the Diels-Alder Reaction
50:21
Example
50:22
Regiochemistry of the Diels-Alder Reaction
52:42
Rule: 1,2-Product Preferred Over 1,3-Product
52:43
Regiochemistry of the Diels-Alder Reaction
54:18
Rule: 1,4-Product Preferred Over 1,3-Product
54:19
Regiochemistry of the Diels-Alder Reaction
55:02
Why 1,2-Product or 1,4-Product Favored?
55:03
Example
56:11
Diels-Alder Reaction
58:06
Example: Predict
58:07
Diels-Alder Reaction
1:01:27
Explain Why No Diels-Alder Reaction Takes Place in This Case
1:01:28
Diels-Alder Reaction
1:03:09
Example: Predict
1:03:10
Diels-Alder Reaction: Synthesis Problem
1:05:39
Diels-Alder Reaction: Synthesis Problem
1:05:40
Pericyclic Reactions and Molecular Orbital (MO) Theory

1h 21m 31s

Intro
0:00
Pericyclic Reactions
0:05
Pericyclic Reactions
0:06
Electrocyclic Reactions
1:19
Electrocyclic Reactions
1:20
Electrocyclic Reactions
3:13
Stereoselectivity
3:14
Electrocyclic Reactions
8:10
Example: Predict
8:11
Sigmatropic Rearrangements
12:29
Sigmatropic Rearrangements
12:30
Cope Rearrangement
14:44
Sigmatropic Rearrangements
16:44
Claisen Rearrangement 1
16:45
Claisen Rearrangement 2
17:46
Cycloaddition Reactions
19:22
Diels-Alder
19:23
1,3-Dipolar Cycloaddition
20:32
Cycloaddition Reactions: Stereochemistry
21:58
Cycloaddition Reactions: Stereochemistry
21:59
Cycloaddition Reactions: Heat or Light?
26:00
4+2 Cycloadditions
26:01
2+2 Cycloadditions
27:23
Molecular Orbital (MO) Theory of Chemical Reactions
29:26
Example 1: Molecular Orbital Theory of Bonding
29:27
Molecular Orbital (MO) Theory of Chemical Reactions
31:59
Example 2: Molecular Orbital Theory of Bonding
32:00
Molecular Orbital (MO) Theory of Chemical Reactions
33:33
MO Theory of Aromaticity, Huckel's Rule
33:34
Molecular Orbital (MO) Theory of Chemical Reactions
36:43
Review: Molecular Orbital Theory of Conjugated Systems
36:44
Molecular Orbital (MO) Theory of Chemical Reactions
44:56
Review: Molecular Orbital Theory of Conjugated Systems
44:57
Molecular Orbital (MO) Theory of Chemical Reactions
46:54
Review: Molecular Orbital Theory of Conjugated Systems
46:55
Molecular Orbital (MO) Theory of Chemical Reactions
48:36
Frontier Molecular Orbitals are Involved in Reactions
48:37
Examples
50:20
MO Theory of Pericyclic Reactions: The Woodward-Hoffmann Rules
51:51
Heat-promoted Pericyclic Reactions and Light-promoted Pericyclic Reactions
51:52
MO Theory of Pericyclic Reactions: The Woodward-Hoffmann Rules
53:42
Why is a [4+2] Cycloaddition Thermally Allowed While the [2+2] is Not?
53:43
MO Theory of Pericyclic Reactions: The Woodward-Hoffmann Rules
56:51
Why is a [2+2] Cycloaddition Photochemically Allowed?
56:52
Pericyclic Reaction Example I
59:16
Pericyclic Reaction Example I
59:17
Pericyclic Reaction Example II
1:07:40
Pericyclic Reaction Example II
1:07:41
Pericyclic Reaction Example III: Vitamin D - The Sunshine Vitamin
1:14:22
Pericyclic Reaction Example III: Vitamin D - The Sunshine Vitamin
1:14:23
Amines

34m 58s

Intro
0:00
Amines: Properties and Reactivity
0:04
Compare Amines to Alcohols
0:05
Amines: Lower Boiling Point than ROH
0:55
1) RNH₂ Has Lower Boiling Point than ROH
0:56
Amines: Better Nu: Than ROH
2:22
2) RNH₂ is a Better Nucleophile than ROH Example 1
2:23
RNH₂ is a Better Nucleophile than ROH Example 2
3:08
Amines: Better Nu: than ROH
3:47
Example
3:48
Amines are Good Bases
5:41
3) RNH₂ is a Good Base
5:42
Amines are Good Bases
7:06
Example 1
7:07
Example 2: Amino Acid
8:27
Alkyl vs. Aryl Amines
9:56
Example: Which is Strongest Base?
9:57
Alkyl vs. Aryl Amines
14:55
Verify by Comparing Conjugate Acids
14:56
Reaction of Amines
17:42
Reaction with Ketone/Aldehyde: 1° Amine (RNH₂)
17:43
Reaction of Amines
18:48
Reaction with Ketone/Aldehyde: 2° Amine (R2NH)
18:49
Use of Enamine: Synthetic Equivalent of Enolate
20:08
Use of Enamine: Synthetic Equivalent of Enolate
20:09
Reaction of Amines
24:10
Hofmann Elimination
24:11
Hofmann Elimination
26:16
Kinetic Product
26:17
Structure Analysis Using Hofmann Elimination
28:22
Structure Analysis Using Hofmann Elimination
28:23
Biological Activity of Amines
30:30
Adrenaline
31:07
Mescaline (Peyote Alkaloid)
31:22
Amino Acids, Amide, and Protein
32:14
Biological Activity of Amines
32:50
Morphine (Opium Alkaloid)
32:51
Epibatidine (Poison Dart Frog)
33:28
Nicotine
33:48
Choline (Nerve Impulse)
34:03
Section 11: Biomolecules & Polymers
Biomolecules

