Enter your Sign on user name and password.

Forgot password?
Sign In | Sign Up
Start learning today, and be successful in your academic & professional career. Start Today!

Use Chrome browser to play professor video
Mary Pyo

Mary Pyo

Angles of a Triangle

Slide Duration:

Table of Contents

I. Algebra and Decimals
Expressions and Variables

5m 57s

Intro
0:00
Vocabulary
0:06
Variable
0:09
Expression
0:48
Numerical Expression
1:08
Algebraic Expression
1:35
Word Expression
2:04
Extra Example 1: Evaluate the Expression
2:27
Extra Example 2: Evaluate the Expression
3:16
Extra Example 3: Evaluate the Expression
4:04
Extra Example 4: Evaluate the Expression
4:59
Exponents

5m 34s

Intro
0:00
What Exponents Mean
0:07
Example: Ten Squared
0:08
Extra Example 1: Exponents
0:50
Extra Example 2: Write in Exponent Form
1:58
Extra Example 3: Using Exponent and Base
2:37
Extra Example 4: Write the Equal Factors
4:26
Order of Operations

8m 40s

Intro
0:00
Please Excuse My Dear Aunt Sally
0:07
Step 1: Parenthesis
1:16
Step 2: Exponent
1:25
Step 3: Multiply and Divide
1:30
Step 4: Add and Subtract
2:00
Example: Please Excuse My Dear Aunt Sally
2:26
Extra Example 1: Evaluating Expression
3:37
Extra Example 2: Evaluating Expression
4:59
Extra Example 3: Evaluating Expression
5:34
Extra Example 4: Evaluating Expression
6:25
Comparing and Ordering Decimals

13m 37s

Intro
0:00
Place Value
0:13
Examples: 1,234,567.89
0:19
Which is the Larger Value?
1:33
Which is Larger: 10.5 or 100.5
1:46
Which is Larger: 1.01 or 1.10
2:24
Which is Larger: 44.40 or 44.4
4:20
Which is Larger: 18.6 or 16.8
5:18
Extra Example 1: Order from Least to Greatest
5:55
Extra Example 2: Order from Least to Greatest
7:56
Extra Example 3: Order from Least to Greatest
9:16
Extra Example 4: Order from Least to Greatest
10:42
Rounding Decimals

12m 31s

Intro
0:00
Decimal Place Value
0:06
Example: 12,3454.6789
0:07
How to Round Decimals
1:17
Example: Rounding 1,234.567
1:18
Extra Example 1: Rounding Decimals
3:47
Extra Example 2: Rounding Decimals
6:10
Extra Example 3: Rounding Decimals
7:45
Extra Example 4: Rounding Decimals
9:56
Adding and Subtracting Decimals

11m 30s

Intro
0:00
When Adding and Subtracting
0:06
Align the Decimal Point First
0:12
Add or Subtract the Digits
0:47
Place the Decimal Point in the Same Place
0:55
Check by Estimating
1:09
Examples
1:28
Add: 3.45 + 7 + 0.835
1:30
Find the Difference: 351.4 - 65.25
3:34
Extra Example 1: Adding Decimals
5:32
Extra Example 2: How Much Money?
6:09
Extra Example 3: Subtracting Decimals
7:20
Extra Example 4: Adding Decimals
9:32
Multiplying Decimals

10m 30s

Intro
0:00
Multiply the Decimals
0:05
Methods for Multiplying Decimals
0:06
Example: 1.1 x 6
0:38
Extra Example 1: Multiplying Decimals
1:51
Extra Example 2: Work Money
2:49
Extra Example 3: Multiplying Decimals
5:45
Extra Example 4: Multiplying Decimals
7:46
Dividing Decimals

17m 49s

Intro
0:00
When Dividing Decimals
0:06
Methods for Dividing Decimals
0:07
Divisor and Dividend
0:37
Example: 0.2 Divided by 10
1:35
Extra Example 1 : Dividing Decimals
5:24
Extra Example 2: How Much Does Each CD Cost?
8:22
Extra Example 3: Dividing Decimals
10:59
Extra Example 4: Dividing Decimals
12:08
II. Number Relationships and Fractions
Prime Factorization

7m

Intro
0:00
Terms to Review
0:07
Prime vs. Composite
0:12
Factor
0:54
Product
1:15
Factor Tree
1:39
Example: Prime Factorization
2:01
Example: Prime Factorization
2:43
Extra Example 1: Prime Factorization
4:08
Extra Example 2: Prime Factorization
5:05
Extra Example 3: Prime Factorization
5:33
Extra Example 4: Prime Factorization
6:13
Greatest Common Factor

12m 47s

Intro
0:00
Terms to Review
0:05
Factor
0:07
Example: Factor of 20
0:18
Two Methods
0:59
Greatest Common Factor
1:00
Method 1: GCF of 15 and 30
1:37
Method 2: GCF of 15 and 30
2:58
Extra Example 1: Find the GCF of 6 and 18
5:16
Extra Example 2: Find the GCF of 36 and 27
7:43
Extra Example 3: Find the GCF of 6 and 18
9:18
Extra Example 4: Find the GCF of 54 and 36
10:30
Fraction Concepts and Simplest Form

