Sign In | Subscribe

Join Dr. Michael Philips in his time-saving Molecular Biology course that covers all concepts you'll see in your college course, along with tons of examples. Dr. Philips brings together his love of teaching and subject expertise to help you understand how cells really work together to drive a complex organism such as ourselves.

expand all   collapse all

I. The Beginnings of Molecular Biology

  Biochemistry Review: Importance of Chemical Bonds 53:29
   Intro 0:00 
   Lesson Overview 0:14 
   Chemical Bonds 0:41 
    Attractive Forces That Hold Atoms Together 0:44 
    Types of Bonds 0:56 
    Covalent Bonds 1:34 
    Valence Number 1:58 
    H O N C P S Example 2:50 
    Polar Bonds 7:23 
    Non-Polar Bond 8:46 
    Non-Covalent Bonds 9:46 
    Ionic Bonds 10:25 
    Hydrogen Bonds 10:52 
    Hydrophobic Interactions 11:34 
    Van Der Waals Forces 11:58 
   Example 1 12:51 
   Properties of Water 18:27 
    Polar Molecule 13:34 
    H-bonding Between Water H20 Molecules 19:29 
    Hydrophobic Interactions 20:30 
   Chemical Reactions and Free Energy 22:52 
    Transition State 23:00 
    What Affect the Rate 23:27 
    Forward and Reserve Reactions Occur Simultaneously But at Different Rate 23:51 
    Equilibrium State 24:29 
    Equilibrium Constant 25:18 
   Example 2 26:16 
   Chemical Reactions and Free Energy 27:49 
    Activation Energy 28:00 
    Energy Barrier 28:22 
    Enzymes Accelerate Reactions by Decreasing the Activation Energy 29:04 
    Enzymes Do Not Affect the Reaction Equilibrium or the Change in Free Energy 29:22 
    Gibbs Free Energy Change 30:50 
    Spontaneity 31:18 
    Gibbs Free Energy Change Determines Final Concentrations of Reactants 34:36 
    Endodermic vs. Exothermic Graph 35:00 
   Example 3 38:46 
   Properties of DNA 39:37 
    Antiparallel Orientation 40:29 
    Purine Bases Always Pairs Pyrimidine Bases 41:15 
    Structure Images 42:36 
    A, B, Z Forms 43:33 
    Major and Minor Grooves 44:09 
    Hydrogen Bonding and Hydrophobic Interactions Hold the Two Strands Together 44:39 
    Denaturation and Renaturation of DNA 44:56 
    Ways to Denature dsDNA 45:28 
    Renature When Environment is Brought Back to Normal 46:05 
    Hyperchromiicity 46:36 
    Absorbs UV Light 47:01 
    Spectrophotometer 48:01 
    Graph Example? 49:05 
   Example 4 51:02 
  Mendelian Genetics & Foundational Experiments 1:09:27
   Intro 0:00 
   Lesson Overview 0:22 
   Gregor Johann Mendel 1:01 
    Was a Biologist and Botanist 1:14 
    Published Seminal Paper on Hybridization and Inheritance in the Pea Plant 1:20 
    Results Criticized 1:28 
    Father of Modern Genetics 1:59 
   Mendel’s Laws 2:19 
    1st Law: Principle of Independent Segregation of Alleles 2:27 
    2nd Law: Principle of Independent Assortment of Genes 2:34 
   Principle of Independent Segregation (of Alleles) 2:41 
    True Breeding Lines / Homozygous 2:42 
    Individuals Phenotypes Determined by Genes 3:15 
    Alleles 3:37 
    Alleles Can Be Dominant or Recessive 3:50 
    Genotypes Can be Experimentally Determined by Mating and Analyzing the Progeny 5:36 
