Enter your Sign on user name and password.

Forgot password?
Sign In | Sign Up
Start learning today, and be successful in your academic & professional career. Start Today!

Use Chrome browser to play professor video
Raffi Hovasapian

Raffi Hovasapian

The Relationship Between Cp & Cv

Slide Duration:

Table of Contents

I. Classical Thermodynamics Preliminaries
The Ideal Gas Law

46m 5s

Intro
0:00
Course Overview
0:16
Thermodynamics & Classical Thermodynamics
0:17
Structure of the Course
1:30
The Ideal Gas Law
3:06
Ideal Gas Law: PV=nRT
3:07
Units of Pressure
4:51
Manipulating Units
5:52
Atmosphere : atm
8:15
Millimeter of Mercury: mm Hg
8:48
SI Unit of Volume
9:32
SI Unit of Temperature
10:32
Value of R (Gas Constant): Pv = nRT
10:51
Extensive and Intensive Variables (Properties)
15:23
Intensive Property
15:52
Extensive Property
16:30
Example: Extensive and Intensive Variables
18:20
Ideal Gas Law
19:24
Ideal Gas Law with Intensive Variables
19:25
Graphing Equations
23:51
Hold T Constant & Graph P vs. V
23:52
Hold P Constant & Graph V vs. T
31:08
Hold V Constant & Graph P vs. T
34:38
Isochores or Isometrics
37:08
More on the V vs. T Graph
39:46
More on the P vs. V Graph
42:06
Ideal Gas Law at Low Pressure & High Temperature
44:26
Ideal Gas Law at High Pressure & Low Temperature
45:16
Math Lesson 1: Partial Differentiation

46m 2s

Intro
0:00
Math Lesson 1: Partial Differentiation
0:38
Overview
0:39
Example I
3:00
Example II
6:33
Example III
9:52
Example IV
17:26
Differential & Derivative
21:44
What Does It Mean?
21:45
Total Differential (or Total Derivative)
30:16
Net Change in Pressure (P)
33:58
General Equation for Total Differential
38:12
Example 5: Total Differential
39:28
II. Energy
Energy & the First Law I

1h 6m 45s

Intro
0:00
Properties of Thermodynamic State
1:38
Big Picture: 3 Properties of Thermodynamic State
1:39
Enthalpy & Free Energy
3:30
Associated Law
4:40
Energy & the First Law of Thermodynamics
7:13
System & Its Surrounding Separated by a Boundary
7:14
In Other Cases the Boundary is Less Clear
10:47
State of a System
12:37
State of a System
12:38
Change in State
14:00
Path for a Change in State
14:57
Example: State of a System
15:46
Open, Close, and Isolated System
18:26
Open System
18:27
Closed System
19:02
Isolated System
19:22
Important Questions
20:38
Important Questions
20:39
Work & Heat
22:50
Definition of Work
23:33
Properties of Work
25:34
Definition of Heat
32:16
Properties of Heat
34:49
Experiment #1
42:23
Experiment #2
47:00
More on Work & Heat
54:50
More on Work & Heat
54:51
Conventions for Heat & Work
1:00:50
Convention for Heat
1:02:40
Convention for Work
1:04:24
Schematic Representation
1:05:00
Energy & the First Law II

1h 6m 33s

Intro
0:00
The First Law of Thermodynamics
0:53
The First Law of Thermodynamics
0:54
Example 1: What is the Change in Energy of the System & Surroundings?
8:53
Energy and The First Law II, cont.
11:55
The Energy of a System Changes in Two Ways
11:56
Systems Possess Energy, Not Heat or Work
12:45
Scenario 1
16:00
Scenario 2
16:46
State Property, Path Properties, and Path Functions
18:10
Pressure-Volume Work
22:36
When a System Changes
22:37
Gas Expands
24:06
Gas is Compressed
25:13
Pressure Volume Diagram: Analyzing Expansion
27:17
What if We do the Same Expansion in Two Stages?
35:22
Multistage Expansion
43:58
General Expression for the Pressure-Volume Work
46:59
Upper Limit of Isothermal Expansion
50:00
Expression for the Work Done in an Isothermal Expansion
52:45
Example 2: Find an Expression for the Maximum Work Done by an Ideal Gas upon Isothermal Expansion
56:18
Example 3: Calculate the External Pressure and Work Done
58:50
Energy & the First Law III

