Biochemistry, the chemistry of biological molecules, explains the complex processes that sustain all living organisms. Professor Raffi Hovasapian helps you save time while thoroughly understanding these complex processes with clear explanations and worked out examples.

expand all   collapse all

I. Preliminaries on Aqueous Chemistry

  Aqueous Solutions & Concentration 39:57
   Intro 0:00 
   Aqueous Solutions and Concentration 0:46 
    Definition of Solution 1:28 
    Example: Sugar Dissolved in Water 2:19 
    Example: Salt Dissolved in Water 3:04 
    A Solute Does Not Have to Be a Solid 3:37 
    A Solvent Does Not Have to Be a Liquid 5:02 
    Covalent Compounds 6:55 
    Ionic Compounds 7:39 
    Example: Table Sugar 9:12 
    Example: MgCl₂ 10:40 
    Expressing Concentration: Molarity 13:42 
   Example 1 14:47 
    Example 1: Question 14:50 
    Example 1: Solution 15:40 
    Another Way to Express Concentration 22:01 
   Example 2 24:00 
    Example 2: Question 24:01 
    Example 2: Solution 24:49 
    Some Other Ways of Expressing Concentration 27:52 
   Example 3 29:30 
    Example 3: Question 29:31 
    Example 3: Solution 31:02 
  Dilution & Osmotic Pressure 38:53
   Intro 0:00 
   Dilution 0:45 
    Definition of Dilution 0:46 
    Example 1: Question 2:08 
    Example 1: Basic Dilution Equation 4:20 
    Example 1: Solution 5:31 
    Example 2: Alternative Approach 12:05 
   Osmotic Pressure 14:34 
    Colligative Properties 15:02 
    Recall: Covalent Compounds and Soluble Ionic Compounds 17:24 
    Properties of Pure Water 19:42 
    Addition of a Solute 21:56 
    Osmotic Pressure: Conceptual Example 24:00 
    Equation for Osmotic Pressure 29:30 
    Example of 'i' 31:38 
    Example 3 32:50 
  More on Osmosis 29:01
   Intro 0:00 
   More on Osmosis 1:25 
    Osmotic Pressure 1:26 
    Example 1: Molar Mass of Protein 5:25 
    Definition, Equation, and Unit of Osmolarity 13:13 
    Example 2: Osmolarity 15:19 
    Isotonic, Hypertonic, and Hypotonic 20:20 
    Example 3 22:20 
    More on Isotonic, Hypertonic, and Hypotonic 26:14 
    Osmosis vs. Osmotic Pressure 27:56 
  Acids & Bases 39:11
   Intro 0:00 
   Acids and Bases 1:16 
    Let's Begin With H₂O 1:17 
    P-Scale 4:22 
    Example 1 6:39 
    pH 9:43 
    Strong Acids 11:10 
    Strong Bases 13:52 
    Weak Acids & Bases Overview 14:32 
    Weak Acids 15:49 
    Example 2: Phosphoric Acid 19:30 
    Weak Bases 24:50 
    Weak Base Produces Hydroxide Indirectly 25:41 
    Example 3: Pyridine 29:07 
    Acid Form and Base Form 32:02 
    Acid Reaction 35:50 
    Base Reaction 36:27 
    Ka, Kb, and Kw 37:14 
  Titrations and Buffers 41:33
   Intro 0:00 
   Titrations 0:27 
    Weak Acid 0:28 
    Rearranging the Ka Equation 1:45 
    Henderson-Hasselbalch Equation 3:52 
    Fundamental Reaction of Acids and Bases 5:36 
    The Idea Behind a Titration 6:27 
    Let's Look at an Acetic Acid Solution 8:44 
    Titration Curve 17:00 
    Acetate 23:57 
   Buffers 26:57 
    Introduction to Buffers 26:58 
    What is a Buffer? 29:40 
    Titration Curve & Buffer Region 31:44 
    How a Buffer Works: Adding OH⁻ 34:44 
    How a Buffer Works: Adding H⁺ 35:58 
    Phosphate Buffer System 38:02 
  Example Problems with Acids, Bases & Buffers 44:19
   Intro 0:00 
   Example 1 1:21 
    Example 1: Properties of Glycine 1:22 
    Example 1: Part A 3:40 
    Example 1: Part B 4:40 
   Example 2 9:02 
    Example 2: Question 9:03 
    Example 2: Total Phosphate Concentration 12:23 
    Example 2: Final Solution 17:10 
   Example 3 19:34 
    Example 3: Question 19:35 
    Example 3: pH Before 22:18 
    Example 3: pH After 24:24 
    Example 3: New pH 27:54 
   Example 4 30:00 
    Example 4: Question 30:01 
    Example 4: Equilibria 32:52 
    Example 4: 1st Reaction 38:04 
    Example 4: 2nd Reaction 39:53 
    Example 4: Final Solution 41:33 
  Hydrolysis & Condensation Reactions 18:45
   Intro 0:00 
   Hydrolysis and Condensation Reactions 0:50 
    Hydrolysis 0:51 
    Condensation 2:42 
    Example 1: Hydrolysis of Ethyl Acetate 4:52 
    Example 2: Condensation of Acetic Acid with Ethanol 8:42 
    Example 3 11:18 
    Example 4: Formation & Hydrolysis of a Peptide Bond Between the Amino Acids Alanine & Serine 14:56 