    Individual Alleles Segregate Independently Into Gametes 5:55 
   Example 1 6:18 
   Principle of Independent Segregation (of Alleles) 16:11 
    Individual Genes Sort Independently Into Gametes 16:22 
    Each Gamete Receives One Allele of Each Gene: 50/50 Chance 16:46 
    Genes Act Independently to Determine Unrelated Phenotypes 16:57 
    Example: Punnett Square 17:15 
   Example 2 21:36 
   The Chromosomal Theory of Inheritance 30:41 
    Walter S Sutton Linked Cytological Studies with Mendels Work 31:02 
    Diploid Cells Have Two Morphologically Similar Sets of Chromosomes and Each Haploid Gamete Receives One Set 31:17 
    Genes Are on Chromosome 31:33 
    Gene for Seed Color’s on a Different Chromosome Than Gene for Seed Texture 31:44 
   Gene Linkage 31:55 
    Mendel’s 2nd Law 31:57 
    Genes Said to Be Linked To Each Other 32:09 
    Linkage Between Genes 32:29 
    Linkage is Never 100% Complete 32:41 
   Genes are Found on Chromosomes 33:00 
    Thomas Hunt Morgan and Drosophila Melanogaster 33:01 
    Mutation Linked to X Chromosome 33:15 
    Linkage of White Gene 33:23 
    Eye Color of Progeny Depended on Sex of Parent 33:34 
    Y Chromosome Does Not Carry Copy of White Gene 33:44 
    X Linked Genes, Allele is Expressed in Males 33:56 
    Example 34:11 
   Example 3 35:52 
   Discovery of the Genetic Material of the Cell 41:52 
    Transforming Principle 42:44 
    Experiment with Streptococcus Pneumoniae 42:55 
    Beadle and Tatum Proposed Genes Direct the Synthesis of Enzymes 45:15 
    One Gene One Enzyme Hypothesis 45:46 
    One Gene One Polypeptide Theory 45:52 
    Showing the Transforming Material was DNA 46:14 
    Did This by Fractionating Heat-Killed “S” Strains into DNA, RNA, and Protein 46:32 
    Result: Only the DNA Fraction Could Transform 47:15 
    Leven: Tetranucleotide Hypothesis 48:00 
    Chargaff Showed This Was Not the Case 48:48 
    Chargaff: DNA of Different Species Have Different Nucleotide Composition 49:02 
    Hershey and Chase: DNA is the Genetic Material 50:02 
    Incorporate Sulfur into Protein and Phosphorous into DNA 51:12 
    Results: Phosphorase Entered Bacteria and Progeny Phage, But no Sulfur 53:11 
    Rosalind Franklin’s “Photo 51” Showing the Diffraction Pattern of DNA 53:50 
    Watson and Crick: Double Helical Structure of DNA 54:57 
   Example 4 56:56 
   Discovery of the Genetic Material of the Cell 58:09 
    Kornberg: DNA Polymerase I 58:10 
    Three Postulated Methods of DNA Replication 59:22 
    Meselson and Stahl: DNA Replication is Semi-Conservative 60:21 
    How DNA Was Made Denser 60:52 
   Discovery of RNA 63:32 
    Ribosomal RNA 63:48 
    Transfer RNA 64:00 
    Messenger RNA 64:30 
   The Central Dogma of Molecular Biology 64:49 
    DNA and Replication 65:08 
    DNA and Transcription = RNA 65:26 
    RNA and Translation = Protein 65:41 
    Reverse Transcription 66:08 
   Cracking the Genetic Code 66:58 
    What is the Genetic Code? 67:04 
    Nirenberg Discovered the First DNA Triplet That Would Make an Amino Acid 67:16 
    Code Finished in 1966 and There Are 64 Possibilities or Triplet Repeats/ Codons 67:54 
    Degeneracy of the Code 68:53 

