Sign In | Subscribe

Join Professor Dan Fullerton’s AP Physics C: Mechanics online course to understand the nuances of calculus based physics. Each lesson consists of clear explanations, tons of step-by-step examples, and insights into beating the exam. The course finishes with a full walkthrough of a previous year’s Physics C exam complete with test-taking strategies to help you get that 5.

expand all   collapse all

I. Introduction

  What is Physics? 7:12
   Intro 0:00 
   Objectives 0:11 
   What is Physics? 0:27 
   Why? 0:50 
    Physics Answers the 'Why' Question 0:51 
   Matter 1:27 
    Matter 1:28 
    Mass 1:43 
    Inertial Mass 1:50 
    Gravitational Mass 2:13 
   A Spacecraft's Mass 3:03 
    What is the Mass of the Spacecraft? 3:05 
   Energy 3:37 
    Energy 3:38 
    Work 3:45 
    Putting Energy and Work Together 3:50 
   Mass-Energy Equivalence 4:15 
    Relationship between Mass & Energy: E = mc² 4:16 
    Source of Energy on Earth 4:47 
   The Study of Everything 5:00 
    Physics is the Study of Everything 5:01 
   Mechanics 5:29 
    Topics Covered 5:30 
    Topics Not Covered 6:07 
   Next Steps 6:44 
    Three Things You'd Like to Learn About in Physics 6:45 
  Math Review 1:00:51
   Intro 0:00 
   Objectives 0:10 
   Vectors and Scalars 1:06 
    Scalars 1:07 
    Vectors 1:27 
   Vector Representations 2:00 
    Vector Representations 2:01 
   Graphical Vector Addition 2:54 
    Graphical Vector Addition 2:55 
   Graphical Vector Subtraction 5:36 
    Graphical Vector Subtraction 5:37 
   Vector Components 7:12 
    Vector Components 7:13 
   Angle of a Vector 8:56 
    tan θ 9:04 
    sin θ 9:25 
    cos θ 9:46 
   Vector Notation 10:10 
    Vector Notation 1 10:11 
    Vector Notation 2 12:59 
   Example I: Magnitude of the Horizontal & Vertical Component 16:08 
   Example II: Magnitude of the Plane's Eastward Velocity 17:59 
   Example III: Magnitude of Displacement 19:33 
   Example IV: Total Displacement from Starting Position 21:51 
   Example V: Find the Angle Theta Depicted by the Diagram 26:35 
   Vector Notation, cont. 27:07 
    Unit Vector Notation 27:08 
    Vector Component Notation 27:25 
   Vector Multiplication 28:39 
    Dot Product 28:40 
    Cross Product 28:54 
   Dot Product 29:03 
    Dot Product 29:04 
   Defining the Dot Product 29:26 
    Defining the Dot Product 29:27 
   Calculating the Dot Product 29:42 
    Unit Vector Notation 29:43 
    Vector Component Notation 30:58 
   Example VI: Calculating a Dot Product 31:45 
    Example VI: Part 1 - Find the Dot Product of the Following Vectors 31:46 
    Example VI: Part 2 - What is the Angle Between A and B? 32:20 
   Special Dot Products 33:52 
    Dot Product of Perpendicular Vectors 33:53 
    Dot Product of Parallel Vectors 34:03 
   Dot Product Properties 34:51 
    Commutative 34:52 
    Associative 35:05 
    Derivative of A * B 35:24 
   Example VII: Perpendicular Vectors 35:47 
   Cross Product 36:42 
    Cross Product of Two Vectors 36:43 
    Direction Using the Right-hand Rule 37:32 
    Cross Product of Parallel Vectors 38:04 
   Defining the Cross Product 38:13 
    Defining the Cross Product 38:14 
   Calculating the Cross Product Unit Vector Notation 38:41 
    Calculating the Cross Product Unit Vector Notation 38:42 
   Calculating the Cross Product Matrix Notation 39:18 
    Calculating the Cross Product Matrix Notation 39:19 
   Example VII: Find the Cross Product of the Following Vectors 42:09 
   Cross Product Properties 45:16 
    Cross Product Properties 45:17 
   Units 46:41 
    Fundamental Units 46:42 
    Derived units 47:13 
   Example IX: Dimensional Analysis 47:21 
   Calculus 49:05 
    Calculus 49:06 
   Differential Calculus 49:49 
    Differentiation & Derivative 49:50 
   Example X: Derivatives 51:21 
   Integral Calculus 53:03 
    Integration 53:04 
    Integral 53:11 
    Integration & Derivation are Inverse Functions 53:16 
    Determine the Original Function 53:37 
   Common Integrations 54:45 
    Common Integrations 54:46 
   Example XI: Integrals 55:17 
   Example XII: Calculus Applications 58:32 

