  Mary Pyo

Subtracting Integers

Slide Duration:

Section 1: Algebra and Decimals
Expressions and Variables

5m 57s

Intro
0:00
Vocabulary
0:06
Variable
0:09
Expression
0:48
Numerical Expression
1:08
Algebraic Expression
1:35
Word Expression
2:04
Extra Example 1: Evaluate the Expression
2:27
Extra Example 2: Evaluate the Expression
3:16
Extra Example 3: Evaluate the Expression
4:04
Extra Example 4: Evaluate the Expression
4:59
Exponents

5m 34s

Intro
0:00
What Exponents Mean
0:07
Example: Ten Squared
0:08
Extra Example 1: Exponents
0:50
Extra Example 2: Write in Exponent Form
1:58
Extra Example 3: Using Exponent and Base
2:37
Extra Example 4: Write the Equal Factors
4:26
Order of Operations

8m 40s

Intro
0:00
Please Excuse My Dear Aunt Sally
0:07
Step 1: Parenthesis
1:16
Step 2: Exponent
1:25
Step 3: Multiply and Divide
1:30
2:00
Example: Please Excuse My Dear Aunt Sally
2:26
Extra Example 1: Evaluating Expression
3:37
Extra Example 2: Evaluating Expression
4:59
Extra Example 3: Evaluating Expression
5:34
Extra Example 4: Evaluating Expression
6:25
Comparing and Ordering Decimals

13m 37s

Intro
0:00
Place Value
0:13
Examples: 1,234,567.89
0:19
Which is the Larger Value?
1:33
Which is Larger: 10.5 or 100.5
1:46
Which is Larger: 1.01 or 1.10
2:24
Which is Larger: 44.40 or 44.4
4:20
Which is Larger: 18.6 or 16.8
5:18
Extra Example 1: Order from Least to Greatest
5:55
Extra Example 2: Order from Least to Greatest
7:56
Extra Example 3: Order from Least to Greatest
9:16
Extra Example 4: Order from Least to Greatest
10:42
Rounding Decimals

12m 31s

Intro
0:00
Decimal Place Value
0:06
Example: 12,3454.6789
0:07
How to Round Decimals
1:17
Example: Rounding 1,234.567
1:18
Extra Example 1: Rounding Decimals
3:47
Extra Example 2: Rounding Decimals
6:10
Extra Example 3: Rounding Decimals
7:45
Extra Example 4: Rounding Decimals
9:56

11m 30s

Intro
0:00
0:06
Align the Decimal Point First
0:12
0:47
Place the Decimal Point in the Same Place
0:55
Check by Estimating
1:09
Examples
1:28
Add: 3.45 + 7 + 0.835
1:30
Find the Difference: 351.4 - 65.25
3:34
5:32
Extra Example 2: How Much Money?
6:09
Extra Example 3: Subtracting Decimals
7:20
9:32
Multiplying Decimals

10m 30s

Intro
0:00
Multiply the Decimals
0:05
Methods for Multiplying Decimals
0:06
Example: 1.1 x 6
0:38
Extra Example 1: Multiplying Decimals
1:51
Extra Example 2: Work Money
2:49
Extra Example 3: Multiplying Decimals
5:45
Extra Example 4: Multiplying Decimals
7:46
Dividing Decimals

17m 49s

Intro
0:00
When Dividing Decimals
0:06
Methods for Dividing Decimals
0:07
Divisor and Dividend
0:37
Example: 0.2 Divided by 10
1:35
Extra Example 1 : Dividing Decimals
5:24
Extra Example 2: How Much Does Each CD Cost?
8:22
Extra Example 3: Dividing Decimals
10:59
Extra Example 4: Dividing Decimals
12:08
Section 2: Number Relationships and Fractions
Prime Factorization

7m

Intro
0:00
Terms to Review
0:07
Prime vs. Composite
0:12
Factor
0:54
Product
1:15
Factor Tree
1:39
Example: Prime Factorization
2:01
Example: Prime Factorization
2:43
Extra Example 1: Prime Factorization
4:08
Extra Example 2: Prime Factorization
5:05
Extra Example 3: Prime Factorization
5:33
Extra Example 4: Prime Factorization
6:13
Greatest Common Factor

12m 47s

Intro
0:00
Terms to Review
0:05
Factor
0:07
Example: Factor of 20
0:18
Two Methods
0:59
Greatest Common Factor
1:00
Method 1: GCF of 15 and 30
1:37
Method 2: GCF of 15 and 30
2:58
Extra Example 1: Find the GCF of 6 and 18
5:16
Extra Example 2: Find the GCF of 36 and 27
7:43
Extra Example 3: Find the GCF of 6 and 18
9:18
Extra Example 4: Find the GCF of 54 and 36
10:30
Fraction Concepts and Simplest Form

10m 3s

Intro
0:00
Fraction Concept
0:10
Example: Birthday Cake
0:28
Example: Chocolate Bar
2:10
Simples Form
3:38
Example: Simplifying 4 out of 8
3:46
Extra Example 1: Graphically Show 4 out of 10
4:41
Extra Example 2: Finding Fraction Shown by Illustration
5:10
Extra Example 3: Simplest Form of 5 over 25
7:02
Extra Example 4: Simplest Form of 14 over 49
8:30
Least Common Multiple