II. Amino Acids & Proteins: Primary Structure

  Amino Acids 38:19
   Intro 0:00 
   Amino Acids 0:17 
    Proteins & Amino Acids 0:18 
    Difference Between Amino Acids 4:20 
    α-Carbon 7:08 
    Configuration in Biochemistry 10:43 
    L-Glyceraldehyde & Fischer Projection 12:32 
    D-Glyceraldehyde & Fischer Projection 15:31 
    Amino Acids in Biological Proteins are the L Enantiomer 16:50 
    L-Amino Acid 18:04 
    L-Amino Acids Correspond to S-Enantiomers in the RS System 20:10 
    Classification of Amino Acids 22:53 
   Amino Acids With Non-Polar R Groups 26:45 
    Glycine 27:00 
    Alanine 27:48 
    Valine 28:15 
    Leucine 28:58 
    Proline 31:08 
    Isoleucine 32:42 
    Methionine 33:43 
   Amino Acids With Aromatic R Groups 34:33 
    Phenylalanine 35:26 
    Tyrosine 36:02 
    Tryptophan 36:32 
  Amino Acids, Continued 27:14
   Intro 0:00 
   Amino Acids With Positively Charged R Groups 0:16 
    Lysine 0:52 
    Arginine 1:55 
    Histidine 3:15 
   Amino Acids With Negatively Charged R Groups 6:28 
    Aspartate 6:58 
    Glutamate 8:11 
   Amino Acids With Uncharged, but Polar R Groups 8:50 
    Serine 8:51 
    Threonine 10:21 
    Cysteine 11:06 
    Asparagine 11:35 
    Glutamine 12:44 
   More on Amino Acids 14:18 
    Cysteine Dimerizes to Form Cystine 14:53 
    Tryptophan, Tyrosine, and Phenylalanine 19:07 
    Other Amino Acids 20:53 
    Other Amino Acids: Hydroxy Lysine 22:34 
    Other Amino Acids: r-Carboxy Glutamate 25:37 
  Acid/Base Behavior of Amino Acids 48:28
   Intro 0:00 
   Acid/Base Behavior of Amino Acids 0:27 
    Acid/Base Behavior of Amino Acids 0:28 
    Let's Look at Alanine 1:57 
    Titration of Acidic Solution of Alanine with a Strong Base 2:51 
    Amphoteric Amino Acids 13:24 
    Zwitterion & Isoelectric Point 16:42 
    Some Amino Acids Have 3 Ionizable Groups 20:35 
    Example: Aspartate 24:44 
    Example: Tyrosine 28:50 
    Rule of Thumb 33:04 
    Basis for the Rule 35:59 
    Example: Describe the Degree of Protonation for Each Ionizable Group 38:46 
    Histidine is Special 44:58 
  Peptides & Proteins 45:18
   Intro 0:00 
   Peptides and Proteins 0:15 
    Introduction to Peptides and Proteins 0:16 
    Formation of a Peptide Bond: The Bond Between 2 Amino Acids 1:44 
    Equilibrium 7:53 
    Example 1: Build the Following Tripeptide Ala-Tyr-Ile 9:48 
    Example 1: Shape Structure 15:43 
    Example 1: Line Structure 17:11 
    Peptides Bonds 20:08 
    Terms We'll Be Using Interchangeably 23:14 
    Biological Activity & Size of a Peptide 24:58 
    Multi-Subunit Proteins 30:08 
    Proteins and Prosthetic Groups 32:13 
    Carbonic Anhydrase 37:35 
    Primary, Secondary, Tertiary, and Quaternary Structure of Proteins 40:26 
  Amino Acid Sequencing of a Peptide Chain 42:47
   Intro 0:00 
   Amino Acid Sequencing of a Peptide Chain 0:30 
    Amino Acid Sequence and Its Structure 0:31 
    Edman Degradation: Overview 2:57 
    Edman Degradation: Reaction - Part 1 4:58 
    Edman Degradation: Reaction - Part 2 10:28 
    Edman Degradation: Reaction - Part 3 13:51 
    Mechanism Step 1: PTC (Phenylthiocarbamyl) Formation 19:01 
    Mechanism Step 2: Ring Formation & Peptide Bond Cleavage 23:03 
   Example: Write Out the Edman Degradation for the Tripeptide Ala-Tyr-Ser 30:29 
    Step 1 30:30 
    Step 2 34:21 
    Step 3 36:56 
    Step 4 38:28 
    Step 5 39:24 
    Step 6 40:44 
  Sequencing Larger Peptides & Proteins 62:33
   Intro 0:00 
   Sequencing Larger Peptides and Proteins 0:28 
    Identifying the N-Terminal Amino Acids With the Reagent Fluorodinitrobenzene (FDNB) 0:29 
    Sequencing Longer Peptides & Proteins Overview 5:54 
    Breaking Peptide Bond: Proteases and Chemicals 8:16 
    Some Enzymes/Chemicals Used for Fragmentation: Trypsin 11:14 
    Some Enzymes/Chemicals Used for Fragmentation: Chymotrypsin 13:02 
    Some Enzymes/Chemicals Used for Fragmentation: Cyanogen Bromide 13:28 
    Some Enzymes/Chemicals Used for Fragmentation: Pepsin 13:44 
    Cleavage Location 14:04 
    Example: Chymotrypsin 16:44 
    Example: Pepsin 18:17 
    More on Sequencing Larger Peptides and Proteins 19:29 
    Breaking Disulfide Bonds: Performic Acid 26:08 
    Breaking Disulfide Bonds: Dithiothreitol Followed by Iodoacetate 31:04 
   Example: Sequencing Larger Peptides and Proteins 37:03 
    Part 1 - Breaking Disulfide Bonds, Hydrolysis and Separation 37:04 
    Part 2 - N-Terminal Identification 44:16 
    Part 3 - Sequencing Using Pepsin 46:43 
    Part 4 - Sequencing Using Cyanogen Bromide 52:02 
    Part 5 - Final Sequence 56:48 
  Peptide Synthesis (Merrifield Process) 49:12
   Intro 0:00 
   Peptide Synthesis (Merrifield Process) 0:31 
    Introduction to Synthesizing Peptides 0:32 
    Merrifield Peptide Synthesis: General Scheme 3:03 
    So What Do We Do? 6:07 
    Synthesis of Protein in the Body Vs. The Merrifield Process 7:40 
   Example: Synthesis of Ala-Gly-Ser 9:21 
    Synthesis of Ala-Gly-Ser: Reactions Overview 11:41 
    Synthesis of Ala-Gly-Ser: Reaction 1 19:34 
    Synthesis of Ala-Gly-Ser: Reaction 2 24:34 
    Synthesis of Ala-Gly-Ser: Reaction 3 27:34 
    Synthesis of Ala-Gly-Ser: Reaction 4 & 4a 28:48 
    Synthesis of Ala-Gly-Ser: Reaction 5 33:38 
    Synthesis of Ala-Gly-Ser: Reaction 6 36:45 
    Synthesis of Ala-Gly-Ser: Reaction 7 & 7a 37:44 
    Synthesis of Ala-Gly-Ser: Reaction 8 39:47 
    Synthesis of Ala-Gly-Ser: Reaction 9 & 10 43:23 
   Chromatography: Eluent, Stationary Phase, and Eluate 45:55 
  More Examples with Amino Acids & Peptides 54:31
   Intro 0:00 
   Example 1 0:22 
    Data 0:23 
    Part A: What is the pI of Serine & Draw the Correct Structure 2:11 
    Part B: How Many mL of NaOH Solution Have Been Added at This Point (pI)? 5:27 
    Part C: At What pH is the Average Charge on Serine 10:50 
    Part D: Draw the Titration Curve for This Situation 14:50 
    Part E: The 10 mL of NaOH Added to the Solution at the pI is How Many Equivalents? 17:35 
    Part F: Serine Buffer Solution 20:22 
   Example 2 23:04 
    Data 23:05 
    Part A: Calculate the Minimum Molar Mass of the Protein 25:12 
    Part B: How Many Tyr Residues in this Protein? 28:34 
   Example 3 30:08 
    Question 30:09 
    Solution 34:30 
   Example 4 48:46 
    Question 48:47 
    Solution 49:50 

III. Proteins: Secondary, Tertiary, and Quaternary Structure

  Alpha Helix & Beta Conformation 50:52
   Intro 0:00 
   Alpha Helix and Beta Conformation 0:28 
    Protein Structure Overview 0:29 
    Weak interactions Among the Amino Acid in the Peptide Chain 2:11 
    Two Principals of Folding Patterns 4:56 
    Peptide Bond 7:00 
    Peptide Bond: Resonance 9:46 
    Peptide Bond: φ Bond & ψ Bond 11:22 
    Secondary Structure 15:08 
    α-Helix Folding Pattern 17:28 
    Illustration 1: α-Helix Folding Pattern 19:22 
    Illustration 2: α-Helix Folding Pattern 21:39 
    β-Sheet 25:16 
    β-Conformation 26:04 
    Parallel & Anti-parallel 28:44 
    Parallel β-Conformation Arrangement of the Peptide Chain 30:12 
    Putting Together a Parallel Peptide Chain 35:16 
    Anti-Parallel β-Conformation Arrangement 37:42 
    Tertiary Structure 45:03 
    Quaternary Structure 45:52 
    Illustration 3: Myoglobin Tertiary Structure & Hemoglobin Quaternary Structure 47:13 
    Final Words on Alpha Helix and Beta Conformation 48:34 

IV. Proteins: Function

  Protein Function I: Ligand Binding & Myoglobin 51:36
   Intro 0:00 
   Protein Function I: Ligand Binding & Myoglobin 0:30 
    Ligand 1:02 
    Binding Site 2:06 
    Proteins are Not Static or Fixed 3:36 
    Multi-Subunit Proteins 5:46 
    O₂ as a Ligand 7:21 
    Myoglobin, Protoporphyrin IX, Fe ²⁺, and O₂ 12:54 
    Protoporphyrin Illustration 14:25 
    Myoglobin With a Heme Group Illustration 17:02 
    Fe²⁺ has 6 Coordination Sites & Binds O₂ 18:10 
    Heme 19:44 
    Myoglobin Overview 22:40 
    Myoglobin and O₂ Interaction 23:34 
    Keq or Ka & The Measure of Protein's Affinity for Its Ligand 26:46 
    Defining α: Fraction of Binding Sites Occupied 32:52 
    Graph: α vs. [L] 37:33 
    For The Special Case of α = 0.5 39:01 
    Association Constant & Dissociation Constant 43:54 
    α & Kd 45:15 
    Myoglobin's Binding of O₂ 48:20 
  Protein Function II: Hemoglobin 63:36
   Intro 0:00 
   Protein Function II: Hemoglobin 0:14 
    Hemoglobin Overview 0:15 
    Hemoglobin & Its 4 Subunits 1:22 
    α and β Interactions 5:18 
    Two Major Conformations of Hb: T State (Tense) & R State (Relaxed) 8:06 
    Transition From The T State to R State 12:03 
    Binding of Hemoglobins & O₂ 14:02 
    Binding Curve 18:32 
    Hemoglobin in the Lung 27:28 
    Signoid Curve 30:13 
    Cooperative Binding 32:25 
    Hemoglobin is an Allosteric Protein 34:26 
    Homotropic Allostery 36:18 
    Describing Cooperative Binding Quantitatively 38:06 
    Deriving The Hill Equation 41:52 
    Graphing the Hill Equation 44:43 
    The Slope and Degree of Cooperation 46:25 
    The Hill Coefficient 49:48 
    Hill Coefficient = 1 51:08 
    Hill Coefficient < 1 55:55 
    Where the Graph Hits the x-axis 56:11 
    Graph for Hemoglobin 58:02 
  Protein Function III: More on Hemoglobin 67:16
   Intro 0:00 
   Protein Function III: More on Hemoglobin 0:11 
    Two Models for Cooperative Binding: MWC & Sequential Model 0:12 
    MWC Model 1:31 
    Hemoglobin Subunits 3:32 
    Sequential Model 8:00 
    Hemoglobin Transports H⁺ & CO₂ 17:23 
    Binding Sites of H⁺ and CO₂ 19:36 
    CO₂ is Converted to Bicarbonate 23:28 
    Production of H⁺ & CO₂ in Tissues 27:28 
    H⁺ & CO₂ Binding are Inversely Related to O₂ Binding 28:31 
    The H⁺ Bohr Effect: His¹⁴⁶ Residue on the β Subunits 33:31 
    Heterotropic Allosteric Regulation of O₂ Binding by 2,3-Biphosphoglycerate (2,3 BPG) 39:53 
    Binding Curve for 2,3 BPG 56:21 