II. Kinematics

  Describing Motion I 23:47
   Intro 0:00 
   Objectives 0:10 
   Position / Displacement 0:39 
    Object's Position 0:40 
    Position Vector 0:45 
    Displacement 0:56 
    Position & Displacement are Vectors 1:05 
    Position & Displacement in 1 Dimension 1:11 
   Example I: Distance & Displacement 1:21 
   Average Speed 2:14 
    Average Speed 2:15 
    Average Speed is Scalar 2:27 
   Average Velocity 2:39 
    Average Velocity 2:40 
    Average Velocity is a Vector 2:57 
   Example II: Speed vs. Velocity 3:16 
    Example II: Deer's Average Speed 3:17 
    Example II: Deer's Average Velocity 3:48 
   Example III: Chuck the Hungry Squirrel 4:21 
    Example III: Chuck's Distance Traveled 4:22 
    Example III: Chuck's Displacement 4:43 
    Example III: Chuck's Average Speed 5:25 
    Example III: Chuck's Average Velocity 5:39 
   Acceleration 6:11 
    Acceleration: Definition & Equation 6:12 
    Acceleration: Units 6:19 
    Relationship of Acceleration to Velocity 6:52 
   Example IV: Acceleration Problem 7:05 
   The Position Vector 7:39 
    The Position Vector 7:40 
   Average Velocity 9:35 
    Average Velocity 9:36 
   Instantaneous Velocity 11:20 
    Instantaneous Velocity 11:21 
    Instantaneous Velocity is the Derivative of Position with Respect to Time 11:35 
    Area Under the Velocity-time Graph 12:08 
   Acceleration 12:36 
    More on Acceleration 12:37 
    Average Acceleration 13:11 
    Velocity vs. Time Graph 13:14 
   Graph Transformations 13:59 
    Graphical Analysis of Motion 14:00 
   Velocity and acceleration in 2D 14:35 
    Velocity Vector in 2D 14:39 
    Acceleration Vector in 2D 15:26 
   Polynomial Derivatives 16:10 
    Polynomial Derivatives 16:11 
   Example V: Polynomial Kinematics 16:31 
   Example VI: Velocity Function 17:54 
    Example VI: Part A - Determine the Acceleration at t=1 Second 17:55 
    Example VI: Part B - Determine the Displacement between t=0 and t=5 Seconds 18:33 
   Example VII: Tortoise and Hare 20:14 
   Example VIII: d-t Graphs 22:40 
  Describing Motion II 36:47
   Intro 0:00 
   Objectives 0:09 
   Special Case: Constant Acceleration 0:31 
    Constant Acceleration & Kinematic Equations 0:32 
   Deriving the Kinematic Equations 1:28 
    V = V₀ + at 1:39 
    ∆x = V₀t +(1/2)at² 2:03 
    V² = V₀² +2a∆x 4:05 
   Problem Solving Steps 7:02 
    Step 1 7:13 
    Step 2 7:18 
    Step 3 7:27 
    Step 4 7:30 
    Step 5 7:31 
   Example IX: Horizontal Kinematics 7:38 
   Example X: Vertical Kinematics 9:45 
   Example XI: 2 Step Problem 11:23 
   Example XII: Acceleration Problem 15:01 
   Example XIII: Particle Diagrams 15:57 
   Example XIV: Particle Diagrams 17:36 
   Example XV: Quadratic Solution 18:46 
   Free Fall 22:56 
    Free Fall 22:57 
   Air Resistance 23:24 
    Air Resistance 23:25 
   Acceleration Due to Gravity 23:48 
    Acceleration Due to Gravity 23:49 
   Objects Falling From Rest 24:18 
    Objects Falling From Rest 24:19 
   Example XVI: Falling Objects 24:55 
   Objects Launched Upward 26:01 
    Objects Launched Upward 26:02 
   Example XVII: Ball Thrown Upward 27:16 
   Example XVIII: Height of a Jump 27:48 
   Example XIX: Ball Thrown Downward 31:10 
   Example XX: Maximum Height 32:27 
   Example XXI: Catch-Up Problem 33:53 
   Example XXII: Ranking Max Height 35:52 
  Projectile Motion 30:34
   Intro 0:00 
   Objectives 0:07 
   What is a Projectile? 0:28 
    What is a Projectile? 0:29 
   Path of a Projectile 0:58 
    Path of a Projectile 0:59 
   Independence of Motion 2:45 
    Vertical & Horizontal Motion 2:46 
   Example I: Horizontal Launch 3:14 
   Example II: Parabolic Path 7:20 
   Angled Projectiles 8:01 
    Angled Projectiles 8:02 
   Example III: Human Cannonball 10:05 
   Example IV: Motion Graphs 14:39 
   Graphing Projectile Motion 19:05 
    Horizontal Equation 19:06 
    Vertical Equation 19:46 
   Example V: Arrow Fired from Tower 21:28 
   Example VI: Arrow Fired from Tower 24:10 
   Example VII: Launch from a Height 24:40 
   Example VIII: Acceleration of a Projectile 29:49 
  Circular & Relative Motion 30:24
   Intro 0:00 
   Objectives 0:08 
   Radians and Degrees 0:32 
    Degrees 0:35 
    Radians 0:40 
   Example I: Radians and Degrees 1:08 
    Example I: Part A - Convert 90 Degrees to Radians 1:09 
    Example I: Part B - Convert 6 Radians to Degrees 2:08 
   Linear vs. Angular Displacement 2:38 
    Linear Displacement 2:39 
    Angular Displacement 2:52 
   Linear vs. Angular Velocity 3:18 
    Linear Velocity 3:19 
    Angular Velocity 3:25 
   Direction of Angular Velocity 4:36 
    Direction of Angular Velocity 4:37 
   Converting Linear to Angular Velocity 5:05 
    Converting Linear to Angular Velocity 5:06 
   Example II: Earth's Angular Velocity 6:12 
   Linear vs. Angular Acceleration 7:26 
    Linear Acceleration 7:27 
    Angular Acceleration 7:32 
   Centripetal Acceleration 8:05 
    Expressing Position Vector in Terms of Unit Vectors 8:06 
    Velocity 10:00 
    Centripetal Acceleration 11:14 
    Magnitude of Centripetal Acceleration 13:24 
   Example III: Angular Velocity & Centripetal Acceleration 14:02 
   Example IV: Moon's Orbit 15:03 
   Reference Frames 17:44 
    Reference Frames 17:45 
    Laws of Physics 18:00 
    Motion at Rest vs. Motion at a Constant Velocity 18:21 
   Motion is Relative 19:20 
    Reference Frame: Sitting in a Lawn Chair 19:21 
    Reference Frame: Sitting on a Train 19:56 
   Calculating Relative Velocities 20:19 
    Calculating Relative Velocities 20:20 
    Example: Calculating Relative Velocities 20:57 
   Example V: Man on a Train 23:19 
   Example VI: Airspeed 24:56 
   Example VII: 2-D Relative Motion 26:12 
   Example VIII: Relative Velocity w/ Direction 28:32 

