Enter your Sign on user name and password.

Forgot password?
Sign In | Subscribe
Start learning today, and be successful in your academic & professional career. Start Today!
Use Chrome browser to play professor video
Mary Pyo

Mary Pyo

Tangents

Slide Duration:

Table of Contents

I. Tools of Geometry
Coordinate Plane

16m 41s

Intro
0:00
The Coordinate System
0:12
Coordinate Plane: X-axis and Y-axis
0:15
Quadrants
1:02
Origin
2:00
Ordered Pair
2:17
Coordinate Plane
2:59
Example: Writing Coordinates
3:01
Coordinate Plane, cont.
4:15
Example: Graphing & Coordinate Plane
4:17
Collinear
5:58
Extra Example 1: Writing Coordinates & Quadrants
7:34
Extra Example 2: Quadrants
8:52
Extra Example 3: Graphing & Coordinate Plane
10:58
Extra Example 4: Collinear
12:50
Points, Lines and Planes

17m 17s

Intro
0:00
Points
0:07
Definition and Example of Points
0:09
Lines
0:50
Definition and Example of Lines
0:51
Planes
2:59
Definition and Example of Planes
3:00
Drawing and Labeling
4:40
Example 1: Drawing and Labeling
4:41
Example 2: Drawing and Labeling
5:54
Example 3: Drawing and Labeling
6:41
Example 4: Drawing and Labeling
8:23
Extra Example 1: Points, Lines and Planes
10:19
Extra Example 2: Naming Figures
11:16
Extra Example 3: Points, Lines and Planes
12:35
Extra Example 4: Draw and Label
14:44
Measuring Segments

31m 31s

Intro
0:00
Segments
0:06
Examples of Segments
0:08
Ruler Postulate
1:30
Ruler Postulate
1:31
Segment Addition Postulate
5:02
Example and Definition of Segment Addition Postulate
5:03
Segment Addition Postulate
8:01
Example 1: Segment Addition Postulate
8:04
Example 2: Segment Addition Postulate
11:15
Pythagorean Theorem
12:36
Definition of Pythagorean Theorem
12:37
Pythagorean Theorem, cont.
15:49
Example: Pythagorean Theorem
15:50
Distance Formula
16:48
Example and Definition of Distance Formula
16:49
Extra Example 1: Find Each Measure
20:32
Extra Example 2: Find the Missing Measure
22:11
Extra Example 3: Find the Distance Between the Two Points
25:36
Extra Example 4: Pythagorean Theorem
29:33
Midpoints and Segment Congruence

42m 26s

Intro
0:00
Definition of Midpoint
0:07
Midpoint
0:10
Midpoint Formulas
1:30
Midpoint Formula: On a Number Line
1:45
Midpoint Formula: In a Coordinate Plane
2:50
Midpoint
4:40
Example: Midpoint on a Number Line
4:43
Midpoint
6:05
Example: Midpoint in a Coordinate Plane
6:06
Midpoint
8:28
Example 1
8:30
Example 2
13:01
Segment Bisector
15:14
Definition and Example of Segment Bisector
15:15
Proofs
17:27
Theorem
17:53
Proof
18:21
Midpoint Theorem
19:37
Example: Proof & Midpoint Theorem
19:38
Extra Example 1: Midpoint on a Number Line
23:44
Extra Example 2: Drawing Diagrams
26:25
Extra Example 3: Midpoint
29:14
Extra Example 4: Segment Bisector
33:21
Angles

42m 34s

Intro
0:00
Angles
0:05
Angle
0:07
Ray
0:23
Opposite Rays
2:09
Angles
3:22
Example: Naming Angle
3:23
Angles
6:39
Interior, Exterior, Angle
6:40
Measure and Degrees
7:38
Protractor Postulate
8:37
Example: Protractor Postulate
8:38
Angle Addition Postulate
11:41
Example: Angle addition Postulate
11:42
Classifying Angles
14:10
Acute Angle
14:16
Right Angles
14:30
Obtuse Angle
14:41
Angle Bisector
15:02
Example: Angle Bisector
15:04
Angle Relationships
16:43
Adjacent Angles
16:47
Vertical Angles
17:49
Linear Pair
19:40
Angle Relationships
20:31
Right Angles
20:32
Supplementary Angles
21:15
Complementary Angles
21:33
Extra Example 1: Angles
24:08
Extra Example 2: Angles
29:06
Extra Example 3: Angles
32:05
Extra Example 4 Angles
35:44
II. Reasoning & Proof
Inductive Reasoning

19m

Intro
0:00
Inductive Reasoning
0:05
Conjecture
0:06
Inductive Reasoning
0:15
Examples
0:55
Example: Sequence
0:56
More Example: Sequence
2:00
Using Inductive Reasoning
2:50
Example: Conjecture
2:51
More Example: Conjecture
3:48
Counterexamples
4:56
Counterexample
4:58
Extra Example 1: Conjecture
6:59
Extra Example 2: Sequence and Pattern
10:20
Extra Example 3: Inductive Reasoning
12:46
Extra Example 4: Conjecture and Counterexample
15:17
Conditional Statements

42m 47s

Intro
0:00
If Then Statements
0:05
If Then Statements
0:06
Other Forms
2:29
Example: Without Then
2:40
Example: Using When
3:03
Example: Hypothesis
3:24
Identify the Hypothesis and Conclusion
3:52
Example 1: Hypothesis and Conclusion
3:58
Example 2: Hypothesis and Conclusion
4:31
Example 3: Hypothesis and Conclusion
5:38
Write in If Then Form
6:16
Example 1: Write in If Then Form
6:23
Example 2: Write in If Then Form
6:57
Example 3: Write in If Then Form
7:39
Other Statements
8:40
Other Statements
8:41
Converse Statements
9:18
Converse Statements
9:20
Converses and Counterexamples
11:04
Converses and Counterexamples
11:05
Example 1: Converses and Counterexamples
12:02
Example 2: Converses and Counterexamples
15:10
Example 3: Converses and Counterexamples
17:08
Inverse Statement
19:58
Definition and Example
19:59
Inverse Statement
21:46
Example 1: Inverse and Counterexample
21:47
Example 2: Inverse and Counterexample
23:34
Contrapositive Statement
25:20
Definition and Example
25:21
Contrapositive Statement
26:58
Example: Contrapositive Statement
27:00
Summary
29:03
Summary of Lesson
29:04
Extra Example 1: Hypothesis and Conclusion
32:20
Extra Example 2: If-Then Form
33:23
Extra Example 3: Converse, Inverse, and Contrapositive
34:54
Extra Example 4: Converse, Inverse, and Contrapositive
37:56
Point, Line, and Plane Postulates

17m 24s

Intro
0:00
What are Postulates?
0:09
Definition of Postulates
0:10
Postulates
1:22
Postulate 1: Two Points
1:23
Postulate 2: Three Points
2:02
Postulate 3: Line
2:45
Postulates, cont..
3:08
Postulate 4: Plane
3:09
Postulate 5: Two Points in a Plane
3:53
Postulates, cont..
4:46
Postulate 6: Two Lines Intersect
4:47
Postulate 7: Two Plane Intersect
5:28
Using the Postulates
6:34
Examples: True or False
6:35
Using the Postulates
10:18
Examples: True or False
10:19
Extra Example 1: Always, Sometimes, or Never
12:22
Extra Example 2: Always, Sometimes, or Never
13:15
Extra Example 3: Always, Sometimes, or Never
14:16
Extra Example 4: Always, Sometimes, or Never
15:03
Deductive Reasoning

36m 3s

Intro
0:00
Deductive Reasoning
0:06
Definition of Deductive Reasoning
0:07
Inductive vs. Deductive
2:51
Inductive Reasoning
2:52
Deductive reasoning
3:19
Law of Detachment
3:47
Law of Detachment
3:48
Examples of Law of Detachment
4:31
Law of Syllogism
7:32
Law of Syllogism
7:33
Example 1: Making a Conclusion
9:02
Example 2: Making a Conclusion
12:54
Using Laws of Logic
14:12
Example 1: Determine the Logic
14:42
Example 2: Determine the Logic
17:02
Using Laws of Logic, cont.
18:47
Example 3: Determine the Logic
19:03
Example 4: Determine the Logic
20:56
Extra Example 1: Determine the Conclusion and Law
22:12
Extra Example 2: Determine the Conclusion and Law
25:39
Extra Example 3: Determine the Logic and Law
29:50
Extra Example 4: Determine the Logic and Law
31:27
Proofs in Algebra: Properties of Equality

