Enter your Sign on user name and password.

Forgot password?
Sign In | Subscribe
Start learning today, and be successful in your academic & professional career. Start Today!

Use Chrome browser to play professor video
Vincent Selhorst-Jones

Vincent Selhorst-Jones

Newton's 1st Law

Slide Duration:

Table of Contents

I. Motion
Math Review

16m 49s

Intro
0:00
The Metric System
0:26
Distance, Mass, Volume, and Time
0:27
Scientific Notation
1:40
Examples: 47,000,000,000 and 0.00000002
1:41
Significant Figures
3:18
Significant Figures Overview
3:19
Properties of Significant Figures
4:04
How Significant Figures Interact
7:00
Trigonometry Review
8:57
Pythagorean Theorem, sine, cosine, and tangent
8:58
Inverse Trigonometric Functions
9:48
Inverse Trigonometric Functions
9:49
Vectors
10:44
Vectors
10:45
Scalars
12:10
Scalars
12:11
Breaking a Vector into Components
13:17
Breaking a Vector into Components
13:18
Length of a Vector
13:58
Length of a Vector
13:59
Relationship Between Length, Angle, and Coordinates
14:45
One Dimensional Kinematics

26m 2s

Intro
0:00
Position
0:06
Definition and Example of Position
0:07
Distance
1:11
Definition and Example of Distance
1:12
Displacement
1:34
Definition and Example of Displacement
1:35
Comparison
2:45
Distance vs. Displacement
2:46
Notation
2:54
Notation for Location, Distance, and Displacement
2:55
Speed
3:32
Definition and Formula for Speed
3:33
Example: Speed
3:51
Velocity
4:23
Definition and Formula for Velocity
4:24
∆ - Greek: 'Delta'
5:01
∆ or 'Change In'
5:02
Acceleration
6:02
Definition and Formula for Acceleration
6:03
Example: Acceleration
6:38
Gravity
7:31
Gravity
7:32
Formulas
8:44
Kinematics Formula 1
8:45
Kinematics Formula 2
9:32
Definitional Formulas
14:00
Example 1: Speed of a Rock Being Thrown
14:12
Example 2: How Long Does It Take for the Rock to Hit the Ground?
15:37
Example 3: Acceleration of a Biker
21:09
Example 4: Velocity and Displacement of a UFO
22:43
Multi-Dimensional Kinematics

29m 59s

Intro
0:00
What's Different About Multiple Dimensions?
0:07
Scalars and Vectors
0:08
A Note on Vectors
2:12
Indicating Vectors
2:13
Position
3:03
Position
3:04
Distance and Displacement
3:35
Distance and Displacement: Definitions
3:36
Distance and Displacement: Example
4:39
Speed and Velocity
8:57
Speed and Velocity: Definition & Formulas
8:58
Speed and Velocity: Example
10:06
Speed from Velocity
12:01
Speed from Velocity
12:02
Acceleration
14:09
Acceleration
14:10
Gravity
14:26
Gravity
14:27
Formulas
15:11
Formulas with Vectors
15:12
Example 1: Average Acceleration
16:57
Example 2A: Initial Velocity
19:14
Example 2B: How Long Does It Take for the Ball to Hit the Ground?
21:35
Example 2C: Displacement
26:46
Frames of Reference

18m 36s

Intro
0:00
Fundamental Example
0:25
Fundamental Example Part 1
0:26
Fundamental Example Part 2
1:20
General Case
2:36
Particle P and Two Observers A and B
2:37
Speed of P from A's Frame of Reference
3:05
What About Acceleration?
3:22
Acceleration Shows the Change in Velocity
3:23
Acceleration when Velocity is Constant
3:48
Multi-Dimensional Case
4:35
Multi-Dimensional Case
4:36
Some Notes
5:04
Choosing the Frame of Reference
5:05
Example 1: What Velocity does the Ball have from the Frame of Reference of a Stationary Observer?
7:27
Example 2: Velocity, Speed, and Displacement
9:26
Example 3: Speed and Acceleration in the Reference Frame
12:44
Uniform Circular Motion

16m 34s

Intro
0:00
Centripetal Acceleration
1:21
Centripetal Acceleration of a Rock Being Twirled Around on a String
1:22
Looking Closer: Instantaneous Velocity and Tangential Velocity
2:35
Magnitude of Acceleration
3:55
Centripetal Acceleration Formula
5:14
You Say You Want a Revolution
6:11
What is a Revolution?
6:12
How Long Does it Take to Complete One Revolution Around the Circle?
6:51
Example 1: Centripetal Acceleration of a Rock
7:40
Example 2: Magnitude of a Car's Acceleration While Turning
9:20
Example 3: Speed of a Point on the Edge of a US Quarter
13:10
II. Force
Newton's 1st Law

12m 37s

Intro
0:00
Newton's First Law/ Law of Inertia
2:45
A Body's Velocity Remains Constant Unless Acted Upon by a Force
2:46
Mass & Inertia
4:07
Mass & Inertia
4:08
Mass & Volume
5:49
Mass & Volume
5:50
Mass & Weight
7:08
Mass & Weight
7:09
Example 1: The Speed of a Rocket
8:47
Example 2: Which of the Following Has More Inertia?
10:06
Example 3: Change in Inertia
11:51
Newton's 2nd Law: Introduction