III. Dynamics

  Newton's First Law & Free Body Diagrams 23:57
   Intro 0:00 
   Objectives 0:11 
   Newton's 1st Law of Motion 0:28 
    Newton's 1st Law of Motion 0:29 
   Force 1:16 
    Definition of Force 1:17 
    Units of Force 1:20 
    How Much is a Newton? 1:25 
    Contact Forces 1:47 
    Field Forces 2:32 
   What is a Net Force? 2:53 
    What is a Net Force? 2:54 
   What Does It Mean? 4:35 
    What Does It Mean? 4:36 
   Objects at Rest 4:52 
    Objects at Rest 4:53 
   Objects in Motion 5:12 
    Objects in Motion 5:13 
   Equilibrium 6:03 
    Static Equilibrium 6:04 
    Mechanical Equilibrium 6:22 
    Translational Equilibrium 6:38 
   Inertia 6:48 
    Inertia 6:49 
    Inertial Mass 6:58 
    Gravitational Mass 7:11 
   Example I: Inertia 7:40 
   Example II: Inertia 8:03 
   Example III: Translational Equilibrium 8:25 
   Example IV: Net Force 9:19 
   Free Body Diagrams 10:34 
    Free Body Diagrams Overview 10:35 
   Falling Elephant: Free Body Diagram 10:53 
    Free Body Diagram Neglecting Air Resistance 10:54 
    Free Body Diagram Including Air Resistance 11:22 
   Soda on Table 11:54 
    Free Body Diagram for a Glass of Soda Sitting on a Table 11:55 
   Free Body Diagram for Box on Ramp 13:38 
    Free Body Diagram for Box on Ramp 13:39 
    Pseudo- Free Body Diagram 15:26 
   Example V: Translational Equilibrium 18:35 
  Newton's Second & Third Laws of Motion 23:57
   Intro 0:00 
   Objectives 0:09 
   Newton's 2nd Law of Motion 0:36 
    Newton's 2nd Law of Motion 0:37 
   Applying Newton's 2nd Law 1:12 
    Step 1 1:13 
    Step 2 1:18 
    Step 3 1:27 
    Step 4 1:36 
   Example I: Block on a Surface 1:42 
   Example II: Concurrent Forces 2:42 
   Mass vs. Weight 4:09 
    Mass 4:10 
    Weight 4:28 
   Example III: Mass vs. Weight 4:45 
   Example IV: Translational Equilibrium 6:43 
   Example V: Translational Equilibrium 8:23 
   Example VI: Determining Acceleration 10:13 
   Example VII: Stopping a Baseball 12:38 
   Example VIII: Steel Beams 14:11 
   Example IX: Tension Between Blocks 17:03 
   Example X: Banked Curves 18:57 
   Example XI: Tension in Cords 24:03 
   Example XII: Graphical Interpretation 27:13 
   Example XIII: Force from Velocity 28:12 
   Newton's 3rd Law 29:16 
    Newton's 3rd Law 29:17 
   Examples - Newton's 3rd Law 30:01 
    Examples - Newton's 3rd Law 30:02 
   Action-Reaction Pairs 30:40 
    Girl Kicking Soccer Ball 30:41 
    Rocket Ship in Space 31:02 
    Gravity on You 31:23 
   Example XIV: Force of Gravity 32:11 
   Example XV: Sailboat 32:38 
   Example XVI: Hammer and Nail 33:18 
   Example XVII: Net Force 33:47 
  Friction 20:41
   Intro 0:00 
   Objectives 0:06 
   Coefficient of Friction 0:21 
    Coefficient of Friction 0:22 
    Approximate Coefficients of Friction 0:44 
   Kinetic or Static? 1:21 
    Sled Sliding Down a Snowy Hill 1:22 
    Refrigerator at Rest that You Want to Move 1:32 
    Car with Tires Rolling Freely 1:49 
    Car Skidding Across Pavement 2:01 
   Example I: Car Sliding 2:21 
   Example II: Block on Incline 3:04 
   Calculating the Force of Friction 3:33 
    Calculating the Force of Friction 3:34 
   Example III: Finding the Frictional Force 4:02 
   Example IV: Box on Wood Surface 5:34 
   Example V: Static vs. Kinetic Friction 7:35 
   Example VI: Drag Force on Airplane 7:58 
   Example VII: Pulling a Sled 8:41 
   Example VIII: AP-C 2007 FR1 13:23 
    Example VIII: Part A 13:24 
    Example VIII: Part B 14:40 
    Example VIII: Part C 15:19 
    Example VIII: Part D 17:08 
    Example VIII: Part E 18:24 
  Retarding & Drag Forces 32:10
   Intro 0:00 
   Objectives 0:07 
   Retarding Forces 0:41 
    Retarding Forces 0:42 
   The Skydiver 1:30 
    Drag Forces on a Free-falling Object 1:31 
   Velocity as a Function of Time 5:31 
    Velocity as a Function of Time 5:32 
   Velocity as a Function of Time, cont. 12:27 
    Acceleration 12:28 
   Velocity as a Function of Time, cont. 15:16 
    Graph: Acceleration vs. Time 16:06 
    Graph: Velocity vs. Time 16:40 
    Graph: Displacement vs. Time 17:04 
   Example I: AP-C 2005 FR1 17:43 
    Example I: Part A 17:44 
    Example I: Part B 19:17 
    Example I: Part C 20:17 
    Example I: Part D 21:09 
    Example I: Part E 22:42 
   Example II: AP-C 2013 FR2 24:26 
    Example II: Part A 24:27 
    Example II: Part B 25:25 
    Example II: Part C 26:22 
    Example II: Part D 27:04 
    Example II: Part E 30:50 
  Ramps & Inclines 20:31
   Intro 0:00 
   Objectives 0:06 
   Drawing Free Body Diagrams for Ramps 0:32 
    Step 1: Choose the Object & Draw It as a Dot or Box 0:33 
    Step 2: Draw and Label all the External Forces 0:39 
    Step 3: Sketch a Coordinate System 0:42 
    Example: Object on a Ramp 0:52 
   Pseudo-Free Body Diagrams 2:06 
    Pseudo-Free Body Diagrams 2:07 
    Redraw Diagram with All Forces Parallel to Axes 2:18 
   Box on a Ramp 4:08 
    Free Body Diagram for Box on a Ramp 4:09 
    Pseudo-Free Body Diagram for Box on a Ramp 4:54 
   Example I: Box at Rest 6:13 
   Example II: Box Held By Force 6:35 
   Example III: Truck on a Hill 8:46 
   Example IV: Force Up a Ramp 9:29 
   Example V: Acceleration Down a Ramp 12:01 
   Example VI: Able of Repose 13:59 
   Example VII: Sledding 17:03 
  Atwood Machines 24:58
   Intro 0:00 
   Objectives 0:07 
   What is an Atwood Machine? 0:25 
    What is an Atwood Machine? 0:26 
   Properties of Atwood Machines 1:03 
    Ideal Pulleys are Frictionless and Massless 1:04 
    Tension is Constant 1:14 
   Setup for Atwood Machines 1:26 
    Setup for Atwood Machines 1:27 
   Solving Atwood Machine Problems 1:52 
    Solving Atwood Machine Problems 1:53 
   Alternate Solution 5:24 
    Analyze the System as a Whole 5:25 
   Example I: Basic Atwood Machine 7:31 
   Example II: Moving Masses 9:59 
   Example III: Masses and Pulley on a Table 13:32 
   Example IV: Mass and Pulley on a Ramp 15:47 
   Example V: Ranking Atwood Machines 19:50 