44m 31s

Intro
0:00
Properties of Equality
0:10
Addition Property of Equality
0:28
Subtraction Property of Equality
1:10
Multiplication Property of Equality
1:41
Division Property of Equality
1:55
Addition Property of Equality Using Angles
2:46
Properties of Equality, cont.
4:10
Reflexive Property of Equality
4:11
Symmetric Property of Equality
5:24
Transitive Property of Equality
6:10
Properties of Equality, cont.
7:04
Substitution Property of Equality
7:05
Distributive Property of Equality
8:34
Two Column Proof
9:40
Example: Two Column Proof
9:46
Proof Example 1
16:13
Proof Example 2
23:49
Proof Example 3
30:33
Extra Example 1: Name the Property of Equality
38:07
Extra Example 2: Name the Property of Equality
40:16
Extra Example 3: Name the Property of Equality
41:35
Extra Example 4: Name the Property of Equality
43:02
Proving Segment Relationship

41m 2s

Intro
0:00
Good Proofs
0:12
Five Essential Parts
0:13
Proof Reasons
1:38
Undefined
1:40
Definitions
2:06
Postulates
2:42
Previously Proven Theorems
3:24
Congruence of Segments
4:10
Theorem: Congruence of Segments
4:12
Proof Example
10:16
Proof: Congruence of Segments
10:17
Setting Up Proofs
19:13
Example: Two Segments with Equal Measures
19:15
Setting Up Proofs
21:48
Example: Vertical Angles are Congruent
21:50
Setting Up Proofs
23:59
Example: Segment of a Triangle
24:00
Extra Example 1: Congruence of Segments
27:03
Extra Example 2: Setting Up Proofs
28:50
Extra Example 3: Setting Up Proofs
30:55
Extra Example 4: Two-Column Proof
33:11
Proving Angle Relationships

33m 37s

Intro
0:00
Supplement Theorem
0:05
Supplementary Angles
0:06
Congruence of Angles
2:37
Proof: Congruence of Angles
2:38
Angle Theorems
6:54
Angle Theorem 1: Supplementary Angles
6:55
Angle Theorem 2: Complementary Angles
10:25
Angle Theorems
11:32
Angle Theorem 3: Right Angles
11:35
Angle Theorem 4: Vertical Angles
12:09
Angle Theorem 5: Perpendicular Lines
12:57
Using Angle Theorems
13:45
Example 1: Always, Sometimes, or Never
13:50
Example 2: Always, Sometimes, or Never
14:28
Example 3: Always, Sometimes, or Never
16:21
Extra Example 1: Always, Sometimes, or Never
16:53
Extra Example 2: Find the Measure of Each Angle
18:55
Extra Example 3: Find the Measure of Each Angle
25:03
Extra Example 4: Two-Column Proof
27:08
III. Perpendicular & Parallel Lines
Parallel Lines and Transversals

37m 35s

Intro
0:00
Lines
0:06
Parallel Lines
0:09
Skew Lines
2:02
Transversal
3:42
Angles Formed by a Transversal
4:28
Interior Angles
5:53
Exterior Angles
6:09
Consecutive Interior Angles
7:04
Alternate Exterior Angles
9:47
Alternate Interior Angles
11:22
Corresponding Angles
12:27
Angles Formed by a Transversal
15:29
Relationship Between Angles
15:30
Extra Example 1: Intersecting, Parallel, or Skew
19:26
Extra Example 2: Draw a Diagram
21:37
Extra Example 3: Name the Figures
24:12
Extra Example 4: Angles Formed by a Transversal
28:38
Angles and Parallel Lines

41m 53s

Intro
0:00
Corresponding Angles Postulate
0:05
Corresponding Angles Postulate
0:06
Alternate Interior Angles Theorem
3:05
Alternate Interior Angles Theorem
3:07
Consecutive Interior Angles Theorem
5:16
Consecutive Interior Angles Theorem
5:17
Alternate Exterior Angles Theorem
6:42
Alternate Exterior Angles Theorem
6:43
Parallel Lines Cut by a Transversal
7:18
Example: Parallel Lines Cut by a Transversal
7:19
Perpendicular Transversal Theorem
14:54
Perpendicular Transversal Theorem
14:55
Extra Example 1: State the Postulate or Theorem
16:37
Extra Example 2: Find the Measure of the Numbered Angle
18:53
Extra Example 3: Find the Measure of Each Angle
25:13
Extra Example 4: Find the Values of x, y, and z
36:26
Slope of Lines

44m 6s

Intro
0:00
Definition of Slope
0:06
Slope Equation
0:13
Slope of a Line
3:45
Example: Find the Slope of a Line
3:47
Slope of a Line
8:38
More Example: Find the Slope of a Line
8:40
Slope Postulates
12:32
Proving Slope Postulates
12:33
Parallel or Perpendicular Lines
17:23
Example: Parallel or Perpendicular Lines
17:24
Using Slope Formula
20:02
Example: Using Slope Formula
20:03
Extra Example 1: Slope of a Line
25:10
Extra Example 2: Slope of a Line
26:31
Extra Example 3: Graph the Line
34:11
Extra Example 4: Using the Slope Formula
38:50
Proving Lines Parallel

25m 55s

Intro
0:00
Postulates
0:06
Postulate 1: Parallel Lines
0:21
Postulate 2: Parallel Lines
2:16
Parallel Postulate
3:28
Definition and Example of Parallel Postulate
3:29
Theorems
4:29
Theorem 1: Parallel Lines
4:40
Theorem 2: Parallel Lines
5:37
Theorems, cont.
6:10
Theorem 3: Parallel Lines
6:11
Extra Example 1: Determine Parallel Lines
6:56
Extra Example 2: Find the Value of x
11:42
Extra Example 3: Opposite Sides are Parallel
14:48
Extra Example 4: Proving Parallel Lines
20:42
Parallels and Distance

19m 48s

Intro
0:00
Distance Between a Points and Line
0:07
Definition and Example
0:08
Distance Between Parallel Lines
1:51
Definition and Example
1:52
Extra Example 1: Drawing a Segment to Represent Distance
3:02
Extra Example 2: Drawing a Segment to Represent Distance
4:27
Extra Example 3: Graph, Plot, and Construct a Perpendicular Segment
5:13
Extra Example 4: Distance Between Two Parallel Lines
15:37
IV. Congruent Triangles
Classifying Triangles

28m 43s

Intro
0:00
Triangles
0:09
Triangle: A Three-Sided Polygon
0:10
Sides
1:00
Vertices
1:22
Angles
1:56
Classifying Triangles by Angles
2:59
Acute Triangle
3:19
Obtuse Triangle
4:08
Right Triangle
4:44
Equiangular Triangle
5:38
Definition and Example of an Equiangular Triangle
5:39
Classifying Triangles by Sides
6:57
Scalene Triangle
7:17
Isosceles Triangle
7:57
Equilateral Triangle
8:12
Isosceles Triangle
8:58
Labeling Isosceles Triangle
9:00
Labeling Right Triangle
10:44
Isosceles Triangle
11:10
Example: Find x, AB, BC, and AC
11:11
Extra Example 1: Classify Each Triangle
13:45
Extra Example 2: Always, Sometimes, or Never
16:28
Extra Example 3: Find All the Sides of the Isosceles Triangle
20:29
Extra Example 4: Distance Formula and Triangle
22:29
Measuring Angles in Triangles

44m 43s

Intro
0:00
Angle Sum Theorem
0:09
Angle Sum Theorem for Triangle
0:11
Using Angle Sum Theorem
4:06
Find the Measure of the Missing Angle
4:07
Third Angle Theorem
4:58
Example: Third Angle Theorem
4:59
Exterior Angle Theorem
7:58
Example: Exterior Angle Theorem
8:00
Flow Proof of Exterior Angle Theorem
15:14
Flow Proof of Exterior Angle Theorem
15:17
Triangle Corollaries
27:21
Triangle Corollary 1
27:50
Triangle Corollary 2
30:42
Extra Example 1: Find the Value of x
32:55
Extra Example 2: Find the Value of x
34:20
Extra Example 3: Find the Measure of the Angle
35:38
Extra Example 4: Find the Measure of Each Numbered Angle
39:00
Exploring Congruent Triangles

26m 46s

Intro
0:00
Congruent Triangles
0:15
Example of Congruent Triangles
0:17
Corresponding Parts
3:39
Corresponding Angles and Sides of Triangles
3:40
Definition of Congruent Triangles
11:24
Definition of Congruent Triangles
11:25
Triangle Congruence
16:37
Congruence of Triangles
16:38
Extra Example 1: Congruence Statement
18:24
Extra Example 2: Congruence Statement
21:26
Extra Example 3: Draw and Label the Figure
23:09
Extra Example 4: Drawing Triangles
24:04
Proving Triangles Congruent