II. Structure of Macromolecules

  Structure of Proteins 49:44
   Intro 0:00 
   Lesson Overview 0:10 
   Amino Acids 0:47 
    Structure 0:55 
    Acid Association Constant 1:55 
    Amino Acids Make Up Proteins 2:15 
    Table of 21 Amino Acid Found in Proteins 3:34 
    Ionization 5:55 
    Cation 6:08 
    Zwitterion 7:51 
    Anion 9:15 
   Example 1 10:53 
   Amino Acids 13:11 
    L Alpha Amino Acids 13:19 
    Only L Amino Acids Become Incorporated into Proteins 13:28 
   Example 2 13:46 
   Amino Acids 18:20 
    Non-Polar 18:41 
    Polar 18:58 
    Hydroxyl 19:52 
    Sulfhydryl 20:21 
    Glycoproteins 20:41 
    Pyrrolidine 21:30 
   Peptide (Amide) Bonds 22:18 
   Levels of Organization 23:35 
    Primary Structure 23:54 
    Secondary Structure 24:22 
    Tertiary Structure 24:58 
    Quaternary Structure 25:27 
    Primary Structure: Specific Amino Acid Sequence 25:54 
   Example 3 27:30 
   Levels of Organization 29:31 
    Secondary Structure: Local 3D 29:32 
   Example 4 30:37 
   Levels of Organization 32:59 
    Tertiary Structure: Total 3D Structure of Protein 33:00 
    Quaternary Structure: More Than One Subunit 34:14 
   Example 5 34:52 
   Protein Folding 37:04 
   Post-Translational Modifications 38:21 
    Can Alter a Protein After It Leaves the Ribosome 38:33 
    Regulate Activity, Localization and Interaction with Other Molecules 38:52 
    Common Types of PTM 39:08 
   Protein Classification 40:22 
    Ligand Binding, Enzyme, DNA or RNA Binding 40:36 
    All Other Functions 40:53 
    Some Functions: Contraction, Transport, Hormones, Storage 41:34 
   Enzymes as Biological Catalysts 41:58 
    Most Metabolic Processes Require Catalysts 42:00 
    Most Biological Catalysts Are Proteins 43:13 
    Enzymes Have Specificity of Reactants 43:33 
    Enzymes Have an Optimum pH and Temperature 44:31 
    Example 6 45:08 
  Structure of Nucleic Acids 1:02:10
   Intro 0:00 
   Lesson Overview 0:06 
   Nucleic Acids 0:26 
    Biopolymers Essential for All Known Forms of Life That Are Composed of Nucleotides 0:27 
    Nucleotides Are Composed of These 1:17 
    Nucleic Acids Are Bound Inside Cells 2:10 
   Nitrogen Bases 2:49 
    Purines 3:01 
    Adenine 3:10 
    Guanine 3:20 
    Pyrimidines 3:54 
    Cytosine 4:25 
    Thymine 4:33 
    Uracil 4:42 
   Pentoses 6:23 
    Ribose 6:45 
    2' Deoxyribose 6:59 
   Nucleotides 8:43 
    Nucleoside 8:56 
    Nucleotide 9:16 
   Example 1 10:23 
   Polynucleotide Chains 12:18 
    What RNA and DNA Are Composed of 12:37 
    Hydrogen Bonding in DNA Structure 13:55 
    Ribose and 2! Deoxyribose 14:14 
   DNA Grooves 14:28 
    Major Groove 14:46 
    Minor Groove 15:00 
   Example 2 15:20 
   Properties of DNA 24:15 
    Antiparallel Orientation 24:25 
    Phosphodiester Linkage 24:50 
    Phosphate and Hydroxyl Group 25:05 
    Purine Bases Always Pairs Pyramidine Bases 25:30 
    A, B, Z Forms 25:55 
    Major and Minor Grooves 26:24 
    Hydrogen Bonding and Hydrophobic Interactions Hold Strands Together 26:34 
   DNA Topology - Linking Number 27:14 
    Linking Number 27:31 
    Twist 27:57 
    Writhe 28:31 
   DNA Topology - Supercoiling 31:50 
   Example 3 33:16 