1h 53m 20s

Intro
0:00
Carbohydrates
1:11
D-glucose Overview
1:12
D-glucose: Cyclic Form (6-membered ring)
4:31
Cyclic Forms of Glucose: 6-membered Ring
8:24
α-D-glucopyranose & β-D-glucopyranose
8:25
Formation of a 5-Membered Ring
11:05
D-glucose: Formation of a 5-Membered Ring
11:06
Cyclic Forms of Glucose: 5-membered Ring
12:37
α-D-glucofuranose & β-D-glucofuranose
12:38
Carbohydrate Mechanism
14:03
Carbohydrate Mechanism
14:04
Reactions of Glucose: Acetal Formation
21:35
Acetal Formation: Methyl-α-D-glucoside
21:36
Hemiacetal to Acetal: Overview
24:58
Mechanism for Formation of Glycosidic Bond
25:51
Hemiacetal to Acetal: Mechanism
25:52
Formation of Disaccharides
29:34
Formation of Disaccharides
29:35
Some Polysaccharides: Starch
31:33
Amylose & Amylopectin
31:34
Starch: α-1,4-glycosidic Bonds
32:22
Properties of Starch Molecule
33:21
Some Polysaccharides: Cellulose
33:59
Cellulose: β-1,4-glycosidic bonds
34:00
Properties of Cellulose
34:59
Other Sugar-Containing Biomolecules
35:50
Ribonucleoside (RNA)
35:51
Deoxyribonucleoside (DMA)
36:59
Amino Acids & Proteins
37:32
α-amino Acids: Structure & Stereochemistry
37:33
Making a Protein (Condensation)
42:46
Making a Protein (Condensation)
42:47
Peptide Bond is Planar (Amide Resonance)
44:55
Peptide Bond is Planar (Amide Resonance)
44:56
Protein Functions
47:49
Muscle, Skin, Bones, Hair Nails
47:50
Enzymes
49:10
Antibodies
49:44
Hormones, Hemoglobin
49:58
Gene Regulation
50:20
Various Amino Acid Side Chains
50:51
Nonpolar
50:52
Polar
51:15
Acidic
51:24
Basic
51:55
Amino Acid Table
52:22
Amino Acid Table
52:23
Isoelectric Point (pI)
53:43
Isoelectric Point (pI) of Glycine
53:44
Isoelectric Point (pI) of Glycine: pH 11
56:42
Isoelectric Point (pI) of Glycine: pH 1
57:20
Isoelectric Point (pI), cont.
58:05
Asparatic Acid
58:06
Histidine
1:00:28
Isoelectric Point (pI), cont.
1:02:54
Example: What is the Net Charge of This Tetrapeptide at pH 6.0?
1:02:55
Nucleic Acids: Ribonucleosides
1:10:32
Nucleic Acids: Ribonucleosides
1:10:33
Nucleic Acids: Ribonucleotides
1:11:48
Ribonucleotides: 5' Phosphorylated Ribonucleosides
1:11:49
Ribonucleic Acid (RNA) Structure
1:12:35
Ribonucleic Acid (RNA) Structure
1:12:36
Nucleic Acids: Deoxyribonucleosides
1:14:08
Nucleic Acids: Deoxyribonucleosides
1:14:09
Deoxythymidine (T)
1:14:36
Nucleic Acids: Base-Pairing
1:15:17
Nucleic Acids: Base-Pairing
1:15:18
Double-Stranded Structure of DNA
1:18:16
Double-Stranded Structure of DNA
1:18:17
Model of DNA
1:19:40
Model of DNA
1:19:41
Space-Filling Model of DNA
1:20:46
Space-Filling Model of DNA
1:20:47
Function of RNA and DNA
1:23:06
DNA & Transcription
1:23:07
RNA & Translation
1:24:22
Genetic Code
1:25:09
Genetic Code
1:25:10
Lipids/Fats/Triglycerides
1:27:10
Structure of Glycerol
1:27:43
Saturated & Unsaturated Fatty Acids
1:27:51
Triglyceride
1:28:43
Unsaturated Fats: Lower Melting Points (Liquids/Oils)
1:29:15
Saturated Fat
1:29:16
Unsaturated Fat
1:30:10
Partial Hydrogenation
1:32:05
Saponification of Fats
1:35:11
Saponification of Fats
1:35:12
History of Soap
1:36:50
Carboxylate Salts form Micelles in Water
1:41:02
Carboxylate Salts form Micelles in Water
1:41:03
Cleaning Power of Micelles
1:42:21
Cleaning Power of Micelles
1:42:22
3-D Image of a Micelle
1:42:58
3-D Image of a Micelle
1:42:59
Synthesis of Biodiesel
1:44:04
Synthesis of Biodiesel
1:44:05
Phosphoglycerides
1:47:54
Phosphoglycerides
1:47:55
Cell Membranes Contain Lipid Bilayers
1:48:41
Cell Membranes Contain Lipid Bilayers
1:48:42
Bilayer Acts as Barrier to Movement In/Out of Cell
1:50:24
Bilayer Acts as Barrier to Movement In/Out of Cell
1:50:25
Organic Chemistry Meets Biology… Biochemistry!
1:51:12
Organic Chemistry Meets Biology… Biochemistry!
1:51:13
Polymers

45m 47s

Intro
0:00
Polymers
0:05
Monomer to Polymer: Vinyl Chloride to Polyvinyl Chloride
0:06
Polymer Properties
1:32
Polymer Properties
1:33
Natural Polymers: Rubber
2:30
Vulcanization
2:31
Natural Polymers: Polysaccharides
4:55
Example: Starch
4:56
Example: Cellulose
5:45
Natural Polymers: Proteins
6:07
Example: Keratin
6:08
DNA Strands
7:15
DNA Strands
7:16
Synthetic Polymers
8:30
Ethylene & Polyethylene: Lightweight Insulator & Airtight Plastic
8:31
Synthetic Organic Polymers
12:22
Polyethylene
12:28
Polyvinyl Chloride (PVC)
12:54
Polystyrene
13:28
Polyamide
14:34
Polymethyl Methacrylate
14:57
Kevlar
15:25
Synthetic Material Examples
16:30
How are Polymers Made?
21:00
Chain-growth Polymers Additions to Alkenes can be Radical, Cationic or Anionic
21:01
Chain Branching
22:34
Chain Branching
22:35
Special Reaction Conditions Prevent Branching
24:28
Ziegler-Natta Catalyst
24:29
Chain-Growth by Cationic Polymerization
27:35
Chain-Growth by Cationic Polymerization
27:36
Chain-Growth by Anionic Polymerization
29:35
Chain-Growth by Anionic Polymerization
29:36
Step-Growth Polymerization: Polyamides
32:16
Step-Growth Polymerization: Polyamides
32:17
Step-Growth Polymerization: Polyesters
34:23
Step-Growth Polymerization: Polyesters
34:24
Step-Growth Polymerization: Polycarbonates
35:56
Step-Growth Polymerization: Polycarbonates
35:57
Step-Growth Polymerization: Polyurethanes
37:18
Step-Growth Polymerization: Polyurethanes
37:19
Modifying Polymer Properties
39:35
Glass Transition Temperature
40:04
Crosslinking
40:42
Copolymers
40:58
Additives: Stabilizers
42:08
Additives: Flame Retardants
43:03
Additives: Plasticizers
43:41
Additives: Colorants
44:54
Section 12: Organic Synthesis
Organic Synthesis Strategies