47m 51s

Intro
0:00
SSS Postulate
0:18
Side-Side-Side Postulate
0:27
SAS Postulate
2:26
Side-Angle-Side Postulate
2:29
SAS Postulate
3:57
Proof Example
3:58
ASA Postulate
11:47
Angle-Side-Angle Postulate
11:53
AAS Theorem
14:13
Angle-Angle-Side Theorem
14:14
Methods Overview
16:16
Methods Overview
16:17
SSS
16:33
SAS
17:06
ASA
17:50
AAS
18:17
CPCTC
19:14
Extra Example 1:Proving Triangles are Congruent
21:29
Extra Example 2: Proof
25:40
Extra Example 3: Proof
30:41
Extra Example 4: Proof
38:41
Isosceles and Equilateral Triangles

27m 53s

Intro
0:00
Isosceles Triangle Theorem
0:07
Isosceles Triangle Theorem
0:09
Isosceles Triangle Theorem
2:26
Example: Using the Isosceles Triangle Theorem
2:27
Isosceles Triangle Theorem Converse
3:29
Isosceles Triangle Theorem Converse
3:30
Equilateral Triangle Theorem Corollaries
4:30
Equilateral Triangle Theorem Corollary 1
4:59
Equilateral Triangle Theorem Corollary 2
5:55
Extra Example 1: Find the Value of x
7:08
Extra Example 2: Find the Value of x
10:04
Extra Example 3: Proof
14:04
Extra Example 4: Proof
22:41
V. Triangle Inequalities
Special Segments in Triangles

43m 44s

Intro
0:00
Perpendicular Bisector
0:06
Perpendicular Bisector
0:07
Perpendicular Bisector
4:07
Perpendicular Bisector Theorems
4:08
Median
6:30
Definition of Median
6:31
Median
9:41
Example: Median
9:42
Altitude
12:22
Definition of Altitude
12:23
Angle Bisector
14:33
Definition of Angle Bisector
14:34
Angle Bisector
16:41
Angle Bisector Theorems
16:42
Special Segments Overview
18:57
Perpendicular Bisector
19:04
Median
19:32
Altitude
19:49
Angle Bisector
20:02
Examples: Special Segments
20:18
Extra Example 1: Draw and Label
22:36
Extra Example 2: Draw the Altitudes for Each Triangle
24:37
Extra Example 3: Perpendicular Bisector
27:57
Extra Example 4: Draw, Label, and Write Proof
34:33
Right Triangles

26m 34s

Intro
0:00
LL Theorem
0:21
Leg-Leg Theorem
0:25
HA Theorem
2:23
Hypotenuse-Angle Theorem
2:24
LA Theorem
4:49
Leg-Angle Theorem
4:50
LA Theorem
6:18
Example: Find x and y
6:19
HL Postulate
8:22
Hypotenuse-Leg Postulate
8:23
Extra Example 1: LA Theorem & HL Postulate
10:57
Extra Example 2: Find x So That Each Pair of Triangles is Congruent
14:15
Extra Example 3: Two-column Proof
17:02
Extra Example 4: Two-column Proof
21:01
Indirect Proofs and Inequalities

33m 30s

Intro
0:00
Writing an Indirect Proof
0:09
Step 1
0:49
Step 2
2:32
Step 3
3:00
Indirect Proof
4:30
Example: 2 + 6 = 8
5:00
Example: The Suspect is Guilty
5:40
Example: Measure of Angle A < Measure of Angle B
6:06
Definition of Inequality
7:47
Definition of Inequality & Example
7:48
Properties of Inequality
9:55
Comparison Property
9:58
Transitive Property
10:33
Addition and Subtraction Properties
12:01
Multiplication and Division Properties
13:07
Exterior Angle Inequality Theorem
14:12
Example: Exterior Angle Inequality Theorem
14:13
Extra Example 1: Draw a Diagram for the Statement
18:32
Extra Example 2: Name the Property for Each Statement
19:56
Extra Example 3: State the Assumption
21:22
Extra Example 4: Write an Indirect Proof
25:39
Inequalities for Sides and Angles of a Triangle

17m 26s

Intro
0:00
Side to Angles
0:10
If One Side of a Triangle is Longer Than Another Side
0:11
Converse: Angles to Sides
1:57
If One Angle of a Triangle Has a Greater Measure Than Another Angle
1:58
Extra Example 1: Name the Angles in the Triangle From Least to Greatest
2:38
Extra Example 2: Find the Longest and Shortest Segment in the Triangle
3:47
Extra Example 3: Angles and Sides of a Triangle
4:51
Extra Example 4: Two-column Proof
9:08
Triangle Inequality

28m 11s

Intro
0:00
Triangle Inequality Theorem
0:05
Triangle Inequality Theorem
0:06
Triangle Inequality Theorem
4:22
Example 1: Triangle Inequality Theorem
4:23
Example 2: Triangle Inequality Theorem
9:40
Extra Example 1: Determine if the Three Numbers can Represent the Sides of a Triangle
12:00
Extra Example 2: Finding the Third Side of a Triangle
13:34
Extra Example 3: Always True, Sometimes True, or Never True
18:18
Extra Example 4: Triangle and Vertices
22:36
Inequalities Involving Two Triangles

29m 36s

Intro
0:00
SAS Inequality Theorem
0:06
SAS Inequality Theorem & Example
0:25
SSS Inequality Theorem
4:33
SSS Inequality Theorem & Example
4:34
Extra Example 1: Write an Inequality Comparing the Segments
6:08
Extra Example 2: Determine if the Statement is True
9:52
Extra Example 3: Write an Inequality for x
14:20
Extra Example 4: Two-column Proof
17:44
VI. Quadrilaterals
Parallelograms

29m 11s

Intro
0:00
Quadrilaterals
0:06
Four-sided Polygons
0:08
Non Examples of Quadrilaterals
0:47
Parallelograms
1:35
Parallelograms
1:36
Properties of Parallelograms
4:28
Opposite Sides of a Parallelogram are Congruent
4:29
Opposite Angles of a Parallelogram are Congruent
5:49
Angles and Diagonals
6:24
Consecutive Angles in a Parallelogram are Supplementary
6:25
The Diagonals of a Parallelogram Bisect Each Other
8:42
Extra Example 1: Complete Each Statement About the Parallelogram
10:26
Extra Example 2: Find the Values of x, y, and z of the Parallelogram
13:21
Extra Example 3: Find the Distance of Each Side to Verify the Parallelogram
16:35
Extra Example 4: Slope of Parallelogram
23:15
Proving Parallelograms

42m 43s

Intro
0:00
Parallelogram Theorems
0:09
Theorem 1
0:20
Theorem 2
1:50
Parallelogram Theorems, Cont.
3:10
Theorem 3
3:11
Theorem 4
4:15
Proving Parallelogram
6:21
Example: Determine if Quadrilateral ABCD is a Parallelogram
6:22
Summary
14:01
Both Pairs of Opposite Sides are Parallel
14:14
Both Pairs of Opposite Sides are Congruent
15:09
Both Pairs of Opposite Angles are Congruent
15:24
Diagonals Bisect Each Other
15:44
A Pair of Opposite Sides is Both Parallel and Congruent
16:13
Extra Example 1: Determine if Each Quadrilateral is a Parallelogram
16:54
Extra Example 2: Find the Value of x and y
20:23
Extra Example 3: Determine if the Quadrilateral ABCD is a Parallelogram
24:05
Extra Example 4: Two-column Proof
30:28
Rectangles

29m 47s

Intro
0:00
Rectangles
0:03
Definition of Rectangles
0:04
Diagonals of Rectangles
2:52
Rectangles: Diagonals Property 1
2:53
Rectangles: Diagonals Property 2
3:30
Proving a Rectangle
4:40
Example: Determine Whether Parallelogram ABCD is a Rectangle
4:41
Rectangles Summary
9:22
Opposite Sides are Congruent and Parallel
9:40
Opposite Angles are Congruent
9:51
Consecutive Angles are Supplementary
9:58
Diagonals are Congruent and Bisect Each Other
10:05
All Four Angles are Right Angles
10:40
Extra Example 1: Find the Value of x
11:03
Extra Example 2: Name All Congruent Sides and Angles
13:52
Extra Example 3: Always, Sometimes, or Never True
19:39
Extra Example 4: Determine if ABCD is a Rectangle
26:45
Squares and Rhombi

