Enter your Sign on user name and password.

Forgot password?
  • Follow us on:

Dr. Radi Jishi continues helping students master Electricity and Magnetism with his AP Physics C course. Building on previous concepts, Professor Jishi guides you through complex physics problems and prepares you for the Calculus based physics of the Advanced Placement test. Although the course is geared towards obtaining a 5 on the AP test, College students studying physics will also benefit from the detailed explanations and plenty of comprehensive extra examples in every lesson. Professor Jishi received his Ph.D in Physics from MIT and has been teaching over 20 years. While not teaching, Professor Jishi researches carbon systems, nanotubes, and superconductivity with prestigious grants from entities such as the Air Force, National Science Foundation, and the National Institute of Health. He has also published over 60 papers in peer-reviewed physics journals.

Loading video...
expand all   collapse all
I. Electricity
  Electric Force 56:18
   Intro 0:00 
   Electric Charge 0:18 
    Matter Consists of Atom 1:01 
    Two Types of Particles: Protons & Neutrons 1:48 
    Object with Excess Electrons: Negatively Charged 7:58 
    Carbon Atom 8:30 
    Positively Charged Object 9:55 
   Electric Charge 10:07 
    Rubber Rod Rubs Against Fur (Negative Charge) 10:16 
    Glass Rod Rub Against Silk (Positive Charge) 11:48 
    Hanging Rubber Rod 12:44 
   Conductors and Insulators 16:00 
    Electrons Close to Nucleus 18:34 
    Conductors Have Mobile Charge 21:30 
    Insulators: No Moving Electrons 23:06 
    Copper Wire Connected to Excess Negative charge 23:22 
    Other End Connected to Excess Positive Charge 24:09 
   Charging a Metal Object 27:25 
    By Contact 28:05 
    Metal Sphere on an Insulating Stand 28:16 
    Charging by Induction 30:59 
    Negative Rubber Rod 31:26 
    Size of Atom 36:08 
   Extra Example 1: Three Metallic Objects 7:32 
   Extra Example 2: Rubber Rod and Two Metal Spheres 6:25 
  Coulomb's Law 87:18
   Intro 0:00 
   Coulomb's Law 0:59 
    Two Point Charges by Distance R 1:11 
    Permitivity of Free Space 5:28 
   Charges on the Vertices of a Triangle 8:00 
    3 Charges on Vertices of Right Triangle 8:29 
    Charge of 4, -5 and -2 micro-Coulombs 10:00 
    Force Acting on Each Charge 10:58 
   Charges on a Line 21:29 
    2 Charges on X-Axis 22:40 
    Where Should Q should be Placed, Net Force =0 23:23 
   Two Small Spheres Attached to String 31:08 
    Adding Some Charge 32:03 
    Equilibrium Net Force on Each Sphere = 0 33:38 
   Simple Harmonic Motion of Point Charge 37:40 
    Two Charges on Y-Axis 37:55 
    Charge is Attracted 39:52 
    Magnitude of Net Force on Q 42:23 
   Extra Example 1: Vertices of Triangle 9:39 
   Extra Example 2: Tension in String 11:46 
   Extra Example 3: Two Conducting Spheres 6:29 
   Extra Example 4: Force on Charge 9:21 
  Electric Field 97:24
   Intro 0:00 
   Definition of Electric Field 0:11 
    Q1 Produces Electric Field 3:23 
    Charges on a Conductor 4:26 
   Field of a Point Charge 13:10 
    Charge Point Between Two Fields 13:20 
    Electric Field E=kq/r2 14:29 
    Direction of the Charge Field 15:10 
    Positive Charge, Field is Radially Out 15:45 
   Field of a Collection of a Point Charge 19:40 
    Two Charges Q1,Q2 19:56 
    Q1 Positive, Electric Field is Radially Out 20:32 
    Q2 is Negative, Electric Field is Radially Inward 20:46 
    4 Charges are Equal 23:54 
   Parallel Plate Capacitor 25:42 
    Two Plates ,Separated by a Distance 26:44 
    Fringe Effect 30:26 
    E=Constant Between the Parallel Plate Capacitor 30:40 
   Electric Field Lines 35:16 