2h 20m 24s

Intro
0:00
Organic Synthesis Strategies
0:15
Goal
0:16
Strategy
0:29
Example of a RetroSynthesis
1:30
Finding Starting Materials for Target Molecule
1:31
Synthesis Using Starting Materials
4:56
Synthesis of Alcohols by Functional Group Interconversion (FGI)
6:00
Synthesis of Alcohols by Functional Group Interconversion Overview
6:01
Alcohols by Reduction
7:43
Ketone to Alcohols
7:45
Aldehyde to Alcohols
8:26
Carboxylic Acid Derivative to Alcohols
8:36
Alcohols by Hydration of Alkenes
9:28
Hydration of Alkenes Using H₃O⁺
9:29
Oxymercuration-Demercuration
10:35
Hydroboration Oxidation
11:02
Alcohols by Substitution
11:42
Primary Alkyl Halide to Alcohols Using NaOH
11:43
Secondary Alkyl Halide to Alcohols Using Sodium Acetate
13:07
Tertiary Alkyl Halide to Alcohols Using H₂O
15:08
Synthesis of Alcohols by Forming a New C-C Bond
15:47
Recall: Alcohol & RMgBr
15:48
Retrosynthesis
17:28
Other Alcohol Disconnections
19:46
19:47
Synthesis Using PhMGgBr: Example 2
23:05
Synthesis of Alkyl Halides
26:06
Synthesis of Alkyl Halides Overview
26:07
Synthesis of Alkyl Halides by Free Radical Halogenation
27:04
Synthesis of Alkyl Halides by Free Radical Halogenation
27:05
Synthesis of Alkyl Halides by Substitution
29:06
Alcohol to Alkyl Halides Using HBr or HCl
29:07
Alcohol to Alkyl Halides Using SOCl₂
30:57
Alcohol to Alkyl Halides Using PBr₃ and Using P, I₂
31:03
Synthesis of Alkyl Halides by Addition
32:02
Alkene to Alkyl Halides Using HBr
32:03
Alkene to Alkyl Halides Using HBr & ROOR (Peroxides)
32:35
Example: Synthesis of Alkyl Halide
34:18
Example: Synthesis of Alkyl Halide
34:19
Synthesis of Ethers
39:25
Synthesis of Ethers
39:26
Example: Synthesis of an Ether
41:12
Synthesize TBME (t-butyl methyl ether) from Alcohol Starting Materials
41:13
Synthesis of Amines
46:05
Synthesis of Amines
46:06
Gabriel Synthesis of Amines
47:57
Gabriel Synthesis of Amines
47:58
Amines by SN2 with Azide Nu:
49:50
Amines by SN2 with Azide Nu:
49:51
Amines by SN2 with Cyanide Nu:
50:31
Amines by SN2 with Cyanide Nu:
50:32
Amines by Reduction of Amides
51:30
Amines by Reduction of Amides
51:31
Reductive Amination of Ketones/Aldehydes
52:42
Reductive Amination of Ketones/Aldehydes
52:43
Example : Synthesis of an Amine
53:47
Example 1: Synthesis of an Amine
53:48
Example 2: Synthesis of an Amine
56:16
Synthesis of Alkenes
58:20
Synthesis of Alkenes Overview
58:21
Synthesis of Alkenes by Elimination
59:04
Synthesis of Alkenes by Elimination Using NaOH & Heat
59:05
Synthesis of Alkenes by Elimination Using H₂SO₄ & Heat
59:57
Synthesis of Alkenes by Reduction
1:02:05
Alkyne to Cis Alkene
1:02:06
Alkyne to Trans Alkene
1:02:56
Synthesis of Alkenes by Wittig Reaction
1:03:46
Synthesis of Alkenes by Wittig Reaction
1:03:47
Retrosynthesis of an Alkene
1:05:35
Example: Synthesis of an Alkene
1:06:57
Example: Synthesis of an Alkene
1:06:58
Making a Wittig Reagent
1:10:31
Synthesis of Alkynes
1:13:09
Synthesis of Alkynes
1:13:10
Synthesis of Alkynes by Elimination (FGI)
1:13:42
First Step: Bromination of Alkene
1:13:43
Second Step: KOH Heat
1:14:22
Synthesis of Alkynes by Alkylation
1:15:02
Synthesis of Alkynes by Alkylation
1:15:03
Retrosynthesis of an Alkyne
1:16:18
Example: Synthesis of an Alkyne
1:17:40
Example: Synthesis of an Alkyne
1:17:41
Synthesis of Alkanes
1:20:52
Synthesis of Alkanes
1:20:53
Synthesis of Aldehydes & Ketones
1:21:38
Oxidation of Alcohol Using PCC or Swern
1:21:39
Oxidation of Alkene Using 1) O₃, 2)Zn
1:22:42
Reduction of Acid Chloride & Nitrile Using DiBAL-H
1:23:25
Hydration of Alkynes
1:24:55
Synthesis of Ketones by Acyl Substitution
1:26:12
Reaction with R'₂CuLi
1:26:13
Reaction with R'MgBr
1:27:13
Synthesis of Aldehydes & Ketones by α-Alkylation
1:28:00
Synthesis of Aldehydes & Ketones by α-Alkylation
1:28:01
Retrosynthesis of a Ketone
1:30:10
Acetoacetate Ester Synthesis of Ketones
1:31:05
Acetoacetate Ester Synthesis of Ketones: Step 1
1:31:06
Acetoacetate Ester Synthesis of Ketones: Step 2
1:32:13
Acetoacetate Ester Synthesis of Ketones: Step 3
1:32:50
Example: Synthesis of a Ketone
1:34:11
Example: Synthesis of a Ketone
1:34:12
Synthesis of Carboxylic Acids
1:37:15
Synthesis of Carboxylic Acids
1:37:16
Example: Synthesis of a Carboxylic Acid
1:37:59
Example: Synthesis of a Carboxylic Acid (Option 1)
1:38:00
Example: Synthesis of a Carboxylic Acid (Option 2)
1:40:51
Malonic Ester Synthesis of Carboxylic Acid
1:42:34
Malonic Ester Synthesis of Carboxylic Acid: Step 1
1:42:35
Malonic Ester Synthesis of Carboxylic Acid: Step 2
1:43:36
Malonic Ester Synthesis of Carboxylic Acid: Step 3
1:44:01
Example: Synthesis of a Carboxylic Acid
1:44:53
Example: Synthesis of a Carboxylic Acid
1:44:54
Synthesis of Carboxylic Acid Derivatives
1:48:05
Synthesis of Carboxylic Acid Derivatives
1:48:06
Alternate Ester Synthesis
1:48:58
Using Fischer Esterification
1:48:59
Using SN2 Reaction
1:50:18
Using Diazomethane
1:50:56
Using 1) LDA, 2) R'-X
1:52:15
Practice: Synthesis of an Alkyl Chloride
1:53:11
Practice: Synthesis of an Alkyl Chloride
1:53:12
Patterns of Functional Groups in Target Molecules
1:59:53
Recall: Aldol Reaction
1:59:54
β-hydroxy Ketone Target Molecule
2:01:12
α,β-unsaturated Ketone Target Molecule
2:02:20
Patterns of Functional Groups in Target Molecules
2:03:15
Recall: Michael Reaction
2:03:16
Retrosynthesis: 1,5-dicarbonyl Target Molecule
2:04:07
Patterns of Functional Groups in Target Molecules
2:06:38
Recall: Claisen Condensation
2:06:39
Retrosynthesis: β-ketoester Target Molecule
2:07:30
2-Group Target Molecule Summary
2:09:03
2-Group Target Molecule Summary
2:09:04
Example: Synthesis of Epoxy Ketone
2:11:19
Synthesize the Following Target Molecule from Cyclohexanone: Part 1 - Retrosynthesis
2:11:20
Synthesize the Following Target Molecule from Cyclohexanone: Part 2 - Synthesis
2:14:10
Example: Synthesis of a Diketone
2:16:57
Synthesis of a Diketone: Step 1 - Retrosynthesis
2:16:58
Synthesis of a Diketone: Step 2 - Synthesis
2:18:51
Section 12: Organic Synthesis & Organic Analysis
Organic Analysis: Classical & Modern Methods