V. Enzymes

  Enzymes I 41:38
   Intro 0:00 
   Enzymes I 0:38 
    Enzymes Overview 0:39 
    Cofactor 4:38 
    Holoenzyme 5:52 
    Apoenzyme 6:40 
    Riboflavin, FAD, Pyridoxine, Pyridoxal Phosphate Structures 7:28 
    Carbonic Anhydrase 8:45 
    Classification of Enzymes 9:55 
    Example: EC 1.1.1.1 13:04 
    Reaction of Oxidoreductases 16:23 
    Enzymes: Catalysts, Active Site, and Substrate 18:28 
    Illustration of Enzymes, Substrate, and Active Site 27:22 
    Catalysts & Activation Energies 29:57 
    Intermediates 36:00 
  Enzymes II 44:02
   Intro 0:00 
   Enzymes II: Transitions State, Binding Energy, & Induced Fit 0:18 
    Enzymes 'Fitting' Well With The Transition State 0:20 
    Example Reaction: Breaking of a Stick 3:40 
    Another Energy Diagram 8:20 
    Binding Energy 9:48 
    Enzymes Specificity 11:03 
    Key Point: Optimal Interactions Between Substrate & Enzymes 15:15 
    Induced Fit 16:25 
    Illustrations: Induced Fit 20:58 
   Enzymes II: Catalytic Mechanisms 22:17 
    General Acid/Base Catalysis 23:56 
    Acid Form & Base Form of Amino Acid: Glu &Asp 25:26 
    Acid Form & Base Form of Amino Acid: Lys & Arg 26:30 
    Acid Form & Base Form of Amino Acid: Cys 26:51 
    Acid Form & Base Form of Amino Acid: His 27:30 
    Acid Form & Base Form of Amino Acid: Ser 28:16 
    Acid Form & Base Form of Amino Acid: Tyr 28:30 
    Example: Phosphohexose Isomerase 29:20 
    Covalent Catalysis 34:19 
    Example: Glyceraldehyde 3-Phosphate Dehydrogenase 35:34 
    Metal Ion Catalysis: Isocitrate Dehydrogenase 38:45 
    Function of Mn²⁺ 42:15 
  Enzymes III: Kinetics 56:40
   Intro 0:00 
   Enzymes III: Kinetics 1:40 
    Rate of an Enzyme-Catalyzed Reaction & Substrate Concentration 1:41 
    Graph: Substrate Concentration vs. Reaction Rate 10:43 
    Rate At Low and High Substrate Concentration 14:26 
    Michaelis & Menten Kinetics 20:16 
    More On Rate & Concentration of Substrate 22:46 
    Steady-State Assumption 26:02 
    Rate is Determined by How Fast ES Breaks Down to Product 31:36 
    Total Enzyme Concentration: [Et] = [E] + [ES] 35:35 
    Rate of ES Formation 36:44 
    Rate of ES Breakdown 38:40 
    Measuring Concentration of Enzyme-Substrate Complex 41:19 
    Measuring Initial & Maximum Velocity 43:43 
    Michaelis & Menten Equation 46:44 
    What Happens When V₀ = (1/2) Vmax? 49:12 
    When [S] << Km 53:32 
    When [S] >> Km 54:44 
  Enzymes IV: Lineweaver-Burk Plots 20:37
   Intro 0:00 
   Enzymes IV: Lineweaver-Burk Plots 0:45 
    Deriving The Lineweaver-Burk Equation 0:46 
    Lineweaver-Burk Plots 3:55 
    Example 1: Carboxypeptidase A 8:00 
    More on Km, Vmax, and Enzyme-catalyzed Reaction 15:54 
  Enzymes V: Enzyme Inhibition 51:37
   Intro 0:00 
   Enzymes V: Enzyme Inhibition Overview 0:42 
    Enzyme Inhibitors Overview 0:43 
    Classes of Inhibitors 2:32 
   Competitive Inhibition 3:08 
    Competitive Inhibition 3:09 
    Michaelis & Menten Equation in the Presence of a Competitive Inhibitor 7:40 
    Double-Reciprocal Version of the Michaelis & Menten Equation 14:48 
    Competitive Inhibition Graph 16:37 
   Uncompetitive Inhibition 19:23 
    Uncompetitive Inhibitor 19:24 
    Michaelis & Menten Equation for Uncompetitive Inhibition 22:10 
    The Lineweaver-Burk Equation for Uncompetitive Inhibition 26:04 
    Uncompetitive Inhibition Graph 27:42 
   Mixed Inhibition 30:30 
    Mixed Inhibitor 30:31 
    Double-Reciprocal Version of the Equation 33:34 
    The Lineweaver-Burk Plots for Mixed Inhibition 35:02 
   Summary of Reversible Inhibitor Behavior 38:00 
    Summary of Reversible Inhibitor Behavior 38:01 
    Note: Non-Competitive Inhibition 42:22 
   Irreversible Inhibition 45:15 
    Irreversible Inhibition 45:16 
    Penicillin & Transpeptidase Enzyme 46:50 
  Enzymes VI: Regulatory Enzymes 51:23
   Intro 0:00 
   Enzymes VI: Regulatory Enzymes 0:45 
    Regulatory Enzymes Overview 0:46 
    Example: Glycolysis 2:27 
    Allosteric Regulatory Enzyme 9:19 
    Covalent Modification 13:08 
    Two Other Regulatory Processes 16:28 
    Allosteric Regulation 20:58 
    Feedback Inhibition 25:12 
    Feedback Inhibition Example: L-Threonine → L-Isoleucine 26:03 
    Covalent Modification 27:26 
    Covalent Modulators: -PO₃²⁻ 29:30 
    Protein Kinases 31:59 
    Protein Phosphatases 32:47 
    Addition/Removal of -PO₃²⁻ and the Effect on Regulatory Enzyme 33:36 
    Phosphorylation Sites of a Regulatory Enzyme 38:38 
    Proteolytic Cleavage 41:48 
    Zymogens: Chymotrypsin & Trypsin 43:58 
    Enzymes That Use More Than One Regulatory Process: Bacterial Glutamine Synthetase 48:59 
    Why The Complexity? 50:27 
  Enzymes VII: Km & Kcat 54:49
   Intro 0:00 
   Km 1:48 
    Recall the Michaelis–Menten Equation 1:49 
    Km & Enzyme's Affinity 6:18 
    Rate Forward, Rate Backward, and Equilibrium Constant 11:08 
    When an Enzyme's Affinity for Its Substrate is High 14:17 
    More on Km & Enzyme Affinity 17:29 
    The Measure of Km Under Michaelis–Menten kinetic 23:19 
   Kcat (First-order Rate Constant or Catalytic Rate Constant) 24:10 
    Kcat: Definition 24:11 
    Kcat & The Michaelis–Menten Postulate 25:18 
    Finding Vmax and [Et} 27:27 
    Units for Vmax and Kcat 28:26 
    Kcat: Turnover Number 28:55 
    Michaelis–Menten Equation 32:12 
   Km & Kcat 36:37 
    Second Order Rate Equation 36:38 
    (Kcat)/(Km): Overview 39:22 
    High (Kcat)/(Km) 40:20 
    Low (Kcat)/(Km) 43:16 
    Practical Big Picture 46:28 
    Upper Limit to (Kcat)/(Km) 48:56 
    More On Kcat and Km 49:26 