10m 3s

Intro
0:00
Fraction Concept
0:10
Example: Birthday Cake
0:28
Example: Chocolate Bar
2:10
Simples Form
3:38
Example: Simplifying 4 out of 8
3:46
Extra Example 1: Graphically Show 4 out of 10
4:41
Extra Example 2: Finding Fraction Shown by Illustration
5:10
Extra Example 3: Simplest Form of 5 over 25
7:02
Extra Example 4: Simplest Form of 14 over 49
8:30
Least Common Multiple

14m 16s

Intro
0:00
Term to Review
0:06
Multiple
0:07
Example: Multiples of 4
0:15
Two Methods
0:41
Least Common Multiples
0:44
Method 1: LCM of 6 and 10
1:09
Method 2: LCM of 6 and 10
2:56
Extra Example 1: LCM of 12 and 15
5:09
Extra Example 2: LCM of 16 and 20
7:36
Extra Example 3 : LCM of 15 and 25
10:00
Extra Example 4 : LCM of 12 and 18
11:27
Comparing and Ordering Fractions

13m 10s

Intro
0:00
Terms Review
0:14
Greater Than
0:16
Less Than
0:40
Compare the Fractions
1:00
Example: Comparing 2/4 and 3/4
1:08
Example: Comparing 5/8 and 2/5
2:04
Extra Example 1: Compare the Fractions
3:28
Extra Example 2: Compare the Fractions
6:06
Extra Example 3: Compare the Fractions
8:01
Extra Example 4: Least to Greatest
9:37
Mixed Numbers and Improper Fractions

12m 49s

Intro
0:00
Fractions
0:10
Mixed Number
0:21
Proper Fraction
0:47
Improper Fraction
1:30
Switching Between
2:47
Mixed Number to Improper Fraction
2:53
Improper Fraction to Mixed Number
4:41
Examples: Switching Fractions
6:37
Extra Example 1: Mixed Number to Improper Fraction
8:57
Extra Example 2: Improper Fraction to Mixed Number
9:37
Extra Example 3: Improper Fraction to Mixed Number
10:21
Extra Example 4: Mixed Number to Improper Fraction
11:31
Connecting Decimals and Fractions

15m 1s

Intro
0:00
Examples: Decimals and Fractions
0:06
More Examples: Decimals and Fractions
2:48
Extra Example 1: Converting Decimal to Fraction
6:55
Extra Example 2: Converting Fraction to Decimal
8:45
Extra Example 3: Converting Decimal to Fraction
10:28
Extra Example 4: Converting Fraction to Decimal
11:42
III. Fractions and Their Operations
Adding and Subtracting Fractions with Same Denominators

5m 17s

Intro
0:00
Same Denominator
0:11
Numerator and Denominator
0:18
Example: 2/6 + 5/6
0:41
Extra Example 1: Add or Subtract the Fractions
2:02
Extra Example 2: Add or Subtract the Fractions
2:45
Extra Example 3: Add or Subtract the Fractions
3:17
Extra Example 4: Add or Subtract the Fractions
4:05
Adding and Subtracting Fractions with Different Denominators

23m 8s

Intro
0:00
Least Common Multiple
0:12
LCM of 6 and 4
0:31
From LCM to LCD
2:25
Example: Adding 1/6 with 3/4
3:12
Extra Example 1: Add or Subtract
6:23
Extra Example 2: Add or Subtract
9:49
Extra Example 3: Add or Subtract
14:54
Extra Example 4: Add or Subtract
18:14
Adding and Subtracting Mixed Numbers

19m 44s

Intro
0:00
Example
0:05
Adding Mixed Numbers
0:17
Extra Example 1: Adding Mixed Numbers
1:57
Extra Example 2: Subtracting Mixed Numbers
8:13
Extra Example 3: Adding Mixed Numbers
12:01
Extra Example 4: Subtracting Mixed Numbers
14:54
Multiplying Fractions and Mixed Numbers

21m 32s

Intro
0:00
Multiplying Fractions
0:07
Step 1: Change Mixed Numbers to Improper Fractions
0:08
Step2: Multiply the Numerators Together
0:56
Step3: Multiply the Denominators Together
1:03
Extra Example 1: Multiplying Fractions
1:37
Extra Example 2: Multiplying Fractions
6:39
Extra Example 3: Multiplying Fractions
10:20
Extra Example 4: Multiplying Fractions
13:47
Dividing Fractions and Mixed Numbers

18m

Intro
0:00
Dividing Fractions
0:09
Step 1: Change Mixed Numbers to Improper Fractions
0:15
Step 2: Flip the Second Fraction
0:27
Step 3: Multiply the Fractions
0:52
Extra Example 1: Dividing Fractions
1:23
Extra Example 2: Dividing Fractions
5:06
Extra Example 3: Dividing Fractions
9:34
Extra Example 4: Dividing Fractions
12:06
Distributive Property