46m 46s

Intro
0:00
Organic Analysis: Classical Methods
0:17
Classical Methods for Identifying Chemicals
0:18
Organic Analysis: Classical Methods
2:21
When is Structure Identification Needed?
2:22
Organic Analysis: Classical Methods
6:17
Classical Methods of Structure Identification: Physical Appearance
6:18
Classical Methods of Structure Identification: Physical Constants
6:42
Organic Analysis: Classical Methods
7:37
Classical Methods of Structure Identification: Solubility Tests - Water
7:38
Organic Analysis: Classical Methods
10:51
Classical Methods of Structure Identification: Solubility Tests - 5% aq. HCl Basic FG (Amines)
10:52
Organic Analysis: Classical Methods
11:50
Classical Methods of Structure Identification: Solubility Tests - 5% aq. NaOH Acidic FG (Carboxylic Acids, Phenols)
11:51
Organic Analysis: Classical Methods
13:28
Classical Methods of Structure Identification: Solubility Tests - 5% aq. NaHCO3 Strongly Acidic FG (Carboxylic Acids)
13:29
Organic Analysis: Classical Methods
15:35
Classical Methods of Structure Identification: Solubility Tests - Insoluble in All of the Above
15:36
Organic Analysis: Classical Methods
16:49
Classical Methods of Structure Identification: Idoform Test for Methyl Ketones
16:50
Organic Analysis: Classical Methods
22:02
Classical Methods of Structure Identification: Tollens' Test or Fehling's Solution for Aldehydes
22:03
Organic Analysis: Classical Methods
25:01
Useful Application of Classical Methods: Glucose Oxidase on Glucose Test Strips
25:02
Organic Analysis: Classical Methods
26:26
Classical Methods of Structure Identification: Starch-iodide Test
26:27
Organic Analysis: Classical Methods
28:22
Classical Methods of Structure Identification: Lucas Reagent to Determine Primary/Secondary/Tertiary Alcohol
28:23
Organic Analysis: Classical Methods
31:35
Classical Methods of Structure Identification: Silver Nitrate Test for Alkyl Halides
31:36
Organic Analysis: Classical Methods
33:23
Preparation of Derivatives
33:24
Organic Analysis: Modern Methods
36:55
Modern Methods of Chemical Characterization
36:56
Organic Analysis: Modern Methods
40:36
Checklist for Manuscripts Submitted to the ACS Journal Organic Letters
40:37
Organic Analysis: Modern Methods
42:39
Checklist for Manuscripts Submitted to the ACS Journal Organic Letters
42:40
Analysis of Stereochemistry

1h 2m 52s

Intro
0:00
Chirality & Optical Activity
0:32
Levorotatory & Dextrorotatory
0:33
Example: Optically Active?
2:22
Example: Optically Active?
2:23
Measurement of Specific Rotation, [α]
5:09
Measurement of Specific Rotation, [α]
5:10
Example: Calculation of Specific Rotation
8:56
Example: Calculation of Specific Rotation
8:57
Variability of Specific Rotation, [α]
12:52
Variability of Specific Rotation, [α]
12:53
Other Measures of Optical Activity: ORD and CD
15:04
Optical Rotary Dispersion (ORD)
15:05
Circular Dischroism (CD)
18:32
Circular Dischroism (CD)
18:33
Mixtures of Enantiomers
20:16
Racemic Mixtures
20:17
Unequal Mixtures of Enantiomers
21:36
100% ee
22:48
0% ee
23:34
Example: Definition of ee?
24:00
Example: Definition of ee?
24:01
Analysis of Optical Purity: [α]
27:47
[α] Measurement Can Be Used for Known Compounds
27:48
Analysis of Optical Purity: [α]
34:30
NMR Methods Using a Chiral Derivatizing Agent (CDA): Mosher's Reagent
34:31
Analysis of Optical Purity: [α]
40:01
NMR Methods Using a Chiral Derivatizing Agent (CDA): CDA Salt Formation
40:02
Analysis of Optical Purity: Chromatography
42:46
Chiral Chromatography
42:47
Stereochemistry Analysis by NMR: J Values (Coupling Constant)
51:28
NMR Methods for Structure Determination
51:29
Stereochemistry Analysis by NRM: NOE
57:00
NOE - Nuclear Overhauser Effect ( 2D Versions: NOESY or ROESY)
57:01
Section 13: Spectroscopy
Infrared Spectroscopy, Part I

1h 4m

Intro
0:00
Infrared (IR) Spectroscopy
0:09
Introduction to Infrared (IR) Spectroscopy
0:10
Intensity of Absorption Is Proportional to Change in Dipole
3:08
IR Spectrum of an Alkane
6:08
Pentane
6:09
IR Spectrum of an Alkene
13:12
1-Pentene
13:13
IR Spectrum of an Alkyne
15:49
1-Pentyne
15:50
IR Spectrum of an Aromatic Compound
18:02
Methylbenzene
18:24
IR of Substituted Aromatic Compounds
24:04
IR of Substituted Aromatic Compounds
24:05
IR Spectrum of 1,2-Disubstituted Aromatic
25:30
1,2-dimethylbenzene
25:31
IR Spectrum of 1,3-Disubstituted Aromatic
27:15
1,3-dimethylbenzene
27:16
IR Spectrum of 1,4-Disubstituted Aromatic
28:41
1,4-dimethylbenzene
28:42
IR Spectrum of an Alcohol
29:34
1-pentanol
29:35
IR Spectrum of an Amine
32:39
1-butanamine
32:40
IR Spectrum of a 2° Amine
34:50
Diethylamine
34:51
IR Spectrum of a 3° Amine
35:47
Triethylamine
35:48
IR Spectrum of a Ketone
36:41
2-butanone
36:42
IR Spectrum of an Aldehyde
40:10
Pentanal
40:11
IR Spectrum of an Ester
42:38
Butyl Propanoate
42:39
IR Spectrum of a Carboxylic Acid
44:26
Butanoic Acid
44:27
Sample IR Correlation Chart
47:36
Sample IR Correlation Chart: Wavenumber and Functional Group
47:37
Predicting IR Spectra: Sample Structures
52:06
Example 1
52:07
Example 2
53:29
Example 3
54:40
Example 4
57:08
Example 5
58:31
Example 6
59:07
Example 7
1:00:52
Example 8
1:02:20
Infrared Spectroscopy, Part II