14m 16s

Intro
0:00
Term to Review
0:06
Multiple
0:07
Example: Multiples of 4
0:15
Two Methods
0:41
Least Common Multiples
0:44
Method 1: LCM of 6 and 10
1:09
Method 2: LCM of 6 and 10
2:56
Extra Example 1: LCM of 12 and 15
5:09
Extra Example 2: LCM of 16 and 20
7:36
Extra Example 3 : LCM of 15 and 25
10:00
Extra Example 4 : LCM of 12 and 18
11:27
Comparing and Ordering Fractions

13m 10s

Intro
0:00
Terms Review
0:14
Greater Than
0:16
Less Than
0:40
Compare the Fractions
1:00
Example: Comparing 2/4 and 3/4
1:08
Example: Comparing 5/8 and 2/5
2:04
Extra Example 1: Compare the Fractions
3:28
Extra Example 2: Compare the Fractions
6:06
Extra Example 3: Compare the Fractions
8:01
Extra Example 4: Least to Greatest
9:37
Mixed Numbers and Improper Fractions

12m 49s

Intro
0:00
Fractions
0:10
Mixed Number
0:21
Proper Fraction
0:47
Improper Fraction
1:30
Switching Between
2:47
Mixed Number to Improper Fraction
2:53
Improper Fraction to Mixed Number
4:41
Examples: Switching Fractions
6:37
Extra Example 1: Mixed Number to Improper Fraction
8:57
Extra Example 2: Improper Fraction to Mixed Number
9:37
Extra Example 3: Improper Fraction to Mixed Number
10:21
Extra Example 4: Mixed Number to Improper Fraction
11:31
Connecting Decimals and Fractions

15m 1s

Intro
0:00
Examples: Decimals and Fractions
0:06
More Examples: Decimals and Fractions
2:48
Extra Example 1: Converting Decimal to Fraction
6:55
Extra Example 2: Converting Fraction to Decimal
8:45
Extra Example 3: Converting Decimal to Fraction
10:28
Extra Example 4: Converting Fraction to Decimal
11:42
Section 3: Fractions and Their Operations
Adding and Subtracting Fractions with Same Denominators

5m 17s

Intro
0:00
Same Denominator
0:11
Numerator and Denominator
0:18
Example: 2/6 + 5/6
0:41
Extra Example 1: Add or Subtract the Fractions
2:02
Extra Example 2: Add or Subtract the Fractions
2:45
Extra Example 3: Add or Subtract the Fractions
3:17
Extra Example 4: Add or Subtract the Fractions
4:05
Adding and Subtracting Fractions with Different Denominators

23m 8s

Intro
0:00
Least Common Multiple
0:12
LCM of 6 and 4
0:31
From LCM to LCD
2:25
3:12
Extra Example 1: Add or Subtract
6:23
Extra Example 2: Add or Subtract
9:49
Extra Example 3: Add or Subtract
14:54
Extra Example 4: Add or Subtract
18:14

19m 44s

Intro
0:00
Example
0:05
0:17
Extra Example 1: Adding Mixed Numbers
1:57
Extra Example 2: Subtracting Mixed Numbers
8:13
Extra Example 3: Adding Mixed Numbers
12:01
Extra Example 4: Subtracting Mixed Numbers
14:54
Multiplying Fractions and Mixed Numbers

21m 32s

Intro
0:00
Multiplying Fractions
0:07
Step 1: Change Mixed Numbers to Improper Fractions
0:08
Step2: Multiply the Numerators Together
0:56
Step3: Multiply the Denominators Together
1:03
Extra Example 1: Multiplying Fractions
1:37
Extra Example 2: Multiplying Fractions
6:39
Extra Example 3: Multiplying Fractions
10:20
Extra Example 4: Multiplying Fractions
13:47
Dividing Fractions and Mixed Numbers

18m

Intro
0:00
Dividing Fractions
0:09
Step 1: Change Mixed Numbers to Improper Fractions
0:15
Step 2: Flip the Second Fraction
0:27
Step 3: Multiply the Fractions
0:52
Extra Example 1: Dividing Fractions
1:23
Extra Example 2: Dividing Fractions
5:06
Extra Example 3: Dividing Fractions
9:34
Extra Example 4: Dividing Fractions
12:06
Distributive Property

11m 5s

Intro
0:00
Distributive Property
0:06
Methods of Distributive Property
0:07
Example: a(b)
0:35
Example: a(b+c)
0:49
Example: a(b+c+d)
1:22
Extra Example 1: Using Distributive Property
1:56
Extra Example 2: Using Distributive Property
4:36
Extra Example 3: Using Distributive Property
6:39
Extra Example 4: Using Distributive Property
8:19
Units of Measure

16m 36s

Intro
0:00
Length
0:05
Feet, Inches, Yard, and Mile
0:20
Millimeters, Centimeters, and Meters
0:43
Mass
2:57
Pounds, Ounces, and Tons
3:03
Grams and Kilograms
3:38
Liquid
4:11
Gallons, Quarts, Pints, and Cups
4:14
Extra Example 1: Converting Units
7:02
Extra Example 2: Converting Units
9:31
Extra Example 3: Converting Units
12:21
Extra Example 4: Converting Units
14:05
Section 4: Positive and Negative Numbers
Integers and the Number Line