    Pictorial Representation of Electric Field 35:30 
    Electric Lines are Tangent to the Vector 35:57 
    Lines Start at Positive Charge, End on Negative Charge 41:24 
    Parallel Line Proportional to Charge 45:51 
    Lines Never Cross 46:00 
   Conductors and Shielding 49:33 
    Static Equilibrium 51:09 
    No Net Moment of Charge 53:09 
    Electric Field is Perpendicular to the Surface of Conductor 55:40 
   Extra Example 1: Plastic Sphere Between Capacitor 8:46 
   Extra Example 2: Electron Between Capacitor 11:52 
   Extra Example 3: Zero Electric Field 10:44 
   Extra Example 4: Dimensional Analysis 6:01 
  Electric Field of a Continuous Charge Distribution 100:12
   Intro 0:00 
   General Expression For E 0:16 
    Magnitude of Electric Field 1:29 
    Disk: Spread Charge Distribution 5:04 
    Volume Contains Charges 6:16 
   Charged Rod One Dimension 16:28 
    Rod in X-Axis 17:00 
    Charge Density 17:49 
    Find Electric Field at Distance 'A' 19:05 
   Charged Rod, Cont. 32:48 
    Origin at Center, Extends From -L to +L 33:11 
    Dividing Rod into Pieces 34:50 
    Electric Field Produced At Point P 35:09 
    Another Element 37:43 
    'Y' Components of Electric Field 42:15 
   Charged Ring 54:23 
    Find Electric Field Above the Center 54:48 
   Charged Disc 58:43 
    Collection of Rings 59:10 
   Example 1: Charged Disk 17:18 
   Example 2: Semicircle with Charge 7:49 
   Example 3: Charged Cylindrical Charge 13:53 
  Gauss's Law 87:00
   Intro 0:00 
   Electric Field Lines 0:11 
    Magnitude of Field 2:04 
    Unit Area and Unit Lines 2:59 
    Number of Lines Passing Through the Unit 6:45 
   Electic Flux: Constant E 6:51 
    Field Lines Equally Spaced 7:10 
    Area Perpendicular To Field Lines 7:46 
    Electric Flux 8:36 
    Area Perpendicular to Electric Lines 9:43 
    Tilt the Area 10:58 
    Flux of E Through Area 17:30 
   Electric Flux: General Case 20:46 
    Perpendicular at Different Directions 23:24 
    Electric Field Given On a Patch 27:10 
    Magnitude of Field 28:53 
    Direction is Outward Normal 29:34 
    Flux Through Patch 30:36 
   Example 36:09 
    Electric Field in Whole Space 37:16 
    Sphere of Radius 'r' 37:30 
    Flux Through Sphere 38:09 
   Gauss's Law: Charge Outside 46:02 
    Flux Through Radius Phase is Zero 50:09 
    Outward normal 'n' 54:55 
   Gauss's Law: Charge Enclosed 60:30 
    Drawing Cones 60:51 
   Example 1: Flux Through Square 7:08 
   Example 2: Flux Through Cube 10:23 
   Example 3: Flux Through Pyramid 5:01 
  Application of Gauss's Law, Part 1 66:48
   Intro 0:00 
   When is Gauss Law Useful? 0:18 
    Need a Surface S 5:14 
    Gaussian Surface 5:50 
   Sphere of Charge 10:11 
    Charge Density is Uniform 10:30 
    Radius as 'A' 11:23 
    Case 1: R>A 11:58 
    Any Direction On Cone Is Same 20:28 
    Case 2: R<A 25:15 
    Point R Within the Surface 25:30 
   Concentric Cavity 31:11 
    Inside Circle and Outside Circle 31:48 
    R>A 32:17 
    R<B 36:40 
   Radius Dependent Charge Density 37:39 
    Sphere 38:09 
    Total Charge: Q 39:46 
    Spherical Shell 40:13 
    Finding Electric Field R>A 42:36 
    R<A 44:14 
   Example 1: Charged Sphere 9:56 
   Example 2: Charged Spherical Cavity 11:06 
  Application of Gauss's Law, Part 2 79:19
   Intro 0:00 
   Infinitely Long Line of Charge 0:13 
    All Points Same Magnitude 5:02 
    E is Perpendicular to Line 9:08 
    Gauss's Law Cannot be Applied to Finite Length 15:50 
   Infinitely Long Cylinder Of Charge 16:05 
    Draw a Cylinder of Radius 'R' 16:36 
    Line of Charge Along the Center 18:25 
    R<A 18:39 
    Electric Field of Special Direction 19:06 
   Infinite Sheet of Charge 25:12 