IV. Work, Energy, & Power

  Work 37:34
   Intro 0:00 
   Objectives 0:07 
   What is Work? 0:36 
    What is Work? 0:37 
    Units of Work 1:09 
   Work in One Dimension 1:31 
    Work in One Dimension 1:32 
   Examples of Work 2:19 
    Stuntman in a Jet Pack 2:20 
    A Girl Struggles to Push Her Stalled Car 2:50 
    A Child in a Ghost Costume Carries a Bag of Halloween Candy Across the Yard 3:24 
   Example I: Moving a Refrigerator 4:03 
   Example II: Liberating a Car 4:53 
   Example III: Lifting Box 5:30 
   Example IV: Pulling a Wagon 6:13 
   Example V: Ranking Work on Carts 7:13 
   Non-Constant Forces 12:21 
    Non-Constant Forces 12:22 
   Force vs. Displacement Graphs 13:49 
    Force vs. Displacement Graphs 13:50 
   Hooke's Law 14:41 
    Hooke's Law 14:42 
   Determining the Spring Constant 15:38 
    Slope of the Graph Gives the Spring Constant, k 15:39 
   Work Done in Compressing the Spring 16:34 
    Find the Work Done in Compressing the String 16:35 
   Example VI: Finding Spring Constant 17:21 
   Example VII: Calculating Spring Constant 19:48 
   Example VIII: Hooke's Law 20:30 
   Example IX: Non-Linear Spring 22:18 
   Work in Multiple Dimensions 23:52 
    Work in Multiple Dimensions 23:53 
   Work-Energy Theorem 25:25 
    Work-Energy Theorem 25:26 
   Example X: Work-Energy Theorem 28:35 
   Example XI: Work Done on Moving Carts 30:46 
   Example XII: Velocity from an F-d Graph 35:01 
  Energy & Conservative Forces 28:04
   Intro 0:00 
   Objectives 0:08 
   Energy Transformations 0:31 
    Energy Transformations 0:32 
    Work-Energy Theorem 0:57 
   Kinetic Energy 1:12 
    Kinetic Energy: Definition 1:13 
    Kinetic Energy: Equation 1:55 
   Example I: Frog-O-Cycle 2:07 
   Potential Energy 2:46 
    Types of Potential Energy 2:47 
    A Potential Energy Requires an Interaction between Objects 3:29 
   Internal energy 3:50 
    Internal Energy 3:51 
   Types of Energy 4:37 
    Types of Potential & Kinetic Energy 4:38 
   Gravitational Potential Energy 5:42 
    Gravitational Potential Energy 5:43 
   Example II: Potential Energy 7:27 
   Example III: Kinetic and Potential Energy 8:16 
   Example IV: Pendulum 9:09 
   Conservative Forces 11:37 
    Conservative Forces Overview 11:38 
    Type of Conservative Forces 12:42 
    Types of Non-conservative Forces 13:02 
   Work Done by Conservative Forces 13:28 
    Work Done by Conservative Forces 13:29 
   Newton's Law of Universal Gravitation 14:18 
    Gravitational Force of Attraction between Any Two Objects with Mass 14:19 
   Gravitational Potential Energy 15:27 
    Gravitational Potential Energy 15:28 
   Elastic Potential Energy 17:36 
    Elastic Potential Energy 17:37 
   Force from Potential Energy 18:51 
    Force from Potential Energy 18:52 
   Gravitational Force from the Gravitational Potential Energy 20:46 
    Gravitational Force from the Gravitational Potential Energy 20:47 
   Hooke's Law from Potential Energy 22:04 
    Hooke's Law from Potential Energy 22:05 
   Summary 23:16 
    Summary 23:17 
   Example V: Kinetic Energy of a Mass 24:40 
   Example VI: Force from Potential Energy 25:48 
   Example VII: Work on a Spinning Disc 26:54 
  Conservation of Energy 54:56
   Intro 0:00 
   Objectives 0:09 
   Conservation of Mechanical Energy 0:32 
    Consider a Single Conservative Force Doing Work on a Closed System 0:33 
   Non-Conservative Forces 1:40 
    Non-Conservative Forces 1:41 
    Work Done by a Non-conservative Force 1:47 
    Formula: Total Energy 1:54 
    Formula: Total Mechanical Energy 2:04 
   Example I: Falling Mass 2:15 
   Example II: Law of Conservation of Energy 4:07 
   Example III: The Pendulum 6:34 
   Example IV: Cart Compressing a Spring 10:12 
   Example V: Cart Compressing a Spring 11:12 
    Example V: Part A - Potential Energy Stored in the Compressed Spring 11:13 
    Example V: Part B - Maximum Vertical Height 12:01 
   Example VI: Car Skidding to a Stop 13:05 
   Example VII: Block on Ramp 14:22 
   Example VIII: Energy Transfers 16:15 
   Example IX: Roller Coaster 20:04 
   Example X: Bungee Jumper 23:32 
    Example X: Part A - Speed of the Jumper at a Height of 15 Meters Above the Ground 24:48 
    Example X: Part B - Speed of the Jumper at a Height of 30 Meters Above the Ground 26:53 
    Example X: Part C - How Close Does the Jumper Get to the Ground? 28:28 
   Example XI: AP-C 2002 FR3 30:28 
    Example XI: Part A 30:59 
    Example XI: Part B 31:54 
    Example XI: Part C 32:50 
    Example XI: Part D & E 33:52 
   Example XII: AP-C 2007 FR3 35:24 
    Example XII: Part A 35:52 
    Example XII: Part B 36:27 
    Example XII: Part C 37:48 
    Example XII: Part D 39:32 
   Example XIII: AP-C 2010 FR1 41:07 
    Example XIII: Part A 41:34 
    Example XIII: Part B 43:05 
    Example XIII: Part C 45:24 
    Example XIII: Part D 47:18 
   Example XIV: AP-C 2013 FR1 48:25 
    Example XIV: Part A 48:50 
    Example XIV: Part B 49:31 
    Example XIV: Part C 51:27 
    Example XIV: Part D 52:46 
    Example XIV: Part E 53:25 
  Power 16:44
   Intro 0:00 
   Objectives 0:06 
   Defining Power 0:20 
    Definition of Power 0:21 
    Units of Power 0:27 
    Average Power 0:43 
   Instantaneous Power 1:03 
    Instantaneous Power 1:04 
   Example I: Horizontal Box 2:07 
   Example II: Accelerating Truck 4:48 
   Example III: Motors Delivering Power 6:00 
   Example IV: Power Up a Ramp 7:00 
   Example V: Power from Position Function 8:51 
   Example VI: Motorcycle Stopping 10:48 
   Example VII: AP-C 2003 FR1 11:52 
    Example VII: Part A 11:53 
    Example VII: Part B 12:50 
    Example VII: Part C 14:36 
    Example VII: Part D 15:52 