13m 24s

Intro
0:00
What are Integers
0:06
Integers are all Whole Numbers and Their Opposites
0:09
Absolute Value
2:35
Extra Example 1: Compare the Integers
4:36
Extra Example 2: Writing Integers
9:24
Extra Example 3: Opposite Integer
10:38
Extra Example 4: Absolute Value
11:27

16m 5s

Intro
0:00
Using a Number Line
0:04
Example: 4 + (-2)
0:14
Example: 5 + (-8)
1:50
3:00
3:10
3:37
4:44
Extra Example 1: Add the Integers
8:21
Extra Example 2: Find the Sum
10:33
Extra Example 3: Find the Value
11:37
Extra Example 4: Add the Integers
13:10
Subtracting Integers

15m 25s

Intro
0:00
How to Subtract Integers
0:06
Two-dash Rule
0:16
Example: 3 - 5
0:44
Example: 3 - (-5)
1:12
Example: -3 - 5
1:39
Extra Example 1: Rewrite Subtraction to Addition
4:43
Extra Example 2: Find the Difference
7:59
Extra Example 3: Find the Difference
9:08
Extra Example 4: Evaluate
10:38
Multiplying Integers

7m 33s

Intro
0:00
When Multiplying Integers
0:05
If One Number is Negative
0:06
If Both Numbers are Negative
0:18
Examples: Multiplying Integers
0:53
Extra Example 1: Multiplying Integers
1:27
Extra Example 2: Multiplying Integers
2:43
Extra Example 3: Multiplying Integers
3:13
Extra Example 4: Multiplying Integers
3:51
Dividing Integers

6m 42s

Intro
0:00
When Dividing Integers
0:05
Rules for Dividing Integers
0:41
Extra Example 1: Dividing Integers
1:01
Extra Example 2: Dividing Integers
1:51
Extra Example 3: Dividing Integers
2:21
Extra Example 4: Dividing Integers
3:18
Integers and Order of Operations

11m 9s

Intro
0:00
Combining Operations
0:21
Solve Using the Order of Operations
0:22
Extra Example 1: Evaluate
1:18
Extra Example 2: Evaluate
4:20
Extra Example 3: Evaluate
6:33
Extra Example 4: Evaluate
8:13
Section 5: Solving Equations
Writing Expressions

9m 15s

Intro
0:00
Operation as Words
0:05
Operation as Words
0:06
Extra Example 1: Write Each as an Expression
2:09
Extra Example 2: Write Each as an Expression
4:27
Extra Example 3: Write Each Expression Using Words
6:45
Writing Equations

18m 3s

Intro
0:00
Equation
0:05
Definition of Equation
0:06
Examples of Equation
0:58
Operations as Words
1:39
Operations as Words
1:40
Extra Example 1: Write Each as an Equation
3:07
Extra Example 2: Write Each as an Equation
6:19
Extra Example 3: Write Each as an Equation
10:08
Extra Example 4: Determine if the Equation is True or False
13:38

24m 53s

Intro
0:00
Solving Equations
0:08
inverse Operation of Addition and Subtraction
0:09
Extra Example 1: Solve Each Equation Using Mental Math
4:15
Extra Example 2: Use Inverse Operations to Solve Each Equation
5:44
Extra Example 3: Solve Each Equation
14:51
Extra Example 4: Translate Each to an Equation and Solve
19:57
Solving Multiplication Equation

19m 46s

Intro
0:00
Multiplication Equations
0:08
Inverse Operation of Multiplication
0:09
Extra Example 1: Use Mental Math to Solve Each Equation
3:54
Extra Example 2: Use Inverse Operations to Solve Each Equation
5:55
Extra Example 3: Is -2 a Solution of Each Equation?
12:48
Extra Example 4: Solve Each Equation
15:42
Solving Division Equation

17m 58s

Intro
0:00
Division Equations
0:05
Inverse Operation of Division
0:06
Extra Example 1: Use Mental Math to Solve Each Equation
0:39
Extra Example 2: Use Inverse Operations to Solve Each Equation
2:14
Extra Example 3: Is -6 a Solution of Each Equation?
9:53
Extra Example 4: Solve Each Equation
11:50
Section 6: Ratios and Proportions
Ratio

40m 21s

Intro
0:00
Ratio
0:05
Definition of Ratio
0:06
Examples of Ratio
0:18
Rate
2:19
Definition of Rate
2:20
Unit Rate
3:38
Example: \$10 / 20 pieces
5:05
Converting Rates
6:46
Example: Converting Rates
6:47
Extra Example 1: Write in Simplest Form
16:22
Extra Example 2: Find the Ratio
20:53
Extra Example 3: Find the Unit Rate
22:56
Extra Example 4: Convert the Unit
26:34
Solving Proportions

17m 22s

Intro
0:00
Proportions
0:05
An Equality of Two Ratios
0:06
Cross Products
1:00
Extra Example 1: Find Two Equivalent Ratios for Each
3:21
Extra Example 2: Use Mental Math to Solve the Proportion
5:52
Extra Example 3: Tell Whether the Two Ratios Form a Proportion
8:21
Extra Example 4: Solve the Proportion
13:26
Writing Proportions