11m 5s

Intro
0:00
Distributive Property
0:06
Methods of Distributive Property
0:07
Example: a(b)
0:35
Example: a(b+c)
0:49
Example: a(b+c+d)
1:22
Extra Example 1: Using Distributive Property
1:56
Extra Example 2: Using Distributive Property
4:36
Extra Example 3: Using Distributive Property
6:39
Extra Example 4: Using Distributive Property
8:19
Units of Measure

16m 36s

Intro
0:00
Length
0:05
Feet, Inches, Yard, and Mile
0:20
Millimeters, Centimeters, and Meters
0:43
Mass
2:57
Pounds, Ounces, and Tons
3:03
Grams and Kilograms
3:38
Liquid
4:11
Gallons, Quarts, Pints, and Cups
4:14
Extra Example 1: Converting Units
7:02
Extra Example 2: Converting Units
9:31
Extra Example 3: Converting Units
12:21
Extra Example 4: Converting Units
14:05
IV. Positive and Negative Numbers
Integers and the Number Line

13m 24s

Intro
0:00
What are Integers
0:06
Integers are all Whole Numbers and Their Opposites
0:09
Absolute Value
2:35
Extra Example 1: Compare the Integers
4:36
Extra Example 2: Writing Integers
9:24
Extra Example 3: Opposite Integer
10:38
Extra Example 4: Absolute Value
11:27
Adding Integers

16m 5s

Intro
0:00
Using a Number Line
0:04
Example: 4 + (-2)
0:14
Example: 5 + (-8)
1:50
How to Add Integers
3:00
Opposites Add to Zero
3:10
Adding Same Sign Numbers
3:37
Adding Opposite Signs Numbers
4:44
Extra Example 1: Add the Integers
8:21
Extra Example 2: Find the Sum
10:33
Extra Example 3: Find the Value
11:37
Extra Example 4: Add the Integers
13:10
Subtracting Integers

15m 25s

Intro
0:00
How to Subtract Integers
0:06
Two-dash Rule
0:16
Example: 3 - 5
0:44
Example: 3 - (-5)
1:12
Example: -3 - 5
1:39
Extra Example 1: Rewrite Subtraction to Addition
4:43
Extra Example 2: Find the Difference
7:59
Extra Example 3: Find the Difference
9:08
Extra Example 4: Evaluate
10:38
Multiplying Integers

7m 33s

Intro
0:00
When Multiplying Integers
0:05
If One Number is Negative
0:06
If Both Numbers are Negative
0:18
Examples: Multiplying Integers
0:53
Extra Example 1: Multiplying Integers
1:27
Extra Example 2: Multiplying Integers
2:43
Extra Example 3: Multiplying Integers
3:13
Extra Example 4: Multiplying Integers
3:51
Dividing Integers

6m 42s

Intro
0:00
When Dividing Integers
0:05
Rules for Dividing Integers
0:41
Extra Example 1: Dividing Integers
1:01
Extra Example 2: Dividing Integers
1:51
Extra Example 3: Dividing Integers
2:21
Extra Example 4: Dividing Integers
3:18
Integers and Order of Operations

11m 9s

Intro
0:00
Combining Operations
0:21
Solve Using the Order of Operations
0:22
Extra Example 1: Evaluate
1:18
Extra Example 2: Evaluate
4:20
Extra Example 3: Evaluate
6:33
Extra Example 4: Evaluate
8:13
V. Solving Equations
Writing Expressions

9m 15s

Intro
0:00
Operation as Words
0:05
Operation as Words
0:06
Extra Example 1: Write Each as an Expression
2:09
Extra Example 2: Write Each as an Expression
4:27
Extra Example 3: Write Each Expression Using Words
6:45
Writing Equations

18m 3s

Intro
0:00
Equation
0:05
Definition of Equation
0:06
Examples of Equation
0:58
Operations as Words
1:39
Operations as Words
1:40
Extra Example 1: Write Each as an Equation
3:07
Extra Example 2: Write Each as an Equation
6:19
Extra Example 3: Write Each as an Equation
10:08
Extra Example 4: Determine if the Equation is True or False
13:38
Solving Addition and Subtraction Equations

24m 53s

Intro
0:00
Solving Equations
0:08
inverse Operation of Addition and Subtraction
0:09
Extra Example 1: Solve Each Equation Using Mental Math
4:15
Extra Example 2: Use Inverse Operations to Solve Each Equation
5:44
Extra Example 3: Solve Each Equation
14:51
Extra Example 4: Translate Each to an Equation and Solve
19:57
Solving Multiplication Equation

19m 46s

Intro
0:00
Multiplication Equations
0:08
Inverse Operation of Multiplication
0:09
Extra Example 1: Use Mental Math to Solve Each Equation
3:54
Extra Example 2: Use Inverse Operations to Solve Each Equation
5:55
Extra Example 3: Is -2 a Solution of Each Equation?
12:48
Extra Example 4: Solve Each Equation
15:42
Solving Division Equation