    Electric Field Above the Sheet 25:38 
    Point is Above Height, Cylinder Intersects 26:29 
    Curved Path 33:12 
   Parallel Plate Capacitors 37:16 
    Electric Field Between Sheets 39:16 
   Conductors 41:55 
    Adding Charge to Conductors 42:16 
    In Electrostatic Equilibrium Charges Stop Moving 44:37 
    Electric Field is Perpendicular to Surface 47:16 
    Excess Charge Must Reside on Surface 47:38 
   Example 1: Cylindrical Shell 7:45 
   Example 2: Wire Surrounded by Shell 6:43 
   Example 3: Sphere Surrounded by Spherical Shell 7:30 
  Electric Potential, Part 1 86:57
   Intro 0:00 
   Potential Difference Between Two Points 0:16 
    Electric Field in Space By Stationary Charges 0:30 
    Point Charge Moves From A to B 1:37 
    Electric Field Exerts a Force 1:50 
    Electric Potential Energy 5:34 
    Work Done By External Agent 20:03 
    Change in Potential Energy is Equal to Amount of Work Done 24:06 
   Potential Difference in Uniform Electric Field 27:59 
    Constant Electric Field 28:22 
    Equipotential 40:22 
   Parallel Plates 40:52 
    Electric Field is Perpendicular to Plate 42:07 
    Charge Released at A from Rest 49:00 
   Motion of Charged Particle in a Uniform Electric Field 51:55 
   Example 1: Work by Moving Electrons 3:45 
   Example 2: Block and Spring 13:52 
   Example 3: Particle on String 11:27 
  Electric Potential, Part 2 91:50
   Intro 0:00 
   Potential of a Point Charge 0:32 
    Potential Difference Between A to B 1:25 
    Draw a Circle 9:12 
    Tangential to Sphere 9:33 
    Moving Normally From Sphere 12:33 
   Potential Energy of a Collection of Charges 26:33 
    Potential Energy of Two Charges 26:44 
    Work Done in Assembling the Configuration 27:29 
    Bringing From Infinity to New Location 33:57 
    Work Done by External Agent 36:22 
    Potential Energy of the System 39:39 
    Potential Energy for Two Charges 40:00 
   Example 44:49 
    Two Charges 45:03 
    Speed at Infinity 48:01 
   Electric Field from the Potential 51:12 
    Finding E if V is Given 51:33 
   Electric Dipole 56:22 
    Two Equal and Opposite Charges Separated By a Distance 56:32 
    If a << r1 or r2 60:23 
   Example 1: Two Point Charges 17:56 
   Example 2: Two Insulating Spheres 7:31 
   Example 3: Electric Potential of Space 4:01 
  Electric Potential, Part 3 69:12
   Intro 0:00 
    Continuous Charge Distribution 0:27 
    Finding Potential for a Charge Point 1:39 
    Potential Produced at P 4:42 
   Charged Ring 8:38 
    Electric Field at Some Point of Axis 9:13 
   Charged Disk 19:32 
    Collection of Ring 20:40 
    Finding Potential Point Above the Ring 22:19 
    Potential Due to The Ring 23:40 
   Finite Line of Charge 35:56 
    Line of Change Along the X-Axis and Y-axis 36:11 
   Example 1: Charged Rod 8:52 
   Example 2: Bent Semicircle 4:48 
   Example 3: Bent Semicircle with Variables 4:52 
  Electric Potential, Part 4 71:16
   Intro 0:00 
   Charged Conductors 0:12 
    Adding Excess Charge to a Conductor 1:02 
    E=0 Inside Conductors 1:50 
    Excess Charges Must Reside on Surface 3:40 
    E Normal on the Surface 9:31 
    Surface of Conductor is Equipotential 11:59 
   Conducting Sphere 19:28 
    Adding Charge to the Sphere 19:41 
    Electric Field Outside is Concentrated at Center 20:05 
    Electric Potential is Same as Center 23:01 
   Example 26:24 
    Two Spheres with Distance and of Different Size 26:45 
    Connecting Both Spheres with Conducting Wire 27:22 
   Cavity Within a Conductor 39:43 
    Hollow Conductor 40:19 
    Electric Static Equilibrium 41:13 
    Electric Field is Zero Within Cavity 53:20 
   Example 1: Neutral Conducting Sphere 4:03 
   Example 2: Conducting Sphere with Spherical Shell 13:45 