1h 2m 17s

Intro
0:00
Compression
0:20
Compression Overview
0:34
Single-stage compression vs. 2-stage Compression
2:16
Multi-stage Compression
8:40
Example I: Compression
14:47
Example 1: Single-stage Compression
14:47
Example 1: 2-stage Compression
20:07
Example 1: Absolute Minimum
26:37
More on Compression
32:55
Isothermal Expansion & Compression
32:56
External & Internal Pressure of the System
35:18
Reversible & Irreversible Processes
37:32
Process 1: Overview
38:57
Process 2: Overview
39:36
Process 1: Analysis
40:42
Process 2: Analysis
45:29
Reversible Process
50:03
Isothermal Expansion and Compression
54:31
Example II: Reversible Isothermal Compression of a Van der Waals Gas
58:10
Example 2: Reversible Isothermal Compression of a Van der Waals Gas
58:11
Changes in Energy & State: Constant Volume

1h 4m 39s

Intro
0:00
Recall
0:37
State Function & Path Function
0:38
First Law
2:11
Exact & Inexact Differential
2:12
Where Does (∆U = Q - W) or dU = dQ - dU Come from?
8:54
Cyclic Integrals of Path and State Functions
8:55
Our Empirical Experience of the First Law
12:31
∆U = Q - W
18:42
Relations between Changes in Properties and Energy
22:24
Relations between Changes in Properties and Energy
22:25
Rate of Change of Energy per Unit Change in Temperature
29:54
Rate of Change of Energy per Unit Change in Volume at Constant Temperature
32:39
Total Differential Equation
34:38
Constant Volume
41:08
If Volume Remains Constant, then dV = 0
41:09
Constant Volume Heat Capacity
45:22
Constant Volume Integrated
48:14
Increase & Decrease in Energy of the System
54:19
Example 1: ∆U and Qv
57:43
Important Equations
1:02:06
Joule's Experiment

16m 50s

Intro
0:00
Joule's Experiment
0:09
Joule's Experiment
1:20
Interpretation of the Result
4:42
The Gas Expands Against No External Pressure
4:43
Temperature of the Surrounding Does Not Change
6:20
System & Surrounding
7:04
Joule's Law
10:44
More on Joule's Experiment
11:08
Later Experiment
12:38
Dealing with the 2nd Law & Its Mathematical Consequences
13:52
Changes in Energy & State: Constant Pressure

43m 40s

Intro
0:00
Changes in Energy & State: Constant Pressure
0:20
Integrating with Constant Pressure
0:35
Defining the New State Function
6:24
Heat & Enthalpy of the System at Constant Pressure
8:54
Finding ∆U
12:10
dH
15:28
Constant Pressure Heat Capacity
18:08
Important Equations
25:44
Important Equations
25:45
Important Equations at Constant Pressure
27:32
Example I: Change in Enthalpy (∆H)
28:53
Example II: Change in Internal Energy (∆U)
34:19
The Relationship Between Cp & Cv

32m 23s

Intro
0:00
The Relationship Between Cp & Cv
0:21
For a Constant Volume Process No Work is Done
0:22
For a Constant Pressure Process ∆V ≠ 0, so Work is Done
1:16
The Relationship Between Cp & Cv: For an Ideal Gas
3:26
The Relationship Between Cp & Cv: In Terms of Molar heat Capacities
5:44
Heat Capacity Can Have an Infinite # of Values
7:14
The Relationship Between Cp & Cv
11:20
When Cp is Greater than Cv
17:13
2nd Term
18:10
1st Term
19:20
Constant P Process: 3 Parts
22:36
Part 1
23:45
Part 2
24:10
Part 3
24:46
Define : γ = (Cp/Cv)
28:06
For Gases
28:36
For Liquids
29:04
For an Ideal Gas
30:46
The Joule Thompson Experiment