17m 58s

Intro
0:00
Division Equations
0:05
Inverse Operation of Division
0:06
Extra Example 1: Use Mental Math to Solve Each Equation
0:39
Extra Example 2: Use Inverse Operations to Solve Each Equation
2:14
Extra Example 3: Is -6 a Solution of Each Equation?
9:53
Extra Example 4: Solve Each Equation
11:50
VI. Ratios and Proportions
Ratio

40m 21s

Intro
0:00
Ratio
0:05
Definition of Ratio
0:06
Examples of Ratio
0:18
Rate
2:19
Definition of Rate
2:20
Unit Rate
3:38
Example: $10 / 20 pieces
5:05
Converting Rates
6:46
Example: Converting Rates
6:47
Extra Example 1: Write in Simplest Form
16:22
Extra Example 2: Find the Ratio
20:53
Extra Example 3: Find the Unit Rate
22:56
Extra Example 4: Convert the Unit
26:34
Solving Proportions

17m 22s

Intro
0:00
Proportions
0:05
An Equality of Two Ratios
0:06
Cross Products
1:00
Extra Example 1: Find Two Equivalent Ratios for Each
3:21
Extra Example 2: Use Mental Math to Solve the Proportion
5:52
Extra Example 3: Tell Whether the Two Ratios Form a Proportion
8:21
Extra Example 4: Solve the Proportion
13:26
Writing Proportions

22m 1s

Intro
0:00
Writing Proportions
0:08
Introduction to Writing Proportions and Example
0:10
Extra Example 1: Write a Proportion and Solve
5:54
Extra Example 2: Write a Proportion and Solve
11:19
Extra Example 3: Write a Proportion for Word Problem
17:29
Similar Polygons

16m 31s

Intro
0:00
Similar Polygons
0:05
Definition of Similar Polygons
0:06
Corresponding Sides are Proportional
2:14
Extra Example 1: Write a Proportion and Find the Value of Similar Triangles
4:26
Extra Example 2: Write a Proportional to Find the Value of x
7:04
Extra Example 3: Write a Proportion for the Similar Polygons and Solve
9:04
Extra Example 4: Word Problem and Similar Polygons
11:03
Scale Drawings

13m 43s

Intro
0:00
Scale Drawing
0:05
Definition of a Scale Drawing
0:06
Example: Scale Drawings
1:00
Extra Example 1: Scale Drawing
4:50
Extra Example 2: Scale Drawing
7:02
Extra Example 3: Scale Drawing
9:34
Probability

11m 51s

Intro
0:00
Probability
0:05
Introduction to Probability
0:06
Example: Probability
1:22
Extra Example 1: What is the Probability of Landing on Orange?
3:26
Extra Example 2: What is the Probability of Rolling a 5?
5:02
Extra Example 3: What is the Probability that the Marble will be Red?
7:40
Extra Example 4: What is the Probability that the Student will be a Girl?
9:43
VII. Percents
Percents, Fractions, and Decimals

35m 5s

Intro
0:00
Percents
0:06
Changing Percent to a Fraction
0:07
Changing Percent to a Decimal
1:54
Fractions
4:17
Changing Fraction to Decimal
4:18
Changing Fraction to Percent
7:50
Decimals
10:10
Changing Decimal to Fraction
10:11
Changing Decimal to Percent
12:07
Extra Example 1: Write Each Percent as a Fraction in Simplest Form
13:29
Extra Example 2: Write Each as a Decimal
17:09
Extra Example 3: Write Each Fraction as a Percent
22:45
Extra Example 4: Complete the Table
29:17
Finding a Percent of a Number

28m 18s

Intro
0:00
Percent of a Number
0:06
Translate Sentence into an Equation
0:07
Example: 30% of 100 is What Number?
1:05
Extra Example 1: Finding a Percent of a Number
7:12
Extra Example 2: Finding a Percent of a Number
15:56
Extra Example 3: Finding a Percent of a Number
19:14
Extra Example 4: Finding a Percent of a Number
24:26
Solving Percent Problems

32m 31s

Intro
0:00
Solving Percent Problems
0:06
Translate the Sentence into an Equation
0:07
Extra Example 1: Solving Percent Problems
0:56
Extra Example 2: Solving Percent Problems
14:49
Extra Example 3: Solving Percent Problems
23:44
Simple Interest

27m 9s

Intro
0:00
Simple Interest
0:05
Principal
0:06
Interest & Interest Rate
0:41
Simple Interest
1:43
Simple Interest Formula
2:23
Simple Interest Formula: I = prt
2:24
Extra Example 1: Finding Simple Interest
3:53
Extra Example 2: Finding Simple Interest
8:08
Extra Example 3: Finding Simple Interest
12:02
Extra Example 4: Finding Simple Interest
17:46
Discount and Sales Tax