III. Maintenance of the Genome

  Genome Organization: Chromatin & Nucleosomes 57:02
   Intro 0:00 
   Lesson Overview 0:09 
   Quick Glossary 0:24 
    DNA 0:29 
    Gene 0:34 
    Nucleosome 0:47 
    Chromatin 1:07 
    Chromosome 1:19 
    Genome 1:30 
   Genome Organization 1:38 
   Physically Cellular Differences 3:09 
    Eukaryotes 3:18 
    Prokaryotes, Viruses, Proteins, Small Molecules, Atoms 4:06 
   Genome Variance 4:27 
    Humans 4:52 
    Junk DNA 5:10 
    Genes Compose Less Than 40% of DNA 6:03 
    Chart 6:26 
   Example 1 8:32 
   Chromosome Variance - Size, Number, and Density 10:27 
    Chromosome 10:47 
    Graph of Human Chromosomes 10:58 
   Eukaryotic Cell Cycle 12:07 
   Requirements for Proper Chromosome Duplication and Segregation 13:07 
    Centromeres and Telomeres 13:28 
    Origins of Replication 13:38 
    Illustration: Chromosome 13:44 
   Chromosome Condensation 15:52 
    Naked DNA to Start 16:00 
    Beads on a String 16:13 
   Mitosis 16:52 
    Start with Two Different Chromosomes 17:18 
    Split Into Two Diploid Cells 17:26 
    Prophase 17:42 
    Prometaphase 17:52 
    Metaphase 19:10 
    Anaphase 19:27 
    Telophase 20:11 
    Cytokinesis 20:31 
   Cohesin and Condensis 21:06 
    Illustration: Cohesin and Condensis 21:19 
    Cohesin 21:38 
    Condensin 21:43 
    Illustration of What Happens 21:50 
   Cohesins 27:23 
    Loaded During Replication and Cleaved During Mitosis 27:30 
    Separase 27:36 
   Nucleosomes 27:59 
    Histone Core 28:50 
    Eight Histone Proteins 28:57 
    Octamer of Core Histones Picture 29:14 
   Chromosome Condensation via H1 30:59 
    Allows Transition to Compact DNA 31:09 
    When Not in Mitosis 31:37 
   Histones Decrease Available Binding Sites 32:38 
   Histone Tails 33:21 
   Histone Code 35:32 
    Epigenetic Code 35:56 
    Phosphorylation 36:45 
    Acetylation 36:57 
    Methylation 37:01 
    Ubiquitnation 37:04 
   Example 2 38:48 
   Nucleosome Assembly 41:22 
    Duplication of DNA Requires Duplication of Histones 41:50 
    Old Histones Are Recycled 42:00 
    Parental H3-H4 Tetramers Facilitate the Inheritance of Chromatin States 44:04 
   Example 3 46:00 
   Chromatin Remodeling 48:12 
   Example 4 53:28 
  DNA Replication 1:09:55
   Intro 0:00 
   Lesson Overview 0:06 
   Eukaryotic Cell Cycle 0:50 
    G1 Growth Phase 0:57 
    S Phase: DNA & Replication 1:09 
    G2 Growth Phase 1:28 
    Mitosis 1:36 
    Normal Human Cell Divides About Every 24 Hours 1:40 
   Eukaryotic DNA Replication 2:04 
    Watson and Crick 2:05 
    Specific Base Pairing 2:37 
    DNA Looked Like Tetrinucleotide 2:55 
    What DNA Looks Like Now 3:18 
   Eukaryotic DNA Replication - Initiation 3:44 
    Initiation of Replication 3:53 
    Primer Template Junction 4:25 
    Origin Recognition Complex 7:00 
    Complex of Proteins That Recognize the Proper DNA Sequence for Initiation of Replication 7:35 
    Prokaryotic Replication 7:56 
    Illustration 8:54 
    DNA Helicases (MCM 2-7) 11:53 
   Eukaryotic DNA Replication 14:36 
    Single-Stranded DNA Binding Proteins 14:59 
    Supercoils 16:30 
    Topoisomerases 17:35 
    Illustration with Helicase 19:05 
    Synthesis of the RNA Primer by DNA Polymerase Alpha 20:21 
    Subunit: Primase RNA Polymerase That Synthesizes the RNA Primer De Navo 20:38 
    Polymerase Alpha-DNA Polymerase 21:01 
    Illustration of Primase Function Catalyzed by DnaG in Prokaryotes 21:22 
    Recap 24:02 
   Eukaryotic DNA Replication - Leading Strand 25:02 
    Synthesized by DNA Polymerase Epsilon 25:08 
    Proof Reading 25:26 
    Processivity Increased by Association with PCNA 25:47 
    What is Processivity? 26:19 
    Illustration: Write It Out 27:03 
    The Lagging Strand/ Discontinuing Strand 30:52 
   Example 1 31:57 
   Eukaryotic DNA Replication - Lagging Strand 32:46 
    Discontinuous 32:55 
    DNA Polymerase Delta 33:15 
    Okazaki Fragments 33:36 
    Illustration 33:55 
   Eukaryotic DNA Replication - Okazaki Fragment Processing 38:26 
    Illustration 38:44 
    When Does Okazaki Fragments Happen 40:32 
    Okazaki Fragments Processing 40:41 
    Illustration with Okazaki Fragments Process Happening 41:13 
   Example 2 47:42 
   Example 3 49:20 
   Telomeres 56:01 
    Region of Repetitive Nucleotide Sequences 56:26 
    Telomeres Act as Chromosome Caps by Binding Proteins 57:42 
   Telomeres and the End Replication Problem 59:56 
    Need to Use a Primer 59:57 
  DNA Mutations & Repairs 1:13:08
   Intro 0:00 
   Lesson Overview 0:06 
   Damage vs. Mutation 0:40 
    DNA Damage-Alteration of the Chemical Structure of DNA 0:45 
    DNA Mutation-Permanent Change of the Nucleotide Sequence 1:01 
    Insertions or Deletions (INDELS) 1:22 
   Classes of DNA Mutations 1:50 
    Spontaneous Mutations 2:00 
    Induced Mutations 2:33 
   Spontaneous Mutations 3:21 
    Tautomerism 3:28 
    Depurination 4:09 
    Deamination 4:30 
    Slippage 5:44 
   Induced Mutations - Causes 6:17 
    Chemicals 6:24 