48m 34s

Intro
0:00
Interpretation of IR Spectra: a Basic Approach
0:05
Interpretation of IR Spectra: a Basic Approach
0:06
Other Peaks to Look for
3:39
Examples
5:17
Example 1
5:18
Example 2
9:09
Example 3
11:52
Example 4
14:03
Example 5
16:31
Example 6
19:31
Example 7
22:32
Example 8
24:39
IR Problems Part 1
28:11
IR Problem 1
28:12
IR Problem 2
31:14
IR Problem 3
32:59
IR Problem 4
34:23
IR Problem 5
35:49
IR Problem 6
38:20
IR Problems Part 2
42:36
IR Problem 7
42:37
IR Problem 8
44:02
IR Problem 9
45:07
IR Problems10
46:10
Nuclear Magnetic Resonance (NMR) Spectroscopy, Part I

1h 32m 14s

Intro
0:00
Purpose of NMR
0:14
Purpose of NMR
0:15
How NMR Works
2:17
How NMR Works
2:18
Information Obtained From a ¹H NMR Spectrum
5:51
No. of Signals, Integration, Chemical Shifts, and Splitting Patterns
5:52
Number of Signals in NMR (Chemical Equivalence)
7:52
Example 1: How Many Signals in ¹H NMR?
7:53
Example 2: How Many Signals in ¹H NMR?
9:36
Example 3: How Many Signals in ¹H NMR?
12:15
Example 4: How Many Signals in ¹H NMR?
13:47
Example 5: How Many Signals in ¹H NMR?
16:12
Size of Signals in NMR (Peak Area or Integration)
21:23
Size of Signals in NMR (Peak Area or Integration)
21:24
Using Integral Trails
25:15
Example 1: C₈H₁₈O
25:16
Example 2: C₃H₈O
27:17
Example 3: C₇H₈
28:21
Location of NMR Signal (Chemical Shift)
29:05
Location of NMR Signal (Chemical Shift)
29:06
¹H NMR Chemical Shifts
33:20
¹H NMR Chemical Shifts
33:21
¹H NMR Chemical Shifts (Protons on Carbon)
37:03
¹H NMR Chemical Shifts (Protons on Carbon)
37:04
Chemical Shifts of H's on N or O
39:01
Chemical Shifts of H's on N or O
39:02
Estimating Chemical Shifts
41:13
Example 1: Estimating Chemical Shifts
41:14
Example 2: Estimating Chemical Shifts
43:22
Functional Group Effects are Additive
45:28
Calculating Chemical Shifts
47:38
Methylene Calculation
47:39
Methine Calculation
48:20
Protons on sp³ Carbons: Chemical Shift Calculation Table
48:50
Example: Estimate the Chemical Shift of the Selected H
50:29
Effects of Resonance on Chemical Shifts
53:11
Example 1: Effects of Resonance on Chemical Shifts
53:12
Example 2: Effects of Resonance on Chemical Shifts
55:09
Example 3: Effects of Resonance on Chemical Shifts
57:08
Shape of NMR Signal (Splitting Patterns)
59:17
Shape of NMR Signal (Splitting Patterns)
59:18
Understanding Splitting Patterns: The 'n+1 Rule'
1:01:24
Understanding Splitting Patterns: The 'n+1 Rule'
1:01:25
Explanation of n+1 Rule
1:02:42
Explanation of n+1 Rule: One Neighbor
1:02:43
Explanation of n+1 Rule: Two Neighbors
1:06:23
Summary of Splitting Patterns
1:06:24
Summary of Splitting Patterns
1:10:45
Predicting ¹H NMR Spectra
1:10:46
Example 1: Predicting ¹H NMR Spectra
1:13:30
Example 2: Predicting ¹H NMR Spectra
1:19:07
Example 3: Predicting ¹H NMR Spectra
1:23:50
Example 4: Predicting ¹H NMR Spectra
1:29:27
Nuclear Magnetic Resonance (NMR) Spectroscopy, Part II

2h 3m 48s

Intro
0:00
¹H NMR Problem-Solving Strategies
0:18
Step 1: Analyze IR Spectrum (If Provided)
0:19
Step 2: Analyze Molecular Formula (If Provided)
2:06
Step 3: Draw Pieces of Molecule
3:49
Step 4: Confirm Pieces
6:30
Step 5: Put the Pieces Together!
7:23
Step 6: Check Your Answer!
8:21
Examples
9:17
Example 1: Determine the Structure of a C₉H₁₀O₂ Compound with the Following ¹H NMR Data
9:18
Example 2: Determine the Structure of a C₉H₁₀O₂ Compound with the Following ¹H NMR Data
17:27
¹H NMR Practice
20:57
¹H NMR Practice 1: C₁₀H₁₄
20:58
¹H NMR Practice 2: C₄H₈O₂
29:50
¹H NMR Practice 3: C₆H₁₂O₃
39:19
¹H NMR Practice 4: C₈H₁₈
50:19
More About Coupling Constants (J Values)
57:11
Vicinal (3-bond) and Geminal (2-bond)
57:12
Cyclohexane (ax-ax) and Cyclohexane (ax-eq) or (eq-eq)
59:50
Geminal (Alkene), Cis (Alkene), and Trans (Alkene)
1:02:40
Allylic (4-bond) and W-coupling (4-bond) (Rigid Structures Only)
1:04:05
¹H NMR Advanced Splitting Patterns
1:05:39
Example 1: ¹H NMR Advanced Splitting Patterns
1:05:40
Example 2: ¹H NMR Advanced Splitting Patterns
1:10:01
Example 3: ¹H NMR Advanced Splitting Patterns
1:13:45
¹H NMR Practice
1:22:53
¹H NMR Practice 5: C₁₁H₁₇N
1:22:54
¹H NMR Practice 6: C₉H₁₀O
1:34:04
¹³C NMR Spectroscopy
1:44:49
¹³C NMR Spectroscopy
1:44:50
¹³C NMR Chemical Shifts
1:47:24
¹³C NMR Chemical Shifts Part 1
1:47:25
¹³C NMR Chemical Shifts Part 2
1:48:59
¹³C NMR Practice
1:50:16
¹³C NMR Practice 1
1:50:17
¹³C NMR Practice 2
1:58:30
C-13 DEPT NMR Experiments