  Capacitor 84:14
   Intro 0:00 
   Capacitance 0:09 
    Consider Two Conductor s 0:25 
    Electric Field Passing from Positive to Negative 1:19 
    Potential Difference 3:31 
    Defining Capacitance 3:51 
   Parallel Plate Capacitance 8:30 
    Two Metallic Plates of Area 'a' and Distance 'd' 8:46 
    Potential Difference between Plates 13:12 
   Capacitance with a Dielectric 22:14 
    Applying Electric Field to a Capacitor 22:44 
    Dielectric 30:32 
   Example 34:56 
    Empty Capacitor 35:12 
    Connecting Capacitor to a Battery 35:26 
    Inserting Dielectric Between Plates 39:02 
   Energy of a Charged Capacitor 43:01 
    Work Done in Moving a Charge, Difference in Potential 47:48 
   Example 54:10 
    Parallel Plate Capacitor 54:22 
    Connect and Disconnect the Battery 55:27 
    Calculating Q=cv 55:50 
    Withdraw Mica Sheet 56:49 
    Word Done in Withdrawing the Mica 60:23 
   Extra Example 1: Parallel Plate Capacitor 8:41 
   Extra Example 2: Mica Dielectric 15:01 
  Combination of Capacitors 63:23
   Intro 0:00 
   Parallel Combination 0:20 
    Two Capacitors in Parallel With a Battery 0:40 
    Electric Field is Outside 5:47 
    Point A is Directly Connected to Positive Terminal 7:57 
    Point B is Directly Connected to Negative Terminal 8:10 
    Voltage Across Capacitor 12:54 
    Energy Stored 14:52 
   Series Combination 17:58 
    Two Capacitors Connected End to End With a Battery 18:10 
    Equivalent Capacitor 25:20 
    A is Same Potential 26:59 
    C is Same Potential 27:06 
    Potential Difference Across First Capacitor (Va-Vb) 27:42 
    (Vb-Vc) is Potential Difference Across Second Capacitor 28:10 
    Energy Stored in C1,C2 29:53 
   Example 31:07 
    Two Capacitor in Series, 2 in Parallel, 3 in Parallel, 1 Capacitor Connected 31:28 
    Final Equivalent Circuit 37:31 
   Extra Example 1: Four Capacitors 16:50 
   Extra Example 2: Circuit with Switches 8:25 
  Calculating Capacitance 55:14
   Intro 0:00 
   Considering a Sphere 0:28 
    Placing Charge on Sphere 2:14 
    On the Surface of Sphere 4:12 
   Spherical Capacitor 9:20 
    Sphere of Radius a and Shell of Radius b 9:40 
    Positive Charge on Outer Sphere 11:02 
    Negative Charge on Inner Sphere 11:26 
    Calculating Potential Difference 11:38 
   Parallel Plate Capacitor 22:38 
    Two Plates with Charges Positive and Negative 22:54 
    Separation of Plate 25:10 
   Cylindrical Capacitor 28:40 
    Inner Cylinder and Outer Cylindrical Shell 29:01 
    Linear Charge Density 30:41 
   Example 1: Parallel Plate Capacitor 4:39 
   Example 2: Spherical Capacitor 8:51 
  More on Filled Capacitors 77:13
   Intro 0:00 
   Electric Dipole is an Electric Field : Torque 0:13 
    Magnitude of Dipole 1:15 
    Starts to Rotate 5:38 
    Force qe to the Right 5:59 
    Finding the Torque 6:35 
   Electric Dipole is an Electric Field : Potential Energy 13:56 
    Electric Field Try's to Rotate 14:43 
    Object on Center of Earth 16:04 
    Applying Torque Equal and Opposite 17:05 
   Water Molecule 25:43 
    Carbon Molecules 31:39 
    Net Dipole Moment is Zero 32:11 
    Induced Dipole Moment 34:43 
   Filled Capacitor 35:27 
    Empty Capacitor with Charge on it 35:44 
    Inserting a Dielectric 36:08 
   Capacitor Partially Filled with Metallic Slab 44:33 
    Capacitor with Slab of Distance 'd' 44:54 
   Capacitor Partially Filled with a Dielectric Slab 51:59 
    Change in Potential Difference 53:28 
   Example 1: Parallel Plate Capacitor 13:37 
   Example 2: Conducting Slab 8:20 
  Electric Current 79:17
   Intro 0:00 
   Definition 0:20 
    Consider a Wire ,Cylindrical 0:40 
    Cross Sectional Area 1:06 