22m 1s

Intro
0:00
Writing Proportions
0:08
Introduction to Writing Proportions and Example
0:10
Extra Example 1: Write a Proportion and Solve
5:54
Extra Example 2: Write a Proportion and Solve
11:19
Extra Example 3: Write a Proportion for Word Problem
17:29
Similar Polygons

16m 31s

Intro
0:00
Similar Polygons
0:05
Definition of Similar Polygons
0:06
Corresponding Sides are Proportional
2:14
Extra Example 1: Write a Proportion and Find the Value of Similar Triangles
4:26
Extra Example 2: Write a Proportional to Find the Value of x
7:04
Extra Example 3: Write a Proportion for the Similar Polygons and Solve
9:04
Extra Example 4: Word Problem and Similar Polygons
11:03
Scale Drawings

13m 43s

Intro
0:00
Scale Drawing
0:05
Definition of a Scale Drawing
0:06
Example: Scale Drawings
1:00
Extra Example 1: Scale Drawing
4:50
Extra Example 2: Scale Drawing
7:02
Extra Example 3: Scale Drawing
9:34
Probability

11m 51s

Intro
0:00
Probability
0:05
Introduction to Probability
0:06
Example: Probability
1:22
Extra Example 1: What is the Probability of Landing on Orange?
3:26
Extra Example 2: What is the Probability of Rolling a 5?
5:02
Extra Example 3: What is the Probability that the Marble will be Red?
7:40
Extra Example 4: What is the Probability that the Student will be a Girl?
9:43
Section 7: Percents
Percents, Fractions, and Decimals

35m 5s

Intro
0:00
Percents
0:06
Changing Percent to a Fraction
0:07
Changing Percent to a Decimal
1:54
Fractions
4:17
Changing Fraction to Decimal
4:18
Changing Fraction to Percent
7:50
Decimals
10:10
Changing Decimal to Fraction
10:11
Changing Decimal to Percent
12:07
Extra Example 1: Write Each Percent as a Fraction in Simplest Form
13:29
Extra Example 2: Write Each as a Decimal
17:09
Extra Example 3: Write Each Fraction as a Percent
22:45
Extra Example 4: Complete the Table
29:17
Finding a Percent of a Number

28m 18s

Intro
0:00
Percent of a Number
0:06
Translate Sentence into an Equation
0:07
Example: 30% of 100 is What Number?
1:05
Extra Example 1: Finding a Percent of a Number
7:12
Extra Example 2: Finding a Percent of a Number
15:56
Extra Example 3: Finding a Percent of a Number
19:14
Extra Example 4: Finding a Percent of a Number
24:26
Solving Percent Problems

32m 31s

Intro
0:00
Solving Percent Problems
0:06
Translate the Sentence into an Equation
0:07
Extra Example 1: Solving Percent Problems
0:56
Extra Example 2: Solving Percent Problems
14:49
Extra Example 3: Solving Percent Problems
23:44
Simple Interest

27m 9s

Intro
0:00
Simple Interest
0:05
Principal
0:06
Interest & Interest Rate
0:41
Simple Interest
1:43
Simple Interest Formula
2:23
Simple Interest Formula: I = prt
2:24
Extra Example 1: Finding Simple Interest
3:53
Extra Example 2: Finding Simple Interest
8:08
Extra Example 3: Finding Simple Interest
12:02
Extra Example 4: Finding Simple Interest
17:46
Discount and Sales Tax

17m 15s

Intro
0:00
Discount
0:19
Discount
0:20
Sale Price
1:22
Sales Tax
2:24
Sales Tax
2:25
Total Due
2:59
Extra Example 1: Finding the Discount
3:43
Extra Example 2: Finding the Sale Price
6:28
Extra Example 3: Finding the Sale Tax
11:14
Extra Example 4: Finding the Total Due
14:08
Section 8: Geometry in a Plane
Intersecting Lines and Angle Measures

24m 17s

Intro
0:00
Intersecting Lines
0:07
Properties of Lines
0:08
When Two Lines Cross Each Other
1:55
Angles
2:56
Properties of Angles: Sides, Vertex, and Measure
2:57
Classifying Angles
7:18
Acute Angle
7:19
Right Angle
7:54
Obtuse Angle
8:03
Angle Relationships
8:56
Vertical Angles
8:57
10:38
Complementary Angles
11:52
Supplementary Angles
12:54
Extra Example 1: Lines
16:00
Extra Example 2: Angles
18:22
Extra Example 3: Angle Relationships
20:05
Extra Example 4: Name the Measure of Angles
21:11
Angles of a Triangle

13m 35s

Intro
0:00
Angles of a Triangle
0:05
All Triangles Have Three Angles
0:06
Measure of Angles
2:16
Extra Example 1: Find the Missing Angle Measure
5:39
Extra Example 2: Angles of a Triangle
7:18
Extra Example 3: Angles of a Triangle
9:24
Classifying Triangles

15m 10s

Intro
0:00
Types of Triangles by Angles
0:05
Acute Triangle
0:06
Right Triangle
1:14
Obtuse Triangle
2:22
Classifying Triangles by Sides
4:18
Equilateral Triangle
4:20
Isosceles Triangle
5:21
Scalene Triangle
5:53
Extra Example 1: Classify the Triangle by Its Angles and Sides
6:34
Extra Example 2: Sketch the Figures
8:10
Extra Example 3: Classify the Triangle by Its Angles and Sides
9:55
Extra Example 4: Classify the Triangle by Its Angles and Sides
11:35