    Radiation 7:46 
   Example 1 8:30 
   DNA Mutations - Tobacco Smoke 9:59 
    Covalent Adduct Between DNA and Benzopyrene 10:02 
    Benzopyrene 10:20 
   DNA Mutations - UV Damage 12:16 
    Oxidative Damage from UVA 12:30 
    Thymidine Dimer 12:34 
   Example 2 13:33 
   DNA Mutations - Diseases 17:25 
   DNA Repair 18:28 
    Mismatch Repair 19:15 
    How to Recognize Which is the Error: Recognize Parental Strand 22:23 
   Example 3 26:54 
   DNA Repair 32:45 
    Damage Reversal 32:46 
    Base-Excision Repair (BER) 34:31 
   Example 4 36:09 
   DNA Repair 45:43 
    Nucleotide Excision Repair (NER) 45:48 
    Nucleotide Excision Repair (NER) - E.coli 47:51 
    Nucleotide Excision Repair (NER) - Eukaryotes 50:29 
    Global Genome NER 50:47 
    Transcription Coupled NER 51:01 
   Comparing MMR and NER 51:58 
   Translesion Synthesis (TLS) 54:40 
    Not Really a DNA Repair Process, More of a Damage Tolerance Mechanism 54:50 
    Allows Replication Past DNA Lesions by Polymerase Switching 55:20 
    Uses Low Fidelity Polymerases 56:27 
    Steps of TLS 57:47 
   DNA Repair 60:37 
    Recombinational Repair 60:54 
    Caused By Ionizing Radiation 60:59 
    Repaired By Three Mechanisms 61:16 
    Form Rarely But Catastrophic If Not Repaired 61:42 
    Non-homologous End Joining Does Not Require Homology To Repair the DSB 63:42 
    Alternative End Joining 65:07 
    Homologous Recombination 67:41 
   Example 5 69:37 
  Homologous Recombination & Site-Specific Recombination of DNA 1:14:27
   Intro 0:00 
   Lesson Overview 0:16 
   Homologous Recombination 0:49 
    Genetic Recombination in Which Nucleotide Sequences Are Exchanged Between Two Similar or Identical Molecules of DNA 0:57 
    Produces New Combinations of DNA Sequences During Meiosis 1:13 
    Used in Horizontal Gene Transfer 1:19 
    Non-Crossover Products 1:48 
    Repairs Double Strand Breaks During S/Gs 2:08 
    MRN Complex Binds to DNA 3:17 
    Prime Resection 3:30 
    Other Proteins Bind 3:40 
    Homology Searching and subsequent Strand Invasion by the Filament into DNA Duplex 3:59 
    Holliday Junction 4:47 
    DSBR and SDSA 5:44 
   Double-Strand Break Repair Pathway- Double Holliday Junction Model 6:02 
    DSBR Pathway is Unique 6:11 
    Converted Into Recombination Products by Endonucleases 6:24 
    Crossover 6:39 
   Example 1 7:01 
   Example 2 8:48 
   Double-Strand Break Repair Pathway- Synthesis Dependent Strand Annealing 32:02 
    Homologous Recombination via the SDSA Pathway 32:20 
    Results in Non-Crossover Products 32:26 
    Holliday Junction is Resolved via Branch Migration 32:43 
   Example 3 34:01 
   Homologous Recombination - Single Strand Annealing 42:36 
    SSA Pathway of HR Repairs Double-Strand Breaks Between Two Repeat Sequences 42:37 
    Does Not Require a Separate Similar or Identical Molecule of DNA 43:04 
    Only Requires a Single DNA Duplex 43:25 
    Considered Mutagenic Since It Results in Large Deletions of DNA 43:42 
    Coated with RPA Protein 43:58 
    Rad52 Binds Each of the Repeated Sequences 44:28 
    Leftover Non-Homologous Flaps Are Cut Away 44:37 
    New DNA Synthesis Fills in Any Gaps 44:46 
    DNA Between the Repeats is Always Lost 44:55 
   Example 4 45:07 
   Homologous Recombination - Break Induced Replication 51:25 
    BIR Pathway Repairs DSBs Encountered at Replication Forks 51:34 
    Exact Mechanisms of the BIR Pathway Remain Unclear 51:49 
    The BIR Pathway Can Also Help to Maintain the Length of Telomeres 52:09 
   Meiotic Recombination 52:24 
    Homologous Recombination is Required for Proper Chromosome Alignment and Segregation 52:25 
    Double HJs are Always Resolved as Crossovers 52:42 
    Illustration 52:51 
    Spo11 Makes a Targeted DSB at Recombination Hotspots 56:30 
    Resection by MRN Complex 57:01 
    Rad51 and Dmc1 Coat ssDNA and Promote Strand Invasion and Holliday Junction Formation 57:04 
    Holliday Junction Migration Can Result in Heteroduplex DNA Containing One or More Mismatches 57:22 
    Gene Conversion May Result in Non-Mendelian Segregation 57:36 
   Double-Strand Break Repair in Prokaryotes - RecBCD Pathway 58:04 
    RecBCD Binds to and Unwinds a Double Stranded DNA 58:32 
    Two Tail Results Anneal to Produce a Second ssDNA Loop 58:55 
    Chi Hotspot Sequence 59:40 
    Unwind Further to Produce Long 3 Prime with Chi Sequence 59:54 
    RecBCD Disassemble 60:23 
    RecA Promotes Strand Invasion - Homologous Duplex 60:36 
    Holliday Junction 60:50 
   Comparison of Prokaryotic and Eukaryotic Recombination 61:49 
   Site-Specific Recombination 62:41 
    Conservative Site-Specific Recombination 63:10 
    Transposition 63:46 
   Transposons 64:12 
    Transposases Cleave Both Ends of the Transposon in Original Site and Catalyze Integration Into a Random Target Site 64:21 
    Cut and Paste 64:37 
    Copy and Paste 65:36 
    More Than 40% of Entire Human Genome is Composed of Repeated Sequences 66:15 
   Example 5 67:14 