39m 14s

Intro
0:00
Rhombus
0:09
Definition of a Rhombus
0:10
Diagonals of a Rhombus
2:03
Rhombus: Diagonals Property 1
2:21
Rhombus: Diagonals Property 2
3:49
Rhombus: Diagonals Property 3
4:36
Rhombus
6:17
Example: Use the Rhombus to Find the Missing Value
6:18
Square
8:17
Definition of a Square
8:20
Summary Chart
11:06
Parallelogram
11:07
Rectangle
12:56
Rhombus
13:54
Square
14:44
Extra Example 1: Diagonal Property
15:44
Extra Example 2: Use Rhombus ABCD to Find the Missing Value
19:39
Extra Example 3: Always, Sometimes, or Never True
23:06
Extra Example 4: Determine the Quadrilateral
28:02
Trapezoids and Kites

30m 48s

Intro
0:00
Trapezoid
0:10
Definition of Trapezoid
0:12
Isosceles Trapezoid
2:57
Base Angles of an Isosceles Trapezoid
2:58
Diagonals of an Isosceles Trapezoid
4:05
Median of a Trapezoid
4:26
Median of a Trapezoid
4:27
Median of a Trapezoid
6:41
Median Formula
7:00
Kite
8:28
Definition of a Kite
8:29
Quadrilaterals Summary
11:19
A Quadrilateral with Two Pairs of Adjacent Congruent Sides
11:20
Extra Example 1: Isosceles Trapezoid
14:50
Extra Example 2: Median of Trapezoid
18:28
Extra Example 3: Always, Sometimes, or Never
24:13
Extra Example 4: Determine if the Figure is a Trapezoid
26:49
VII. Proportions and Similarity
Using Proportions and Ratios

20m 10s

Intro
0:00
Ratio
0:05
Definition and Examples of Writing Ratio
0:06
Proportion
2:05
Definition of Proportion
2:06
Examples of Proportion
2:29
Using Ratio
5:53
Example: Ratio
5:54
Extra Example 1: Find Three Ratios Equivalent to 2/5
9:28
Extra Example 2: Proportion and Cross Products
10:32
Extra Example 3: Express Each Ratio as a Fraction
13:18
Extra Example 4: Fin the Measure of a 3:4:5 Triangle
17:26
Similar Polygons

27m 53s

Intro
0:00
Similar Polygons
0:05
Definition of Similar Polygons
0:06
Example of Similar Polygons
2:32
Scale Factor
4:26
Scale Factor: Definition and Example
4:27
Extra Example 1: Determine if Each Pair of Figures is Similar
7:03
Extra Example 2: Find the Values of x and y
11:33
Extra Example 3: Similar Triangles
19:57
Extra Example 4: Draw Two Similar Figures
23:36
Similar Triangles

34m 10s

Intro
0:00
AA Similarity
0:10
Definition of AA Similarity
0:20
Example of AA Similarity
2:32
SSS Similarity
4:46
Definition of SSS Similarity
4:47
Example of SSS Similarity
6:00
SAS Similarity
8:04
Definition of SAS Similarity
8:05
Example of SAS Similarity
9:12
Extra Example 1: Determine Whether Each Pair of Triangles is Similar
10:59
Extra Example 2: Determine Which Triangles are Similar
16:08
Extra Example 3: Determine if the Statement is True or False
23:11
Extra Example 4: Write Two-Column Proof
26:25
Parallel Lines and Proportional Parts

24m 7s

Intro
0:00
Triangle Proportionality
0:07
Definition of Triangle Proportionality
0:08
Example of Triangle Proportionality
0:51
Triangle Proportionality Converse
2:19
Triangle Proportionality Converse
2:20
Triangle Mid-segment
3:42
Triangle Mid-segment: Definition and Example
3:43
Parallel Lines and Transversal
6:51
Parallel Lines and Transversal
6:52
Extra Example 1: Complete Each Statement
8:59
Extra Example 2: Determine if the Statement is True or False
12:28
Extra Example 3: Find the Value of x and y
15:35
Extra Example 4: Find Midpoints of a Triangle
20:43
Parts of Similar Triangles

27m 6s

Intro
0:00
Proportional Perimeters
0:09
Proportional Perimeters: Definition and Example
0:10
Similar Altitudes
2:23
Similar Altitudes: Definition and Example
2:24
Similar Angle Bisectors
4:50
Similar Angle Bisectors: Definition and Example
4:51
Similar Medians
6:05
Similar Medians: Definition and Example
6:06
Angle Bisector Theorem
7:33
Angle Bisector Theorem
7:34
Extra Example 1: Parts of Similar Triangles
10:52
Extra Example 2: Parts of Similar Triangles
14:57
Extra Example 3: Parts of Similar Triangles
19:27
Extra Example 4: Find the Perimeter of Triangle ABC
23:14
VIII. Applying Right Triangles & Trigonometry
Pythagorean Theorem

21m 14s

Intro
0:00
Pythagorean Theorem
0:05
Pythagorean Theorem & Example
0:06
Pythagorean Converse
1:20
Pythagorean Converse & Example
1:21
Pythagorean Triple
2:42
Pythagorean Triple
2:43
Extra Example 1: Find the Missing Side
4:59
Extra Example 2: Determine Right Triangle
7:40
Extra Example 3: Determine Pythagorean Triple
11:30
Extra Example 4: Vertices and Right Triangle
14:29
Geometric Mean

40m 59s

Intro
0:00
Geometric Mean
0:04
Geometric Mean & Example
0:05
Similar Triangles
4:32
Similar Triangles
4:33
Geometric Mean-Altitude
11:10
Geometric Mean-Altitude & Example
11:11
Geometric Mean-Leg
14:47
Geometric Mean-Leg & Example
14:18
Extra Example 1: Geometric Mean Between Each Pair of Numbers
20:10
Extra Example 2: Similar Triangles
23:46
Extra Example 3: Geometric Mean of Triangles
28:30
Extra Example 4: Geometric Mean of Triangles
36:58
Special Right Triangles

37m 57s

Intro
0:00
45-45-90 Triangles
0:06
Definition of 45-45-90 Triangles
0:25
45-45-90 Triangles
5:51
Example: Find n
5:52
30-60-90 Triangles
8:59
Definition of 30-60-90 Triangles
9:00
30-60-90 Triangles
12:25
Example: Find n
12:26
Extra Example 1: Special Right Triangles
15:08
Extra Example 2: Special Right Triangles
18:22
Extra Example 3: Word Problems & Special Triangles
27:40
Extra Example 4: Hexagon & Special Triangles
33:51
Ratios in Right Triangles

40m 37s

Intro
0:00
Trigonometric Ratios
0:08
Definition of Trigonometry
0:13
Sine (sin), Cosine (cos), & Tangent (tan)
0:50
Trigonometric Ratios
3:04
Trig Functions
3:05
Inverse Trig Functions
5:02
SOHCAHTOA
8:16
sin x
9:07
cos x
10:00
tan x
10:32
Example: SOHCAHTOA & Triangle
12:10
Extra Example 1: Find the Value of Each Ratio or Angle Measure
14:36
Extra Example 2: Find Sin, Cos, and Tan
18:51
Extra Example 3: Find the Value of x Using SOHCAHTOA
22:55
Extra Example 4: Trigonometric Ratios in Right Triangles
32:13
Angles of Elevation and Depression

21m 4s

Intro
0:00
Angle of Elevation
0:10
Definition of Angle of Elevation & Example
0:11
Angle of Depression
1:19
Definition of Angle of Depression & Example
1:20
Extra Example 1: Name the Angle of Elevation and Depression
2:22
Extra Example 2: Word Problem & Angle of Depression
4:41
Extra Example 3: Word Problem & Angle of Elevation
14:02
Extra Example 4: Find the Missing Measure
18:10
Law of Sines

35m 25s

Intro
0:00
Law of Sines
0:20
Law of Sines
0:21
Law of Sines
3:34
Example: Find b
3:35
Solving the Triangle
9:19
Example: Using the Law of Sines to Solve Triangle
9:20
Extra Example 1: Law of Sines and Triangle
17:43
Extra Example 2: Law of Sines and Triangle
20:06
Extra Example 3: Law of Sines and Triangle
23:54
Extra Example 4: Law of Sines and Triangle
28:59
Law of Cosines

52m 43s

Intro
0:00
Law of Cosines
0:35
Law of Cosines
0:36
Law of Cosines
6:22
Use the Law of Cosines When Both are True
6:23
Law of Cosines
8:35
Example: Law of Cosines
8:36
Extra Example 1: Law of Sines or Law of Cosines?
13:35
Extra Example 2: Use the Law of Cosines to Find the Missing Measure
17:02
Extra Example 3: Solve the Triangle
30:49
Extra Example 4: Find the Measure of Each Diagonal of the Parallelogram
41:39
IX. Circles
Segments in a Circle