VI. Carbohydrates

  Monosaccharides 77:46
   Intro 0:00 
   Monosaccharides 1:49 
    Carbohydrates Overview 1:50 
    Three Major Classes of Carbohydrates 4:48 
    Definition of Monosaccharides 5:46 
   Examples of Monosaccharides: Aldoses 7:06 
    D-Glyceraldehyde 7:39 
    D-Erythrose 9:00 
    D-Ribose 10:10 
    D-Glucose 11:20 
    Observation: Aldehyde Group 11:54 
    Observation: Carbonyl 'C' 12:30 
    Observation: D & L Naming System 12:54 
   Examples of Monosaccharides: Ketose 16:54 
    Dihydroxy Acetone 17:28 
    D-Erythrulose 18:30 
    D-Ribulose 19:49 
    D-Fructose 21:10 
    D-Glucose Comparison 23:18 
    More information of Ketoses 24:50 
    Let's Look Closer at D-Glucoses 25:50 
   Let's Look At All the D-Hexose Stereoisomers 31:22 
    D-Allose 32:20 
    D-Altrose 33:01 
    D-Glucose 33:39 
    D-Gulose 35:00 
    D-Mannose 35:40 
    D-Idose 36:42 
    D-Galactose 37:14 
    D-Talose 37:42 
   Epimer 40:05 
    Definition of Epimer 40:06 
    Example of Epimer: D-Glucose, D-Mannose, and D-Galactose 40:57 
   Hemiacetal or Hemiketal 44:36 
    Hemiacetal/Hemiketal Overview 45:00 
    Ring Formation of the α and β Configurations of D-Glucose 50:52 
    Ring Formation of the α and β Configurations of Fructose 61:39 
   Haworth Projection 67:34 
    Pyranose & Furanose Overview 67:38 
    Haworth Projection: Pyranoses 69:30 
    Haworth Projection: Furanose 74:56 
  Hexose Derivatives & Reducing Sugars 37:06
   Intro 0:00 
   Hexose Derivatives 0:15 
    Point of Clarification: Forming a Cyclic Sugar From a Linear Sugar 0:16 
    Let's Recall the α and β Anomers of Glucose 8:42 
    α-Glucose 10:54 
   Hexose Derivatives that Play Key Roles in Physiology Progression 17:38 
    β-Glucose 18:24 
    β-Glucosamine 18:48 
    N-Acetyl-β-Glucosamine 20:14 
    β-Glucose-6-Phosphate 22:22 
    D-Gluconate 24:10 
    Glucono-δ-Lactone 26:33 
   Reducing Sugars 29:50 
    Reducing Sugars Overview 29:51 
    Reducing Sugars Example: β-Galactose 32:36 
  Disaccharides 43:32
   Intro 0:00 
   Disaccharides 0:15 
    Disaccharides Overview 0:19 
    Examples of Disaccharides & How to Name Them 2:49 
    Disaccharides Trehalose Overview 15:46 
    Disaccharides Trehalose: Flip 20:52 
    Disaccharides Trehalose: Spin 28:36 
    Example: Draw the Structure 33:12 
  Polysaccharides 39:25
   Intro 0:00 
   Recap Example: Draw the Structure of Gal(α1↔β1)Man 0:38 
   Polysaccharides 9:46 
    Polysaccharides Overview 9:50 
    Homopolysaccharide 13:12 
    Heteropolysaccharide 13:47 
    Homopolysaccharide as Fuel Storage 16:23 
    Starch Has Two Types of Glucose Polymer: Amylose 17:10 
    Starch Has Two Types of Glucose Polymer: Amylopectin 18:04 
    Polysaccharides: Reducing End & Non-Reducing End 19:30 
    Glycogen 20:06 
    Examples: Structures of Polysaccharides 21:42 
    Let's Draw an (α1→4) & (α1→6) of Amylopectin by Hand. 28:14 
    More on Glycogen 31:17 
    Glycogen, Concentration, & The Concept of Osmolarity 35:16 
  Polysaccharides, Part 2 44:15
   Intro 0:00 
   Polysaccharides 0:17 
    Example: Cellulose 0:34 
    Glycoside Bond 7:25 
    Example Illustrations 12:30 
    Glycosaminoglycans Part 1 15:55 
    Glycosaminoglycans Part 2 18:34 
    Glycosaminoglycans & Sulfate Attachments 22:42 
    β-D-N-Acetylglucosamine 24:49 
    β-D-N-AcetylGalactosamine 25:42 
    β-D-Glucuronate 26:44 
    β-L-Iduronate 27:54 
    More on Sulfate Attachments 29:49 
    Hylarunic Acid 32:00 
    Hyaluronates 39:32 
    Other Glycosaminoglycans 40:46 
  Glycoconjugates 44:23
   Intro 0:00 
   Glycoconjugates 0:24 
    Overview 0:25 
    Proteoglycan 2:53 
    Glycoprotein 5:20 
    Glycolipid 7:25 
    Proteoglycan vs. Glycoprotein 8:15 
    Cell Surface Diagram 11:17 
    Proteoglycan Common Structure 14:24 
    Example: Chondroitin-4-Sulfate 15:06 
    Glycoproteins 19:50 
    The Monomers that Commonly Show Up in The Oligo Portions of Glycoproteins 28:02 
    N-Acetylneuraminic Acid 31:17 
    L-Furose 32:37 
    Example of an N-Linked Oligosaccharide 33:21 
    Cell Membrane Structure 36:35 
    Glycolipids & Lipopolysaccharide 37:22 
    Structure Example 41:28 
  More Example Problems with Carbohydrates 40:22
   Intro 0:00 
   Example 1 1:09 
   Example 2 2:34 
   Example 3 5:12 
   Example 4 16:19 
    Question 16:20 
    Solution 17:25 
   Example 5 24:18 
    Question 24:19 
    Structure of 2,3-Di-O-Methylglucose 26:47 
    Part A 28:11 
    Part B 33:46 