27m 5s

Intro
0:00
Net Force
1:42
Consider a Block That is Pushed On Equally From Both Sides
1:43
What if One of the Forces was Greater Than the Other?
2:29
The Net Force is All the Forces Put Together
2:43
Newton's Second Law
3:14
Net Force = (Mass) x (Acceleration)
3:15
Units
3:48
The Units of Newton's Second Law
3:49
Free-Body Diagram
5:34
Free-Body Diagram
5:35
Special Forces: Gravity (Weight)
8:05
Force of Gravity
8:06
Special Forces: Normal Force
9:22
Normal Force
9:23
Special Forces: Tension
10:34
Tension
10:35
Example 1: Force and Acceleration
12:19
Example 2: A 5kg Block is Pushed by Five Forces
13:24
Example 3: A 10kg Block Resting On a Table is Tethered Over a Pulley to a Free-Hanging 2kg Block
16:30
Newton's 2nd Law: Multiple Dimensions

27m 47s

Intro
0:00
Newton's 2nd Law in Multiple Dimensions
0:12
Newton's 2nd Law in Multiple Dimensions
0:13
Components
0:52
Components
0:53
Example: Force in Component Form
1:02
Special Forces
2:39
Review of Special Forces: Gravity, Normal Force, and Tension
2:40
Normal Forces
3:35
Why Do We Call It the Normal Forces?
3:36
Normal Forces on a Flat Horizontal and Vertical Surface
5:00
Normal Forces on an Incline
6:05
Example 1: A 5kg Block is Pushed By a Force of 3N to the North and a Force of 4N to the East
10:22
Example 2: A 20kg Block is On an Incline of 50° With a Rope Holding It In Place
16:08
Example 3: A 10kg Block is On an Incline of 20° Attached By Rope to a Free-hanging Block of 5kg
20:50
Newton's 2nd Law: Advanced Examples

42m 5s

Intro
0:00
Block and Tackle Pulley System
0:30
A Single Pulley Lifting System
0:31
A Double Pulley Lifting System
1:32
A Quadruple Pulley Lifting System
2:59
Example 1: A Free-hanging, Massless String is Holding Up Three Objects of Unknown Mass
4:40
Example 2: An Object is Acted Upon by Three Forces
10:23
Example 3: A Chandelier is Suspended by a Cable From the Roof of an Elevator
17:13
Example 4: A 20kg Baboon Climbs a Massless Rope That is Attached to a 22kg Crate
23:46
Example 5: Two Blocks are Roped Together on Inclines of Different Angles
33:17
Newton's Third Law

16m 47s

Intro
0:00
Newton's Third Law
0:50
Newton's Third Law
0:51
Everyday Examples
1:24
Hammer Hitting a Nail
1:25
Swimming
2:08
Car Driving
2:35
Walking
3:15
Note
3:57
Newton's Third Law Sometimes Doesn't Come Into Play When Solving Problems: Reason 1
3:58
Newton's Third Law Sometimes Doesn't Come Into Play When Solving Problems: Reason 2
5:36
Example 1: What Force Does the Moon Pull on Earth?
7:04
Example 2: An Astronaut in Deep Space Throwing a Wrench
8:38
Example 3: A Woman Sitting in a Bosun's Chair that is Hanging from a Rope that Runs Over a Frictionless Pulley
12:51
Friction

50m 11s

Intro
0:00
Introduction
0:04
Our Intuition - Materials
0:30
Our Intuition - Weight
2:48
Our Intuition - Normal Force
3:45
The Normal Force and Friction
4:11
Two Scenarios: Same Object, Same Surface, Different Orientations
4:12
Friction is Not About Weight
6:36
Friction as an Equation
7:23
Summing Up Friction
7:24
Friction as an Equation
7:36
The Direction of Friction
10:33
The Direction of Friction
10:34
A Quick Example
11:16
Which Block Will Accelerate Faster?
11:17
Static vs. Kinetic
14:52
Static vs. Kinetic
14:53
Static and Kinetic Coefficient of Friction
16:31
How to Use Static Friction
17:40
How to Use Static Friction
17:41
Some Examples of μs and μk
19:51
Some Examples of μs and μk
19:52
A Remark on Wheels
22:19
A Remark on Wheels
22:20
Example 1: Calculating μs and μk
28:02
Example 2: At What Angle Does the Block Begin to Slide?
31:35
Example 3: A Block is Against a Wall, Sliding Down
36:30
Example 4: Two Blocks Sitting Atop Each Other
40:16
Force & Uniform Circular Motion

26m 45s

Intro
0:00
Centripetal Force
0:46
Equations for Centripetal Force
0:47
Centripetal Force in Action
1:26
Where Does Centripetal Force Come From?
2:39
Where Does Centripetal Force Come From?
2:40
Centrifugal Force
4:05
Centrifugal Force Part 1
4:06
Centrifugal Force Part 2
6:16
Example 1: Part A - Centripetal Force On the Car
8:12
Example 1: Part B - Maximum Speed the Car Can Take the Turn At Without Slipping
8:56
Example 2: A Bucket Full of Water is Spun Around in a Vertical Circle
15:13
Example 3: A Rock is Spun Around in a Vertical Circle
21:36
III. Energy
Work

28m 34s

Intro
0:00
Equivocation
0:05
Equivocation
0:06
Introduction to Work
0:32
Scenarios: 10kg Block on a Frictionless Table
0:33
Scenario: 2 Block of Different Masses
2:52
Work
4:12
Work and Force
4:13
Paralleled vs. Perpendicular
4:46
Work: A Formal Definition
7:33
An Alternate Formula
9:00
An Alternate Formula
9:01
Units
10:40
Unit for Work: Joule (J)
10:41
Example 1: Calculating Work of Force
11:32
Example 2: Work and the Force of Gravity
12:48
Example 3: A Moving Box & Force Pushing in the Opposite Direction
15:11
Example 4: Work and Forces with Directions
18:06
Example 5: Work and the Force of Gravity
23:16
Energy: Kinetic