17m 15s

Intro
0:00
Discount
0:19
Discount
0:20
Sale Price
1:22
Sales Tax
2:24
Sales Tax
2:25
Total Due
2:59
Extra Example 1: Finding the Discount
3:43
Extra Example 2: Finding the Sale Price
6:28
Extra Example 3: Finding the Sale Tax
11:14
Extra Example 4: Finding the Total Due
14:08
VIII. Geometry in a Plane
Intersecting Lines and Angle Measures

24m 17s

Intro
0:00
Intersecting Lines
0:07
Properties of Lines
0:08
When Two Lines Cross Each Other
1:55
Angles
2:56
Properties of Angles: Sides, Vertex, and Measure
2:57
Classifying Angles
7:18
Acute Angle
7:19
Right Angle
7:54
Obtuse Angle
8:03
Angle Relationships
8:56
Vertical Angles
8:57
Adjacent Angles
10:38
Complementary Angles
11:52
Supplementary Angles
12:54
Extra Example 1: Lines
16:00
Extra Example 2: Angles
18:22
Extra Example 3: Angle Relationships
20:05
Extra Example 4: Name the Measure of Angles
21:11
Angles of a Triangle

13m 35s

Intro
0:00
Angles of a Triangle
0:05
All Triangles Have Three Angles
0:06
Measure of Angles
2:16
Extra Example 1: Find the Missing Angle Measure
5:39
Extra Example 2: Angles of a Triangle
7:18
Extra Example 3: Angles of a Triangle
9:24
Classifying Triangles

15m 10s

Intro
0:00
Types of Triangles by Angles
0:05
Acute Triangle
0:06
Right Triangle
1:14
Obtuse Triangle
2:22
Classifying Triangles by Sides
4:18
Equilateral Triangle
4:20
Isosceles Triangle
5:21
Scalene Triangle
5:53
Extra Example 1: Classify the Triangle by Its Angles and Sides
6:34
Extra Example 2: Sketch the Figures
8:10
Extra Example 3: Classify the Triangle by Its Angles and Sides
9:55
Extra Example 4: Classify the Triangle by Its Angles and Sides
11:35
Quadrilaterals

17m 41s

Intro
0:00
Quadrilaterals
0:05
Definition of Quadrilaterals
0:06
Parallelogram
0:45
Rectangle
2:28
Rhombus
3:13
Square
3:53
Trapezoid
4:38
Parallelograms
5:33
Parallelogram, Rectangle, Rhombus, Trapezoid, and Square
5:35
Extra Example 1: Give the Most Exact Name for the Figure
11:37
Extra Example 2: Fill in the Blanks
13:31
Extra Example 3: Complete Each Statement with Always, Sometimes, or Never
14:37
Area of a Parallelogram

12m 44s

Intro
0:00
Area
0:06
Definition of Area
0:07
Area of a Parallelogram
2:00
Area of a Parallelogram
2:01
Extra Example 1: Find the Area of the Rectangle
4:30
Extra Example 2: Find the Area of the Parallelogram
5:29
Extra Example 3: Find the Area of the Parallelogram
7:22
Extra Example 4: Find the Area of the Shaded Region
8:55
Area of a Triangle

11m 29s

Intro
0:00
Area of a Triangle
0:05
Area of a Triangle: Equation and Example
0:06
Extra Example 1: Find the Area of the Triangles
1:31
Extra Example 2: Find the Area of the Figure
4:09
Extra Example 3: Find the Area of the Shaded Region
7:45
Circumference of a Circle

15m 4s

Intro
0:00
Segments in Circles
0:05
Radius
0:06
Diameter
1:08
Chord
1:49
Circumference
2:53
Circumference of a Circle
2:54
Extra Example 1: Name the Given Parts of the Circle
6:26
Extra Example 2: Find the Circumference of the Circle
7:54
Extra Example 3: Find the Circumference of Each Circle with the Given Measure
11:04
Area of a Circle

14m 43s

Intro
0:00
Area of a Circle
0:05
Area of a Circle: Equation and Example
0:06
Extra Example 1: Find the Area of the Circle
2:17
Extra Example 2: Find the Area of the Circle
5:47
Extra Example 3: Find the Area of the Shaded Region
9:24
XI. Geometry in Space
Prisms and Cylinders

21m 49s

Intro
0:00
Prisms
0:06
Polyhedron
0:07
Regular Prism, Bases, and Lateral Faces
1:44
Cylinders
9:37
Bases and Altitude
9:38
Extra Example 1: Classify Each Prism by the Shape of Its Bases
11:16
Extra Example 2: Name Two Different Edges, Faces, and Vertices of the Prism
15:44
Extra Example 3: Name the Solid of Each Object
17:58
Extra Example 4: Write True or False for Each Statement
19:47
Volume of a Rectangular Prism