22m 43s

Intro
0:00
Segments in a Circle
0:10
Circle
0:11
Chord
0:59
Diameter
1:32
Radius
2:07
Secant
2:17
Tangent
3:10
Circumference
3:56
Introduction to Circumference
3:57
Example: Find the Circumference of the Circle
5:09
Circumference
6:40
Example: Find the Circumference of the Circle
6:41
Extra Example 1: Use the Circle to Answer the Following
9:10
Extra Example 2: Find the Missing Measure
12:53
Extra Example 3: Given the Circumference, Find the Perimeter of the Triangle
15:51
Extra Example 4: Find the Circumference of Each Circle
19:24
Angles and Arc

35m 24s

Intro
0:00
Central Angle
0:06
Definition of Central Angle
0:07
Sum of Central Angles
1:17
Sum of Central Angles
1:18
Arcs
2:27
Minor Arc
2:30
Major Arc
3:47
Arc Measure
5:24
Measure of Minor Arc
5:24
Measure of Major Arc
6:53
Measure of a Semicircle
7:11
Arc Addition Postulate
8:25
Arc Addition Postulate
8:26
Arc Length
9:43
Arc Length and Example
9:44
Concentric Circles
16:05
Concentric Circles
16:06
Congruent Circles and Arcs
17:50
Congruent Circles
17:51
Congruent Arcs
18:47
Extra Example 1: Minor Arc, Major Arc, and Semicircle
20:14
Extra Example 2: Measure and Length of Arc
22:52
Extra Example 3: Congruent Arcs
25:48
Extra Example 4: Angles and Arcs
30:33
Arcs and Chords

21m 51s

Intro
0:00
Arcs and Chords
0:07
Arc of the Chord
0:08
Theorem 1: Congruent Minor Arcs
1:01
Inscribed Polygon
2:10
Inscribed Polygon
2:11
Arcs and Chords
3:18
Theorem 2: When a Diameter is Perpendicular to a Chord
3:19
Arcs and Chords
5:05
Theorem 3: Congruent Chords
5:06
Extra Example 1: Congruent Arcs
10:35
Extra Example 2: Length of Arc
13:50
Extra Example 3: Arcs and Chords
17:09
Extra Example 4: Arcs and Chords
19:45
Inscribed Angles

27m 53s

Intro
0:00
Inscribed Angles
0:07
Definition of Inscribed Angles
0:08
Inscribed Angles
0:58
Inscribed Angle Theorem 1
0:59
Inscribed Angles
3:29
Inscribed Angle Theorem 2
3:30
Inscribed Angles
4:38
Inscribed Angle Theorem 3
4:39
Inscribed Quadrilateral
5:50
Inscribed Quadrilateral
5:51
Extra Example 1: Central Angle, Inscribed Angle, and Intercepted Arc
7:02
Extra Example 2: Inscribed Angles
9:24
Extra Example 3: Inscribed Angles
14:00
Extra Example 4: Complete the Proof
17:58
Tangents

26m 16s

Intro
0:00
Tangent Theorems
0:04
Tangent Theorem 1
0:05
Tangent Theorem 1 Converse
0:55
Common Tangents
1:34
Common External Tangent
2:12
Common Internal Tangent
2:30
Tangent Segments
3:08
Tangent Segments
3:09
Circumscribed Polygons
4:11
Circumscribed Polygons
4:12
Extra Example 1: Tangents & Circumscribed Polygons
5:50
Extra Example 2: Tangents & Circumscribed Polygons
8:35
Extra Example 3: Tangents & Circumscribed Polygons
11:50
Extra Example 4: Tangents & Circumscribed Polygons
15:43
Secants, Tangents, & Angle Measures

27m 50s

Intro
0:00
Secant
0:08
Secant
0:09
Secant and Tangent
0:49
Secant and Tangent
0:50
Interior Angles
2:56
Secants & Interior Angles
2:57
Exterior Angles
7:21
Secants & Exterior Angles
7:22
Extra Example 1: Secants, Tangents, & Angle Measures
10:53
Extra Example 2: Secants, Tangents, & Angle Measures
13:31
Extra Example 3: Secants, Tangents, & Angle Measures
19:54
Extra Example 4: Secants, Tangents, & Angle Measures
22:29
Special Segments in a Circle

23m 8s

Intro
0:00
Chord Segments
0:05
Chord Segments
0:06
Secant Segments
1:36
Secant Segments
1:37
Tangent and Secant Segments
4:10
Tangent and Secant Segments
4:11
Extra Example 1: Special Segments in a Circle
5:53
Extra Example 2: Special Segments in a Circle
7:58
Extra Example 3: Special Segments in a Circle
11:24
Extra Example 4: Special Segments in a Circle
18:09
Equations of Circles

27m 1s

Intro
0:00
Equation of a Circle
0:06
Standard Equation of a Circle
0:07
Example 1: Equation of a Circle
0:57
Example 2: Equation of a Circle
1:36
Extra Example 1: Determine the Coordinates of the Center and the Radius
4:56
Extra Example 2: Write an Equation Based on the Given Information
7:53
Extra Example 3: Graph Each Circle
16:48
Extra Example 4: Write the Equation of Each Circle
19:17
X. Polygons & Area
Polygons

27m 24s

Intro
0:00
Polygons
0:10
Polygon vs. Not Polygon
0:18
Convex and Concave
1:46
Convex vs. Concave Polygon
1:52
Regular Polygon
4:04
Regular Polygon
4:05
Interior Angle Sum Theorem
4:53
Triangle
5:03
Quadrilateral
6:05
Pentagon
6:38
Hexagon
7:59
20-Gon
9:36
Exterior Angle Sum Theorem
12:04
Exterior Angle Sum Theorem
12:05
Extra Example 1: Drawing Polygons
13:51
Extra Example 2: Convex Polygon
15:16
Extra Example 3: Exterior Angle Sum Theorem
18:21
Extra Example 4: Interior Angle Sum Theorem
22:20
Area of Parallelograms

17m 46s

Intro
0:00
Parallelograms
0:06
Definition and Area Formula
0:07
Area of Figure
2:00
Area of Figure
2:01
Extra Example 1:Find the Area of the Shaded Area
3:14
Extra Example 2: Find the Height and Area of the Parallelogram
6:00
Extra Example 3: Find the Area of the Parallelogram Given Coordinates and Vertices
10:11
Extra Example 4: Find the Area of the Figure
14:31
Area of Triangles Rhombi, & Trapezoids

20m 31s

Intro
0:00
Area of a Triangle
0:06
Area of a Triangle: Formula and Example
0:07
Area of a Trapezoid
2:31
Area of a Trapezoid: Formula
2:32
Area of a Trapezoid: Example
6:55
Area of a Rhombus
8:05
Area of a Rhombus: Formula and Example
8:06
Extra Example 1: Find the Area of the Polygon
9:51
Extra Example 2: Find the Area of the Figure
11:19
Extra Example 3: Find the Area of the Figure
14:16
Extra Example 4: Find the Height of the Trapezoid
18:10
Area of Regular Polygons & Circles

36m 43s

Intro
0:00
Regular Polygon
0:08
SOHCAHTOA
0:54
30-60-90 Triangle
1:52
45-45-90 Triangle
2:40
Area of a Regular Polygon
3:39
Area of a Regular Polygon
3:40
Are of a Circle
7:55
Are of a Circle
7:56
Extra Example 1: Find the Area of the Regular Polygon
8:22
Extra Example 2: Find the Area of the Regular Polygon
16:48
Extra Example 3: Find the Area of the Shaded Region
24:11
Extra Example 4: Find the Area of the Shaded Region
32:24
Perimeter & Area of Similar Figures

18m 17s

Intro
0:00
Perimeter of Similar Figures
0:08
Example: Scale Factor & Perimeter of Similar Figures
0:09
Area of Similar Figures
2:44
Example:Scale Factor & Area of Similar Figures
2:55
Extra Example 1: Complete the Table
6:09
Extra Example 2: Find the Ratios of the Perimeter and Area of the Similar Figures
8:56
Extra Example 3: Find the Unknown Area
12:04
Extra Example 4: Use the Given Area to Find AB
14:26
Geometric Probability

38m 40s

Intro
0:00
Length Probability Postulate
0:05
Length Probability Postulate
0:06
Are Probability Postulate
2:34
Are Probability Postulate
2:35
Are of a Sector of a Circle
4:11
Are of a Sector of a Circle Formula
4:12
Are of a Sector of a Circle Example
7:51
Extra Example 1: Length Probability
11:07
Extra Example 2: Area Probability
12:14
Extra Example 3: Area Probability
17:17
Extra Example 4: Area of a Sector of a Circle
26:23
XI. Solids
Three-Dimensional Figures