39m 15s

Intro
0:00
General Equations
0:13
Recall
0:14
How Does Enthalpy of a System Change Upon a Unit Change in Pressure?
2:58
For Liquids & Solids
12:11
For Ideal Gases
14:08
For Real Gases
16:58
The Joule Thompson Experiment
18:37
The Joule Thompson Experiment Setup
18:38
The Flow in 2 Stages
22:54
Work Equation for the Joule Thompson Experiment
24:14
Insulated Pipe
26:33
Joule-Thompson Coefficient
29:50
Changing Temperature & Pressure in Such a Way that Enthalpy Remains Constant
31:44
Joule Thompson Inversion Temperature
36:26
Positive & Negative Joule-Thompson Coefficient
36:27
Joule Thompson Inversion Temperature
37:22
Inversion Temperature of Hydrogen Gas
37:59
Adiabatic Changes of State

35m 52s

Intro
0:00
Adiabatic Changes of State
0:10
Adiabatic Changes of State
0:18
Work & Energy in an Adiabatic Process
3:44
Pressure-Volume Work
7:43
Adiabatic Changes for an Ideal Gas
9:23
Adiabatic Changes for an Ideal Gas
9:24
Equation for a Fixed Change in Volume
11:20
Maximum & Minimum Values of Temperature
14:20
Adiabatic Path
18:08
Adiabatic Path Diagram
18:09
Reversible Adiabatic Expansion
21:54
Reversible Adiabatic Compression
22:34
Fundamental Relationship Equation for an Ideal Gas Under Adiabatic Expansion
25:00
More on the Equation
28:20
Important Equations
32:16
Important Adiabatic Equation
32:17
Reversible Adiabatic Change of State Equation
33:02
III. Energy Example Problems
1st Law Example Problems I

42m 40s

Intro
0:00
Fundamental Equations
0:56
Work
2:40
Energy (1st Law)
3:10
Definition of Enthalpy
3:44
Heat capacity Definitions
4:06
The Mathematics
6:35
Fundamental Concepts
8:13
Isothermal
8:20
Adiabatic
8:54
Isobaric
9:25
Isometric
9:48
Ideal Gases
10:14
Example I
12:08
Example I: Conventions
12:44
Example I: Part A
15:30
Example I: Part B
18:24
Example I: Part C
19:53
Example II: What is the Heat Capacity of the System?
21:49
Example III: Find Q, W, ∆U & ∆H for this Change of State
24:15
Example IV: Find Q, W, ∆U & ∆H
31:37
Example V: Find Q, W, ∆U & ∆H
38:20
1st Law Example Problems II

1h 23s

Intro
0:00
Example I
0:11
Example I: Finding ∆U
1:49
Example I: Finding W
6:22
Example I: Finding Q
11:23
Example I: Finding ∆H
16:09
Example I: Summary
17:07
Example II
21:16
Example II: Finding W
22:42
Example II: Finding ∆H
27:48
Example II: Finding Q
30:58
Example II: Finding ∆U
31:30
Example III
33:33
Example III: Finding ∆U, Q & W
33:34
Example III: Finding ∆H
38:07
Example IV
41:50
Example IV: Finding ∆U
41:51
Example IV: Finding ∆H
45:42
Example V
49:31
Example V: Finding W
49:32
Example V: Finding ∆U
55:26
Example V: Finding Q
56:26
Example V: Finding ∆H
56:55
1st Law Example Problems III