17m 41s

Intro
0:00
0:05
0:06
Parallelogram
0:45
Rectangle
2:28
Rhombus
3:13
Square
3:53
Trapezoid
4:38
Parallelograms
5:33
Parallelogram, Rectangle, Rhombus, Trapezoid, and Square
5:35
Extra Example 1: Give the Most Exact Name for the Figure
11:37
Extra Example 2: Fill in the Blanks
13:31
Extra Example 3: Complete Each Statement with Always, Sometimes, or Never
14:37
Area of a Parallelogram

12m 44s

Intro
0:00
Area
0:06
Definition of Area
0:07
Area of a Parallelogram
2:00
Area of a Parallelogram
2:01
Extra Example 1: Find the Area of the Rectangle
4:30
Extra Example 2: Find the Area of the Parallelogram
5:29
Extra Example 3: Find the Area of the Parallelogram
7:22
Extra Example 4: Find the Area of the Shaded Region
8:55
Area of a Triangle

11m 29s

Intro
0:00
Area of a Triangle
0:05
Area of a Triangle: Equation and Example
0:06
Extra Example 1: Find the Area of the Triangles
1:31
Extra Example 2: Find the Area of the Figure
4:09
Extra Example 3: Find the Area of the Shaded Region
7:45
Circumference of a Circle

15m 4s

Intro
0:00
Segments in Circles
0:05
0:06
Diameter
1:08
Chord
1:49
Circumference
2:53
Circumference of a Circle
2:54
Extra Example 1: Name the Given Parts of the Circle
6:26
Extra Example 2: Find the Circumference of the Circle
7:54
Extra Example 3: Find the Circumference of Each Circle with the Given Measure
11:04
Area of a Circle

14m 43s

Intro
0:00
Area of a Circle
0:05
Area of a Circle: Equation and Example
0:06
Extra Example 1: Find the Area of the Circle
2:17
Extra Example 2: Find the Area of the Circle
5:47
Extra Example 3: Find the Area of the Shaded Region
9:24
Section 11: Geometry in Space
Prisms and Cylinders

21m 49s

Intro
0:00
Prisms
0:06
Polyhedron
0:07
Regular Prism, Bases, and Lateral Faces
1:44
Cylinders
9:37
Bases and Altitude
9:38
Extra Example 1: Classify Each Prism by the Shape of Its Bases
11:16
Extra Example 2: Name Two Different Edges, Faces, and Vertices of the Prism
15:44
Extra Example 3: Name the Solid of Each Object
17:58
Extra Example 4: Write True or False for Each Statement
19:47
Volume of a Rectangular Prism

8m 59s

Intro
0:00
Volume of a Rectangular Prism
0:06
Volume of a Rectangular Prism: Formula
0:07
Volume of a Rectangular Prism: Example
1:46
Extra Example 1: Find the Volume of the Rectangular Prism
3:39
Extra Example 2: Find the Volume of the Cube
5:00
Extra Example 3: Find the Volume of the Solid
5:56
Volume of a Triangular Prism

16m 15s

Intro
0:00
Volume of a Triangular Prism
0:06
Volume of a Triangular Prism: Formula
0:07
Extra Example 1: Find the Volume of the Triangular Prism
2:42
Extra Example 2: Find the Volume of the Triangular Prism
7:21
Extra Example 3: Find the Volume of the Solid
10:38
Volume of a Cylinder

15m 55s

Intro
0:00
Volume of a Cylinder
0:05
Volume of a Cylinder: Formula
0:06
Extra Example 1: Find the Volume of the Cylinder
1:52
Extra Example 2: Find the Volume of the Cylinder
7:38
Extra Example 3: Find the Volume of the Cylinder
11:25
Surface Area of a Prism

23m 28s

Intro
0:00
Surface Area of a Prism
0:06
Surface Area of a Prism
0:07
Lateral Area of a Prism
2:12
Lateral Area of a Prism
2:13
Extra Example 1: Find the Surface Area of the Rectangular Prism
7:08
Extra Example 2: Find the Lateral Area and the Surface Area of the Cube
12:05
Extra Example 3: Find the Surface Area of the Triangular Prism
17:13
Surface Area of a Cylinder

27m 41s

Intro
0:00
Surface Area of a Cylinder
0:06
Introduction to Surface Area of a Cylinder
0:07
Surface Area of a Cylinder
1:33
Formula
1:34
Extra Example 1: Find the Surface Area of the Cylinder
5:51
Extra Example 2: Find the Surface Area of the Cylinder
13:51
Extra Example 3: Find the Surface Area of the Cylinder
20:57
Section 10: Data Analysis and Statistics
Measures of Central Tendency

24m 32s

Intro
0:00
Measures of Central Tendency
0:06
Mean
1:17
Median
2:42
Mode
5:41
Extra Example 1: Find the Mean, Median, and Mode for the Following Set of Data
6:24
Extra Example 2: Find the Mean, Median, and Mode for the Following Set of Data
11:14
Extra Example 3: Find the Mean, Median, and Mode for the Following Set of Data
15:13
Extra Example 4: Find the Three Measures of the Central Tendency
19:12
Histograms