39m 7s

Intro
0:00
Types of Energy
0:04
Types of Energy
0:05
Conservation of Energy
1:12
Conservation of Energy
1:13
What is Energy?
4:23
Energy
4:24
What is Work?
5:01
Work
5:02
Circular Definition, Much?
5:46
Circular Definition, Much?
5:47
Derivation of Kinetic Energy (Simplified)
7:44
Simplified Picture of Work
7:45
Consider the Following Three Formulas
8:42
Kinetic Energy Formula
11:01
Kinetic Energy Formula
11:02
Units
11:54
Units for Kinetic Energy
11:55
Conservation of Energy
13:24
Energy Cannot be Made or Destroyed, Only Transferred
13:25
Friction
15:02
How Does Friction Work?
15:03
Example 1: Velocity of a Block
15:59
Example 2: Energy Released During a Collision
18:28
Example 3: Speed of a Block
22:22
Example 4: Speed and Position of a Block
26:22
Energy: Gravitational Potential

28m 10s

Intro
0:00
Why Is It Called Potential Energy?
0:21
Why Is It Called Potential Energy?
0:22
Introduction to Gravitational Potential Energy
1:20
Consider an Object Dropped from Ever-Increasing heights
1:21
Gravitational Potential Energy
2:02
Gravitational Potential Energy: Derivation
2:03
Gravitational Potential Energy: Formulas
2:52
Gravitational Potential Energy: Notes
3:48
Conservation of Energy
5:50
Conservation of Energy and Formula
5:51
Example 1: Speed of a Falling Rock
6:31
Example 2: Energy Lost to Air Drag
10:58
Example 3: Distance of a Sliding Block
15:51
Example 4: Swinging Acrobat
21:32
Energy: Elastic Potential

44m 16s

Intro
0:00
Introduction to Elastic Potential
0:12
Elastic Object
0:13
Spring Example
1:11
Hooke's Law
3:27
Hooke's Law
3:28
Example of Hooke's Law
5:14
Elastic Potential Energy Formula
8:27
Elastic Potential Energy Formula
8:28
Conservation of Energy
10:17
Conservation of Energy
10:18
You Ain't Seen Nothin' Yet
12:12
You Ain't Seen Nothin' Yet
12:13
Example 1: Spring-Launcher
13:10
Example 2: Compressed Spring
18:34
Example 3: A Block Dangling From a Massless Spring
24:33
Example 4: Finding the Spring Constant
36:13
Power & Simple Machines

28m 54s

Intro
0:00
Introduction to Power & Simple Machines
0:06
What's the Difference Between a Go-Kart, a Family Van, and a Racecar?
0:07
Consider the Idea of Climbing a Flight of Stairs
1:13
Power
2:35
P= W / t
2:36
Alternate Formulas
2:59
Alternate Formulas
3:00
Units
4:24
Units for Power: Watt, Horsepower, and Kilowatt-hour
4:25
Block and Tackle, Redux
5:29
Block and Tackle Systems
5:30
Machines in General
9:44
Levers
9:45
Ramps
10:51
Example 1: Power of Force
12:22
Example 2: Power &Lifting a Watermelon
14:21
Example 3: Work and Instantaneous Power
16:05
Example 4: Power and Acceleration of a Race car
25:56
IV. Momentum
Center of Mass

36m 55s

Intro
0:00
Introduction to Center of Mass
0:04
Consider a Ball Tossed in the Air
0:05
Center of Mass
1:27
Definition of Center of Mass
1:28
Example of center of Mass
2:13
Center of Mass: Derivation
4:21
Center of Mass: Formula
6:44
Center of Mass: Formula, Multiple Dimensions
8:15
Center of Mass: Symmetry
9:07
Center of Mass: Non-Homogeneous
11:00
Center of Gravity
12:09
Center of Mass vs. Center of Gravity
12:10
Newton's Second Law and the Center of Mass
14:35
Newton's Second Law and the Center of Mass
14:36
Example 1: Finding The Center of Mass
16:29
Example 2: Finding The Center of Mass
18:55
Example 3: Finding The Center of Mass
21:46
Example 4: A Boy and His Mail
28:31
Linear Momentum

22m 50s

Intro
0:00
Introduction to Linear Momentum
0:04
Linear Momentum Overview
0:05
Consider the Scenarios
0:45
Linear Momentum
1:45
Definition of Linear Momentum
1:46
Impulse
3:10
Impulse
3:11
Relationship Between Impulse & Momentum
4:27
Relationship Between Impulse & Momentum
4:28
Why is It Linear Momentum?
6:55
Why is It Linear Momentum?
6:56
Example 1: Momentum of a Skateboard
8:25
Example 2: Impulse and Final Velocity
8:57
Example 3: Change in Linear Momentum and magnitude of the Impulse
13:53
Example 4: A Ball of Putty
17:07
Collisions & Linear Momentum

40m 55s

Intro
0:00
Investigating Collisions
0:45
Momentum
0:46
Center of Mass
1:26
Derivation
1:56
Extending Idea of Momentum to a System
1:57
Impulse
5:10
Conservation of Linear Momentum
6:14
Conservation of Linear Momentum
6:15
Conservation and External Forces
7:56
Conservation and External Forces
7:57
Momentum Vs. Energy
9:52
Momentum Vs. Energy
9:53
Types of Collisions
12:33
Elastic
12:34
Inelastic
12:54
Completely Inelastic
13:24
Everyday Collisions and Atomic Collisions
13:42
Example 1: Impact of Two Cars
14:07
Example 2: Billiard Balls
16:59
Example 3: Elastic Collision
23:52
Example 4: Bullet's Velocity
33:35
V. Gravity
Gravity & Orbits