    Crossing Charges Will be Counted 2:50 
    Amount of Charge Crosses Cross Sectional Area 3:29 
    Current I=q/t 4:18 
    Charges Flowing in Opposite Direction 5:58 
    Current Density 6:19 
    Applying Electric Field 11:50 
   Current in a Wire 15:24 
    Wire With a Cross Section Area 'A' 15:33 
    Current Flowing to Right 18:57 
    How Much Charge Crosses Area 'A' 19:15 
    Drift Velocity 20:02 
    Carriers in Cylinder 22:40 
   Ohm's Law 24:58 
    Va-Vb = Electric Field times Length of Wire 28:27 
    Ohm's Law 28:54 
    Consider a Copper Wire of 1m , Cross Sectional Area 1cm/sq 34:24 
   Temperature Effect 37:07 
    Heating a Wire 37:05 
    Temperature Co-Efficient of Resistivity 39:57 
   Battery EMF 43:00 
    Connecting a Resistance to Battery 44:30 
    Potential Difference at Terminal of Battery 45:15 
   Power 53:30 
    Battery Connected with a Resistance 53:47 
    Work Done on Charge 56:55 
    Energy Lost Per Second 60:35 
   Extra Example 1: Current 9:46 
   Extra Example 2: Water Heater 8:05 
  Circuits 94:08
   Intro 0:00 
   Simple Rules 0:16 
    Resistance in Series 0:33 
    Current Passing Per Second is Equal 1:36 
    Potential Difference 3:10 
    Parallel Circuit, R1, R2 5:08 
    Battery, Current Starts From Positive Terminal to Negative Terminal 10:08 
   Series Combination of Resistances 13:06 
    R1, R2 Connected to Battery 13:35 
    Va-Vb=Ir1,Vb-Vc=Ir2 16:59 
    Three Resistance Connected in Series Req=r1+r2+r3 18:55 
   Parallel Combination of Resistance 19:28 
    R1 and R2 Combined Parallel 19:50 
    I=i1+i2 (Total Current) 24:26 
    Requ=I/E 24:51 
   A Simple Circuit 27:57 
    Current Splits 29:15 
    Total Resistance 31:52 
    Current I= 6/17.2 35:10 
   Another Simple Circuit 37:46 
    Battery has Small Internal Resistance 38:02 
    2 Ohms Internal Resistance, and Two Resistance in Parallel 38:24 
    Drawing Circuit 48:53 
    Finding Current 52:06 
   RC Circuit 55:17 
    Battery , Resistance and Capacitance Connected 55:30 
    Current is Function of Time 58:00 
    R, C are Time Constants 59:25 
   Extra Example 1: Resistor Current/Power 4:17 
   Extra Example 2: Find Current 6:03 
   Extra Example 3: Find Current 10:00 
   Extra Example 4: Find Current 13:49 
  Kirchhoff's Law 102:02
   Intro 0:00 
   First Kirchhoff Rule 0:19 
    Two Resistance Connected With a Battery 0:29 
    Many Resistance 1:40 
    Increase in Potential from A to B 4:46 
    Charge Flowing from Higher Potential to Lower Potential 5:13 
   Second Kirchhoff Rule 9:17 
    Current Entering 9:27 
    Total Current Arriving is Equal Current Leaving 13:20 
   Example 14:10 
    Battery 6 V, Resistance 20, 30 Ohms and Another Battery 4v 14:30 
    Current Entering I2+I3 21:18 
   Example 2 31:20 
    2 Loop circuit with 6v and 12 v and Resistance, Find Current in Each Resistance 32:29 
   Example 3 42:02 
    Battery and Resistance in Loops 42:23 
   Ammeters and Voltmeters 56:22 
    Measuring Current is Introducing an Ammeter 56:35 
    Connecting Voltmeter, High Resistance 57:31 
   Extra Example 1: Find Current 18:47 
   Extra Example 2: Find Current 13:35 
   Extra Example 3: Find Current 10:23 
  RC Circuits 80:35
   Intro 0:00 
   Charging a Capacitor: Circuit Equation 0:09 
    Circuit with a Resistance , Capacitance and a Battery 0:20 
    Closing Switch at T=0 1:36 
    Applying Kirchhoff's Rule 6:26 
    Change in Potential is Zero 6:52 
    Solution Tau dq/dt= ec-q 16:25 
   Discharging a Capacitor 27:14 
    Charged Capacitor Connect to Switch and Resistance 27:30 
    Closing the Switch at T=0 28:11 
   Example 36:50 
    12V Battery with Switch and Resistance 10mili ohms and Capacitor Connected 10 Micro Farad 37:02 