44m 34s

Intro
0:00
Example I
0:15
Example I: Finding the Final Temperature
3:40
Example I: Finding Q
8:04
Example I: Finding ∆U
8:25
Example I: Finding W
9:08
Example I: Finding ∆H
9:51
Example II
11:27
Example II: Finding the Final Temperature
11:28
Example II: Finding ∆U
21:25
Example II: Finding W & Q
22:14
Example II: Finding ∆H
23:03
Example III
24:38
Example III: Finding the Final Temperature
24:39
Example III: Finding W, ∆U, and Q
27:43
Example III: Finding ∆H
28:04
Example IV
29:23
Example IV: Finding ∆U, W, and Q
25:36
Example IV: Finding ∆H
31:33
Example V
32:24
Example V: Finding the Final Temperature
33:32
Example V: Finding ∆U
39:31
Example V: Finding W
40:17
Example V: First Way of Finding ∆H
41:10
Example V: Second Way of Finding ∆H
42:10
Thermochemistry Example Problems

59m 7s

Intro
0:00
Example I: Find ∆H° for the Following Reaction
0:42
Example II: Calculate the ∆U° for the Reaction in Example I
5:33
Example III: Calculate the Heat of Formation of NH₃ at 298 K
14:23
Example IV
32:15
Part A: Calculate the Heat of Vaporization of Water at 25°C
33:49
Part B: Calculate the Work Done in Vaporizing 2 Mols of Water at 25°C Under a Constant Pressure of 1 atm
35:26
Part C: Find ∆U for the Vaporization of Water at 25°C
41:00
Part D: Find the Enthalpy of Vaporization of Water at 100°C
43:12
Example V
49:24
Part A: Constant Temperature & Increasing Pressure
50:25
Part B: Increasing temperature & Constant Pressure
56:20
IV. Entropy
Entropy

49m 16s

Intro
0:00
Entropy, Part 1
0:16
Coefficient of Thermal Expansion (Isobaric)
0:38
Coefficient of Compressibility (Isothermal)
1:25
Relative Increase & Relative Decrease
2:16
More on α
4:40
More on κ
8:38
Entropy, Part 2
11:04
Definition of Entropy
12:54
Differential Change in Entropy & the Reversible Path
20:08
State Property of the System
28:26
Entropy Changes Under Isothermal Conditions
35:00
Recall: Heating Curve
41:05
Some Phase Changes Take Place Under Constant Pressure
44:07
Example I: Finding ∆S for a Phase Change
46:05
Math Lesson II

33m 59s

Intro
0:00
Math Lesson II
0:46
Let F(x,y) = x²y³
0:47
Total Differential
3:34
Total Differential Expression
6:06
Example 1
9:24
More on Math Expression
13:26
Exact Total Differential Expression
13:27
Exact Differentials
19:50
Inexact Differentials
20:20
The Cyclic Rule
21:06
The Cyclic Rule
21:07
Example 2
27:58
Entropy As a Function of Temperature & Volume

54m 37s

Intro
0:00
Entropy As a Function of Temperature & Volume
0:14
Fundamental Equation of Thermodynamics
1:16
Things to Notice
9:10
Entropy As a Function of Temperature & Volume
14:47
Temperature-dependence of Entropy
24:00
Example I
26:19
Entropy As a Function of Temperature & Volume, Cont.
31:55
Volume-dependence of Entropy at Constant Temperature
31:56
Differentiate with Respect to Temperature, Holding Volume Constant
36:16
Recall the Cyclic Rule
45:15
Summary & Recap
46:47
Fundamental Equation of Thermodynamics
46:48
For Entropy as a Function of Temperature & Volume
47:18
The Volume-dependence of Entropy for Liquids & Solids
52:52
Entropy as a Function of Temperature & Pressure