8m 59s

Intro
0:00
Volume of a Rectangular Prism
0:06
Volume of a Rectangular Prism: Formula
0:07
Volume of a Rectangular Prism: Example
1:46
Extra Example 1: Find the Volume of the Rectangular Prism
3:39
Extra Example 2: Find the Volume of the Cube
5:00
Extra Example 3: Find the Volume of the Solid
5:56
Volume of a Triangular Prism

16m 15s

Intro
0:00
Volume of a Triangular Prism
0:06
Volume of a Triangular Prism: Formula
0:07
Extra Example 1: Find the Volume of the Triangular Prism
2:42
Extra Example 2: Find the Volume of the Triangular Prism
7:21
Extra Example 3: Find the Volume of the Solid
10:38
Volume of a Cylinder

15m 55s

Intro
0:00
Volume of a Cylinder
0:05
Volume of a Cylinder: Formula
0:06
Extra Example 1: Find the Volume of the Cylinder
1:52
Extra Example 2: Find the Volume of the Cylinder
7:38
Extra Example 3: Find the Volume of the Cylinder
11:25
Surface Area of a Prism

23m 28s

Intro
0:00
Surface Area of a Prism
0:06
Surface Area of a Prism
0:07
Lateral Area of a Prism
2:12
Lateral Area of a Prism
2:13
Extra Example 1: Find the Surface Area of the Rectangular Prism
7:08
Extra Example 2: Find the Lateral Area and the Surface Area of the Cube
12:05
Extra Example 3: Find the Surface Area of the Triangular Prism
17:13
Surface Area of a Cylinder

27m 41s

Intro
0:00
Surface Area of a Cylinder
0:06
Introduction to Surface Area of a Cylinder
0:07
Surface Area of a Cylinder
1:33
Formula
1:34
Extra Example 1: Find the Surface Area of the Cylinder
5:51
Extra Example 2: Find the Surface Area of the Cylinder
13:51
Extra Example 3: Find the Surface Area of the Cylinder
20:57
X. Data Analysis and Statistics
Measures of Central Tendency

24m 32s

Intro
0:00
Measures of Central Tendency
0:06
Mean
1:17
Median
2:42
Mode
5:41
Extra Example 1: Find the Mean, Median, and Mode for the Following Set of Data
6:24
Extra Example 2: Find the Mean, Median, and Mode for the Following Set of Data
11:14
Extra Example 3: Find the Mean, Median, and Mode for the Following Set of Data
15:13
Extra Example 4: Find the Three Measures of the Central Tendency
19:12
Histograms

19m 43s

Intro
0:00
Histograms
0:05
Definition and Example
0:06
Extra Example 1: Draw a Histogram for the Frequency Table
6:14
Extra Example 2: Create a Histogram of the Data
8:48
Extra Example 3: Create a Histogram of the Following Test Scores
14:17
Box-and-Whisker Plot

17m 54s

Intro
0:00
Box-and-Whisker Plot
0:05
Median, Lower & Upper Quartile, Lower & Upper Extreme
0:06
Extra Example 1: Name the Median, Lower & Upper Quartile, Lower & Upper Extreme
6:04
Extra Example 2: Draw a Box-and-Whisker Plot Given the Information
7:35
Extra Example 3: Find the Median, Lower & Upper Quartile, Lower & Upper Extreme
9:31
Extra Example 4: Draw a Box-and-Whiskers Plots for the Set of Data
12:50
Stem-and-Leaf Plots

17m 42s

Intro
0:00
Stem-and-Leaf Plots
0:05
Stem-and-Leaf Plots
0:06
Extra Example 1: Use the Data to Create a Stem-and-Leaf Plot
2:28
Extra Example 2: List All the Numbers in the Stem-and-Leaf Plot in Order From Least to Greatest
7:02
Extra Example 3: Create a Stem-and-Leaf Plot of the Data & Find the Median and the Mode.
8:59
The Coordinate Plane

19m 59s

Intro
0:00
The Coordinate System
0:05
The Coordinate Plane
0:06
Quadrants, Origin, and Ordered Pair
0:50
The Coordinate Plane
7:02
Write the Coordinates for Points A, B, and C
7:03
Extra Example 1: Graph Each Point on the Coordinate Plane
9:03
Extra Example 2: Write the Coordinate and Quadrant for Each Point
11:05
Extra Example 3: Name Two Points From Each of the Four Quadrants
13:13
Extra Example 4: Graph Each Point on the Same Coordinate Plane
17:47
XI. Probability and Discrete Mathematics
Organizing Possible Outcomes

15m 35s

Intro
0:00
Compound Events
0:08
Compound Events
0:09
Fundamental Counting Principle
3:35
Extra Example 1: Create a List of All the Possible Outcomes
4:47
Extra Example 2: Create a Tree Diagram For All the Possible Outcomes
6:34
Extra Example 3: Create a Tree Diagram For All the Possible Outcomes
10:00
Extra Example 4: Fundamental Counting Principle
12:41
Independent and Dependent Events