VII. Lipids

  Fatty Acids & Triacylglycerols 54:55
   Intro 0:00 
   Fatty Acids 0:32 
    Lipids Overview 0:34 
    Introduction to Fatty Acid 3:18 
    Saturated Fatty Acid 6:13 
    Unsaturated or Polyunsaturated Fatty Acid 7:07 
    Saturated Fatty Acid Example 7:46 
    Unsaturated Fatty Acid Example 9:06 
    Notation Example: Chain Length, Degree of Unsaturation, & Double Bonds Location of Fatty Acid 11:56 
    Example 1: Draw the Structure 16:18 
    Example 2: Give the Shorthand for cis,cis-5,8-Hexadecadienoic Acid 20:12 
    Example 3 23:12 
    Solubility of Fatty Acids 25:45 
    Melting Points of Fatty Acids 29:40 
   Triacylglycerols 34:13 
    Definition of Triacylglycerols 34:14 
    Structure of Triacylglycerols 35:08 
    Example: Triacylglycerols 40:23 
    Recall Ester Formation 43:57 
    The Body's Primary Fuel-Reserves 47:22 
    Two Primary Advantages to Storing Energy as Triacylglycerols Instead of Glycogen: Number 1 49:24 
    Two Primary Advantages to Storing Energy as Triacylglycerols Instead of Glycogen: Number 2 51:54 
  Membrane Lipids 38:51
   Intro 0:00 
   Membrane Lipids 0:26 
    Definition of Membrane Lipids 0:27 
    Five Major Classes of Membrane Lipids 2:38 
   Glycerophospholipids 5:04 
    Glycerophospholipids Overview 5:05 
    The X Group 8:05 
    Example: Phosphatidyl Ethanolamine 10:51 
    Example: Phosphatidyl Choline 13:34 
    Phosphatidyl Serine 15:16 
    Head Groups 16:50 
    Ether Linkages Instead of Ester Linkages 20:05 
   Galactolipids 23:39 
    Galactolipids Overview 23:40 
    Monogalactosyldiacylglycerol: MGDG 25:17 
    Digalactosyldiacylglycerol: DGDG 28:13 
    Structure Examples 1: Lipid Bilayer 31:35 
    Structure Examples 2: Cross Section of a Cell 34:56 
    Structure Examples 3: MGDG & DGDG 36:28 
  Membrane Lipids, Part 2 38:20
   Intro 0:00 
   Sphingolipids 0:11 
    Sphingolipid Overview 0:12 
    Sphingosine Structure 1:42 
    Ceramide 3:56 
    Subclasses of Sphingolipids Overview 6:00 
   Subclasses of Sphingolipids: Sphingomyelins 7:53 
    Sphingomyelins 7:54 
   Subclasses of Sphingolipids: Glycosphingolipid 12:47 
    Glycosphingolipid Overview 12:48 
    Cerebrosides & Globosides Overview 14:33 
    Example: Cerebrosides 15:43 
    Example: Globosides 17:14 
   Subclasses of Sphingolipids: Gangliosides 19:07 
    Gangliosides 19:08 
    Medical Application: Tay-Sachs Disease 23:34 
   Sterols 30:45 
    Sterols: Basic Structure 30:46 
    Important Example: Cholesterol 32:01 
    Structures Example 34:13 
  The Biologically Active Lipids 48:36
   Intro 0:00 
   The Biologically Active Lipids 0:44 
    Phosphatidyl Inositol Structure 0:45 
    Phosphatidyl Inositol Reaction 3:24 
    Image Example 12:49 
    Eicosanoids 14:12 
    Arachidonic Acid & Membrane Lipid Containing Arachidonic Acid 18:41 
   Three Classes of Eicosanoids 20:42 
    Overall Structures 21:38 
    Prostagladins 22:56 
    Thromboxane 27:19 
    Leukotrienes 30:19 
   More On The Biologically Active Lipids 33:34 
    Steroid Hormones 33:35 
    Fat Soluble Vitamins 38:25 
    Vitamin D₃ 40:40 
    Vitamin A 43:17 
    Vitamin E 45:12 
    Vitamin K 47:17 

VIII. Energy & Biological Systems (Bioenergetics)

  Thermodynamics, Free Energy & Equilibrium 45:51
   Intro 0:00 
   Thermodynamics, Free Energy and Equilibrium 1:03 
    Reaction: Glucose + Pi → Glucose 6-Phosphate 1:50 
    Thermodynamics & Spontaneous Processes 3:31 
    In Going From Reactants → Product, a Reaction Wants to Release Heat 6:30 
    A Reaction Wants to Become More Disordered 9:10 
    ∆H < 0 10:30 
    ∆H > 0 10:57 
    ∆S > 0 11:23 
    ∆S <0 11:56 
    ∆G = ∆H - T∆S at Constant Pressure 12:15 
    Gibbs Free Energy 15:00 
    ∆G < 0 16:49 
    ∆G > 0 17:07 
    Reference Frame For Thermodynamics Measurements 17:57 
    More On BioChemistry Standard 22:36 
    Spontaneity 25:36 
    Keq 31:45 
    Example: Glucose + Pi → Glucose 6-Phosphate 34:14 
   Example Problem 1 40:25 
    Question 40:26 
    Solution 41:12 
  More on Thermodynamics & Free Energy 37:06
   Intro 0:00 
   More on Thermodynamics & Free Energy 0:16 
    Calculating ∆G Under Standard Conditions 0:17 
    Calculating ∆G Under Physiological Conditions 2:05 
    ∆G < 0 5:39 
    ∆G = 0 7:03 
    Reaction Moving Forward Spontaneously 8:00 
    ∆G & The Maximum Theoretical Amount of Free Energy Available 10:36 
    Example Problem 1 13:11 
    Reactions That Have Species in Common 17:48 
    Example Problem 2: Part 1 20:10 
    Example Problem 2: Part 2- Enzyme Hexokinase & Coupling 25:08 
    Example Problem 2: Part 3 30:34 
    Recap 34:45 
  ATP & Other High-Energy Compounds 44:32
   Intro 0:00 
   ATP & Other High-Energy Compounds 0:10 
    Endergonic Reaction Coupled With Exergonic Reaction 0:11 
    Major Theme In Metabolism 6:56 
   Why the ∆G°' for ATP Hydrolysis is Large & Negative 12:24 
    ∆G°' for ATP Hydrolysis 12:25 
    Reason 1: Electrostatic Repulsion 14:24 
    Reason 2: Pi & Resonance Forms 15:33 
    Reason 3: Concentrations of ADP & Pi 17:32 
   ATP & Other High-Energy Compounds Cont'd 18:48 
    More On ∆G°' & Hydrolysis 18:49 
    Other Compounds That Have Large Negative ∆G°' of Hydrolysis: Phosphoenol Pyruvate (PEP) 25:14 
    Enzyme Pyruvate Kinase 30:36 
    Another High Energy Molecule: 1,3 Biphosphoglycerate 36:17 
    Another High Energy Molecule: Phophocreatine 39:41 
  Phosphoryl Group Transfers 30:08
   Intro 0:00 
   Phosphoryl Group Transfer 0:27 
    Phosphoryl Group Transfer Overview 0:28 
    Example: Glutamate → Glutamine Part 1 7:11 
    Example: Glutamate → Glutamine Part 2 13:29 
    ATP Not Only Transfers Phosphoryl, But Also Pyrophosphoryl & Adenylyl Groups 17:03 
    Attack At The γ Phosphorous Transfers a Phosphoryl 19:02 
    Attack At The β Phosphorous Gives Pyrophosphoryl 22:44 
  Oxidation-Reduction Reactions 49:46
   Intro 0:00 
   Oxidation-Reduction Reactions 1:32 
    Redox Reactions 1:33 
    Example 1: Mg + Al³⁺ → Mg²⁺ + Al 3:49 
    Reduction Potential Definition 10:47 
    Reduction Potential Example 13:38 
    Organic Example 22:23 
    Review: How To Find The Oxidation States For Carbon 24:15 
   Examples: Oxidation States For Carbon 27:45 
    Example 1: Oxidation States For Carbon 27:46 
    Example 2: Oxidation States For Carbon 28:36 
    Example 3: Oxidation States For Carbon 29:18 
    Example 4: Oxidation States For Carbon 29:44 
    Example 5: Oxidation States For Carbon 30:10 
    Example 6: Oxidation States For Carbon 30:40 
    Example 7: Oxidation States For Carbon 31:20 
    Example 8: Oxidation States For Carbon 32:10 
    Example 9: Oxidation States For Carbon 32:52 
   Oxidation-Reduction Reactions, cont'd 35:22 
    More On Reduction Potential 35:28 
    Lets' Start With ∆G = ∆G°' + RTlnQ 38:29 
    Example: Oxidation Reduction Reactions 41:42 
  More On Oxidation-Reduction Reactions 56:34
   Intro 0:00 
   More On Oxidation-Reduction Reactions 0:10 
    Example 1: What If the Concentrations Are Not Standard? 0:11 
    Alternate Procedure That Uses The 1/2 Reactions Individually 8:57 
    Universal Electron Carriers in Aqueous Medium: NAD+ & NADH 15:12 
    The Others Are… 19:22 
    NAD+ & NADP Coenzymes 20:56 
    FMN & FAD 22:03 
    Nicotinamide Adenine Dinucleotide (Phosphate) 23:03 
    Reduction 1/2 Reactions 36:10 
    Ratio of NAD+ : NADH 36:52 
    Ratio of NADPH : NADP+ 38:02 
    Specialized Roles of NAD+ & NADPH 38:48 
    Oxidoreductase Enzyme Overview 40:26 
    Examples of Oxidoreductase 43:32 
    The Flavin Nucleotides 46:46 
  Example Problems For Bioenergetics 42:12
   Intro 0:00 
   Example 1: Calculate the ∆G°' For The Following Reaction 1:04 
    Example 1: Question 1:05 
    Example 1: Solution 2:20 
   Example 2: Calculate the Keq For the Following 4:20 
    Example 2: Question 4:21 
    Example 2: Solution 5:54 
   Example 3: Calculate the ∆G°' For The Hydrolysis of ATP At 25°C 8:52 
    Example 3: Question 8:53 
    Example 3: Solution 10:30 
    Example 3: Alternate Procedure 13:48 
   Example 4: Problems For Bioenergetics 16:46 
    Example 4: Questions 16:47 
    Example 4: Part A Solution 21:19 
    Example 4: Part B Solution 23:26 
    Example 4: Part C Solution 26:12 
   Example 5: Problems For Bioenergetics 29:27 
    Example 5: Questions 29:35 
    Example 5: Solution - Part 1 32:16 
    Example 5: Solution - Part 2 34:39 