31m 18s

Intro
0:00
Entropy as a Function of Temperature & Pressure
0:17
Entropy as a Function of Temperature & Pressure
0:18
Rewrite the Total Differential
5:54
Temperature-dependence
7:08
Pressure-dependence
9:04
Differentiate with Respect to Pressure & Holding Temperature Constant
9:54
Differentiate with Respect to Temperature & Holding Pressure Constant
11:28
Pressure-Dependence of Entropy for Liquids & Solids
18:45
Pressure-Dependence of Entropy for Liquids & Solids
18:46
Example I: ∆S of Transformation
26:20
Summary of Entropy So Far

23m 6s

Intro
0:00
Summary of Entropy So Far
0:43
Defining dS
1:04
Fundamental Equation of Thermodynamics
3:51
Temperature & Volume
6:04
Temperature & Pressure
9:10
Two Important Equations for How Entropy Behaves
13:38
State of a System & Heat Capacity
15:34
Temperature-dependence of Entropy
19:49
Entropy Changes for an Ideal Gas

25m 42s

Intro
0:00
Entropy Changes for an Ideal Gas
1:10
General Equation
1:22
The Fundamental Theorem of Thermodynamics
2:37
Recall the Basic Total Differential Expression for S = S (T,V)
5:36
For a Finite Change in State
7:58
If Cv is Constant Over the Particular Temperature Range
9:05
Change in Entropy of an Ideal Gas as a Function of Temperature & Pressure
11:35
Change in Entropy of an Ideal Gas as a Function of Temperature & Pressure
11:36
Recall the Basic Total Differential expression for S = S (T, P)
15:13
For a Finite Change
18:06
Example 1: Calculate the ∆S of Transformation
22:02
V. Entropy Example Problems
Entropy Example Problems I

43m 39s

Intro
0:00
Entropy Example Problems I
0:24
Fundamental Equation of Thermodynamics
1:10
Entropy as a Function of Temperature & Volume
2:04
Entropy as a Function of Temperature & Pressure
2:59
Entropy For Phase Changes
4:47
Entropy For an Ideal Gas
6:14
Third Law Entropies
8:25
Statement of the Third Law
9:17
Entropy of the Liquid State of a Substance Above Its Melting Point
10:23
Entropy For the Gas Above Its Boiling Temperature
13:02
Entropy Changes in Chemical Reactions
15:26
Entropy Change at a Temperature Other than 25°C
16:32
Example I
19:31
Part A: Calculate ∆S for the Transformation Under Constant Volume
20:34
Part B: Calculate ∆S for the Transformation Under Constant Pressure
25:04
Example II: Calculate ∆S fir the Transformation Under Isobaric Conditions
27:53
Example III
30:14
Part A: Calculate ∆S if 1 Mol of Aluminum is taken from 25°C to 255°C
31:14
Part B: If S°₂₉₈ = 28.4 J/mol-K, Calculate S° for Aluminum at 498 K
33:23
Example IV: Calculate Entropy Change of Vaporization for CCl₄
34:19
Example V
35:41
Part A: Calculate ∆S of Transformation
37:36
Part B: Calculate ∆S of Transformation
39:10
Entropy Example Problems II

56m 44s

Intro
0:00
Example I
0:09
Example I: Calculate ∆U
1:28
Example I: Calculate Q
3:29
Example I: Calculate Cp
4:54
Example I: Calculate ∆S
6:14
Example II
7:13
Example II: Calculate W
8:14
Example II: Calculate ∆U
8:56
Example II: Calculate Q
10:18
Example II: Calculate ∆H
11:00
Example II: Calculate ∆S
12:36
Example III
18:47
Example III: Calculate ∆H
19:38
Example III: Calculate Q
21:14
Example III: Calculate ∆U
21:44
Example III: Calculate W
23:59
Example III: Calculate ∆S
24:55
Example IV
27:57
Example IV: Diagram
29:32
Example IV: Calculate W
32:27
Example IV: Calculate ∆U
36:36
Example IV: Calculate Q
38:32
Example IV: Calculate ∆H
39:00
Example IV: Calculate ∆S
40:27
Example IV: Summary
43:41
Example V
48:25
Example V: Diagram
49:05
Example V: Calculate W
50:58
Example V: Calculate ∆U
53:29
Example V: Calculate Q
53:44
Example V: Calculate ∆H
54:34
Example V: Calculate ∆S
55:01
Entropy Example Problems III