V. Momentum

  Momentum & Impulse 13:09
   Intro 0:00 
   Objectives 0:07 
   Momentum 0:39 
    Definition of Momentum 0:40 
    Total Momentum 1:00 
    Formula for Momentum 1:05 
    Units of Momentum 1:11 
   Example I: Changing Momentum 1:18 
   Impulse 2:27 
    Impulse 2:28 
   Example II: Impulse 2:41 
   Relationship Between Force and ∆p (Impulse) 3:36 
    Relationship Between Force and ∆p (Impulse) 3:37 
   Example III: Force from Momentum 4:37 
   Impulse-Momentum Theorem 5:14 
    Impulse-Momentum Theorem 5:15 
   Example IV: Impulse-Momentum 6:26 
   Example V: Water Gun & Horizontal Force 7:56 
   Impulse from F-t Graphs 8:53 
    Impulse from F-t Graphs 8:54 
   Example VI: Non-constant Forces 9:16 
   Example VII: F-t Graph 10:01 
   Example VIII: Impulse from Force 11:19 
  Conservation of Linear Momentum 46:30
   Intro 0:00 
   Objectives 0:08 
   Conservation of Linear Momentum 0:28 
    In an Isolated System 0:29 
    In Any Closed System 0:37 
    Direct Outcome of Newton's 3rd Law of Motion 0:47 
   Collisions and Explosions 1:07 
    Collisions and Explosions 1:08 
    The Law of Conservation of Linear Momentum 1:25 
   Solving Momentum Problems 1:35 
    Solving Momentum Problems 1:36 
   Types of Collisions 2:08 
    Elastic Collision 2:09 
    Inelastic Collision 2:34 
   Example I: Traffic Collision 3:00 
   Example II: Collision of Two Moving Objects 6:55 
   Example III: Recoil Velocity 9:47 
   Example IV: Atomic Collision 12:12 
   Example V: Collision in Multiple Dimensions 18:11 
   Example VI: AP-C 2001 FR1 25:16 
    Example VI: Part A 25:33 
    Example VI: Part B 26:44 
    Example VI: Part C 28:17 
    Example VI: Part D 28:58 
   Example VII: AP-C 2002 FR1 30:10 
    Example VII: Part A 30:20 
    Example VII: Part B 32:14 
    Example VII: Part C 34:25 
    Example VII: Part D 36:17 
   Example VIII: AP-C 2014 FR1 38:55 
    Example VIII: Part A 39:28 
    Example VIII: Part B 41:00 
    Example VIII: Part C 42:57 
    Example VIII: Part D 44:20 
  Center of Mass 28:26
   Intro 0:00 
   Objectives 0:07 
   Center of Mass 0:45 
    Center of Mass 0:46 
   Finding Center of Mass by Inspection 1:25 
    For Uniform Density Objects 1:26 
    For Objects with Multiple Parts 1:36 
    For Irregular Objects 1:44 
   Example I: Center of Mass by Inspection 2:06 
   Calculating Center of Mass for Systems of Particles 2:25 
    Calculating Center of Mass for Systems of Particles 2:26 
   Example II: Center of Mass (1D) 3:15 
   Example III: Center of Mass of Continuous System 4:29 
   Example IV: Center of Mass (2D) 6:00 
   Finding Center of Mass by Integration 7:38 
    Finding Center of Mass by Integration 7:39 
   Example V: Center of Mass of a Uniform Rod 8:10 
   Example VI: Center of Mass of a Non-Uniform Rod 11:40 
   Center of Mass Relationships 14:44 
    Center of Mass Relationships 14:45 
   Center of Gravity 17:36 
    Center of Gravity 17:37 
    Uniform Gravitational Field vs. Non-uniform Gravitational Field 17:53 
   Example VII: AP-C 2004 FR1 18:26 
    Example VII: Part A 18:45 
    Example VII: Part B 19:38 
    Example VII: Part C 21:03 
    Example VII: Part D 22:04 
    Example VII: Part E 24:52 