IV. Gene Expression

  Transcription 1:19:28
   Intro 0:00 
   Lesson Overview 0:07 
   Eukaryotic Transcription 0:27 
    Process of Making RNA from DNA 0:33 
    First Step of Gene Expression 0:50 
    Three Step Process 1:06 
    Illustration of Transcription Bubble 1:17 
    Transcription Starting Site is +1 5:15 
    Transcription Unit Extends From the Promoter to the Termination Region 5:40 
   Example 1 6:03 
   Eukaryotic Transcription: Initiation 14:27 
    RNA Polymerase II Binds to TATA Box to Initiate RNA Synthesis 14:34 
    TATA Binding Protein Binds the TATA Box 14:50 
    TBP Associated Factors Bind 15:01 
    General Transcription Factors 15:22 
    Initiation Complex 15:30 
   Example 2 15:44 
   Eukaryotic Transcription 17:59 
    Elongation 18:07 
    FACT (Protein Dimer) 18:24 
   Eukaryotic Transcription: Termination 19:36 
    Polyadenylation is Linked to Termination 19:42 
    Poly-A Signals Near the End of the pre-mRNA Recruit to Bind and Cleave mRNA 20:00 
    Mature mRNA 20:27 
    Dissociate from Template DNA Strand 21:13 
   Example 3 21:53 
   Eukaryotic Transcription 25:49 
    RNA Polymerase I Transcribes a Single Gene That Encodes a Long rRNA Precursor 26:14 
    RNA Polymerase III Synthesizes tRNA, 5S rRNA, and Other Small ncRNA 29:11 
   Prokaryotic Transcription 32:04 
    Only One Multi-Subunit RNA Polymerase 32:38 
    Transcription and Translation Occurs Simultaneously 33:41 
   Prokaryotic Transcription - Initiation 38:18 
    Initial Binding Site 38:33 
    Pribnox Box 38:42 
   Prokaryotic Transcription - Elongation 39:15 
    Unwind Helix and Expand Replication Bubble 39:19 
    Synthesizes DNA 39:35 
    Sigma 70 Subunit is Released 39:50 
    Elongation Continues Until a Termination Sequence is Reached 40:08 
   Termination - Prokaryotes 40:17 
   Example 4 40:30 
   Example 5 43:58 
   Post-Transcriptional Modifications 47:15 
    Can Post Transcribe your rRNA, tRNA, mRNA 47:28 
    One Thing In Common 47:38 
   RNA Processing 47:51 
    Ribosomal RNA 47:52 
    Transfer RNA 49:08 
    Messenger RNA 50:41 
   RNA Processing - Capping 52:09 
    When Does Capping Occur 52:20 
    First RNA Processing Event 52:30 
   RNA Processing - Splicing 53:00 
    Process of Removing Introns and Rejoining Exons 53:01 
    Form Small Nuclear Ribonucleoproteins 53:46 
   Example 6 57:48 
   Alternative Splicing 60:06 
    Regulatory Gene Expression Process 60:27 
    Example 60:42 
   Example 7 62:53 
   Example 8 69:36 
   RNA Editing 71:06 
    Guide RNAs 71:25 
    Deamination 71:52 
   Example 9 73:50 
  Translation 1:15:01
   Intro 0:00 
   Lesson Overview 0:06 
   Linking Transcription to Translation 0:39 
    Making RNA from DNA 0:40 
    Occurs in Nucleus 0:59 
    Process of Synthesizing a Polypeptide from an mRNA Transcript 1:09 
    Codon 1:43 
   Overview of Translation 4:54 
    Ribosome Binding to an mRNA Searching for a START Codon 5:02 
    Charged tRNAs will Base Pair to mRNA via the Anticodon and Codon 5:37 
    Amino Acids Transferred and Linked to Peptide Bond 6:08 
    Spent tRNAs are Released 6:31 
    Process Continues Until a STOP Codon is Reached 6:55 
   Ribosome and Ribosomal Subunits 7:55 
    What Are Ribosomes? 8:03 
    Prokaryotes 8:42 
    Eukaryotes 10:06 
    Aminoacyl Site, Peptidyl tRNA Site, Empty Site 10:51 
   Major Steps of Translation 11:35 
    Charing of tRNA 11:37 
    Initiation 12:48 
    Elongation 13:09 
    Termination 13:47 
   “Charging” of tRNA 14:35 
    Aminoacyl-tRNA Synthetase 14:36 
    Class I 16:40 
    Class II 16:52 
    Important About This Reaction: It Is Highly Specific 17:10 
    ATP Energy is Required 18:42 
   Translation Initiation - Prokaryotes 18:56 
    Initiation Factor 3 Binds at the E-Site 19:09 
    Initiation Factor 1 Binds at the A-Site 20:15 
    Initiation Factor 2 and GTP Binds IF1 20:50 
    30S Subunit Associates with mRNA 21:05 
    N-Formyl-met-tRNA 22:34 
    Complete 30S Initiation Complex 23:49 
    IF3 Released and 50S Subunit Binds 24:07 
    IF1 and IF2 Released Yielding a Complete 70S Initiation Complex 24:24 
    Deformylase Removes Formyl Group 24:45 
   Example 1 25:11 
   Translation Initiation - Eukaryotes 29:35 
    Small Subunit is Already Associated with the Initiation tRNA 29:47 
    Formation of 43S Pre-Initiation Complex 30:02 
    Circularization of mRNA by eIF4 31:05 
    48S Pre-Initiation Complex 35:47 
    Example 2 38:57 
   Translation - Elongation 44:00 
    Charging, Initiation, Elongation, Termination All Happens Once 44:14 
    Incoming Charged tRNA Binds the Complementary Codon 44:31 
    Peptide Bond Formation 45:06 
    Translocation Occurs 46:05 
    tRNA Released 46:51 
   Example 3 47:11 
   Translation - Termination 55:26 
    Release Factors Terminate Translation When Ribosomes Come to a Stop Codon 55:38 
    Release Factors Are Proteins, Not tRNAs, and Do Not Carry an Amino Acid 55:50 
    Class I Release Factors 55:16 
    Class II Release Factors 57:03 
   Example 4 57:40 
   Review of Translation 61:15 
   Consequences of Altering the Genetic Code 62:40 
    Silent Mutations 63:37 
    Missense Mutations 64:24 
    Nonsense Mutations 65:28 
   Genetic Code 66:40 
   Consequences of Altering the Genetic Code 67:43 
    Frameshift Mutations 67:55 
    Sequence Example 68:07 