    Time Constant 38:58 
    Charge at q=0 at t=1sec 40:16 
   Example 42:58 
    Switch With Capacitor and Resistance 43:31 
    What Time Charge C Has Initial Valve 45:17 
    How Long Charge Energy Stored in C to Drop Half of Initial Value 46:55 
   Example 1: RC Circuit 1 6:49 
   Example 2: RC Circuit 2 12:53 
   Example 3: RC Circuit 3 10:42 
II. Magnetism
  Magnetic Field 98:19
   Intro 0:00 
   Magnets 0:13 
    Compass Will Always Point North 3:49 
    Moving a Compass Needle 5:50 
   Force on a Charged Particles 10:37 
    Electric Field and Charge Particle Q 10:48 
    Charge is Positive Force 11:11 
    Charge Particle is At Rest 13:38 
    Taking a Charged Particle and Moving to Right 16:15 
    Using Right Hand Rule 23:37 
    C= Magnitude of A, B 26:30 
    Magnitude of C 26:55 
   Motion of Particle in Uniform Magnetic Field 33:30 
    Magnetic Field has Same Direction 34:02 
    Direction of Force 38:40 
    Work Done By Force=0 41:40 
    Force is Perpendicular With Velocity 42:00 
   Bending an Electron Beam 48:09 
    Heating a Filament 48:29 
    Kinetic Energy of Battery 51:54 
    Introducing Magnetic Field 52:10 
   Velocity Selector 53:45 
    Selecting Particles of Specific Velocity 54:00 
    Parallel Plate Capacitor 54:30 
    Magnetic Force 56:20 
    Magnitude of Force 56:45 
   Extra Example 1: Vectors 19:24 
   Extra Example 2: Proton in Magnetic Field 8:33 
   Extra Example 3: Proton Circular Path 10:46 
  Magnetic Force on a Current Carrying Conductor 64:43
   Intro 0:00 
   Current Carrying Conductor in a Magnetic Field 0:19 
    Current Though the Wire Connected to Battery 1:22 
    Current Exerts Force Toward the Left 2:16 
    IF Current is Reversed ,Force Exerts on Right 2:47 
   Magnetic Force 3:31 
    Wire with Current 'I' and with magnetic Field 4:02 
    Force Exerted by Magnetic field 5:05 
    Applying right hand Rule 5:25 
    Let N be Number of Charge Carries Per /Vol 6:40 
    Force on Wire 8:30 
    Number of Charge Crossing in Time 't' 12:51 
   Example 22:32 
    Wire Bent to Semi Circle and Rest is Straight 22:51 
    Applying Constant Magnetic Field in 'y' Direction 23:24 
    Force n Straight Segment 23:50 
    Net Force 34:19 
   Example 1: Rod on Rails 15:37 
   Example 2: Magnetic Force on Wire 13:59 
  Torque on a Current Carrying Loop 69:06
   Intro 0:00 
   B-Field Parallel to Plane of the Loop 0:27 
    Loop in the X-Y Plane 1:06 
    Net Force on Loop 7:45 
   B-Field Not Parallel to Plane of the Loop 15:16 
    Loop in the X-Y Plane, Free to Rotate in X- Direction 15:32 
    Force on Out of Page and Force in to the Page 15:59 
    Loop Turns Through 90 Degrees 18:10 
   Magnetic Moment 36:26 
    Any Current Loop Has Current 'I' 36:51 
    Electric Dipole in Electric Field 38:17 
    Potential Energy 39:54 
    Magnetic Potential Energy of Dipole 41:05 
   Example 43:33 
    Circular of Radius 'r' With Magnetic Field and Pass Current 43:42 
    Torque 46:01 
   Example 1: Loop in Magnetic Field 9:21 
   Example 2: Rotating Charge 10:32 
  Magnetic Field Produced By Current, Part 1 57:58
   Intro 0:00 
   Biot-Savart Law 0:11 
    Suppose A current Carrying Wire 0:50 
    Magnetic Field Produced by the Tiny Element is Also Tiny 3:09 
    Permeability of Free Space 4:56 
   B-Field of a Straight Wire 8:40 
    Wire in X Axis 9:05 
    What is the Magnetic Field Produce at Point p 9:16 
    Taking a Small Segment 9:57 
    If Length is Infinite 26:26 
   Semi Circular Wire 27:02 
    Semicircular Wire of Radius 'R' 27:22 
    Finding Magnetic Field at Center 27:48 
   Circular Current in Loop 33:37 
    Circular Loop with Current 'I' 33:47 
    Current Above the Center 34:00 