IX. Glycolysis and Gluconeogenesis

  Overview of Glycolysis I 43:32
   Intro 0:00 
   Overview of Glycolysis 0:48 
    Three Primary Paths For Glucose 1:04 
    Preparatory Phase of Glycolysis 4:40 
    Payoff Phase of Glycolysis 6:40 
    Glycolysis Reactions Diagram 7:58 
    Enzymes of Glycolysis 12:41 
   Glycolysis Reactions 16:02 
    Step 1 16:03 
    Step 2 18:03 
    Step 3 18:52 
    Step 4 20:08 
    Step 5 21:42 
    Step 6 22:44 
    Step 7 24:22 
    Step 8 25:11 
    Step 9 26:00 
    Step 10 26:51 
   Overview of Glycolysis Cont. 27:28 
    The Overall Reaction for Glycolysis 27:29 
    Recall The High-Energy Phosphorylated Compounds Discusses In The Bioenergetics Unit 33:10 
    What Happens To The Pyruvate That Is Formed? 37:58 
  Glycolysis II 61:47
   Intro 0:00 
   Glycolysis Step 1: The Phosphorylation of Glucose 0:27 
    Glycolysis Step 1: Reaction 0:28 
    Hexokinase 2:28 
    Glycolysis Step 1: Mechanism-Simple Nucleophilic Substitution 6:34 
   Glycolysis Step 2: Conversion of Glucose 6-Phosphate → Fructose 6-Phosphate 11:33 
    Glycolysis Step 2: Reaction 11:34 
    Glycolysis Step 2: Mechanism, Part 1 14:40 
    Glycolysis Step 2: Mechanism, Part 2 18:16 
    Glycolysis Step 2: Mechanism, Part 3 19:56 
    Glycolysis Step 2: Mechanism, Part 4 (Ring Closing & Dissociation) 21:54 
   Glycolysis Step 3: Conversion of Fructose 6-Phosphate to Fructose 1,6-Biphosphate 24:16 
    Glycolysis Step 3: Reaction 24:17 
    Glycolysis Step 3: Mechanism 26:40 
   Glycolysis Step 4: Cleavage of Fructose 1,6-Biphosphate 31:10 
    Glycolysis Step 4: Reaction 31:11 
    Glycolysis Step 4: Mechanism, Part 1 (Binding & Ring Opening) 35:26 
    Glycolysis Step 4: Mechanism, Part 2 37:40 
    Glycolysis Step 4: Mechanism, Part 3 39:30 
    Glycolysis Step 4: Mechanism, Part 4 44:00 
    Glycolysis Step 4: Mechanism, Part 5 46:34 
    Glycolysis Step 4: Mechanism, Part 6 49:00 
    Glycolysis Step 4: Mechanism, Part 7 50:12 
    Hydrolysis of The Imine 52:33 
   Glycolysis Step 5: Conversion of Dihydroxyaceton Phosphate to Glyceraldehyde 3-Phosphate 55:38 
    Glycolysis Step 5: Reaction 55:39 
   Breakdown and Numbering of Sugar 57:40 
  Glycolysis III 59:17
   Intro 0:00 
   Glycolysis Step 5: Conversion of Dihydroxyaceton Phosphate to Glyceraldehyde 3-Phosphate 0:44 
    Glycolysis Step 5: Mechanism, Part 1 0:45 
    Glycolysis Step 5: Mechanism, Part 2 3:53 
   Glycolysis Step 6: Oxidation of Glyceraldehyde 3-Phosphate to 1,3-Biphosphoglycerate 5:14 
    Glycolysis Step 6: Reaction 5:15 
    Glycolysis Step 6: Mechanism, Part 1 8:52 
    Glycolysis Step 6: Mechanism, Part 2 12:58 
    Glycolysis Step 6: Mechanism, Part 3 14:26 
    Glycolysis Step 6: Mechanism, Part 4 16:23 
   Glycolysis Step 7: Phosphoryl Transfer From 1,3-Biphosphoglycerate to ADP to Form ATP 19:08 
    Glycolysis Step 7: Reaction 19:09 
    Substrate-Level Phosphorylation 23:18 
    Glycolysis Step 7: Mechanism (Nucleophilic Substitution) 26:57 
   Glycolysis Step 8: Conversion of 3-Phosphoglycerate to 2-Phosphoglycerate 28:44 
    Glycolysis Step 8: Reaction 28:45 
    Glycolysis Step 8: Mechanism, Part 1 30:08 
    Glycolysis Step 8: Mechanism, Part 2 32:24 
    Glycolysis Step 8: Mechanism, Part 3 34:02 
    Catalytic Cycle 35:42 
   Glycolysis Step 9: Dehydration of 2-Phosphoglycerate to Phosphoenol Pyruvate 37:20 
    Glycolysis Step 9: Reaction 37:21 
    Glycolysis Step 9: Mechanism, Part 1 40:12 
    Glycolysis Step 9: Mechanism, Part 2 42:01 
    Glycolysis Step 9: Mechanism, Part 3 43:58 
   Glycolysis Step 10: Transfer of a Phosphoryl Group From Phosphoenol Pyruvate To ADP To Form ATP 45:16 
    Glycolysis Step 10: Reaction 45:17 
    Substrate-Level Phosphorylation 48:32 
    Energy Coupling Reaction 51:24 
   Glycolysis Balance Sheet 54:15 
    Glycolysis Balance Sheet 54:16 
    What Happens to The 6 Carbons of Glucose? 56:22 
    What Happens to 2 ADP & 2 Pi? 57:04 
    What Happens to The 4e⁻ ? 57:15 
  Glycolysis IV 39:47
   Intro 0:00 
   Feeder Pathways 0:42 
    Feeder Pathways Overview 0:43 
    Starch, Glycogen 2:25 
    Lactose 4:38 
    Galactose 4:58 
    Manose 5:22 
    Trehalose 5:45 
    Sucrose 5:56 
    Fructose 6:07 
   Fates of Pyruvate: Aerobic & Anaerobic Conditions 7:39 
    Aerobic Conditions & Pyruvate 7:40 
    Anaerobic Fates of Pyruvate 11:18 
   Fates of Pyruvate: Lactate Acid Fermentation 14:10 
    Lactate Acid Fermentation 14:11 
   Fates of Pyruvate: Ethanol Fermentation 19:01 
    Ethanol Fermentation Reaction 19:02 
    TPP: Thiamine Pyrophosphate (Functions and Structure) 23:10 
    Ethanol Fermentation Mechanism, Part 1 27:53 
    Ethanol Fermentation Mechanism, Part 2 29:06 
    Ethanol Fermentation Mechanism, Part 3 31:15 
    Ethanol Fermentation Mechanism, Part 4 32:44 
    Ethanol Fermentation Mechanism, Part 5 34:33 
    Ethanol Fermentation Mechanism, Part 6 35:48 
  Gluconeogenesis I 41:34
   Intro 0:00 
   Gluconeogenesis, Part 1 1:02 
    Gluconeogenesis Overview 1:03 
    3 Glycolytic Reactions That Are Irreversible Under Physiological Conditions 2:29 
    Gluconeogenesis Reactions Overview 6:17 
    Reaction: Pyruvate to Oxaloacetate 11:07 
    Reaction: Oxaloacetate to Phosphoenolpyruvate (PEP) 13:29 
    First Pathway That Pyruvate Can Take to Become Phosphoenolpyruvate 15:24 
    Second Pathway That Pyruvate Can Take to Become Phosphoenolpyruvate 21:00 
    Transportation of Pyruvate From The Cytosol to The Mitochondria 24:15 
    Transportation Mechanism, Part 1 26:41 
    Transportation Mechanism, Part 2 30:43 
    Transportation Mechanism, Part 3 34:04 
    Transportation Mechanism, Part 4 38:14 
  Gluconeogenesis II 34:18
   Intro 0:00 
   Oxaloacetate → Phosphoenolpyruvate (PEP) 0:35 
    Mitochondrial Membrane Does Not Have a Transporter for Oxaloactate 0:36 
    Reaction: Oxaloacetate to Phosphoenolpyruvate (PEP) 3:36 
    Mechanism: Oxaloacetate to Phosphoenolpyruvate (PEP) 4:48 
    Overall Reaction: Pyruvate to Phosphoenolpyruvate 7:01 
    Recall The Two Pathways That Pyruvate Can Take to Become Phosphoenolpyruvate 10:16 
    NADH in Gluconeogenesis 12:29 
   Second Pathway: Lactate → Pyruvate 18:22 
    Cytosolic PEP Carboxykinase, Mitochondrial PEP Carboxykinase, & Isozymes 18:23 
    2nd Bypass Reaction 23:04 
    3rd Bypass Reaction 24:01 
    Overall Process 25:17 
   Other Feeder Pathways For Gluconeogenesis 26:35 
    Carbon Intermediates of The Citric Acid Cycle 26:36 
    Amino Acids & The Gluconeogenic Pathway 29:45 
    Glycolysis & Gluconeogenesis Are Reciprocally Regulated 32:00 
  The Pentose Phosphate Pathway 42:52
   Intro 0:00 
   The Pentose Phosphate Pathway Overview 0:17 
    The Major Fate of Glucose-6-Phosphate 0:18 
    The Pentose Phosphate Pathway (PPP) Overview 1:00 
   Oxidative Phase of The Pentose Phosphate Pathway 4:33 
    Oxidative Phase of The Pentose Phosphate Pathway: Reaction Overview 4:34 
    Ribose-5-Phosphate: Glutathione & Reductive Biosynthesis 9:02 
    Glucose-6-Phosphate to 6-Phosphogluconate 12:48 
    6-Phosphogluconate to Ribulose-5-Phosphate 15:39 
    Ribulose-5-Phosphate to Ribose-5-Phosphate 17:05 
   Non-Oxidative Phase of The Pentose Phosphate Pathway 19:55 
    Non-Oxidative Phase of The Pentose Phosphate Pathway: Overview 19:56 
    General Transketolase Reaction 29:03 
    Transaldolase Reaction 35:10 
    Final Transketolase Reaction 39:10 