19m 43s

Intro
0:00
Histograms
0:05
Definition and Example
0:06
Extra Example 1: Draw a Histogram for the Frequency Table
6:14
Extra Example 2: Create a Histogram of the Data
8:48
Extra Example 3: Create a Histogram of the Following Test Scores
14:17
Box-and-Whisker Plot

17m 54s

Intro
0:00
Box-and-Whisker Plot
0:05
Median, Lower & Upper Quartile, Lower & Upper Extreme
0:06
Extra Example 1: Name the Median, Lower & Upper Quartile, Lower & Upper Extreme
6:04
Extra Example 2: Draw a Box-and-Whisker Plot Given the Information
7:35
Extra Example 3: Find the Median, Lower & Upper Quartile, Lower & Upper Extreme
9:31
Extra Example 4: Draw a Box-and-Whiskers Plots for the Set of Data
12:50
Stem-and-Leaf Plots

17m 42s

Intro
0:00
Stem-and-Leaf Plots
0:05
Stem-and-Leaf Plots
0:06
Extra Example 1: Use the Data to Create a Stem-and-Leaf Plot
2:28
Extra Example 2: List All the Numbers in the Stem-and-Leaf Plot in Order From Least to Greatest
7:02
Extra Example 3: Create a Stem-and-Leaf Plot of the Data & Find the Median and the Mode.
8:59
The Coordinate Plane

19m 59s

Intro
0:00
The Coordinate System
0:05
The Coordinate Plane
0:06
0:50
The Coordinate Plane
7:02
Write the Coordinates for Points A, B, and C
7:03
Extra Example 1: Graph Each Point on the Coordinate Plane
9:03
Extra Example 2: Write the Coordinate and Quadrant for Each Point
11:05
Extra Example 3: Name Two Points From Each of the Four Quadrants
13:13
Extra Example 4: Graph Each Point on the Same Coordinate Plane
17:47
Section 11: Probability and Discrete Mathematics
Organizing Possible Outcomes

15m 35s

Intro
0:00
Compound Events
0:08
Compound Events
0:09
Fundamental Counting Principle
3:35
Extra Example 1: Create a List of All the Possible Outcomes
4:47
Extra Example 2: Create a Tree Diagram For All the Possible Outcomes
6:34
Extra Example 3: Create a Tree Diagram For All the Possible Outcomes
10:00
Extra Example 4: Fundamental Counting Principle
12:41
Independent and Dependent Events

35m 19s

Intro
0:00
Independent Events
0:11
Definition
0:12
Example 1: Independent Event
1:45
Example 2: Two Independent Events
4:48
Dependent Events
9:09
Definition
9:10
Example: Dependent Events
10:10
Extra Example 1: Determine If the Two Events are Independent or Dependent Events
13:38
Extra Example 2: Find the Probability of Each Pair of Events
18:11
Extra Example 3: Use the Spinner to Find Each Probability
21:42
Extra Example 4: Find the Probability of Each Pair of Events
25:49
Disjoint Events

12m 13s

Intro
0:00
Disjoint Events
0:06
Definition and Example
0:07
Extra Example 1: Disjoint & Not Disjoint Events
3:08
Extra Example 2: Disjoint & Not Disjoint Events
4:23
Extra Example 3: Independent, Dependent, and Disjoint Events
6:30
Probability of an Event Not Occurring

20m 5s

Intro
0:00
Event Not Occurring
0:07
Formula and Example
0:08
Extra Example 1: Use the Spinner to Find Each Probability
7:24
Extra Example 2: Probability of Event Not Occurring
11:21
Extra Example 3: Probability of Event Not Occurring
15:51
Bookmark & Share Embed

## Copy & Paste this embed code into your website’s HTML

Please ensure that your website editor is in text mode when you paste the code.
(In Wordpress, the mode button is on the top right corner.)
×
• - Allow users to view the embedded video in full-size.
Since this lesson is not free, only the preview will appear on your website.

• ## Related Books 1 answerLast reply by: DJ SaiSun Sep 16, 2018 11:10 PMPost by Kenneth Geller on September 15, 2018what would -4-5-6-7 equal? 0 answersPost by Milan Ray on April 18, 2014Can you use  the two dash  rule two times in one problem?

### Subtracting Integers

• Use the Two-Dash Rule to change the subtraction problem into an addition problem

### Subtracting Integers

Rewrite the subtraction problem to an addition problem and solve
7 - 8
• 7 + - 8
- 1
Rewrite the subtraction problem to an addition problem and solve
- 13 - 5
• - 13 + - 5
- 18
Find the differences
5 - 12
• 5 + - 12
- 7
Find the difference
- 6 - - 5
• - 6 + 5
- 1
Find the difference
- 15 - 8
• - 15 + - 8
- 23
Find the difference
21 - 29
• 21 + - 29
- 8
Find the difference
|−6|−|−12|
• |−6| = 6
• |−12| = 12
• 6 - 12
- 6
Find the difference
|−23| − |13|
• |−23| = 23
• |13| = 13
• 23 - 13
10
Evaluate:
- 9 - - 12 + 5
• - 9 + 12 = 3
• 3 + 5
8
Evaluate:
15 - 20 - 6
• 15 - 20 = - 5
• - 5 - 6 = - 5 + - 6
- 11

*These practice questions are only helpful when you work on them offline on a piece of paper and then use the solution steps function to check your answer.