35m 19s

Intro
0:00
Independent Events
0:11
Definition
0:12
Example 1: Independent Event
1:45
Example 2: Two Independent Events
4:48
Dependent Events
9:09
Definition
9:10
Example: Dependent Events
10:10
Extra Example 1: Determine If the Two Events are Independent or Dependent Events
13:38
Extra Example 2: Find the Probability of Each Pair of Events
18:11
Extra Example 3: Use the Spinner to Find Each Probability
21:42
Extra Example 4: Find the Probability of Each Pair of Events
25:49
Disjoint Events

12m 13s

Intro
0:00
Disjoint Events
0:06
Definition and Example
0:07
Extra Example 1: Disjoint & Not Disjoint Events
3:08
Extra Example 2: Disjoint & Not Disjoint Events
4:23
Extra Example 3: Independent, Dependent, and Disjoint Events
6:30
Probability of an Event Not Occurring

20m 5s

Intro
0:00
Event Not Occurring
0:07
Formula and Example
0:08
Extra Example 1: Use the Spinner to Find Each Probability
7:24
Extra Example 2: Probability of Event Not Occurring
11:21
Extra Example 3: Probability of Event Not Occurring
15:51
Loading...
This is a quick preview of the lesson. For full access, please Log In or Sign up.
For more information, please see full course syllabus of Basic Math
  • Discussion

  • Study Guides

  • Download Lecture Slides

  • Table of Contents

  • Transcription

  • Related Books

Lecture Comments (2)

0 answers

Post by Jeannette Eason on July 18 at 09:36:55 AM

0 answers

Post by hani shuman on April 4, 2017

   

Angles of a Triangle

Related Links

  • All triangles have three angles, and the three angles in a triangle add up to 180 degrees

Angles of a Triangle

Lecture Slides are screen-captured images of important points in the lecture. Students can download and print out these lecture slide images to do practice problems as well as take notes while watching the lecture.

  • Intro 0:00
  • Angles of a Triangle 0:05
    • All Triangles Have Three Angles
    • Measure of Angles
  • Extra Example 1: Find the Missing Angle Measure 5:39
  • Extra Example 2: Angles of a Triangle 7:18
  • Extra Example 3: Angles of a Triangle 9:24

Transcription: Angles of a Triangle

Welcome back to Educator.com.0000

For the next lesson, we are going to go over angles of a triangle.0002

Remember a triangle is a polygon with three sides; three straight sides.0009

Which means that there are three angles; those sides form three angles.0015

All triangles have three angles.0021

Here is one; here is another one; there is a third.0027

To name this angle here, we can say angle BAC.0031

That would be this angle right here; angle BAC.0040

But since the A is a vertex and there is only one angle0045

that this is a vertex for, we can just call this angle, angle A.0052

This one, I can just call angle B; this is angle C.0059

Again only if the point A is a vertex for just a single angle.0065

Let me give you an example of what it is not.0071

If I have an angle like that, I have two adjacent angles; this is A.0075

I can't call this angle, angle A, because there is three different angles formed here.0084

There is this small angle; there is this angle; there is this big angle.0089

This point, this vertex, is a vertex for three different angles.0095

In this case, you cannot call it angle A; you can't say angle A.0099

You would have to name the other three points like this one.0106

You would have to name, if this is B and this is C, then you have to say angle BAC or like that.0110

But again this one, because in a triangle, there is only three angles and three vertex.0119

You can just name this as angle A.0129

If I say angle A, I am talking about this angle here; angle B; angle C.0131

Within the three angles of a triangle, remember each angle has an angle measure, the number of degrees.0139

All three angle measures is going to add up to 180,0148

like the supplementary angles where we have two angles that form a straight line.0152

That adds up to 180.0156

Here the three angles of a triangle also add up to 180.0159

If this is 60, this is 60, then what I can do is add these two up and subtract it from 180.0168

Here if I want to write an equation, I can say measure of angle A.0179

Remember this M is for measure; it is to show the number of degrees.0186

Measure of angle A plus the measure, the number of degrees, of angle B0190

plus the measure of angle C is going to equal 180 degrees.0199

We know what the measure of angle A is; how many degrees is angle A?0212

We know it is 60; this whole thing is just 60 degrees.0216

Measure of angle A is just 60; I can just replace this with 60.0221

Do I know measure of angle B?--no; I can just leave that there.0225

Plus the measure of angle C is also 60.0231

That is all going to add up to 180.0236

Again I can just add these two together which is this and this.0240

That is going to be 120; plus this unknown adds to 180.0244

I can subtract this from 180; 180 minus these two; whatever is left over.0256

From the 180 total, if I add these two together0263

and then figure out how many degrees are left over from the 180,0269

then all of that, all of those left over degrees have to go to angle B.0273

I am going to subtract; measure of angle B is going to be 60 degrees.0278

The leftover degrees from the 180 is 60; then this also has to be 60.0290

That is how you are going to solve for the missing angle measure.0300

Remember if we are going to be solving for the missing angle measure,0305

then we have to know two of the three angle measures.0309

I can't only have the measure of angle A and then find both B and C0317

because they are going to be different angles; they could be different angle measures.0323