34m 53s

Intro
0:00
Law of Universal Gravitation
1:39
Law of Universal Gravitation
1:40
Force of Gravity Equation
2:14
Gravitational Field
5:38
Gravitational Field Overview
5:39
Gravitational Field Equation
6:32
Orbits
9:25
Orbits
9:26
The 'Falling' Moon
12:58
The 'Falling' Moon
12:59
Example 1: Force of Gravity
17:05
Example 2: Gravitational Field on the Surface of Earth
20:35
Example 3: Orbits
23:15
Example 4: Neutron Star
28:38
VI. Waves
Intro to Waves

35m 35s

Intro
0:00
Pulse
1:00
Introduction to Pulse
1:01
Wave
1:59
Wave Overview
2:00
Wave Types
3:16
Mechanical Waves
3:17
Electromagnetic Waves
4:01
Matter or Quantum Mechanical Waves
4:43
Transverse Waves
5:12
Longitudinal Waves
6:24
Wave Characteristics
7:24
Amplitude and Wavelength
7:25
Wave Speed (v)
10:13
Period (T)
11:02
Frequency (f)
12:33
v = λf
14:51
Wave Equation
16:15
Wave Equation
16:16
Angular Wave Number
17:34
Angular Frequency
19:36
Example 1: CPU Frequency
24:35
Example 2: Speed of Light, Wavelength, and Frequency
26:11
Example 3: Spacing of Grooves
28:35
Example 4: Wave Diagram
31:21
Waves, Cont.

52m 57s

Intro
0:00
Superposition
0:38
Superposition
0:39
Interference
1:31
Interference
1:32
Visual Example: Two Positive Pulses
2:33
Visual Example: Wave
4:02
Phase of Cycle
6:25
Phase Shift
7:31
Phase Shift
7:32
Standing Waves
9:59
Introduction to Standing Waves
10:00
Visual Examples: Standing Waves, Node, and Antinode
11:27
Standing Waves and Wavelengths
15:37
Standing Waves and Resonant Frequency
19:18
Doppler Effect
20:36
When Emitter and Receiver are Still
20:37
When Emitter is Moving Towards You
22:31
When Emitter is Moving Away
24:12
Doppler Effect: Formula
25:58
Example 1: Superposed Waves
30:00
Example 2: Superposed and Fully Destructive Interference
35:57
Example 3: Standing Waves on a String
40:45
Example 4: Police Siren
43:26
Example Sounds: 800 Hz, 906.7 Hz, 715.8 Hz, and Slide 906.7 to 715.8 Hz
48:49
Sound

36m 24s

Intro
0:00
Speed of Sound
1:26
Speed of Sound
1:27
Pitch
2:44
High Pitch & Low Pitch
2:45
Normal Hearing
3:45
Infrasonic and Ultrasonic
4:02
Intensity
4:54
Intensity: I = P/A
4:55
Intensity of Sound as an Outwardly Radiating Sphere
6:32
Decibels
9:09
Human Threshold for Hearing
9:10
Decibel (dB)
10:28
Sound Level β
11:53
Loudness Examples
13:44
Loudness Examples
13:45
Beats
15:41
Beats & Frequency
15:42
Audio Examples of Beats
17:04
Sonic Boom
20:21
Sonic Boom
20:22
Example 1: Firework
23:14
Example 2: Intensity and Decibels
24:48
Example 3: Decibels
28:24
Example 4: Frequency of a Violin
34:48
Light

19m 38s

Intro
0:00
The Speed of Light
0:31
Speed of Light in a Vacuum
0:32
Unique Properties of Light
1:20
Lightspeed!
3:24
Lightyear
3:25
Medium
4:34
Light & Medium
4:35
Electromagnetic Spectrum
5:49
Electromagnetic Spectrum Overview
5:50
Electromagnetic Wave Classifications
7:05
Long Radio Waves & Radio Waves
7:06
Microwave
8:30
Infrared and Visible Spectrum
9:02
Ultraviolet, X-rays, and Gamma Rays
9:33
So Much Left to Explore
11:07
So Much Left to Explore
11:08
Example 1: How Much Distance is in a Light-year?
13:16
Example 2: Electromagnetic Wave
16:50
Example 3: Radio Station & Wavelength
17:55
VII. Thermodynamics
Fluids

42m 52s

Intro
0:00
Fluid?
0:48
What Does It Mean to be a Fluid?
0:49
Density
1:46
What is Density?
1:47
Formula for Density: ρ = m/V
2:25
Pressure
3:40
Consider Two Equal Height Cylinders of Water with Different Areas
3:41
Definition and Formula for Pressure: p = F/A
5:20
Pressure at Depth
7:02
Pressure at Depth Overview
7:03
Free Body Diagram for Pressure in a Container of Fluid
8:31
Equations for Pressure at Depth
10:29
Absolute Pressure vs. Gauge Pressure
12:31
Absolute Pressure vs. Gauge Pressure
12:32
Why Does Gauge Pressure Matter?
13:51
Depth, Not Shape or Direction
15:22
Depth, Not Shape or Direction
15:23
Depth = Height
18:27
Depth = Height
18:28
Buoyancy
19:44
Buoyancy and the Buoyant Force
19:45
Archimedes' Principle
21:09
Archimedes' Principle
21:10
Wait! What About Pressure?
22:30
Wait! What About Pressure?
22:31
Example 1: Rock & Fluid
23:47
Example 2: Pressure of Water at the Top of the Reservoir
28:01
Example 3: Wood & Fluid
31:47
Example 4: Force of Air Inside a Cylinder
36:20
Intro to Temperature & Heat