23m 39s

Intro
0:00
Polyhedrons
0:05
Polyhedrons: Definition and Examples
0:06
Faces
1:08
Edges
1:55
Vertices
2:23
Solids
2:51
Pyramid
2:54
Cylinder
3:45
Cone
4:09
Sphere
4:23
Prisms
5:00
Rectangular, Regular, and Cube Prisms
5:02
Platonic Solids
9:48
Five Types of Regular Polyhedra
9:49
Slices and Cross Sections
12:07
Slices
12:08
Cross Sections
12:47
Extra Example 1: Name the Edges, Faces, and Vertices of the Polyhedron
14:23
Extra Example 2: Determine if the Figure is a Polyhedron and Explain Why
17:37
Extra Example 3: Describe the Slice Resulting from the Cut
19:12
Extra Example 4: Describe the Shape of the Intersection
21:25
Surface Area of Prisms and Cylinders

38m 50s

Intro
0:00
Prisms
0:06
Bases
0:07
Lateral Faces
0:52
Lateral Edges
1:19
Altitude
1:58
Prisms
2:24
Right Prism
2:25
Oblique Prism
2:56
Classifying Prisms
3:27
Right Rectangular Prism
3:28
4:55
Oblique Pentagonal Prism
6:26
Right Hexagonal Prism
7:14
Lateral Area of a Prism
7:42
Lateral Area of a Prism
7:43
Surface Area of a Prism
13:44
Surface Area of a Prism
13:45
Cylinder
16:18
Cylinder: Right and Oblique
16:19
Lateral Area of a Cylinder
18:02
Lateral Area of a Cylinder
18:03
Surface Area of a Cylinder
20:54
Surface Area of a Cylinder
20:55
Extra Example 1: Find the Lateral Area and Surface Are of the Prism
21:51
Extra Example 2: Find the Lateral Area of the Prism
28:15
Extra Example 3: Find the Surface Area of the Prism
31:57
Extra Example 4: Find the Lateral Area and Surface Area of the Cylinder
34:17
Surface Area of Pyramids and Cones

26m 10s

Intro
0:00
Pyramids
0:07
Pyramids
0:08
Regular Pyramids
1:52
Regular Pyramids
1:53
Lateral Area of a Pyramid
4:33
Lateral Area of a Pyramid
4:34
Surface Area of a Pyramid
9:19
Surface Area of a Pyramid
9:20
Cone
10:09
Right and Oblique Cone
10:10
Lateral Area and Surface Area of a Right Cone
11:20
Lateral Area and Surface Are of a Right Cone
11:21
Extra Example 1: Pyramid and Prism
13:11
Extra Example 2: Find the Lateral Area of the Regular Pyramid
15:00
Extra Example 3: Find the Surface Area of the Pyramid
18:29
Extra Example 4: Find the Lateral Area and Surface Area of the Cone
22:08
Volume of Prisms and Cylinders

21m 59s

Intro
0:00
Volume of Prism
0:08
Volume of Prism
0:10
Volume of Cylinder
3:38
Volume of Cylinder
3:39
Extra Example 1: Find the Volume of the Prism
5:10
Extra Example 2: Find the Volume of the Cylinder
8:03
Extra Example 3: Find the Volume of the Prism
9:35
Extra Example 4: Find the Volume of the Solid
19:06
Volume of Pyramids and Cones

22m 2s

Intro
0:00
Volume of a Cone
0:08
Volume of a Cone: Example
0:10
Volume of a Pyramid
3:02
Volume of a Pyramid: Example
3:03
Extra Example 1: Find the Volume of the Pyramid
4:56
Extra Example 2: Find the Volume of the Solid
6:01
Extra Example 3: Find the Volume of the Pyramid
10:28
Extra Example 4: Find the Volume of the Octahedron
16:23
Surface Area and Volume of Spheres

14m 46s

Intro
0:00
Special Segments
0:06
Radius
0:07
Chord
0:31
Diameter
0:55
Tangent
1:20
Sphere
1:43
Plane & Sphere
1:44
Hemisphere
2:56
Surface Area of a Sphere
3:25
Surface Area of a Sphere
3:26
Volume of a Sphere
4:08
Volume of a Sphere
4:09
Extra Example 1: Determine Whether Each Statement is True or False
4:24
Extra Example 2: Find the Surface Area of the Sphere
6:17
Extra Example 3: Find the Volume of the Sphere with a Diameter of 20 Meters
7:25
Extra Example 4: Find the Surface Area and Volume of the Solid
9:17
Congruent and Similar Solids

16m 6s

Intro
0:00
Scale Factor
0:06
Scale Factor: Definition and Example
0:08
Congruent Solids
1:09
Congruent Solids
1:10
Similar Solids
2:17
Similar Solids
2:18
Extra Example 1: Determine if Each Pair of Solids is Similar, Congruent, or Neither
3:35
Extra Example 2: Determine if Each Statement is True or False
7:47
Extra Example 3: Find the Scale Factor and the Ratio of the Surface Areas and Volume
10:14
Extra Example 4: Find the Volume of the Larger Prism
12:14
XII. Transformational Geometry
Mapping

14m 12s

Intro
0:00
Transformation
0:04
Rotation
0:32
Translation
1:03
Reflection
1:17
Dilation
1:24
Transformations
1:45
Examples
1:46
Congruence Transformation
2:51
Congruence Transformation
2:52
Extra Example 1: Describe the Transformation that Occurred in the Mappings
3:37
Extra Example 2: Determine if the Transformation is an Isometry
5:16
Extra Example 3: Isometry
8:16
Reflections

23m 17s

Intro
0:00
Reflection
0:05
Definition of Reflection
0:06
Line of Reflection
0:35
Point of Reflection
1:22
Symmetry
1:59
Line of Symmetry
2:00
Point of Symmetry
2:48
Extra Example 1: Draw the Image over the Line of Reflection and the Point of Reflection
3:45
Extra Example 2: Determine Lines and Point of Symmetry
6:59
Extra Example 3: Graph the Reflection of the Polygon
11:15
Extra Example 4: Graph the Coordinates
16:07
Translations

18m 43s

Intro
0:00
Translation
0:05
Translation: Preimage & Image
0:06
Example
0:56
Composite of Reflections
6:28
Composite of Reflections
6:29
Extra Example 1: Translation
7:48
Extra Example 2: Image, Preimage, and Translation
12:38
Extra Example 3: Find the Translation Image Using a Composite of Reflections
15:08
Extra Example 4: Find the Value of Each Variable in the Translation
17:18
Rotations

21m 26s

Intro
0:00
Rotations
0:04
Rotations
0:05
Performing Rotations
2:13
Composite of Two Successive Reflections over Two Intersecting Lines
2:14
Angle of Rotation: Angle Formed by Intersecting Lines
4:29
Angle of Rotation
5:30
Rotation Postulate
5:31
Extra Example 1: Find the Rotated Image
7:32
Extra Example 2: Rotations and Coordinate Plane
10:33
Extra Example 3: Find the Value of Each Variable in the Rotation
14:29
Extra Example 4: Draw the Polygon Rotated 90 Degree Clockwise about P
16:13
Dilation

37m 6s

Intro
0:00
Dilations
0:06
Dilations
0:07
Scale Factor
1:36
Scale Factor
1:37
Example 1
2:06
Example 2
6:22
Scale Factor
8:20
Positive Scale Factor
8:21
Negative Scale Factor
9:25
Enlargement
12:43
Reduction
13:52
Extra Example 1: Find the Scale Factor
16:39
Extra Example 2: Find the Measure of the Dilation Image
19:32
Extra Example 3: Find the Coordinates of the Image with Scale Factor and the Origin as the Center of Dilation
26:18
Extra Example 4: Graphing Polygon, Dilation, and Scale Factor
32:08
Loading...
This is a quick preview of the lesson. For full access, please Log In or Sign up.
For more information, please see full course syllabus of Geometry
  • Discussion

  • Study Guides

  • Practice Questions

  • Download Lecture Slides

  • Table of Contents

  • Transcription

  • Related Books

Start Learning Now

Our free lessons will get you started (Adobe Flash® required).
Get immediate access to our entire library.

Sign up for Educator.com

Membership Overview

  • Unlimited access to our entire library of courses.
  • Search and jump to exactly what you want to learn.
  • *Ask questions and get answers from the community and our teachers!
  • Practice questions with step-by-step solutions.
  • Download lesson files for programming and software training practice.
  • Track your course viewing progress.
  • Download lecture slides for taking notes.
  • Learn at your own pace... anytime, anywhere!