VI. Uniform Circular Motion

  Uniform Circular Motion 21:36
   Intro 0:00 
   Objectives 0:08 
   Uniform Circular Motion 0:42 
    Distance Around the Circle for Objects Traveling in a Circular Path at Constant Speed 0:51 
    Average Speed for Objects Traveling in a Circular Path at Constant Speed 1:15 
   Frequency 1:42 
    Definition of Frequency 1:43 
    Symbol of Frequency 1:46 
    Units of Frequency 1:49 
   Period 2:04 
    Period 2:05 
   Frequency and Period 2:19 
    Frequency and Period 2:20 
   Example I: Race Car 2:32 
   Example II: Toy Train 3:22 
   Example III: Round-A-Bout 4:07 
    Example III: Part A - Period of the Motion 4:08 
    Example III: Part B- Frequency of the Motion 4:43 
    Example III: Part C- Speed at Which Alan Revolves 4:58 
   Uniform Circular Motion 5:28 
    Is an Object Undergoing Uniform Circular Motion Accelerating? 5:29 
   Direction of Centripetal Acceleration 6:21 
    Direction of Centripetal Acceleration 6:22 
   Magnitude of Centripetal Acceleration 8:23 
    Magnitude of Centripetal Acceleration 8:24 
   Example IV: Car on a Track 8:39 
   Centripetal Force 10:14 
    Centripetal Force 10:15 
   Calculating Centripetal Force 11:47 
    Calculating Centripetal Force 11:48 
   Example V: Acceleration 12:41 
   Example VI: Direction of Centripetal Acceleration 13:44 
   Example VII: Loss of Centripetal Force 14:03 
   Example VIII: Bucket in Horizontal Circle 14:44 
   Example IX: Bucket in Vertical Circle 15:24 
   Example X: Demon Drop 17:38 
    Example X: Question 1 18:02 
    Example X: Question 2 18:25 
    Example X: Question 3 19:22 
    Example X: Question 4 20:13 

VII. Rotational Motion

  Rotational Kinematics 32:52
   Intro 0:00 
   Objectives 0:07 
   Radians and Degrees 0:35 
    Once Around a Circle: In Degrees 0:36 
    Once Around a Circle: In Radians 0:48 
    Measurement of Radian 0:51 
   Example I: Radian and Degrees 1:08 
    Example I: Convert 90° to Radians 1:09 
    Example I: Convert 6 Radians to Degree 1:23 
   Linear vs. Angular Displacement 1:43 
    Linear Displacement 1:44 
    Angular Displacement 1:51 
   Linear vs. Angular Velocity 2:04 
    Linear Velocity 2:05 
    Angular Velocity 2:10 
   Direction of Angular Velocity 2:28 
    Direction of Angular Velocity 2:29 
   Converting Linear to Angular Velocity 2:58 
    Converting Linear to Angular Velocity 2:59 
   Example II: Angular Velocity of Earth 3:51 
   Linear vs. Angular Acceleration 4:35 
    Linear Acceleration 4:36 
    Angular Acceleration 4:42 
   Example III: Angular Acceleration 5:09 
   Kinematic Variable Parallels 6:30 
    Kinematic Variable Parallels: Translational & Angular 6:31 
   Variable Translations 7:00 
    Variable Translations: Translational & Angular 7:01 
   Kinematic Equation Parallels 7:38 
    Kinematic Equation Parallels: Translational & Rotational 7:39 
   Example IV: Deriving Centripetal Acceleration 8:29 
   Example V: Angular Velocity 13:24 
    Example V: Part A 13:25 
    Example V: Part B 14:15 
   Example VI: Wheel in Motion 14:39 
   Example VII: AP-C 2003 FR3 16:23 
    Example VII: Part A 16:38 
    Example VII: Part B 17:34 
    Example VII: Part C 24:02 
   Example VIII: AP-C 2014 FR2 25:35 
    Example VIII: Part A 25:47 
    Example VIII: Part B 26:28 
    Example VIII: Part C 27:48 
    Example VIII: Part D 28:26 
    Example VIII: Part E 29:16 
  Moment of Inertia 24:00
   Intro 0:00 
   Objectives 0:07 
   Types of Inertia 0:34 
    Inertial Mass 0:35 
    Moment of Inertia 0:44 
   Kinetic Energy of a Rotating Disc 1:25 
    Kinetic Energy of a Rotating Disc 1:26 
   Calculating Moment of Inertia (I) 5:32 
    Calculating Moment of Inertia (I) 5:33 
   Moment of Inertia for Common Objects 5:49 
    Moment of Inertia for Common Objects 5:50 
   Example I: Point Masses 6:46 
   Example II: Uniform Rod 9:09 
   Example III: Solid Cylinder 13:07 
   Parallel Axis Theorem (PAT) 17:33 
    Parallel Axis Theorem (PAT) 17:34 
   Example IV: Calculating I Using the Parallel Axis Theorem 18:39 
   Example V: Hollow Sphere 20:18 
   Example VI: Long Thin Rod 20:55 
   Example VII: Ranking Moment of Inertia 21:50 
   Example VIII: Adjusting Moment of Inertia 22:39 
  Torque 26:09
   Intro 0:00 
   Objectives 0:06 
   Torque 0:18 
    Definition of Torque 0:19 
    Torque & Rotation 0:26 
    Lever Arm ( r ) 0:30 
    Example: Wrench 0:39 
   Direction of the Torque Vector 1:45 
    Direction of the Torque Vector 1:46 
    Finding Direction Using the Right-hand Rule 1:53 
   Newton's 2nd Law: Translational vs. Rotational 2:20 
    Newton's 2nd Law: Translational vs. Rotational 2:21 
   Equilibrium 3:17 
    Static Equilibrium 3:18 
    Dynamic Equilibrium 3:30 
   Example I: See-Saw Problem 3:46 
   Example II: Beam Problem 7:12 
   Example III: Pulley with Mass 10:34 
   Example IV: Net Torque 13:46 
   Example V: Ranking Torque 15:29 
   Example VI: Ranking Angular Acceleration 16:25 
   Example VII: Café Sign 17:19 
   Example VIII: AP-C 2008 FR2 19:44 
    Example VIII: Part A 20:12 
    Example VIII: Part B 21:08 
    Example VIII: Part C 22:36 
    Example VIII: Part D 24:37 
  Rotational Dynamics 56:58
   Intro 0:00 
   Objectives 0:08 
   Conservation of Energy 0:48 
    Translational Kinetic Energy 0:49 
    Rotational Kinetic Energy 0:54 
    Total Kinetic Energy 1:03 
   Example I: Disc Rolling Down an Incline 1:10 
   Rotational Dynamics 4:25 
    Rotational Dynamics 4:26 
   Example II: Strings with Massive Pulleys 4:37 
   Example III: Rolling without Slipping 9:13 
   Example IV: Rolling with Slipping 13:45 
   Example V: Amusement Park Swing 22:49 
   Example VI: AP-C 2002 FR2 26:27 
    Example VI: Part A 26:48 
    Example VI: Part B 27:30 
    Example VI: Part C 29:51 
    Example VI: Part D 30:50 
   Example VII: AP-C 2006 FR3 31:39 
    Example VII: Part A 31:49 
    Example VII: Part B 36:20 
    Example VII: Part C 37:14 
    Example VII: Part D 38:48 
   Example VIII: AP-C 2010 FR2 39:40 
    Example VIII: Part A 39:46 
    Example VIII: Part B 40:44 
    Example VIII: Part C 44:31 
    Example VIII: Part D 46:44 
   Example IX: AP-C 2013 FR3 48:27 
    Example IX: Part A 48:47 
    Example IX: Part B 50:33 
    Example IX: Part C 53:28 
    Example IX: Part D 54:15 
    Example IX: Part E 56:20 
  Angular Momentum 33:02
   Intro 0:00 
   Objectives 0:09 
   Linear Momentum 0:44 
    Definition of Linear Momentum 0:45 
    Total Angular Momentum 0:52 
    p = mv 0:59 
   Angular Momentum 1:08 
    Definition of Angular Momentum 1:09 
    Total Angular Momentum 1:21 
    A Mass with Velocity v Moving at Some Position r 1:29 
   Calculating Angular Momentum 1:44 
    Calculating Angular Momentum 1:45 
   Spin Angular Momentum 4:17 
    Spin Angular Momentum 4:18 
   Example I: Object in Circular Orbit 4:51 
   Example II: Angular Momentum of a Point Particle 6:34 
   Angular Momentum and Net Torque 9:03 
    Angular Momentum and Net Torque 9:04 
   Conservation of Angular Momentum 11:53 
    Conservation of Angular Momentum 11:54 
   Example III: Ice Skater Problem 12:20 
   Example IV: Combining Spinning Discs 13:52 
   Example V: Catching While Rotating 15:13 
   Example VI: Changes in Angular Momentum 16:47 
   Example VII: AP-C 2005 FR3 17:37 
    Example VII: Part A 18:12 
    Example VII: Part B 18:32 
    Example VII: Part C 19:53 
    Example VII: Part D 21:52 
   Example VIII: AP-C 2014 FR3 24:23 
    Example VIII: Part A 24:31 
    Example VIII: Part B 25:33 
    Example VIII: Part C 26:58 
    Example VIII: Part D 28:24 
    Example VIII: Part E 30:42 