34m 6s

Intro
0:00
Absolute Zero
1:50
Absolute Zero
1:51
Kelvin
2:25
Kelvin
2:26
Heat vs. Temperature
4:21
Heat vs. Temperature
4:22
Heating Water
5:32
Heating Water
5:33
Specific Heat
7:44
Specific Heat: Q = cm(∆T)
7:45
Heat Transfer
9:20
Conduction
9:24
Convection
10:26
Radiation
11:35
Example 1: Converting Temperature
13:21
Example 2: Calories
14:54
Example 3: Thermal Energy
19:00
Example 4: Temperature When Mixture Comes to Equilibrium Part 1
20:45
Example 4: Temperature When Mixture Comes to Equilibrium Part 2
24:55
Change Due to Heat

44m 3s

Intro
0:00
Linear Expansion
1:06
Linear Expansion: ∆L = Lα(∆T)
1:07
Volume Expansion
2:34
Volume Expansion: ∆V = Vβ(∆T)
2:35
Gas Expansion
3:40
Gas Expansion
3:41
The Mole
5:43
Conceptual Example
5:44
The Mole and Avogadro's Number
7:30
Ideal Gas Law
9:22
Ideal Gas Law: pV = nRT
9:23
p = Pressure of the Gas
10:07
V = Volume of the Gas
10:34
n = Number of Moles of Gas
10:44
R = Gas Constant
10:58
T = Temperature
11:58
A Note On Water
12:21
A Note On Water
12:22
Change of Phase
15:55
Change of Phase
15:56
Change of Phase and Pressure
17:31
Phase Diagram
18:41
Heat of Transformation
20:38
Heat of Transformation: Q = Lm
20:39
Example 1: Linear Expansion
22:38
Example 2: Explore Why β = 3α
24:40
Example 3: Ideal Gas Law
31:38
Example 4: Heat of Transformation
38:03
Thermodynamics

27m 30s

Intro
0:00
First Law of Thermodynamics
1:11
First Law of Thermodynamics
1:12
Engines
2:25
Conceptual Example: Consider a Piston
2:26
Second Law of Thermodynamics
4:17
Second Law of Thermodynamics
4:18
Entropy
6:09
Definition of Entropy
6:10
Conceptual Example of Entropy: Stick of Dynamite
7:00
Order to Disorder
8:22
Order and Disorder in a System
8:23
The Poets Got It Right
10:20
The Poets Got It Right
10:21
Engines in General
11:21
Engines in General
11:22
Efficiency
12:06
Measuring the Efficiency of a System
12:07
Carnot Engine ( A Limit to Efficiency)
13:20
Carnot Engine & Maximum Possible Efficiency
13:21
Example 1: Internal Energy
15:15
Example 2: Efficiency
16:13
Example 3: Second Law of Thermodynamics
17:05
Example 4: Maximum Efficiency
20:10
VIII. Electricity
Electric Force & Charge

41m 35s

Intro
0:00
Charge
1:04
Overview of Charge
1:05
Positive and Negative Charges
1:19
A Simple Model of the Atom
2:47
Protons, Electrons, and Neutrons
2:48
Conservation of Charge
4:47
Conservation of Charge
4:48
Elementary Charge
5:41
Elementary Charge and the Unit Coulomb
5:42
Coulomb's Law
8:29
Coulomb's Law & the Electrostatic Force
8:30
Coulomb's Law Breakdown
9:30
Conductors and Insulators
11:11
Conductors
11:12
Insulators
12:31
Conduction
15:08
Conduction
15:09
Conceptual Examples
15:58
Induction
17:02
Induction Overview
17:01
Conceptual Examples
18:18
Example 1: Electroscope
20:08
Example 2: Positive, Negative, and Net Charge of Iron
22:15
Example 3: Charge and Mass
27:52
Example 4: Two Metal Spheres
31:58
Electric Fields & Potential

34m 44s

Intro
0:00
Electric Fields
0:53
Electric Fields Overview
0:54
Size of q2 (Second Charge)
1:34
Size of q1 (First Charge)
1:53
Electric Field Strength: Newtons Per Coulomb
2:55
Electric Field Lines
4:19
Electric Field Lines
4:20
Conceptual Example 1
5:17
Conceptual Example 2
6:20
Conceptual Example 3
6:59
Conceptual Example 4
7:28
Faraday Cage
8:47
Introduction to Faraday Cage
8:48
Why Does It Work?
9:33
Electric Potential Energy
11:40
Electric Potential Energy
11:41
Electric Potential
13:44
Electric Potential
13:45
Difference Between Two States
14:29
Electric Potential is Measured in Volts
15:12
Ground Voltage
16:09
Potential Differences and Reference Voltage
16:10
Ground Voltage
17:20
Electron-volt
19:17
Electron-volt
19:18
Equipotential Surfaces
20:29
Equipotential Surfaces
20:30
Equipotential Lines
21:21
Equipotential Lines
21:22
Example 1: Electric Field
22:40
Example 2: Change in Energy
24:25
Example 3: Constant Electrical Field
27:06
Example 4: Electrical Field and Change in Voltage
29:06
Example 5: Voltage and Energy
32:14
Electric Current