Tangents

  • Tangent Theorems:
    • If a line is a tangent to a circle, then it is perpendicular to the radius drawn to the point of tangency
    • In a plane, if a line is perpendicular to a radius of a circle at the endpoint on the circle, then the line is a tangent of the circle
  • Know what common external tangents and common internal tangents are using geometric pictures
  • Tangent segments: If two segments from the same exterior point are tangent to a circle, then they are congruent
  • Circumscribed Polygons: A polygon is circumscribed about a circle if each side of the polygon is tangent to the circle

Tangents


Determine whether the following statement is true or false.
If AB ⊥CD, B is on circle A, then CD is the tangent of circle A.
True.

Find a common internal tangent and a common external tangent.
  • Internal tangent:AB
  • External tangent:CD
Internal tangent:AB
External tangent:CD

AB and CD are internal tangents, write two pairs of congruent segments.
OD ≅ OA , OB ≅ OC .
Determine whether the following statement is true or false.
A pentagon is circumscribed about a cirle if each side of the pentagon is tangent to the circle.
True.
Determine whether the following statement is true or false.
A tangent of a circle is always perpendicular to the radius drawn to the point of tangency.
True.
CD and BD are tangents of circle A, AC = 3, AD = 5, find BD.
  • AC ⊥BD
  • CD = √{AD2 − AC2} = 4
  • CD ≅ BD
BD = CD = 4.

CG = 18, EF = 10, find the perimeter of ∆CEG.
  • GF = BG, BC = CD, DE = EF
  • C = CB + CD + DE + EF + GF + BG
  • C = 2CB + 2EF + 2BG
  • C = 2CG + 2EF
  • C = 2*18 + 2*10
C = 56.
Determine whether the following statement is true or false.
No common internal tangent can be drawn for two concentric circles.
True
Determine whether the following statement is true or false.
If two circles are concentric, at least one common external tangent can be drawn.
False
Fill in the blank with sometimes, never or always.
For a circle, the area of its inscribed polygon is _____ smaller than the area of its circumscribed polygon.
Always

*These practice questions are only helpful when you work on them offline on a piece of paper and then use the solution steps function to check your answer.

Answer

Tangents

Lecture Slides are screen-captured images of important points in the lecture. Students can download and print out these lecture slide images to do practice problems as well as take notes while watching the lecture.

  • Intro 0:00
  • Tangent Theorems 0:04
    • Tangent Theorem 1
    • Tangent Theorem 1 Converse
  • Common Tangents 1:34
    • Common External Tangent
    • Common Internal Tangent
  • Tangent Segments 3:08
    • Tangent Segments
  • Circumscribed Polygons 4:11
    • Circumscribed Polygons
  • Extra Example 1: Tangents & Circumscribed Polygons 5:50
  • Extra Example 2: Tangents & Circumscribed Polygons 8:35
  • Extra Example 3: Tangents & Circumscribed Polygons 11:50
  • Extra Example 4: Tangents & Circumscribed Polygons 15:43

Transcription: Tangents

Welcome back to Educator.com.0000

For this next lesson, we are going to go over tangents.0001

Now, remember: tangents are lines that intersect the circle at exactly one point.0006

If a line is tangent to a circle, and there is a radius that is also touching that same point, then the radius and this tangent are perpendicular.0013

This point that they meet at--this is called the point of tangency.0030

If the radius and a tangent meet at that point, then they are perpendicular.0047

In a plane, if a line is perpendicular to a radius of a circle with endpoint on the circle, then the line is a tangent of the circle.0056

So, it is just the converse of this theorem.0063

So again, a tangent, we know, touches the circle at one point; and if the radius is also right there,0066

at the point of tangency, then those two are perpendicular.0075

And then, the converse is that, if a line is perpendicular to a radius of the circle, then the line is a tangent.0080

Common tangents: now again, a tangent has to be intersecting the circle at one point.0096

We have the same tangent touching two different circles; it is intersecting two different circles;0103

this tangent right here is intersecting this circle at this point, and intersecting this circle at this point; then that is a common tangent,0111

because two circles are sharing the same tangent, so it is a common tangent.0118

Now, a common tangent can be either external or internal; we know that external means outside, and internal means inside.0124

So, when the common tangent (the tangent that the two circles share) is on the outsides of the two circles, then it is an external tangent.0132

This is another one; this one is also on the outside, so it is a common external tangent.0144

And then, the shared tangents for this one are internal, because it is crossing through between them.0151

See how there is nothing here; it is just on the outside, just making a wall with them.0160

But here, it is crossing in between them; that is internal, in between--one on that side, and then the other one on the other side of the circle.0168

These are common internal tangents; external tangents, and common internal tangents.0180

Tangent segments: here is a tangent that is intersecting the circle at this point, point B;0191

and this tangent is intersecting at point C; so we have two tangents.0197

And those tangents intersect at a point outside the circle, right there; they intersect at point A.0205

Then, this tangent segment and this tangent segment are congruent.0216

It can't be the whole tangent, because it is going on forever; this segment, from that point of tangency0227

to the point where they intersect--that part, that segment right there, is going to be congruent to this segment right here for this tangent.0235

Remember that they are congruent.0249

Circumscribed polygons: we learned about inscribed polygons; inscribed polygons are when you have a polygon0254

that is inside the circle, with all of the vertices, all of the endpoints, touching the circle.0261

But this one is on the outside; "circumscribed" means that a polygon is on the outside of the circle,0267

so that each side of the polygon is tangent to the circle.0278

See, look at this one: this is tangent to this, because it is intersecting the circle at one point.0283

This side is tangent to this circle; tangent, tangent, tangent.0289

That is circumscribed polygons; I can also say that this circle is inscribed in the pentagon, or the pentagon is circumscribed about the circle.0296

Just remember that "inscribed" is inside; so whatever you say is inside--you have to use the word "inscribed."0311

The circle is inscribed in the pentagon, and the pentagon is circumscribed about the circle.0319

The same thing here: we have a triangle; we have a circle that is inscribed; or I can say that the triangle is circumscribed about the circle.0330

And again, the sides of each polygon are tangent to the circle.0340

OK, our examples: the first one: Triangle ABC is circumscribed about the circle; if the perimeter of the triangle is 80, find DC.0354

You are probably going to get a lot of problems like this, where you are going to have circumscribed polygons; and they all have to do with tangents.0365

If you look at this right here, this side of this triangle, it is tangent to this circle, because it is intersecting the circle at that point.0379

The same thing happens here: it is intersecting at point E and intersecting at point D.0389

All of these sides are tangent to the circle; now, that one theorem that says that,0395

if you have two tangents that intersect at an exterior point (we know that this right here and this right here0403

are two tangents of the circle that intersect at point B; therefore) these are congruent.0414

And then, the same thing happens here: this tangent and this tangent segment intersect at point A; therefore, this part and this part are congruent.0422

And then, the same thing happens for those; so for this here, it is like we have three pairs of congruent segments.0434

And so, if they give us the perimeter (they tell us that the perimeter is 80), well, if this side is 8, then this side also has to be 8;0448

if this side is 12, then this side has to be 12; if this side is x, then this side also has to be x.0459

And then, to find the perimeter, we know that we have to just add up all of the sides;0470

so then, 8 + 8 is 16, plus 12 + 12 is 24, plus x + x is 2x; that is all going to add up to 80.0472

This right here is 40, plus 2x equals 80; 2x...we will subtract 40, and then divide the 2; so x is 20.0489

And what are they asking for? DC...well, that is x; so I can say DC is 20.0504

OK, again, they want us to find DC; we have a tangent here; AC is a tangent, so this is the point of tangency.0518

And the radius is also at the point of tangency right there--the endpoint of that radius.0534

Therefore, this radius and this tangent are perpendicular; that was the first theorem that we went over.0541

This radius and this tangent are perpendicular, because they are both intersecting at the point of tangency.0552

Well, if this is a right angle, then I see here that I have a right triangle.0560

They are asking for DC, but I want to first find BC; I am going to find BC first, because I know that BC is a side of the triangle,0567

and I can use a triangle to find the unknown side.0578

And then, from there, I can look for DC.0582

In order to find the missing side of a right triangle, I use the Pythagorean theorem.0586

This would be 52 + 122 =...let's make that BC2.0591

5 squared is 25, plus 144, equals BC squared; this is 169 equals BC squared; therefore, BC is 13.0602

Now, if BC, this whole thing, is 13, and I just want to find DC, well, do I know BD?0622

If I know BD, then I can just subtract that from 13 and get DC; but how do I find DB?0633

Well, BA is a radius with a measure of 5; isn't BD also a radius?0641

If BD is a radius, and we know that all radii have the same measure, if this is 5, then BD has to be 5.0650