V. Gene Regulation

  Gene Regulation in Prokaryotes 45:40
   Intro 0:00 
   Lesson Overview 0:08 
   Gene Regulation 0:50 
    Transcriptional Regulation 1:01 
    Regulatory Proteins Control Gene Expression 1:18 
   Bacterial Operons-Lac 1:58 
    Operon 2:02 
    Lactose Operon in E. Coli 2:31 
   Example 1 3:33 
   Lac Operon Genes 7:19 
    LacZ 7:25 
    LacY 7:40 
    LacA 7:55 
    LacI 8:10 
   Example 2 8:58 
   Bacterial Operons-Trp 17:47 
    Purpose is to Produce Trptophan 17:58 
    Regulated at Initiation Step of Transcription 18:04 
    Five Genes 18:07 
    Derepressible 18:11 
   Example 3 18:32 
   Bacteriophage Lambda 28:11 
    Virus That Infects E. Coli 28:24 
    Temperate Lifecycle 28:33 
   Example 4 30:34 
   Regulation of Translation 39:42 
    Binding of RNA by Proteins Near the Ribosome- Binding Site of the RNA 39:53 
    Intramolecular Base Pairing of mRNA to Hide Ribosome Binding Site 40:14 
    Post-transcriptional Regulation of rRNA 40:35 
   Example 5 40:08 
  Gene Regulation in Eukaryotes 1:06:06
   Intro 0:00 
   Lesson Overview 0:06 
   Eukaryotic Transcriptional Regulations 0:18 
    Transcription Factors 0:25 
    Insulator Protein 0:55 
   Example 1 1:44 
   Locus Control Regions 4:00 
    Illustration 4:06 
    Long Range Regulatory Elements That Enhance Expressions of Linked Genes 5:40 
    Allows Order Transcription of Downstream Genes 6:07 
   (Ligand) Signal Transduction 8:12 
    Occurs When an Extracellular Signaling Molecule Activates a Specific Receptor Located on the Cell 8:19 
    Examples 9:10 
   N F Kappa B 10:01 
    Dimeric Protein That Controls Transcription 10:02 
    Ligands 10:29 
   Example 2 11:04 
   JAK/ STAT Pathway 13:19 
    Turned on by a Cytokine 13:23 
    What is JAK 13:34 
    What is STAT 13:58 
    Illustration 14:38 
   Example 3 17:00 
   Seven-Spanner Receptors 20:49 
    Illustration: What Is It 21:01 
    Ligand Binding That Is Activating a Process 21:46 
    How This Happens 22:17 
   Example 4 24:23 
   Nuclear Receptor Proteins (NRPs) 28:45 
    Sense Steroid and Thyroid Hormones 28:56 
    Steroid Hormones Bind Cytoplasmic NRP Homodimer 29:10 
    Hormone Binds NRP Heterodimers Already Present in the Nucleus 30:11 
    Unbound Heterodimeric NRPs Can Cause Deacetylation of Lysines of Histone Tails 30:54 
   RNA Interference 32:01 
    RNA Induced Silencing Complex (RISC) 32:39 
    RNAi 33:54 
   RISC Pathway 34:34 
    Activated RISC Complex 34:41 
    Process 34:55 
    Example 39:27 
   Translational Regulation 41:17 
    Global Regulation 41:37 
    Competitive Binding of 5 Prime CAP of mRNA 42:34 
   Translation-Dependent Regulation 44:56 
    Nonsense Mediated mRNA Decay 45:23 
    Nonstop Mediated mRNA Decay 46:17 
   Epigenetics 48:53 
    Inherited Patterns of Gene Expression Resulting from Chromatin Alteration 49:15 
    Three Ways to Happen 50:17 
    DNA Sequence Does Not Act Alone in Passing Genetic Information to Future Generations 50:30 
   DNA Methylation 50:57 
    Occurs at CpG Sites Via DNA Methyltransferase Enzymes 50:58 
    CpG Islands Are Regions with a High Frequency of CpG Sites 52:49 
    Methylation of Multiple CpG Sites Silence Nearby Gene Transcription 53:32 
   DNA Methylation 53:46 
    Pattern Can Be Passed to Daughter Cells 53:47 
    Prevents SP1 Transcription Factors From Binding to CpG Island 54:02 
    MECP2 54:10 
   Example 5 55:27 
   Nucleosomes 56:48 
    Histone Core 57:00 
    Histone Protein 57:03 
   Chromosome Condensation Via J1 57:32 
    Linker Histone H1 57:33 
    Compact DNA 57:37 
   Histone Code 57:54 
    Post-translational Modifications of N-Terminal Histone Tails is Part of the Epigenetic Code 57:55 
    Phosphorylation, Acetylation, Methylation, Ubiquitination 58:09 
   Example 6 58:52 
   Nucleosome Assembly 59:13 
    Duplication of DNA Requires Duplication of Histones by New Protein Synthesis 59:14 
    Old Histones are Recycled 59:24 
    Parental H3-H4 Tetramers 58:57 
   Example 7 60:05 
   Chromatin Remodeling 61:48 
   Example 8 62:36 
    Transcriptionally Repressed State 62:45 
    Acetylation of Histones 62:54 
   Polycomb Repressors 63:19 
    PRC2 Protein Complex 63:38 
    PRC1 Protein Complex 64:02 
    MLL Protein Complex 64:09 