23m 10s

Intro
0:00
C-13 DEPT NMR Spectoscopy
0:13
Overview
0:14
C-13 DEPT NMR Spectoscopy, Cont.
3:31
Match C-13 Peaks to Carbons on Structure
3:32
C-13 DEPT NMR Spectoscopy, Cont.
8:46
Predict the DEPT-90 and DEPT-135 Spectra for the Given Compound
8:47
C-13 DEPT NMR Spectoscopy, Cont.
12:30
Predict the DEPT-90 and DEPT-135 Spectra for the Given Compound
12:31
C-13 DEPT NMR Spectoscopy, Cont.
17:19
Determine the Structure of an Unknown Compound using IR Spectrum and C-13 DEPT NMR
17:20
Two-Dimensional NMR Techniques: COSY

33m 39s

Intro
0:00
Two-Dimensional NMR Techniques: COSY
0:14
How Do We Determine Which Protons are Related in the NMR?
0:15
Two-Dimensional NMR Techniques: COSY
1:48
COSY Spectra
1:49
Two-Dimensional NMR Techniques: COSY
7:00
COSY Correlation
7:01
Two-Dimensional NMR Techniques: COSY
8:55
Complete the COSY NMR Spectrum for the Given Compoun
8:56
NMR Practice Problem
15:40
Provide a Structure for the Unknown Compound with the H NMR and COSY Spectra Shown
15:41
Two-Dimensional NMR Techniques: HETCOR & HMBC

15m 5s

Intro
0:00
HETCOR
0:15
Heteronuclear Correlation Spectroscopy
0:16
HETCOR
2:04
HETCOR Example
2:05
HMBC
11:07
Heteronuclear Multiple Bond Correlation
11:08
HMBC
13:14
HMB Example
13:15
Mass Spectrometry

1h 28m 35s

Intro
0:00
Introduction to Mass Spectrometry
0:37
Uses of Mass Spectrometry: Molecular Mass
0:38
Uses of Mass Spectrometry: Molecular Formula
1:04
Uses of Mass Spectrometry: Structural Information
1:21
Uses of Mass Spectrometry: In Conjunction with Gas Chromatography
2:03
Obtaining a Mass Spectrum
2:59
Obtaining a Mass Spectrum
3:00
The Components of a Mass Spectrum
6:44
The Components of a Mass Spectrum
6:45
What is the Mass of a Single Molecule
12:13
Example: CH₄
12:14
Example: ¹³CH₄
12:51
What Ratio is Expected for the Molecular Ion Peaks of C₂H₆?
14:20
Other Isotopes of High Abundance
16:30
Example: Cl Atoms
16:31
Example: Br Atoms
18:33
Mass Spectrometry of Chloroethane
19:22
Mass Spectrometry of Bromobutane
21:23
Isotopic Abundance can be Calculated
22:48
What Ratios are Expected for the Molecular Ion Peaks of CH₂Br₂?
22:49
Determining Molecular Formula from High-resolution Mass Spectrometry
26:53
Exact Masses of Various Elements
26:54
Fragmentation of various Functional Groups
28:42
What is More Stable, a Carbocation C⁺ or a Radical R?
28:43
Fragmentation is More Likely If It Gives Relatively Stable Carbocations and Radicals
31:37
Mass Spectra of Alkanes
33:15
Example: Hexane
33:16
Fragmentation Method 1
34:19
Fragmentation Method 2
35:46
Fragmentation Method 3
36:15
Mass of Common Fragments
37:07
Mass of Common Fragments
37:08
Mass Spectra of Alkanes
39:28
Mass Spectra of Alkanes
39:29
What are the Peaks at m/z 15 and 71 So Small?
41:01
Branched Alkanes
43:12
Explain Why the Base Peak of 2-methylhexane is at m/z 43 (M-57)
43:13
Mass Spectra of Alkenes
45:42
Mass Spectra of Alkenes: Remove 1 e⁻
45:43
Mass Spectra of Alkenes: Fragment
46:14
High-Energy Pi Electron is Most Likely Removed
47:59
Mass Spectra of Aromatic Compounds
49:01
Mass Spectra of Aromatic Compounds
49:02
Mass Spectra of Alcohols
51:32
Mass Spectra of Alcohols
51:33
Mass Spectra of Ethers
54:53
Mass Spectra of Ethers
54:54
Mass Spectra of Amines
56:49
Mass Spectra of Amines
56:50
Mass Spectra of Aldehydes & Ketones
59:23
Mass Spectra of Aldehydes & Ketones
59:24
McLafferty Rearrangement
1:01:29
McLafferty Rearrangement
1:01:30
Mass Spectra of Esters
1:04:15
Mass Spectra of Esters
1:01:16
Mass Spectrometry Discussion I
1:05:01
For the Given Molecule (M=58), Do You Expect the More Abundant Peak to Be m/z 15 or m/z 43?
1:05:02
Mass Spectrometry Discussion II
1:08:13
For the Given Molecule (M=74), Do You Expect the More Abundant Peak to Be m/z 31, m/z 45, or m/z 59?
1:08:14
Mass Spectrometry Discussion III
1:11:42
Explain Why the Mass Spectra of Methyl Ketones Typically have a Peak at m/z 43
1:11:43
Mass Spectrometry Discussion IV
1:14:46
In the Mass Spectrum of the Given Molecule (M=88), Account for the Peaks at m/z 45 and m/z 57
1:14:47
Mass Spectrometry Discussion V
1:18:25
How Could You Use Mass Spectrometry to Distinguish Between the Following Two Compounds (M=73)?
1:18:26
Mass Spectrometry Discussion VI
1:22:45
What Would be the m/z Ratio for the Fragment for the Fragment Resulting from a McLafferty Rearrangement for the Following Molecule (M=114)?
1:22:46
Section 14: Organic Chemistry Lab
Completing the Reagent Table for Prelab

21m 9s

Intro
0:00
Sample Reagent Table
0:11
Reagent Table Overview
0:12
Calculate Moles of 2-bromoaniline
6:44
Calculate Molar Amounts of Each Reagent
9:20
Calculate Mole of NaNO₂
9:21
Calculate Moles of KI
10:33
Identify the Limiting Reagent
11:17
Which Reagent is the Limiting Reagent?
11:18
Calculate Molar Equivalents
13:37
Molar Equivalents
13:38
Calculate Theoretical Yield
16:40
Theoretical Yield
16:41
Calculate Actual Yield (%Yield)
18:30
Actual Yield (%Yield)
18:31
Introduction to Melting Points