VIII. Oscillations

  Oscillations 1:01:12
   Intro 0:00 
   Objectives 0:08 
   Simple Harmonic Motion 0:45 
    Simple Harmonic Motion 0:46 
   Circular Motion vs. Simple Harmonic Motion (SHM) 1:39 
    Circular Motion vs. Simple Harmonic Motion (SHM) 1:40 
   Position, Velocity, & Acceleration 4:55 
    Position 4:56 
    Velocity 5:12 
    Acceleration 5:49 
   Frequency and Period 6:37 
    Frequency 6:42 
    Period 6:49 
   Angular Frequency 7:05 
    Angular Frequency 7:06 
   Example I: Oscillating System 7:37 
    Example I: Determine the Object's Angular Frequency 7:38 
    Example I: What is the Object's Position at Time t = 10s? 8:16 
    Example I: At What Time is the Object at x = 0.1m? 9:10 
   Mass on a Spring 10:17 
    Mass on a Spring 10:18 
   Example II: Analysis of Spring-Block System 11:34 
   Example III: Spring-Block ranking 12:53 
   General Form of Simple Harmonic Motion 14:41 
    General Form of Simple Harmonic Motion 14:42 
   Graphing Simple Harmonic Motion (SHM) 15:22 
    Graphing Simple Harmonic Motion (SHM) 15:23 
   Energy of Simple Harmonic Motion (SHM) 15:49 
    Energy of Simple Harmonic Motion (SHM) 15:50 
   Horizontal Spring Oscillator 19:24 
    Horizontal Spring Oscillator 19:25 
   Vertical Spring Oscillator 20:58 
    Vertical Spring Oscillator 20:59 
   Springs in Series 23:30 
    Springs in Series 23:31 
   Springs in Parallel 26:08 
    Springs in Parallel 26:09 
   The Pendulum 26:59 
    The Pendulum 27:00 
   Energy and the Simple Pendulum 27:46 
    Energy and the Simple Pendulum 27:47 
   Frequency and Period of a Pendulum 30:16 
    Frequency and Period of a Pendulum 30:17 
   Example IV: Deriving Period of a Simple Pendulum 31:42 
   Example V: Deriving Period of a Physical Pendulum 35:20 
   Example VI: Summary of Spring-Block System 38:16 
   Example VII: Harmonic Oscillator Analysis 44:14 
    Example VII: Spring Constant 44:24 
    Example VII: Total Energy 44:45 
    Example VII: Speed at the Equilibrium Position 45:05 
    Example VII: Speed at x = 0.30 Meters 45:37 
    Example VII: Speed at x = -0.40 Meter 46:46 
    Example VII: Acceleration at the Equilibrium Position 47:21 
    Example VII: Magnitude of Acceleration at x = 0.50 Meters 47:35 
    Example VII: Net Force at the Equilibrium Position 48:04 
    Example VII: Net Force at x = 0.25 Meter 48:20 
    Example VII: Where does Kinetic Energy = Potential Energy? 48:33 
   Example VIII: Ranking Spring Systems 49:35 
   Example IX: Vertical Spring Block Oscillator 51:45 
   Example X: Ranking Period of Pendulum 53:50 
   Example XI: AP-C 2009 FR2 54:50 
    Example XI: Part A 54:58 
    Example XI: Part B 57:57 
    Example XI: Part C 59:11 
   Example XII: AP-C 2010 FR3 60:18 
    Example XII: Part A 60:49 
    Example XII: Part B 62:47 
    Example XII: Part C 64:30 
    Example XII: Part D 65:53 
    Example XII: Part E 68:13 