### Subtracting Integers

Lecture Slides are screen-captured images of important points in the lecture. Students can download and print out these lecture slide images to do practice problems as well as take notes while watching the lecture.

• Intro 0:00
• How to Subtract Integers 0:06
• Two-dash Rule
• Example: 3 - 5
• Example: 3 - (-5)
• Example: -3 - 5
• Extra Example 1: Rewrite Subtraction to Addition 4:43
• Extra Example 2: Find the Difference 7:59
• Extra Example 3: Find the Difference 9:08
• Extra Example 4: Evaluate 10:38

### Transcription: Subtracting Integers

Welcome back to Educator.com; this next lesson is on subtracting integers.0000

The previous lesson was on adding integers.0011

What we are going to do first in order to subtract integers is0015

use a two-dash rule to change the subtraction problem to an addition problem0019

because adding integers is always a lot easier than subtracting integers.0026

We are going to use the two-dash rule.0033

What that is is in order to change the minus sign to a plus sign, you are going to add a dash to it.0036

For example, if I have 3 minus 5, first step, I have to make two dashes.0045

The first dash is to make this minus sign a plus sign.0053

That is the whole point--to change the minus to a plus.0057

I am going to use the first dash to make that a plus.0060

Then I have to make two of them.0063

My second one will be to make this a negative.0065

My subtraction problem is now an addition problem.0069

Another example, if I have 3 minus -5.0072

This is a minus; this is a negative.0078

The first dash is going to make this minus a plus.0081

Since I have to make two dashes, this is already a negative.0085

My second dash would be to make that a positive.0089

3 minus -5 would be the same as 3 plus 5.0092

If I have -3 minus 5, this right here would be just a -3.0100

That is not a minus problem.0108

The minus is right here because it is -3 minus the 5.0109

When you use a two-dash rule, you are not going to be using it for negative signs.0114

All you are doing is changing the subtraction problem to an addition problem.0118

You are not going to use two-dash rule for this one up here.0127

But you are just using it for the minus sign; it will be one, two.0130

If you remember from last lesson, when we add integers,0141

if we have the same sign here, if it is the same sign,0145

if this is a negative and this is a negative, then we can combine these numbers.0149

We can add the numbers which is 8; or take the absolute value.0154

Remember absolute value takes the distance from 0.0158

-3 is 3 from 0.0163

Absolute value must be a positive number because distance...0166

if you are looking at how far away -3 is from 0... here is 0, 1, 2... here is -3.0170

How many units away from 0 is it?--it is 3.0179

Whenever you measure distance, it cannot be a negative; it has to be a positive.0184

The absolute value of -3 is 3; the absolute value of -5 is 5.0190

If you add those, it is going to be 8.0196

But then be careful because you have to give it the same sign.0200

This is a negative; this is a negative.0205

Then this is going to be a negative; -3 plus -5 is -8.0206

If you look at these problems right here or this one, let's do this one first.0212

But it is a positive because numbers are going to be either positive or negative.0219

If there is no negative sign in front of it, then it has to be a positive.0224

This is a +3 plus a +5.0228

That is just the same thing as 3 plus 5 which is 8 or +8.0232

For this one, their signs are different; this is a +3 plus a -5.0238

Since their signs are different, again you take the absolute value.0245

This is 3; absolute value of this is 5.0248

You are going to find the difference; that is 2.0253

Then you take the number with the greater absolute value which is this one right here.0256

Get that sign; give it to this one; the answer is -2.0262

If you don't remember how to do this or if you want to look at a few more examples,0270

we are going to do a few more here for this lesson.0275

But you can also go back to the lesson on adding integers.0278

The first set of examples is to rewrite the subtraction problem to an addition problem.0286

This one, the first one is 5 minus 9.0291

We want to use the two-dash rule.0296

The two-dash rule is strictly just used to make a subtraction problem to an addition problem.0299

Later when you start getting really comfortable with these kind of problems, you won't have to use the two-dash rule.0306

The two-dash rule is just to make the problems a lot easier.0311

For here, the first dash I am going to make is to make that minus into a plus.0314

That is the first one.0323

My second one that I have to make will be to make that one a negative.0325

Now we have 5 plus -9.0329

Now that it is a plus problem, we have to add these two integers.0335

But they have different signs; this is +5; this is a -9.0340

We take the absolute value; the absolute value of 5 is 5.0344

The absolute value of -9 is 9; remember their signs are different.0348

So we find their difference.0353

Absolute value of 5 plus absolute value of -9 is going to be...0358

I am sorry... this is a minus; let me just make that a minus.0365

This is going to be 4; it is a 4.0372

But remember again you have to figure out which one...0378

If this is a 5 and this is a 9, this is the bigger number.0382

You look at the sign that goes with that number; it is a negative.0387

You are going to give that negative sign to the answer; it is -4.0391

This next problem, we have a minus negative; it is -10 minus a -4.0396

Again the first dash will be to make this one into a plus.0404

The second dash... for this problem, we made it into a negative.0409

But it is already a negative; we have to make that into a plus.0414

Again you are not going to use the two-dash rule for this negative sign up here.0419