X. The Citric Acid Cycle (Krebs Cycle)

  Citric Acid Cycle I 36:10
   Intro 0:00 
   Stages of Cellular Respiration 0:23 
    Stages of Cellular Respiration 0:24 
   From Pyruvate to Acetyl-CoA 6:56 
    From Pyruvate to Acetyl-CoA: Pyruvate Dehydrogenase Complex 6:57 
    Overall Reaction 8:42 
    Oxidative Decarboxylation 11:54 
    Pyruvate Dehydrogenase (PDH) & Enzymes 15:30 
    Pyruvate Dehydrogenase (PDH) Requires 5 Coenzymes 17:15 
    Molecule of CoEnzyme A 18:52 
    Thioesters 20:56 
    Lipoic Acid 22:31 
    Lipoate Is Attached To a Lysine Residue On E₂ 24:42 
    Pyruvate Dehydrogenase Complex: Reactions 26:36 
    E1: Reaction 1 & 2 30:38 
    E2: Reaction 3 31:58 
    E3: Reaction 4 & 5 32:44 
    Substrate Channeling 34:17 
  Citric Acid Cycle II 49:20
   Intro 0:00 
   Citric Acid Cycle Reactions Overview 0:26 
    Citric Acid Cycle Reactions Overview: Part 1 0:27 
    Citric Acid Cycle Reactions Overview: Part 2 7:03 
    Things to Note 10:58 
   Citric Acid Cycle Reactions & Mechanism 13:57 
    Reaction 1: Formation of Citrate 13:58 
    Reaction 1: Mechanism 19:01 
    Reaction 2: Citrate to Cis Aconistate to Isocitrate 28:50 
    Reaction 3: Isocitrate to α-Ketoglutarate 32:35 
    Reaction 3: Two Isocitrate Dehydrogenase Enzymes 36:24 
    Reaction 3: Mechanism 37:33 
    Reaction 4: Oxidation of α-Ketoglutarate to Succinyl-CoA 41:38 
    Reaction 4: Notes 46:34 
  Citric Acid Cycle III 44:11
   Intro 0:00 
   Citric Acid Cycle Reactions & Mechanism 0:21 
    Reaction 5: Succinyl-CoA to Succinate 0:24 
    Reaction 5: Reaction Sequence 2:35 
    Reaction 6: Oxidation of Succinate to Fumarate 8:28 
    Reaction 7: Fumarate to Malate 10:17 
    Reaction 8: Oxidation of L-Malate to Oxaloacetate 14:15 
   More On The Citric Acid Cycle 17:17 
    Energy from Oxidation 17:18 
    How Can We Transfer This NADH Into the Mitochondria 27:10 
    Citric Cycle is Amphibolic - Works In Both Anabolic & Catabolic Pathways 32:06 
    Biosynthetic Processes 34:29 
    Anaplerotic Reactions Overview 37:26 
    Anaplerotic: Reaction 1 41:42 

XI. Catabolism of Fatty Acids

  Fatty Acid Catabolism I 48:11
   Intro 0:00 
   Introduction to Fatty Acid Catabolism 0:21 
    Introduction to Fatty Acid Catabolism 0:22 
   Vertebrate Cells Obtain Fatty Acids for Catabolism From 3 Sources 2:16 
    Diet: Part 1 4:00 
    Diet: Part 2 5:35 
    Diet: Part 3 6:20 
    Diet: Part 4 6:47 
    Diet: Part 5 10:18 
    Diet: Part 6 10:54 
    Diet: Part 7 12:04 
    Diet: Part 8 12:26 
    Fats Stored in Adipocytes Overview 13:54 
    Fats Stored in Adipocytes (Fat Cells): Part 1 16:13 
    Fats Stored in Adipocytes (Fat Cells): Part 2 17:16 
    Fats Stored in Adipocytes (Fat Cells): Part 3 19:42 
    Fats Stored in Adipocytes (Fat Cells): Part 4 20:52 
    Fats Stored in Adipocytes (Fat Cells): Part 5 22:56 
   Mobilization of TAGs Stored in Fat Cells 24:35 
   Fatty Acid Oxidation 28:29 
    Fatty Acid Oxidation 28:48 
    3 Reactions of the Carnitine Shuttle 30:42 
    Carnitine Shuttle & The Mitochondrial Matrix 36:25 
    CAT I 43:58 
    Carnitine Shuttle is the Rate-Limiting Steps 46:24 
  Fatty Acid Catabolism II 45:58
   Intro 0:00 
   Fatty Acid Catabolism 0:15 
    Fatty Acid Oxidation Takes Place in 3 Stages 0:16 
   β-Oxidation 2:05 
    β-Oxidation Overview 2:06 
    Reaction 1 4:20 
    Reaction 2 7:35 
    Reaction 3 8:52 
    Reaction 4 10:16 
    β-Oxidation Reactions Discussion 11:34 
   Notes On β-Oxidation 15:14 
    Double Bond After The First Reaction 15:15 
    Reaction 1 is Catalyzed by 3 Isozymes of Acyl-CoA Dehydrogenase 16:04 
    Reaction 2 & The Addition of H₂O 18:38 
    After Reaction 4 19:24 
    Production of ATP 20:04 
   β-Oxidation of Unsaturated Fatty Acid 21:25 
    β-Oxidation of Unsaturated Fatty Acid 22:36 
   β-Oxidation of Mono-Unsaturates 24:49 
    β-Oxidation of Mono-Unsaturates: Reaction 1 24:50 
    β-Oxidation of Mono-Unsaturates: Reaction 2 28:43 
    β-Oxidation of Mono-Unsaturates: Reaction 3 30:50 
    β-Oxidation of Mono-Unsaturates: Reaction 4 31:06 
   β-Oxidation of Polyunsaturates 32:29 
    β-Oxidation of Polyunsaturates: Part 1 32:30 
    β-Oxidation of Polyunsaturates: Part 2 37:08 
    β-Oxidation of Polyunsaturates: Part 3 40:25 
  Fatty Acid Catabolism III 33:18
   Intro 0:00 
   Fatty Acid Catabolism 0:43 
    Oxidation of Fatty Acids With an Odd Number of Carbons 0:44 
    β-oxidation in the Mitochondrion & Two Other Pathways 9:08 
    ω-oxidation 10:37 
    α-oxidation 17:22 
   Ketone Bodies 19:08 
    Two Fates of Acetyl-CoA Formed by β-Oxidation Overview 19:09 
    Ketone Bodies: Acetone 20:42 
    Ketone Bodies: Acetoacetate 20:57 
    Ketone Bodies: D-β-hydroxybutyrate 21:25 
    Two Fates of Acetyl-CoA Formed by β-Oxidation: Part 1 22:05 
    Two Fates of Acetyl-CoA Formed by β-Oxidation: Part 2 26:59 
    Two Fates of Acetyl-CoA Formed by β-Oxidation: Part 3 30:52 