   Example 1: Loop Carrying Current 10:42 
   Example 2: Concentric Loops 4:57 
  Magnetic Field Produced By Current, Part 2 79:29
   Intro 0:00 
   Ampere's Law 0:16 
    Consider a Loop at Any Point in Loop 1:15 
   Long Cylindrical Wire 9:08 
    Wire of Radius 'r' 9:24 
    Magnetic Field is Tangent to Circle and Has Same Magnitude 10:15 
    B at r>R 21:58 
    B at r<R 23:08 
    B at r=R 25:49 
   Toroid 26:58 
    Wrap a Wire to Toroid 27:47 
    Calculating the Magnetic Field for 1 Loop 29:30 
   Solenoid 39:17 
    Coil With Many Turns 39:35 
    Each Loop Carrying Current 40:29 
    Taking Loop Within the Solenoid and Close the Loop 43:05 
    Applying Ampere's Law 43:33 
   Example 1: Infinitely Long Wire 8:12 
   Example 2: Straight Wire 4:15 
   Example 3: Two Parallel Conductors 8:21 
   Example 4: Solenoid 10:13 
  Magnetic Field Produced By Current, Part 3 50:37
   Intro 0:00 
   Magnetic Force Between Parallel Conductors 0:16 
    Two Parallel Plate Capacitors with Current 0:40 
    Magnetic Field by i1 1:50 
    According to Right Hand Rule 2:37 
   Example 10:20 
    Wire of 4m Length 10:50 
    Mass of Wire 1Kg 11:18 
    Force of Repulsion =Mg 12:24 
   Gauss's Law in Magnetism 15:36 
    Surface of Area, Magnetic Field is Perpendicular to Surface 17:09 
    Magnetic Flux Through Enclosed surface 19:23 
   Example 26:44 
    Magnetic Field Out of Page 27:54 
    Consider a Flux Through Rectangular Loop 28:52 
   Example 1: Two Parallel Wires 9:45 
   Example 2: Cube with Magnetic Field 5:36 
  Faraday's Law 70:38
   Intro 0:00 
   Faraday's Law 0:14 
    Coil Connected to Ammeter 0:29 
    Introducing a Magnet 1:08 
    Moving the Magnet Forward and Backward 1:33 
    Flux Increasing in Time 2:20 
    Induced Electro Motive Force EMF 4:20 
    Iron Core Square with Battery and Switch, Ammeter 5:22 
    Close the Switch, Current Appears 6:11 
   Lenz's Law 9:17 
    Wire with Current I and Wire Loop 9:30 
    Magnetic Field is Into the Page 10:14 
    Current Induced in Wire to Oppose Change in Flux 12:54 
    Example: Two Wires with Resistance and Uniform Magnetic Field 16:00 
   Increasing B 29:02 
    Coil of 100 Turns 29:20 
    B Perpendicular to Coil 30:47 
    Flux Through Each Turn 32:25 
   Rotating Coil 37:36 
    Consider a Big Magnet and Rectangular Coil with many Turns 37:49 
    Rotating Coil With Angular Velocity 'w' 41:49 
   Example 1: Loop 9:51 
   Example 2: Solenoid 6:57 
   Example 3: Wrapped Square 7:16 
  Motional EMF 60:17
   Intro 0:00 
   Moving a Conducting Rod in Magnetic Field 0:24 
    Rod Moving in a Plane with Velocity 'v' 0:49 
    Charges Piles Up and Down Until Electric Force Balance 'B' 7:59 
    Equilibrium 9:30 
    Potential Difference, Distance to Length of Wire 9:59 
   Rod Pulled By External Agent 11:30 
    Resistance to Wire 12:01 
    Introducing Uniform Magnetic Field into The page 12:14 
    Finding Flux 14:45 
    Power Delivered to Resistance 17:01 
    Force Exerted by 'B' on Rod 19:10 
    Power By Agent 22:26 
   Sliding Rod 23:08 
    Resistance with a Sliding Rod and Magnetic Field 'B' 23:35 
    Push With Initial Velocity 'V0' 24:01 
    Finding Current = I 25:20 
   Rotating Rod 36:10 
    Magnetic Field into The Page 36:19 
    Rod fixed in Plane and Rotating 36:40 
    Induced EMF in Segment 40:00 
   Example 1: Bar in Magnetic Field 6:15 
   Example 2: Rod in Magnetic Field 11:08 
  Induced Electric Field 65:19
   Intro 0:00 
   Change B to Induce E 0:54 
    Loop with Magnetic Field B 1:10 
    Flux is Positive With Choice of 'n' 2:45 
    Suppose Magnetic Field is Changing 3:04 
    B Changing with time Flux (>0) 3:24 
    Change in Electric Field Induces magnetic Field 20:34 