I don't know how many are going to go here and how many are going to go here.0330

To find the missing angle measure, you have to have two out of the three like this one.0334

I have measure of angle A, 70 degrees.0343

I have the measure of angle B; that is 60 degrees.0348

I want to find the measure of angle C, meaning I want to find how many degrees is in angle C.0352

Again I can just take these two, add them together; how many from the 180?0359

I know that this plus this plus this all have to add up to 180.0364

This and this are used up.0371

However many are left over all have to go to angle C.0373

I can say 70 degrees plus this 60 plus the measure of angle C.0379

This is the proper way to write it.0387

I can't just write C because you are talking about the measure, meaning how many degrees.0389

It is all going to add up to 180.0394

Again I am going to add these two together.0398

This will be 130 plus the measure of angle C.0400

130 being used up plus the leftovers is going to equal 180.0410

Remember I subtract 180 with this number.0415

That way measure of angle C is going to be 50 degrees.0422

That means this has to be 50.0426

60 plus 70 plus 50 is going to add up to 180.0429

That is the missing angle measure.0434

Determine the angle measures if the angle measures could be the angle measures of a triangle.0441

Three angle measures for the three angles of a triangle.0448

If they add up to 180, then they can be the correct angle measures of a triangle.0455

But if not, if they don't add up to 180,0460

that means they can't be the three angle measures of a triangle.0462

The first one, I am going to take 50 plus the 90 plus the 40.0466

Just add them all up; I know that 0 plus 0 plus 0 is 0.0473

5 plus 9 is 14; plus 4 is 18; yes, they add up to 180.0479

That means these three angle measures can be the angle measures of a triangle.0489

This one is yes.0497

The next one, 45 plus 48 plus the 95.0504

5 plus... you can add this 5.0516

5 plus 5 is 10; plus 8 is 18; put up the 1; 8.0520

Already I know that it is not going to add up to 1800528

because the last digit has to be 0 and it is not.0533

This is 1 plus 4 is 5; plus 4 is 9; that plus 9 is 18.0537

This is 188; this is too much.0546

That means it can't be the angles of a triangle; this one is no.0550

Remember the angles of a triangle have to add up to 180.0557

The third example, find X.0565

We want to find the measure of this angle right here.0568

I have this triangle.0574

Remember all three angles of a triangle have to add up to 180.0578

But this one is what I am looking for; this is the missing angle measure.0583

I don't have this angle measure either.0586

If I need to find the third angle measure, I need to have the other two.0589

I have this one; I need to have this one also.0594

If I don't have this, then I don't know how many goes here.0598

I need to find this one first.0603

I have to use another method to find this angle measure.0606

I know that this right here, this straight line...0615

This is from the last lesson, the previous lesson on angles and lines.0621

If this is the line here, this one doesn't have an arrow.0629

Just do that; here is where it goes up.0635

Remember this, two angles right here, they are adjacent angles.0643

But they are also supplementary because it is a straight line.0652

It is straight; a straight line has an angle measure of 180.0656

This whole thing together is 180; that means this one plus this one is 180.0662

This is given that it is 135 degrees.0671

If this one together with this small one is 180, then I can just subtract it.0675

180 minus the 135 to see what this angle measure is going to be.0680

180 minus 135; this is going to be 45 degrees.0686

That means this has to be 45 because again this angle with this angle together forms a straight line.0698

That has to be 180; they are supplementary angles.0705

Now that I found this angle and I have this angle, I need to find the measure of this angle.0711

I can just say that X... this is just angle measure so I can just leave it as X.0719

I don't have to say measure of angle X because that is not a name.0728

That is the number of degrees.0732

X degrees plus 53 degrees plus 45 degrees all add up to 180 degrees.0734

See how they are all in degrees.0745

Again I am going to add these two together to see how many of the 180 I am using up.0749

Then see how many are left over to be X.0753

This is 53 plus 45 is 98 degrees.0761

That means X degrees, this many degrees, plus 90 degrees together is 180 degrees.0768

Again I am going to subtract this from 98; I get 82 degrees.0778

Right here, X is 82 degrees; this has to be 82.0796

That way this plus this plus this, the three angles of a triangle, are going to add up to 180.0804

That is it for this lesson; thank you for watching Educator.com.0812

Educator®

Please sign in for full access to this lesson.

Sign-InORCreate Account

Enter your Sign-on user name and password.

Forgot password?

Start Learning Now

Our free lessons will get you started (Adobe Flash® required).
Get immediate access to our entire library.

Sign up for Educator.com

Membership Overview

  • Unlimited access to our entire library of courses.
  • Search and jump to exactly what you want to learn.
  • *Ask questions and get answers from the community and our teachers!
  • Practice questions with step-by-step solutions.
  • Download lesson files for programming and software training practice.
  • Track your course viewing progress.
  • Download lecture slides for taking notes.

Use this form or mail us to .

For support articles click here.