XII. Catabolism of Amino Acids and the Urea Cycle

  Overview & The Aminotransferase Reaction 40:59
   Intro 0:00 
   Overview of The Aminotransferase Reaction 0:25 
    Overview of The Aminotransferase Reaction 0:26 
    The Aminotransferase Reaction: Process 1 3:06 
    The Aminotransferase Reaction: Process 2 6:46 
    Alanine From Muscle Tissue 10:54 
    Bigger Picture of the Aminotransferase Reaction 14:52 
    Looking Closely at Process 1 19:04 
    Pyridoxal Phosphate (PLP) 24:32 
    Pyridoxamine Phosphate 25:29 
    Pyridoxine (B6) 26:38 
    The Function of PLP 27:12 
    Mechanism Examples 28:46 
    Reverse Reaction: Glutamate to α-Ketoglutarate 35:34 
  Glutamine & Alanine: The Urea Cycle I 39:18
   Intro 0:00 
   Glutamine & Alanine: The Urea Cycle I 0:45 
    Excess Ammonia, Glutamate, and Glutamine 0:46 
    Glucose-Alanine Cycle 9:54 
    Introduction to the Urea Cycle 20:56 
    The Urea Cycle: Production of the Carbamoyl Phosphate 22:59 
    The Urea Cycle: Reaction & Mechanism Involving the Carbamoyl Phosphate Synthetase 33:36 
  Glutamine & Alanine: The Urea Cycle II 36:21
   Intro 0:00 
   Glutamine & Alanine: The Urea Cycle II 0:14 
    The Urea Cycle Overview 0:34 
    Reaction 1: Ornithine → Citrulline 7:30 
    Reaction 2: Citrulline → Citrullyl-AMP 11:15 
    Reaction 2': Citrullyl-AMP → Argininosuccinate 15:25 
    Reaction 3: Argininosuccinate → Arginine 20:42 
    Reaction 4: Arginine → Orthinine 24:00 
    Links Between the Citric Acid Cycle & the Urea Cycle 27:47 
    Aspartate-argininosuccinate Shunt 32:36 
  Amino Acid Catabolism 47:58
   Intro 0:00 
   Amino Acid Catabolism 0:10 
    Common Amino Acids and 6 Major Products 0:11 
    Ketogenic Amino Acid 1:52 
    Glucogenic Amino Acid 2:51 
    Amino Acid Catabolism Diagram 4:18 
    Cofactors That Play a Role in Amino Acid Catabolism 7:00 
    Biotin 8:42 
    Tetrahydrofolate 10:44 
    S-Adenosylmethionine (AdoMet) 12:46 
    Tetrahydrobiopterin 13:53 
    S-Adenosylmethionine & Tetrahydrobiopterin Molecules 14:41 
   Catabolism of Phenylalanine 18:30 
    Reaction 1: Phenylalanine to Tyrosine 18:31 
    Reaction 2: Tyrosine to p-Hydroxyphenylpyruvate 21:36 
    Reaction 3: p-Hydroxyphenylpyruvate to Homogentisate 23:50 
    Reaction 4: Homogentisate to Maleylacetoacetate 25:42 
    Reaction 5: Maleylacetoacetate to Fumarylacetoacetate 28:20 
    Reaction 6: Fumarylacetoacetate to Fumarate & Succinyl-CoA 29:51 
    Reaction 7: Fate of Fumarate & Succinyl-CoA 31:14 
   Phenylalanine Hydroxylase 33:33 
    The Phenylalanine Hydroxylase Reaction 33:34 
    Mixed-Function Oxidases 40:26 
    When Phenylalanine Hydoxylase is Defective: Phenylketonuria (PKU) 44:13 

XIII. Oxidative Phosphorylation and ATP Synthesis

  Oxidative Phosphorylation I 41:11
   Intro 0:00 
   Oxidative Phosphorylation 0:54 
    Oxidative Phosphorylation Overview 0:55 
    Mitochondrial Electron Transport Chain Diagram 7:15 
    Enzyme Complex I of the Electron Transport Chain 12:27 
    Enzyme Complex II of the Electron Transport Chain 14:02 
    Enzyme Complex III of the Electron Transport Chain 14:34 
    Enzyme Complex IV of the Electron Transport Chain 15:30 
    Complexes Diagram 16:25 
   Complex I 18:25 
    Complex I Overview 18:26 
    What is Ubiquinone or Coenzyme Q? 20:02 
    Coenzyme Q Transformation 22:37 
    Complex I Diagram 24:47 
    Fe-S Proteins 26:42 
    Transfer of H⁺ 29:42 
   Complex II 31:06 
    Succinate Dehydrogenase 31:07 
    Complex II Diagram & Process 32:54 
    Other Substrates Pass Their e⁻ to Q: Glycerol 3-Phosphate 37:31 
    Other Substrates Pass Their e⁻ to Q: Fatty Acyl-CoA 39:02 
  Oxidative Phosphorylation II 36:27
   Intro 0:00 
   Complex III 0:19 
    Complex III Overview 0:20 
    Complex III: Step 1 1:56 
    Complex III: Step 2 6:14 
   Complex IV 8:42 
    Complex IV: Cytochrome Oxidase 8:43 
   Oxidative Phosphorylation, cont'd 17:18 
    Oxidative Phosphorylation: Summary 17:19 
    Equation 1 19:13 
    How Exergonic is the Reaction? 21:03 
    Potential Energy Represented by Transported H⁺ 27:24 
    Free Energy Change for the Production of an Electrochemical Gradient Via an Ion Pump 28:48 
    Free Energy Change in Active Mitochondria 32:02 

Duration: 46 hours, 39 minutes

Number of Lessons: 63

This online college-level course is perfect for pre-medical students as well as biology and chemistry majors who want to ace their biochemistry course and prepare for standardized tests. Lessons go in-depth with real world examples to help you understand how biomolecules interact to make life possible.

Additional Features:

  • Free Sample Lessons
  • Closed Captioning (CC)
  • Downloadable Lecture Slides
  • Instructor Comments

Topics Include:

  • Titrations & Buffers
  • Peptide Synthesis
  • Alpha Helix & Beta Conformation
  • Enzyme Kinetics
  • Polysaccharides
  • Membrane Lipids
  • Thermodynamics
  • Glycolysis
  • Citric Acid Cycle
  • Fatty Acid Catabolism
  • Urea Cycle
  • Oxidative Phosphorylation

Combining his triple degrees in Mathematics, Chemistry, and Classics, along with 15+ years of teaching experience, Professor Hovasapian expertly helps students understand difficult biochemical concepts.

Student Testimonials:

“You should receive teacher of the CENTURY award” — Jason S.

"These are fantastic lectures. I have no doubt i'm going to get an A in my biochem exam because you've helped clear the concepts so well." — Gaston D.

"Wow! You just saved me on my exam! Thank you so much." — Roxanna A.

“I can't tell you how much your lectures have helped me with my studies. I wish all lecturers explained things as well as you do! Thank you Professor H!” — Jennifer P.