IX. Gravity & Orbits

  Gravity & Orbits 34:59
   Intro 0:00 
   Objectives 0:07 
   Newton's Law of Universal Gravitation 0:45 
    Newton's Law of Universal Gravitation 0:46 
   Example I: Gravitational Force Between Earth and Sun 2:24 
   Example II: Two Satellites 3:39 
   Gravitational Field Strength 4:23 
    Gravitational Field Strength 4:24 
   Example III: Weight on Another Planet 6:22 
   Example IV: Gravitational Field of a Hollow Shell 7:31 
   Example V: Gravitational Field Inside a Solid Sphere 8:33 
   Velocity in Circular Orbit 12:05 
    Velocity in Circular Orbit 12:06 
   Period and Frequency for Circular Orbits 13:56 
    Period and Frequency for Circular Orbits 13:57 
   Mechanical Energy for Circular Orbits 16:11 
    Mechanical Energy for Circular Orbits 16:12 
   Escape Velocity 17:48 
    Escape Velocity 17:49 
   Kepler's 1st Law of Planetary Motion 19:41 
    Keller's 1st Law of Planetary Motion 19:42 
   Kepler's 2nd Law of Planetary Motion 20:05 
    Keller's 2nd Law of Planetary Motion 20:06 
   Kepler's 3rd Law of Planetary Motion 20:57 
    Ratio of the Squares of the Periods of Two Planets 20:58 
    Ratio of the Squares of the Periods to the Cubes of Their Semi-major Axes 21:41 
   Total Mechanical Energy for an Elliptical Orbit 21:57 
    Total Mechanical Energy for an Elliptical Orbit 21:58 
   Velocity and Radius for an Elliptical Orbit 22:35 
    Velocity and Radius for an Elliptical Orbit 22:36 
   Example VI: Rocket Launched Vertically 24:26 
   Example VII: AP-C 2007 FR2 28:16 
    Example VII: Part A 28:35 
    Example VII: Part B 29:51 
    Example VII: Part C 31:14 
    Example VII: Part D 32:23 
    Example VII: Part E 33:16 

X. Sample AP Exam

  1998 AP Practice Exam: Multiple Choice 28:11
   Intro 0:00 
   Problem 1 0:30 
   Problem 2 0:51 
   Problem 3 1:25 
   Problem 4 2:00 
   Problem 5 3:05 
   Problem 6 4:19 
   Problem 7 4:48 
   Problem 8 5:18 
   Problem 9 5:38 
   Problem 10 6:26 
   Problem 11 7:21 
   Problem 12 8:08 
   Problem 13 8:35 
   Problem 14 9:20 
   Problem 15 10:09 
   Problem 16 10:25 
   Problem 17 11:30 
   Problem 18 12:27 
   Problem 19 13:00 
   Problem 20 14:40 
   Problem 21 15:44 
   Problem 22 16:42 
   Problem 23 17:35 
   Problem 24 17:54 
   Problem 25 18:32 
   Problem 26 19:08 
   Problem 27 20:56 
   Problem 28 22:19 
   Problem 29 22:36 
   Problem 30 23:18 
   Problem 31 24:06 
   Problem 32 24:40 
  1998 AP Practice Exam: Free Response Questions (FRQ) 28:11
   Intro 0:00 
   Question 1 0:15 
    Part A: I 0:16 
    Part A: II 0:46 
    Part A: III 1:13 
    Part B 1:40 
    Part C 2:49 
    Part D: I 4:46 
    Part D: II 5:15 
   Question 2 5:46 
    Part A: I 6:13 
    Part A: II 7:05 
    Part B: I 7:48 
    Part B: II 8:42 
    Part B: III 9:03 
    Part B: IV 9:26 
    Part B: V 11:32 
   Question 3 13:30 
    Part A: I 13:50 
    Part A: II 14:16 
    Part A: III 14:38 
    Part A: IV 14:56 
    Part A: V 15:36 
    Part B 16:11 
    Part C 17:00 
    Part D: I 19:56 
    Part D: II 21:08 

Duration: 15 hours, 28 minutes

Number of Lessons: 29

This course is geared towards the high schooler taking the AP Physics C: Mechanics exam but is also perfect for college students taking calculus based physics. Physics C: Mechanics is typically taken after AP Physics 1 & 2, and sometimes concurrently with Physics C: Electricity & Magnetism.

Additional Features:

  • Free Sample Lessons
  • Closed Captioning (CC)
  • Downloadable Lecture Slides
  • Study Guides
  • Instructor Comments

Topics Include:

  • Kinematics
  • Circular & Relative Motion
  • Newton’s Laws
  • Free Body Diagrams
  • Friction
  • Ramps & Inclines
  • Conservation of Energy
  • Momentum & Impulse
  • Uniform Circular Motion
  • Torque
  • Oscillation
  • Gravity & Orbits
  • Sample AP Exam

Professor Dan Fullerton obtained his B.S. and M.S. in Microelectronic Engineering from the Rochester Institute of Technology (RIT) and his secondary physics teaching certification from Drexel University. He taught undergraduate and graduate Microelectronic Engineering courses at RIT for 10 years, and High School Physics since 2007. He was recently named a New York State Master Physics Teacher, and is the author of AP Physics 1 Essentials, Honors Physics Essentials, and Physics: Fundamentals and Problem Solving.

Student Testimonials:

“Woot! I'm so excited, I've been waiting for this course!” — Caleb L.

“Wonderful lectures!” — Michael B.

“Really helpful class!!! Thank you professor!” — Huijie S.