29m 12s

Intro
0:00
Electric Current
0:31
Electric Current
0:32
Amperes
1:27
Moving Charge
1:52
Conceptual Example: Electric Field and a Conductor
1:53
Voltage
3:26
Resistance
5:05
Given Some Voltage, How Much Current Will Flow?
5:06
Resistance: Definition and Formula
5:40
Resistivity
7:31
Resistivity
7:32
Resistance for a Uniform Object
9:31
Energy and Power
9:55
How Much Energy Does It take to Move These Charges Around?
9:56
What Do We Call Energy Per Unit Time?
11:08
Formulas to Express Electrical Power
11:53
Voltage Source
13:38
Introduction to Voltage Source
13:39
Obtaining a Voltage Source: Generator
15:15
Obtaining a Voltage Source: Battery
16:19
Speed of Electricity
17:17
Speed of Electricity
17:18
Example 1: Electric Current & Moving Charge
19:40
Example 2: Electric Current & Resistance
20:31
Example 3: Resistivity & Resistance
21:56
Example 4: Light Bulb
25:16
Electric Circuits

52m 2s

Intro
0:00
Electric Circuits
0:51
Current, Voltage, and Circuit
0:52
Resistor
5:05
Definition of Resistor
5:06
Conceptual Example: Lamps
6:18
Other Fundamental Components
7:04
Circuit Diagrams
7:23
Introduction to Circuit Diagrams
7:24
Wire
7:42
Resistor
8:20
Battery
8:45
Power Supply
9:41
Switch
10:02
Wires: Bypass and Connect
10:53
A Special Not in General
12:04
Example: Simple vs. Complex Circuit Diagram
12:45
Kirchoff's Circuit Laws
15:32
Kirchoff's Circuit Law 1: Current Law
15:33
Kirchoff's Circuit Law 1: Visual Example
16:57
Kirchoff's Circuit Law 2: Voltage Law
17:16
Kirchoff's Circuit Law 2: Visual Example
19:23
Resistors in Series
21:48
Resistors in Series
21:49
Resistors in Parallel
23:33
Resistors in Parallel
23:34
Voltmeter and Ammeter
28:35
Voltmeter
28:36
Ammeter
30:05
Direct Current vs. Alternating Current
31:24
Direct Current vs. Alternating Current
31:25
Visual Example: Voltage Graphs
33:29
Example 1: What Voltage is Read by the Voltmeter in This Diagram?
33:57
Example 2: What Current Flows Through the Ammeter When the Switch is Open?
37:42
Example 3: How Much Power is Dissipated by the Highlighted Resistor When the Switch is Open? When Closed?
41:22
Example 4: Design a Hallway Light Switch
45:14
IX. Magnetism
Magnetism

25m 47s

Intro
0:00
Magnet
1:27
Magnet Has Two Poles
1:28
Magnetic Field
1:47
Always a Dipole, Never a Monopole
2:22
Always a Dipole, Never a Monopole
2:23
Magnetic Fields and Moving Charge
4:01
Magnetic Fields and Moving Charge
4:02
Magnets on an Atomic Level
4:45
Magnets on an Atomic Level
4:46
Evenly Distributed Motions
5:45
Unevenly Distributed Motions
6:22
Current and Magnetic Fields
9:42
Current Flow and Magnetic Field
9:43
Electromagnet
11:35
Electric Motor
13:11
Electric Motor
13:12
Generator
15:38
A Changing Magnetic Field Induces a Current
15:39
Example 1: What Kind of Magnetic Pole must the Earth's Geographic North Pole Be?
19:34
Example 2: Magnetic Field and Generator/Electric Motor
20:56
Example 3: Destroying the Magnetic Properties of a Permanent Magnet
23:08
Loading...
This is a quick preview of the lesson. For full access, please Log In or Sign up.
For more information, please see full course syllabus of High School Physics
  • Discussion

  • Study Guides

  • Download Lecture Slides

  • Table of Contents

  • Transcription

  • Related Books & Services

Lecture Comments (6)

2 answers

Last reply by: Professor Dan Fullerton
Fri Jul 28, 2017 7:36 AM

Post by Christopher Bunce on February 15, 2014

is there any college level courses offered on this website?

1 answer

Last reply by: Professor Selhorst-Jones
Mon Sep 16, 2013 7:38 PM

Post by Neeki Ahmadi on September 16, 2013

Great at explaining the concepts!

0 answers

Post by Norman Cervantes on February 18, 2013

picturing a car speeding towards me at the speed of a bullet made me chuckle.

Newton's 1st Law

  • An object at rest stays at rest unless a force acts upon it.
  • An object in motion stays in motion unless a force acts upon it.
  • Without a force acting on an object, its velocity will not change. In other words: no force, no acceleration.
  • Mass is a measure of inertia. The more mass something has, the more force it takes to accelerate it. The less mass, the less force.
  • While mass is associated with volume it is not the same thing. There are large objects with low masses and small objects with high masses.
  • While mass is associated with weight it is not the same thing. The weight of an object is connected to gravity. You can change the weight of an object by putting it on a different planet, but you do not change its mass.

Newton's 1st Law

Lecture Slides are screen-captured images of important points in the lecture. Students can download and print out these lecture slide images to do practice problems as well as take notes while watching the lecture.