VI. Biotechnology and Applications to Medicine

  Basic Molecular Biology Research Techniques 1:08:41
   Intro 0:00 
   Lesson Overview 0:10 
   Gel Electraophoresis 0:31 
    What is Gel Electraophoresis 0:33 
    Nucleic Acids 0:50 
    Gel Matrix 1:41 
    Topology 2:18 
   Example 1 2:50 
   Restriction Endonucleases 8:07 
    Produced by Bacteria 8:08 
    Sequence Specific DNA Binding Proteins 8:36 
    Blunt or Overhanging Sticky Ends 9:04 
    Length Determines Approximate Cleavage Frequency 10:30 
   Cloning 11:18 
    What is Cloning 11:29 
    How It Works 12:12 
    Ampicillin Example 12:55 
   Example 2 13:19 
   Creating a Genomic DNA Library 19:33 
    Library Prep 19:35 
    DNA is Cut to Appropriate Sizes and Ligated Into Vector 20:04 
    Cloning 20:11 
    Transform Bacteria 20:19 
    Total Collection Represents the Whole Genome 20:29 
   Polymerase Chain Reaction 20:54 
    Molecular Biology Technique to Amplify a Small Number of DNA Molecules to Millions of Copies 21:04 
    Automated Process Now 21:22 
    Taq Polymerase and Thermocycler 21:38 
    Molecular Requirements 22:32 
    Steps of PCR 23:40 
   Example 3 24:42 
   Example 4 34:45 
   Southern Blot 35:25 
    Detect DNA 35:44 
    How It Works 35:50 
   Western Blot 37:13 
    Detects Proteins of Interest 37:14 
    How It Works 37:20 
   Northern Blot 39:08 
    Detects an RNA Sequence of Interest 39:09 
    How It Works 39:21 
    Illustration Sample 40:12 
   Complementary DNA (cDNA) Synthesis 41:18 
    Complementary Synthesis 41:19 
    Isolate mRNA from Total RNA 41:59 
   Quantitative PCR (qPCR) 44:14 
    Technique for Quantifying the Amount of cDNA and mRNA Transcriptions 44:29 
    Measure of Gene Expression 44:56 
    Illustration of Read Out of qPCR Machine 45:23 
   Analysis of the Transcriptome-Micrarrays 46:15 
    Collection of All Transcripts in the Cell 46:16 
    Microarrays 46:35 
    Each Spot Represents a Gene 47:20 
    RNA Sequencing 49:25 
   DNA Sequencing 50:08 
    Sanger Sequencing 50:21 
    Dideoxynucleotides 50:31 
    Primer Annealed to a DNA Region of Interest 51:50 
    Additional Presence of a Small Proportion of a ddNTPs 52:18 
    Example 52:49 
   DNA Sequencing Gel 53:13 
    Four Different Reactions are Performed 53:26 
    Each Reaction is Run in a Lane of a Denaturing Polyacrylamide Gel 53:34 
   Example 5 53:54 
   High Throughput DNA Sequencing 57:51 
    Dideoxy Sequencing Reactions Are Carried Out in Large Batches 57:52 
    Sequencing Reactions are Carried Out All Together in a Single Reaction 58:26 
    Molecules Separated Based on Size 59:19 
    DNA Molecules Cross a Laser Light 59:30 
   Assembling the Sequences 60:38 
    Genomes is Sequenced with 5-10x Coverage 60:39 
    Compare Genomes 61:47 
    Entered Into Database and the Rest is Computational 62:02 
    Overlapping Sequences are Ordered Into Contiguous Sequences 62:17 
   Example 6 63:25 
   Example 7 65:27 

VII. Ethics of Modern Science

  Genome Editing, Synthetic Biology, & the Ethics of Modern Science 45:06
   Intro 0:00 
   Lesson Overview 0:47 
   Genome Editing 1:37 
    What is Genome Editing 1:43 
    How It Works 2:03 
    Four Families of Engineered Nucleases in Use 2:25 
   Example 1 3:03 
   Gene Therapy 9:37 
    Delivery of Nucleic Acids Into a Patient’s Cells a Treatment for Disease 9:38 
    Timeline of Events 10:30 
   Example 2 11:03 
   Gene Therapy 12:37 
    Ethical Questions 12:38 
    Genetic Engineering 12:42 
    Gene Doping 13:10 
   Synthetic Biology 13:44 
    Design and Manufacture of Biological Components That Do Not Exist in Nature 13:53 
    First Synthetic Cell Example 14:12 
    Ethical Questions 16:16 
   Stem Cell Biology 18:01 
    Use Stem Cells to Treat or Prevent Diseases 18:12 
    Treatment Uses 19:56 
    Ethical Questions 20:33 
   Selected Topic of Ethical Debate 21:30 
   Research Ethics 28:02 
    Application of Fundamental Ethical Principles 28:07 
    Examples 28:20 
    Declaration of Helsinki 28:33 
   Basic Principles of the Declaration of Helsinki 28:57 
    Utmost Importance: Respect for the Patient 29:04 
    Researcher’s Duty is Solely to the Patient or Volunteer 29:32 
    Incompetent Research Participant 30:09 
   Right Vs Wrong 30:29 
   Ethics 32:40 
    Dolly the Sheep 32:46 
    Ethical Questions 33:59 
    Rational Reasoning and Justification 35:08 
   Example 3 35:17 
   Example 4 38:00 
   Questions to Ponder 39:35 
   How to Answer 40:52 
    Do Your Own Research 41:00 
    Difficult for People Outside the Scientific Community 41:42 
    Many People Disagree Because They Do Not Understand 42:32 
    Media Cannot Be Expected to Understand Published Scientific Data on Their Own 42:43 

Duration: 14 hours, 49 minutes

Number of Lessons: 14

This online course is crucial for students who want to ace Molecular Biology in order to satisfy their college degree or pre-medical requirements. Each lesson consists of a presentation on the basic ideas of molecular biology with several examples and problems solved in a step-by-step manner, so that you can fully understand complex concepts. Once you are able to understand the science of life on such a small scale, you are able to zoom out and look at the interaction between cells, tissues, organs, and complete organisms.

Additional Features:

  • Free Sample Lessons
  • Closed Captioning (CC)
  • Downloadable Lecture Slides
  • Instructor Comments

Topics Include:

  • Mendelian Genetics
  • Structure of Nucleic Acids
  • Genome Organization
  • DNA Replication
  • Homologous Recombination
  • Transcription
  • Gene Regulation
  • Research Techniques
  • Genome Editing

Dr. Michael Philips earned his Ph.D. from the University of Southern California in Molecular Biology and has taught the subject as a lecture and assistant professor for several years. He is a published researcher on nucleic acids and volunteers as a Big Brother in his spare time.

Student Testimonials:

New course...testimonials coming soon!