   Example 21:08 
    Cylinder with Magnetic Field 21:20 
    Fill With Radius 'r' 22:11 
    Turn Off the Field 22:30 
    Magnetic Flux Through Big Loop 29:59 
   AC Generator 38:28 
    Magnetic Field with Coil of Many Turns 38:50 
    As the Coil Rotates Flux is Induced 39:18 
    Coil Rotated by Angle 40:29 
    Coil Connected to The Ring and End Connected to Lamp 42:12 
    Kinetic Energy Strike the Coil and Rotating Coil will Produce Electric Energy 45:12 
   Example 1: Electric Field 12:09 
   Example 2: Electric Field 7:00 
  Inductance 71:10
   Intro 0:00 
   Mutual Inductance 0:10 
    Two Coils 0:35 
    Current is Time Dependent 0:54 
    Flux Proportional 1:55 
    Magnetic Flux in Coil 2 2:08 
    Induced EMF 2:40 
    Flux Through 2nd Coil Proportional to Current in First Coil 4:07 
    Mutual Inductance 5:30 
    Suppose Current is in 2nd Coil 9:28 
   Example 12:15 
    Two Coils M=0.001 12:26 
    Φ= Mi1 14:17 
    Induced EMF 15:44 
   Example 18:30 
    Solenoid with N turns 18:40 
    B inside Solenoid 21:05 
    Φ Through the Ring 22:14 
   Self Inductance 27:50 
    Single Coil with Current 28:33 
    I with Time Dependent 28:54 
    Φ Proportional to B , Proportional to I 30:00 
    Induced EMF =-di/dt 31:27 
   Example 1: Circular Wire 15:46 
   Example 2: Two Coils 9:54 
   Example 3: Coil 7:24 
  RL Circuits 85:19
   Intro 0:00 
   Current Raising 0:45 
    Battery and Switch with Resistance and Inductance 1:17 
    Close s1 at T=0 2:27 
    With out Inductor , Current is E/R 4:03 
    I at T=0 9:51 
    Vb-Va= -Ir 15:05 
    Log (i-e/r) 19:51 
   Current Declining 27:16 
    Resistance R and Inductance 27:37 
    I= E/R 28:37 
    Switch is On at T=0 29:10 
   Example 39:46 
    Battery and Resistance R Connected with Inductor 39:55 
    Time Constant l/R 40:58 
    Time to Reach Half Time 41:59 
     per τ (1-1/e) 44:36 
   Magnetic Energy 45:47 
    E-IR-Ldi/dt 46:26 
    Power Derived By Current 46:51 
    Magnetic Energy Stored in Conductor 52:48 
    U=Li2 55:28 
   Magnetic Energy Density 57:49 
    Solenoid 58:18 
    U=1/2 Li2 59:03 
    Energy Density 60:45 
   Example 1: Circuit 1 6:13 
   Example 2: Circuit 2 16:54 
  Circuit Oscillation 82:26
   Intro 0:00 
   Oscillation in LC Circuit: Qualitative Analysis 0:30 
    Circuit with Capacitance and Inductance 1:27 
   Comparison with a Spring Block System 4:57 
    Close the Switch, Let the Block Move 5:51 
    At V=0 7:06 
   LC Circuit Oscillation :Quantitative Analysis 15:07 
    U Total = Ue + U m 17:26 
   Example RLC 29:25 
    Battery =12V, Capacitor and Inductor 29:54 
    Switch at B F> t 31:42 
    Damped Oscillation 50:14 
   Example 1: LC Circuit 1 7:34 
   Example 2: LC Circuit 2 16:19 
   Example 3: RLC Circuit 6:52 
  Maxwell's Equations 72:35
   Intro 0:00 
   Displacement Current 1:29 
    Ampere's Law 3:04 
    Surface Bounded by Path 3:48 
    I Current Going Through Surface 4:53 
    Charging a Capacitor 9:55 
   Maxwell's Equation 18:26 
    Integral Form 18:53 
    E.da =Q/e0 in Closed Surface 18:55 
    Absence of Magnetic Monopoles 19:55 
    Flux Through the Surface Bounded By C 22:26 
    Ampere's Law 23:01 
   Plane Electromagnetic Wave 31:03 
    Electric and Magnetic Field 31:27 
   Example 39:20 
    Electromagnetic Wave Traveling in X Direction 39:40 
    Lamda=c/f 41:30 
    B=E/C 43:49 
   Energy and Momentum Carried by EM Waves 44:34 
    Energy Density 46:35 
    Area in Y-Z Plane , Wave in X -Direction 48:53 
    Energy Crossing Per Unit Area 52:53 
    Pointing Vector 53:11 
    Reflection of Radioactive 60:26 
   Example 1: Cylindrical Region 8:36 
   Example 2: Electric Field of EM Wave 3:16