  • Intro 0:00
  • Newton's First Law/ Law of Inertia 2:45
    • A Body's Velocity Remains Constant Unless Acted Upon by a Force
  • Mass & Inertia 4:07
    • Mass & Inertia
  • Mass & Volume 5:49
    • Mass & Volume
  • Mass & Weight 7:08
    • Mass & Weight
  • Example 1: The Speed of a Rocket 8:47
  • Example 2: Which of the Following Has More Inertia? 10:06
  • Example 3: Change in Inertia 11:51

Transcription: Newton's 1st Law

Hi, welcome back to educator.com, today we are going to be talking about Newton's first law.0000

First off, if we were to take a book and just put it down on a table, and watch the book, would it eventually start to move?0005

We just stayed there, and stared at it long enough.0014

You might think that this is a trick question, but it is not.0017

Your intuition is perfectly right, the book is just going to sit there, for basically a very long time, assuming the Earth does not manage to hurdle into the Sun because we have waited there for billions of years, we will be fine, the book is just going to stay in place.0020

What if we were to slide a hockey puck on a asphalt?0034

If we were to take a hockey puck and slide along a road, it would slide along for a little while and then frictional forces would cause it to grind to a halt and it would stop, stop after a few metres.0039

What if we were to take a hockey puck and slide it on a piece of well-polished wood, the same hockey puck would slide along for a while, and then it would probably slide considerably longer than the asphalt, because the wood is going to have less friction.0050

But it is going to eventually come to a stop, probably twice as long as it takes on the asphalt.0062

What if we had an arbitrarily large ice ring and slide a hockey puck across it?0067

In a normal sized ice ring (like a hockey ring), it would manage to slide probably the entire way across the hockey ring.0074

If it were arbitrarily large, it would eventually stop, it would take a really really long time.0081

Why?, because we got even lower friction.0086

The friction between these things just keeps going down each time we do it.0088

Asphalt has more friction than wood, which has more friction than ice.0091

What if we had some hypothetical frictionless surface?0098

The puck would never stop, because there would be nothing to stop it.0100

The puck on the asphalt slides a little while, the puck on the wood slides a little while longer, the puck on the ice, it slides really long, but eventually it would come to a stop as well, because the ice will have an effect.0106

But on the hypothetical frictionless surface, it is just going to keep sliding and sliding.0118

There is nothing to stop it.0131

What this means is that, it is not that the things want to come to rest, it is that things want to stay the same, giving them a certain human personality, which they do not necessarily have, probably not at all.0133

But, we do have that a hypothetical frictionless surface would give us the ability to slide something forever, because there is nothing stopping it.0145

If something is moving, it continues to move until something stops it.0157

If there is something sitting still, it continues to sit still until something comes along and forces it to move.0161

This brings us to Newton's first law.0166

Newton's first law's idea is that a body's velocity remains constant unless acted upon by a force.0169

If you are still, you stay still until something comes along and moves you, something puts a forces on you, which makes you move.0178

Or, if no force is acting on an object, that will have no acceleration.0184

It would continue to stay in the same state, whether it is moving in a given velocity, or it is sitting still, which is just another kind of velocity, it is just going to stay the same.0194

Isaac Newton is the person who first came up with these formulations of these laws, and we are going to be talking about these laws for the next few sections.0205

You should possibly look into them, it is going to be in the book of any course you are taking, or the internet, Newton is an interesting character and created a lot of Physics as we know of it today.0215

He is one of the founding fathers of, basically the modern movement of Physics that we have gotten used to.0229

He lived in the 1600's and involved in the creation of calculus as we know of it today, and he did a lot of things for Physics, and Math.0235

Mass is the same thing as inertia.0248

The other phrase for what we are talking about is the law of inertia, Newton's first law or the law of inertia.0253

Mass and inertia are actually the same thing.0260

If we came along and kicked an empty bucket, it would just bounce away, it would clatter along.0263

But if we came along, and kicked a bucket that is completely full of concrete, it would break your foot, you would hurt yourself really badly, because t is not going to go anywhere, you have to give it a much stronger force to actually get it to act.0267

Instead, it acts on your foot, and it impedes on your foot, which causes your foot to experience a lot of pain.0277

What is the difference?0283

Mass!, one of these objects is a massive object, it has a lot of mass, the empty bucket: low mass, it just moves on it, very small force is required to move it anywhere.0284

But a heavy mass means that it has high inertia.0296

Mass is inertia, inertia is mass, they are the same thing.0299

If something is hard to move, then it has a lot of inertia; if something is easy to move, then it has little inertia.0302

That is not necessarily true, you can take a light object, and stick it to something using a high strength adhesive.0310

But then you are getting into different forces.0318

But if you had something on a frictionless surface, if you want to shake something back and forth, all these things will be measurements of inertia.0320

If something is able to move freely, then how hard it is to get moving is a measure of its inertia, its mass.0327

If something has more mass, it is harder to move, if something has less mass, it is easier to move.0332

If something has more mass, it has greater inertia, if something has less mass, it has less inertia; if something has more inertia, it is harder to move, if something has less inertia, it is easier to move.0336

Mass is inertia, inertia is mass.0346

What about volume, what about how big something is?0349

If something is this big, does not it imply that it is heavier, more massive than something that is this big?0353

Not necessarily.0360

Volume is just a measure of what is the size of your thing.0362

Something can be very large and have very little mass, say, a pillow full of feathers, or a balloon.0363

But something can also have very low volume and very high mass, like a brick of lead, or a plate of Uranium.0370

These things are very small, but they are going to be very massive objects.0377

So, just because something is very big does not mean it is massive.0382

That said, if we have one brick of lead, and take a brick a lead exact same size and density under all the same specifications that this brick of lead was made, we are going to double the mass because we have doubled the volume.0384

But that is because you have got a consistent object.0396

Comparing two object is like comparing apples and oranges, you are not necessarily going to have the same mass to volume ratio.0398

Even within one kind of object, you can have different mass to volume ratios.0404