It is only to make this a plus.0423

Whenever you do the two dash rule, it has to be right in there.0426

-10 plus 4; this is -10 plus 4; that is the same thing.0432

Plus positive is the same thing as just plus.0439

I don't have to put my positive sign.0442

Again they have different signs.0445

The absolute value of 10 minus the absolute value of 4 is 6.0448

Which one has the greater number?0456

The absolute value is going to be this one right here.0459

You are going to take that same sign and give it to this.0463

Be careful with the signs because you can get this number right.0466

But if the sign is wrong, then the answer will be wrong.0470

You have to make sure you have the correct sign along with the correct number.0473

The next one, you are just finding the difference.0480

Again we are going to use the two-dash rule to make that a plus and then there.0483

They are different signs, a positive and negative sign.0489

We are going to find the difference of their absolute values which is 7.0494

You are going to give that a negative sign because the 11 is the greater absolute value.0500

You are going to give that a negative.0508

The next one, again you are going to make this a plus and then a plus.0511

-5 plus 5; this is -5 plus 5;0517

-5 plus 5, again they are different signs; you take the absolute value.0521

That is 5; minus the 5 is 0; this is just 0.0530

If you have +2 minus 2, that is 0.0536

A -5 plus a 5, if you have opposites, then it will just be 0.0540

Next one, 32 minus 9, make this a plus negative; they have different signs.0551

I take the difference of the absolute values.0561

This is 32, the absolute value; this is 39.0565

If I find the difference of that, it is 7.0569

With that negative sign belonging to the 39, to the greater value, that becomes a negative.0573

For this, absolute value of -15 minus absolute value of -9.0582

The absolute value of -15, how far is -15 from 0?--it is 15.0589

You can also think of it, whenever you take the absolute value of something, it is just the positive of that number.0597

If it is -15, then the positive of -15 is 15.0602

Minus... this is not inside the absolute value sign.0608

This doesn't change; this has to stay the same; absolute value of -9 is 9.0612

15 minus 9, that is 6; we don't have to change this.0619

If you want to, you can change this minus to a plus using the two-dash rule.0626

But 15 minus 9, we know that that is just 6.0632

The last couple examples; here we have -3 minus -8 plus 5.0640

The first thing I want to do is -3 minus -8;0648

I want to solve this first; but I have a minus.0653

Remember we want to change our subtraction problems to additions problems.0656

We do that by using the two-dash rule.0662

For the two-dash rule, the first step will be to make that minus into a plus0667

because that is the whole point of using it.0672

The minus will change to a plus.0675

Then I have to make one more little dash either to make this a negative or make it a plus0677

because it already is a negative so I have to make that a plus.0683

I change -3 minus -8 to -3 plus 8; -3 plus 8.0686

Plus positive is the same thing as just plus; -3 plus 8.0695

-3 plus 8, again they have different signs.0701

This is a negative; this is a positive.0708

I am going to take the absolute value.0711

If it is different signs, then you are going to take the difference of the absolute values.0714

-3, the absolute value of that, which is the distance from 0, how far away is -3 from 0?0718

That is 3; this absolute value is 8.0725

When you find how far apart they are from 8 and 3, the absolute values, you get 5.0730

This is 5.0737

You look at which number has the greater absolute value; that is 8.0740

You are going to give it the same sign as that number.0747

Since 8 is a greater number, it has the sign of a positive.0751

You are going to give that 5 a positive sign.0755

We don't have to write the positive sign.0758

If you just don't write anything, then that is the same thing as giving it a positive sign.0760

This right here became 5; then I have to do 5 plus this 5.0766

My answer is going to be 10.0773

The last example, this is 4 minus 10 minus a -9.0779

I am going to solve that first.0785

Again since it is a subtraction problem, 4 minus 10,0789

I am going to change that subtraction to an addition problem by using the two-dash rule.0793

The first dash will be to change this minus to a plus.0800

My next dash is going to make that into a negative.0805

Remember both dashes have to be within those two numbers.0809

You can't make this number negative instead of this number.0813

Both dashes you make are going to be within the two numbers.0818

It is 4 plus -10; again their signs are different.0822

This has no sign which means it is a positive; +4 plus -10.0827

They have difference signs which means you are going to take the difference of the absolute values.0834

This is 4; this is 10; their difference is going to be 6.0839

This has the greater value; it has the sign of a negative.0851

That is going to go there too.0855

Then I am going to do that; -6 minus a -9.0859

Again we have a minus problem.0866

I am going to change this to addition by doing that; that is 1.0867

It is already negative; I have to make that a +2.0874

-6 plus +9, opposite signs; they are different signs so you find the difference.0878

This is 6; this is 9; they are 3 units apart.0887

Which one has the greater value?--the 9; that has a positive sign.0896

This is going to be a positive sign; the answer is +3.0901

That is it for this lesson on subtracting integers.0908

If you want to go back and review over some more problems, the previous lesson on adding integers,0912

that will probably help you freshen up a little bit for the next lesson.0919

Thank you for watching; we will see you soon.0923

OR

### Start Learning Now

Our free lessons will get you started (Adobe Flash® required).