16m 10s

Intro
0:00
Definition of a Melting Point (mp)
0:04
Definition of a Melting Point (mp)
0:05
Solid Samples Melt Gradually
1:49
Recording Range of Melting Temperature
2:04
Melting Point Theory
3:14
Melting Point Theory
3:15
Effects of Impurities on a Melting Point
3:57
Effects of Impurities on a Melting Point
3:58
Special Exception: Eutectic Mixtures
5:09
Freezing Point Depression by Solutes
5:39
Melting Point Uses
6:19
Solid Compound
6:20
Determine Purity of a Sample
6:42
Identify an Unknown Solid
7:06
Recording a Melting Point
9:03
Pack 1-3 mm of Dry Powder in MP Tube
9:04
Slowly Heat Sample
9:55
Record Temperature at First Sign of Melting
10:33
Record Temperature When Last Crystal Disappears
11:26
Discard MP Tube in Glass Waste
11:32
Determine Approximate MP
11:42
Tips, Tricks and Warnings
12:28
Use Small, Tightly Packed Sample
12:29
Be Sure MP Apparatus is Cool
12:45
Never Reuse a MP Tube
13:16
Sample May Decompose
13:30
If Pure Melting Point (MP) Doesn't Match Literature
14:20
Melting Point Lab

8m 17s

Intro
0:00
Melting Point Tubes
0:40
Melting Point Apparatus
3:42
Recording a melting Point
5:50
Introduction to Recrystallization

22m

Intro
0:00
Crystallization to Purify a Solid
0:10
Crude Solid
0:11
Hot Solution
0:20
Crystals
1:09
Supernatant Liquid
1:20
Theory of Crystallization
2:34
Theory of Crystallization
2:35
Analysis and Obtaining a Second Crop
3:40
Crystals → Melting Point, TLC
3:41
Supernatant Liquid → Crude Solid → Pure Solid
4:18
Crystallize Again → Pure Solid (2nd Crop)
4:32
Choosing a Solvent
5:19
1. Product is Very Soluble at High Temperatures
5:20
2. Product has Low Solubility at Low Temperatures
6:00
3. Impurities are Soluble at All Temperatures
6:16
Check Handbooks for Suitable Solvents
7:33
Why Isn't This Dissolving?!
8:46
If Solid Remains When Solution is Hot
8:47
Still Not Dissolved in Hot Solvent?
10:18
Where Are My Crystals?!
12:23
If No Crystals Form When Solution is Cooled
12:24
Still No Crystals?
14:59
Tips, Tricks and Warnings
16:26
Always Use a Boiling Chip or Stick!
16:27
Use Charcoal to Remove Colored Impurities
16:52
Solvent Pairs May Be Used
18:23
Product May 'Oil Out'
20:11
Recrystallization Lab

19m 7s

Intro
0:00
Step 1: Dissolving the Solute in the Solvent
0:12
Hot Filtration
6:33
Step 2: Cooling the Solution
8:01
Step 3: Filtering the Crystals
12:08
Step 4: Removing & Drying the Crystals
16:10
Introduction to Distillation

25m 54s

Intro
0:00
Distillation: Purify a Liquid
0:04
Simple Distillation
0:05
Fractional Distillation
0:55
Theory of Distillation
1:04
Theory of Distillation
1:05
Vapor Pressure and Volatility
1:52
Vapor Pressure
1:53
Volatile Liquid
2:28
Less Volatile Liquid
3:09
Vapor Pressure vs. Boiling Point
4:03
Vapor Pressure vs. Boiling Point
4:04
Increasing Vapor Pressure
4:38
The Purpose of Boiling Chips
6:46
The Purpose of Boiling Chips
6:47
Homogeneous Mixtures of Liquids
9:24
Dalton's Law
9:25
Raoult's Law
10:27
Distilling a Mixture of Two Liquids
11:41
Distilling a Mixture of Two Liquids
11:42
Simple Distillation: Changing Vapor Composition
12:06
Vapor & Liquid
12:07
Simple Distillation: Changing Vapor Composition
14:47
Azeotrope
18:41
Fractional Distillation: Constant Vapor Composition
19:42
Fractional Distillation: Constant Vapor Composition
19:43
Distillation Lab

24m 13s

Intro
0:00
Glassware Overview
0:04
Heating a Sample
3:09
Bunsen Burner
3:10
Heating Mantle 1
4:45
Heating Mantle 2
6:18
Hot Plate
7:10
Simple Distillation Lab
8:37
Fractional Distillation Lab
17:13
Removing the Distillation Set-Up
22:41
Introduction to TLC (Thin-Layer Chromatography)

28m 51s

Intro
0:00
Chromatography
0:06
Purification & Analysis
0:07
Types of Chromatography: Thin-layer, Column, Gas, & High Performance Liquid
0:24
Theory of Chromatography
0:44
Theory of Chromatography
0:45
Performing a Thin-layer Chromatography (TLC) Analysis
2:30
Overview: Thin-layer Chromatography (TLC) Analysis
2:31
Step 1: 'Spot' the TLC Plate
4:11
Step 2: Prepare the Developing Chamber
5:54
Step 3: Develop the TLC Plate
7:30
Step 4: Visualize the Spots
9:02
Step 5: Calculate the Rf for Each Spot
12:00
Compound Polarity: Effect on Rf
16:50
Compound Polarity: Effect on Rf
16:51
Solvent Polarity: Effect on Rf
18:47
Solvent Polarity: Effect on Rf
18:48
Example: EtOAc & Hexane
19:35
Other Types of Chromatography
22:27
Thin-layer Chromatography (TLC)
22:28
Column Chromatography
22:56
High Performance Liquid (HPLC)
23:59
Gas Chromatography (GC)
24:38
Preparative 'prep' Scale Possible
28:05
TLC Analysis Lab

20m 50s

Intro
0:00
Step 1: 'Spot' the TLC Plate
0:06
Step 2: Prepare the Developing Chamber
4:06
Step 3: Develop the TLC Plate
6:26
Step 4: Visualize the Spots
7:45
Step 5: Calculate the Rf for Each Spot
11:48
How to Make Spotters
12:58
TLC Plate
16:04
Flash Column Chromatography
17:11
Introduction to Extractions