You could have a loaf of bread, and you could have a hollow loaf of bread.0408

One of them will have more of mass, but they will have the same volume.0412

You got to keep in mind that there are a lot of things that is going to affect mass, and mass is a really important characteristic.0416

Volume can have a lot effects, but mass is a really important characteristic, and you want to remember that it is not always going to be the same thing as volume, and in many cases, it is not at all.0420

What about mass compared to weight?0428

What does weight mean, we have not really talked about this before.0431

Weight is the measure of the force of gravity, not your mass.0434

They are related, and we will talk about that later, when we talk about Newton's second law, you will see very clearly what the connection is between mass and weight.0439

But, you do not necessarily have the same weight throughout.0448

You have all heard about that, if we were to go from here on Earth, to being on the moon, your weight would change.0450

That is because there would be less gravity taking effect.0456

But your mass would stay the same.0458

None of the particles that make you up, none of the matter that makes you up, (matter is what gives the things mass), would be gone, it is just you in a different place.0460

So, the weight changes, the mass does not change.0468

If we got a stone on Earth, with some weight, and we took that stone to the moon, its mass would remain the same, but it will have one sixth the weight that it has on Earth.0471

If we took that stone to deep space, where there is no gravitational effect on it at all, it would just float there, it would have nothing pulling it anywhere, it would have no weight.0487

Weight is the pull of gravity, it is the force given to something by gravity.0497

So it would have no weight in space, but it would still have the same mass, the same inertia.0502

That stone, for you to shake it back and forth on Earth, it would take a little amount of difficulty.0507

But if we were an astronaut in space shaking that same stone, it would have the same difficulty, because its mass is the same, so its inertia is the same.0512

So shaking it back and forth is still difficult, because that is a measure of mass, not the weight.0521

First example: (these are all idea examples, there is no Math here, these are all ways to think here.)0527

We have got a rocket that we fire in deep space.0534

It has got a velocity of 104 m/s .0537

So, we are out here in deep space, and if we nothing acts on it, there is no gravity, it does not hit anything, nothing is pulling it in different direction, and it is now going at a constant velocity, its burners are done firing, its fuel off, it is just moving at a speed, it is not pushing itself along.0549

What will its speed be in a 150 years?0570

It seems like a really long time, and it is a really long time, but nothing acts on it.0572

It is moving along, but there is nothing to change it moving along, so since it is moving along, it continues to move along.0578

No forces mean same speed.0584

So, in 150 years, in 1500 years, in a billion years, it is still going to be the same as long as no forces act on it.0587

If there is no gravity, if there is no additional fuel, if nothing comes along and runs into it, it is ust going to be 104 m/s for no matter how long we choose to look at it.0595

Second example:0607

Which of these are going to have more inertia?0608

A falling leaf, a thrown rock, a stopped car, or a bullet that has just been fired.0611

The bullet is clearly the thing moving fastest.0623

The thrown rock is also moving at a reasonable speed, the falling leaf pretty slow, the stopped car completely not moving at all.0626

It might seem clear which one is going to be the thing with more inertia.0631

It is going to be the thing moving really quickly.0635

But, that does not matter.0637

If you were standing there, and the bullet hit you, that would be really bad, because the bullet would be moving really fast, so it would hurt you.0639

But if you were standing next to the stopped car, the stopped car would not hit you.0645

That is because your relative velocities are different.0648

So, the reason why you are thinking that inertia is about the speed is because of how much damage it can do to you, but that is not what inertia is, it is about change in that.0653

If you were running along with the same speed of the bullet, it would not be able to hurt you, because it would just be sitting there next to you, and if a car would hit you at a speed the bullet would hit you, you would no longer be.0665

There would be nothing.0676

So, the idea if inertia is, how massive is the object.0678

Which one of these is the most massive?0682

The car, the car is the hardest thing by far, to be able to get up to the speed of something else, is going to be the car.0684

The bullet can be stopped very easily.0690

We can just put a small piece of wood in front of the bullet, and it is going to come to a stop.0692

But if we had a car moving at even a 100 m/s, which is a considerable fraction of what a bullet would be moving at, and we put a piece of wood in front of that car, that car is going to keep moving, that wood is going to have no effect.0696

So the inertia here, is really just a measure of mass.0707

Finally, what is the change in inertia of a 2 kg skateboard that goes from 5 m/s to 10 m/s?0711

We have got a change here, change in speed = 5 m/s .0720

But does that matter?0728

No, it has no effect.0729

Once again, the speed has no effect on your inertia, it is just the mass.0730

Has the mass of the skateboard changed?0734

No, the mass has remained the same, 2 kg, so there is no change in inertia, it is just the same mass.0735

Nothing has changed, nothing has come along to change the mass.0741

The only thing that will affect the inertia of an object its mass.0744

If we know its mass, we know what its inertia is; and that is really the important thing.0747

Speed does not matter.0751

Hope you enjoyed that, see you again for the next lesson at educator.com.0753

Educator®

Please sign in for full access to this lesson.

Sign-InORCreate Account

Enter your Sign-on user name and password.

Forgot password?

Start Learning Now

Our free lessons will get you started (Adobe Flash® required).
Get immediate access to our entire library.

Sign up for Educator.com

Membership Overview

  • Unlimited access to our entire library of courses.
  • Search and jump to exactly what you want to learn.
  • *Ask questions and get answers from the community and our teachers!
  • Practice questions with step-by-step solutions.
  • Download lesson files for programming and software training practice.
  • Track your course viewing progress.
  • Download lecture slides for taking notes.

Use this form or mail us to .

For support articles click here.