Then, I just subtract 13 from 5, and I get 8; so if this is 5, then this has to be 8; I can say that DC is 8.0658

So again, the tangent line and the radius are perpendicular, because they meet at the point of tangency.0675

That gives me a right triangle; and then, I use the Pythagorean theorem to find the whole unknown side, BC.0682

If they ask me for BC, then that would be the answer; but they are asking for DC.0692

So, I found that BD, since that is a radius, is 5, the same as this; and then, subtract it from the whole thing, and I get 8 as DC.0697

OK, the next one: Find the value of x.0712

Now, for this one, here is a tangent; here is a tangent; and then, here is a segment0716

from the center of the circle all the way out to that external point, that point of intersection.0728

Then, here is the radius; all I need to look for is x.0736

I know that this tangent and this tangent are congruent, because if a tangent and a tangent meet at the same point, then they are congruent.0745

So, I can just make this and this equal to each other.0757

This segment and this radius mean nothing; they don't mean anything to me; that is all you need.0759

Now, you might get a problem similar to this, where they are asking for this segment here.0765

Or they give you this segment, and they ask for the tangent segment.0774

So, in that case, you can make this radius meet at that point of tangency so that it will be perpendicular.0778

And then, this radius will have a measure of 6, and then you can just work with that there.0789

But for this problem, we don't need that; here, we just need to make these tangents equal to each other.0794

It is going to be 2x - 7 = x + 3; to solve, I can subtract the x, so that would be x; I can add the 7, so x = 10.0800

And then, for this one, the radius is 12; they are asking for this whole side of the square.0821

We know that it is a square, because all sides are perpendicular, and each side is tangent to the circle, so it has to be a square.0829

Now, you can think of this two ways: if you just think of this in a very simple way,0844

this side is the same as the diameter of a circle, because it is from one end to the other end, and that is x.0853

If the radius is 12, then we know that the whole thing, the diameter, is 24.0863

You can also look at this as tangents; and I am explaining this both ways, even though we know that that could be the easiest way to solve,0868

because you might have different versions of this kind of problem, where you have a square circumscribed about a circle.0878

And just keep in mind that these are all tangent; that is tangent here, and so each of these are going to be congruent to each other.0887

Then, remember that tangent segments that meet on an external point are congruent to the same thing here:0896

tangent, tangent, congruent, congruent, congruent, congruent.0901

Whatever you need to be able to find whatever is that that problem is asking for...0906

For our problem here, I can just make x become 24, because if this is 12, then this is 12, and the whole thing is 24.0914

If that is x, then this also is going to be x, so x here is 240928

And the fourth example: A regular hexagon is circumscribed about a circle; the radius is 10; find the measure of each side.0945

"Regular" means that all of the sides of the hexagon are congruent, and all of the angles are congruent.0956

It is equilateral, and it is equiangular.0968

Now, if all of the sides are congruent, and we know that they are all tangent to the circle, then, first of all,0973

let's draw the radius first, and then we will go on from there: if I am going to draw a radius, I could draw it anywhere.0988

They are all going to be 10; but I want to draw it so that it is to the point of tangency, because that helps me out.0999

We learned a theorem on that today; so I want to just draw the radius like that--and what do we know about that?1005

This radius and this tangent segment are perpendicular; and this is 10.1016

Now, I am looking for this whole side; so let's see, that is all we have to work with; all that is given is the radius.1023

So, how would we solve this problem? Well, since you know that it is a regular hexagon, you know that each part is broken up1038

into congruent parts, into congruent segments or congruent sections of the circle.1053

So, if I were to just draw out each radius to each of the points of tangency, then what would each angle measure be?1060

I have this right here; I have the radius; the radius has a measure of 10; I don't have anything else.1088

So, in that case, I know that this is a right angle; but still, if I want to use the Pythagorean theorem, I still need a second side.1096

So, that one chapter on right triangles...if you want to use the Pythagorean theorem, you need two of the three sides.1105

If we don't have another side, then we have to have an angle measure, at least.1117

So, I can use this circle to find my angle measures, since they are all divided up into equal sections of the circle, because it is a regular hexagon.1124

Each angle measure is going to be 360 (because that is the whole thing), divided by 1, 2, 3, 4, 5, 6.1137

So, 360 degrees, divided by 6, is going to be 60; that means that this is 60; that means that this is 60 degrees; 60 degrees; 60 degrees; and so on.1147

If this is 60, now, that doesn't help me too much; it helps me, but then I need a triangle.1164

So, I am going to draw, from this point right here, another segment to the middle, like that; that way, I have a right triangle.1173

I'll draw this triangle right here; this is the triangle I am going to work with.1187

Now, we found that this whole thing is 60--not that each of these is 60, but the whole thing; this was each of these sections.1198

This is 60; then, this has to be 30; now, if I want to draw that triangle out again, just so that it is easier to see,1206

it is a right triangle; this is 30 degrees; this is 10; what is this angle measure here? This is 60.1223

Now, if you want, you can go ahead and use Soh-cah-toa; and we know that we use Soh-cah-toa when we have angles and sides.1233

The Pythagorean theorem we only use when we have sides; that is it--only sides--nothing to do with angles.1244

But it is all for right triangles, of course, but only when it comes to sides.1250

Soh-cah-toa, we use when we have a combination of angles and sides.1256

We can use Soh-cah-toa; now, we are looking for this right here, x, because if we find this,1261

then we can just multiply that by 2, and we will find the whole side.1268

Or we can use special right triangles; now, special right triangles are either 45-45-90 triangles or 30-60-90 triangles.1274

If you have a 30-60-90 triangle, this is n; the side opposite the 60-degree angle is going to be n√3;1294

and then, the side opposite the 90 is going to be 2n.1307

This, the side opposite 30, is going to be n; the side opposite the 60 is going to be n√3; and this is going to be 2n.1315

Now, we want to look for this here; what are we given?1330

We are given that the side opposite the 60 is 10, so that means I can make 10 equal to n√3.1334

Again, in a 30-60-90 triangle, the side opposite the 30 is n; the side opposite the 60 is n√3; and the side opposite the 90 is 2n.1347

This is the rule for special right triangles; now, what is given?--this side right here, the side opposite the 60; they gave us that it is 10.1358

So, in that case, you can make 10 equal to n√3, and that will help you; and then, you just solve for n.1367

So, here I divide this by √3; n = 10/√3.1375

Now, here, we have a radical in the denominator; I don't like to have (you shouldn't have) a radical in the denominator.1384

So, you want to go ahead and rationalize it; that means that we want to make it so that that denominator doesn't have the square root.1395

I can multiply this by itself, √3/√3; now, I have to multiply the top and the bottom by √3,1404

because this √3/√3 becomes just 1; this is 1; √3/√3 = 1.1415

So, I have to multiply this by this, so that the radical will go away.1423

This will become 10√3/3; so, this side right here, n, is 10√3/3, which is also x; that is this side.1430

Now, I want to find the measure of each side; that means that each side is this whole thing right here.1450

I can take 10√3/3, and I am going to multiply it by 2 times 2; and then, I am going to get 20√3/3, and that is my answer.1457

Now, if you want, you can use your calculator; you could just make that into a decimal...or that should be fine, too.1479

Again, just to explain how we did the problem: it is a regular hexagon, so I know that,1488

if I draw a radius to each point of tangency, then the circle will be divided up into equal congruent angle measures,1499

which makes each of these 60; this whole thing is 60.1509

Then, since I want a triangle, because with triangles, I have a lot to work with; I drew a segment from this point all the way to the center.1514

And then, since this whole thing is 60, and this is 30, this became a 30-60-90 triangle, which is also a special right triangle.1529

The side opposite 30 is n; opposite 60 is n√3; opposite 90 is 2n.1540

So then, I want to look for the side opposite the 30; this is given to me, so make that equal to n√3; solve for n.1546

That is this side right here; multiply that by 2 to get this whole side, and that is 20√3/2.1560

That is it for this lesson; thank you for watching Educator.com.1572

Educator®

Please sign in for full access to this lesson.

Sign-InORCreate Account

Enter your Sign-on user name and password.

Forgot password?

Start Learning Now

Our free lessons will get you started (Adobe Flash® required).
Get immediate access to our entire library.

Sign up for Educator.com

Membership Overview

  • Unlimited access to our entire library of courses.
  • Search and jump to exactly what you want to learn.
  • *Ask questions and get answers from the community and our teachers!
  • Practice questions with step-by-step solutions.
  • Download lesson files for programming and software training practice.
  • Track your course viewing progress.
  • Download lecture slides for taking notes.