34m 25s

Intro
0:00
Extraction Purify, Separate Mixtures
0:07
Adding a Second Solvent
0:28
Mixing Two Layers
0:38
Layers Settle
0:54
Separate Layers
1:05
Extraction Uses
1:20
To Separate Based on Difference in Solubility/Polarity
1:21
To Separate Based on Differences in Reactivity
2:11
Separate & Isolate
2:20
Theory of Extraction
3:03
Aqueous & Organic Phases
3:04
Solubility: 'Like Dissolves Like'
3:25
Separation of Layers
4:06
Partitioning
4:14
Distribution Coefficient, K
5:03
Solutes Partition Between Phases
5:04
Distribution Coefficient, K at Equilibrium
6:27
Acid-Base Extractions
8:09
Organic Layer
8:10
Adding Aqueous HCl & Mixing Two Layers
8:46
Neutralize (Adding Aqueous NaOH)
10:05
Adding Organic Solvent Mix Two Layers 'Back Extract'
10:24
Final Results
10:43
Planning an Acid-Base Extraction, Part 1
11:01
Solute Type: Neutral
11:02
Aqueous Solution: Water
13:40
Solute Type: Basic
14:43
Solute Type: Weakly Acidic
15:23
Solute Type: Acidic
16:12
Planning an Acid-Base Extraction, Part 2
17:34
Planning an Acid-Base Extraction
17:35
Performing an Extraction
19:34
Pour Solution into Sep Funnel
19:35
Add Second Liquid
20:07
Add Stopper, Cover with Hand, Remove from Ring
20:48
Tip Upside Down, Open Stopcock to Vent Pressure
21:00
Shake to Mix Two Layers
21:30
Remove Stopper & Drain Bottom Layer
21:40
Reaction Work-up: Purify, Isolate Product
22:03
Typical Reaction is Run in Organic Solvent
22:04
Starting a Reaction Work-up
22:33
Extracting the Product with Organic Solvent
23:17
Combined Extracts are Washed
23:40
Organic Layer is 'Dried'
24:23
Finding the Product
26:38
Which Layer is Which?
26:39
Where is My Product?
28:00
Tips, Tricks and Warnings
29:29
Leaking Sep Funnel
29:30
Caution When Mixing Layers & Using Ether
30:17
If an Emulsion Forms
31:51
Extraction Lab

14m 49s

Intro
0:00
Step 1: Preparing the Separatory Funnel
0:03
Step 2: Adding Sample
1:18
Step 3: Mixing the Two Layers
2:59
Step 4: Draining the Bottom Layers
4:59
Step 5: Performing a Second Extraction
5:50
Step 6: Drying the Organic Layer
7:21
Step 7: Gravity Filtration
9:35
Possible Extraction Challenges
12:55
Loading...
This is a quick preview of the lesson. For full access, please Log In or Sign up.
For more information, please see full course syllabus of Organic Chemistry
Bookmark & Share Embed

Share this knowledge with your friends!

Copy & Paste this embed code into your website’s HTML

Please ensure that your website editor is in text mode when you paste the code.
(In Wordpress, the mode button is on the top right corner.)
  ×
  • - Allow users to view the embedded video in full-size.
Since this lesson is not free, only the preview will appear on your website.
  • Discussion

  • Answer Engine

  • Download Lecture Slides

  • Table of Contents

  • Related Books & Services

Start Learning Now

Our free lessons will get you started (Adobe Flash® required).
Get immediate access to our entire library.

Sign up for Educator.com

Membership Overview

  • Unlimited access to our entire library of courses.
  • Search and jump to exactly what you want to learn.
  • *Ask questions and get answers from the community and our teachers!
  • Practice questions with step-by-step solutions.
  • Download lesson files for programming and software training practice.
  • Track your course viewing progress.
  • Download lecture slides for taking notes.
  • Learn at your own pace... anytime, anywhere!

Organic Analysis: Classical & Modern Methods

Lecture Slides are screen-captured images of important points in the lecture. Students can download and print out these lecture slide images to do practice problems as well as take notes while watching the lecture.

  1. Intro
    • Organic Analysis: Classical Methods
    • Organic Analysis: Classical Methods
    • Organic Analysis: Classical Methods
    • Organic Analysis: Classical Methods
    • Organic Analysis: Classical Methods
    • Organic Analysis: Classical Methods
    • Organic Analysis: Classical Methods
    • Organic Analysis: Classical Methods
    • Organic Analysis: Classical Methods
    • Organic Analysis: Classical Methods
    • Organic Analysis: Classical Methods
    • Organic Analysis: Classical Methods
    • Organic Analysis: Classical Methods
    • Organic Analysis: Classical Methods
    • Organic Analysis: Classical Methods
    • Organic Analysis: Modern Methods
    • Organic Analysis: Modern Methods
    • Organic Analysis: Modern Methods
    • Intro 0:00
    • Organic Analysis: Classical Methods 0:17
      • Classical Methods for Identifying Chemicals
    • Organic Analysis: Classical Methods 2:21
      • When is Structure Identification Needed?
    • Organic Analysis: Classical Methods 6:17
      • Classical Methods of Structure Identification: Physical Appearance
      • Classical Methods of Structure Identification: Physical Constants
    • Organic Analysis: Classical Methods 7:37
      • Classical Methods of Structure Identification: Solubility Tests - Water
    • Organic Analysis: Classical Methods 10:51
      • Classical Methods of Structure Identification: Solubility Tests - 5% aq. HCl Basic FG (Amines)
    • Organic Analysis: Classical Methods 11:50
      • Classical Methods of Structure Identification: Solubility Tests - 5% aq. NaOH Acidic FG (Carboxylic Acids, Phenols)
    • Organic Analysis: Classical Methods 13:28
      • Classical Methods of Structure Identification: Solubility Tests - 5% aq. NaHCO3 Strongly Acidic FG (Carboxylic Acids)
    • Organic Analysis: Classical Methods 15:35
      • Classical Methods of Structure Identification: Solubility Tests - Insoluble in All of the Above
    • Organic Analysis: Classical Methods 16:49
      • Classical Methods of Structure Identification: Idoform Test for Methyl Ketones
    • Organic Analysis: Classical Methods 22:02
      • Classical Methods of Structure Identification: Tollens' Test or Fehling's Solution for Aldehydes
    • Organic Analysis: Classical Methods 25:01
      • Useful Application of Classical Methods: Glucose Oxidase on Glucose Test Strips
    • Organic Analysis: Classical Methods 26:26
      • Classical Methods of Structure Identification: Starch-iodide Test
    • Organic Analysis: Classical Methods 28:22
      • Classical Methods of Structure Identification: Lucas Reagent to Determine Primary/Secondary/Tertiary Alcohol
    • Organic Analysis: Classical Methods 31:35
      • Classical Methods of Structure Identification: Silver Nitrate Test for Alkyl Halides
    • Organic Analysis: Classical Methods 33:23
      • Preparation of Derivatives
    • Organic Analysis: Modern Methods 36:55
      • Modern Methods of Chemical Characterization
    • Organic Analysis: Modern Methods 40:36
      • Checklist for Manuscripts Submitted to the ACS Journal Organic Letters
    • Organic Analysis: Modern Methods 42:39
      • Checklist for Manuscripts Submitted to the ACS Journal Organic Letters
    Educator®

    Please sign in to participate in this lecture discussion.

    Resetting Your Password?
    OR

    Start Learning Now

    Our free lessons will get you started (Adobe Flash® required).
    Get immediate access to our entire library.

    Membership Overview

    • Available 24/7. Unlimited Access to Our Entire Library.
    • Search and jump to exactly what you want to learn.
    • *Ask questions and get answers from the community and our teachers!
    • Practice questions with step-by-step solutions.
    • Download lecture slides for taking notes.
    • Track your course viewing progress.
    • Accessible anytime, anywhere with our Android and iOS apps.