57m 6s

Intro
0:00
Example I: Isothermal Expansion
0:09
Example I: Calculate W
1:19
Example I: Calculate ∆U
1:48
Example I: Calculate Q
2:06
Example I: Calculate ∆H
2:26
Example I: Calculate ∆S
3:02
Example II: Adiabatic and Reversible Expansion
6:10
Example II: Calculate Q
6:48
Example II: Basic Equation for the Reversible Adiabatic Expansion of an Ideal Gas
8:12
Example II: Finding Volume
12:40
Example II: Finding Temperature
17:58
Example II: Calculate ∆U
19:53
Example II: Calculate W
20:59
Example II: Calculate ∆H
21:42
Example II: Calculate ∆S
23:42
Example III: Calculate the Entropy of Water Vapor
25:20
Example IV: Calculate the Molar ∆S for the Transformation
34:32
Example V
44:19
Part A: Calculate the Standard Entropy of Liquid Lead at 525°C
46:17
Part B: Calculate ∆H for the Transformation of Solid Lead from 25°C to Liquid Lead at 525°C
52:23
VI. Entropy and Probability
Entropy & Probability I

54m 35s

Intro
0:00
Entropy & Probability
0:11
Structural Model
3:05
Recall the Fundamental Equation of Thermodynamics
9:11
Two Independent Ways of Affecting the Entropy of a System
10:05
Boltzmann Definition
12:10
Omega
16:24
Definition of Omega
16:25
Energy Distribution
19:43
The Energy Distribution
19:44
In How Many Ways can N Particles be Distributed According to the Energy Distribution
23:05
Example I: In How Many Ways can the Following Distribution be Achieved
32:51
Example II: In How Many Ways can the Following Distribution be Achieved
33:51
Example III: In How Many Ways can the Following Distribution be Achieved
34:45
Example IV: In How Many Ways can the Following Distribution be Achieved
38:50
Entropy & Probability, cont.
40:57
More on Distribution
40:58
Example I Summary
41:43
Example II Summary
42:12
Distribution that Maximizes Omega
42:26
If Omega is Large, then S is Large
44:22
Two Constraints for a System to Achieve the Highest Entropy Possible
47:07
What Happened When the Energy of a System is Increased?
49:00
Entropy & Probability II

35m 5s

Intro
0:00
Volume Distribution
0:08
Distributing 2 Balls in 3 Spaces
1:43
Distributing 2 Balls in 4 Spaces
3:44
Distributing 3 Balls in 10 Spaces
5:30
Number of Ways to Distribute P Particles over N Spaces
6:05
When N is Much Larger than the Number of Particles P
7:56
Energy Distribution
25:04
Volume Distribution
25:58
Entropy, Total Entropy, & Total Omega Equations
27:34
Entropy, Total Entropy, & Total Omega Equations
27:35
VII. Spontaneity, Equilibrium, and the Fundamental Equations
Spontaneity & Equilibrium I

28m 42s

Intro
0:00
Reversible & Irreversible
0:24
Reversible vs. Irreversible
0:58
Defining Equation for Equilibrium
2:11
Defining Equation for Irreversibility (Spontaneity)
3:11
TdS ≥ dQ
5:15
Transformation in an Isolated System
11:22
Transformation in an Isolated System
11:29
Transformation at Constant Temperature
14:50
Transformation at Constant Temperature
14:51
Helmholtz Free Energy
17:26
Define: A = U - TS
17:27
Spontaneous Isothermal Process & Helmholtz Energy
20:20
Pressure-volume Work
22:02
Spontaneity & Equilibrium II

34m 38s

Intro
0:00
Transformation under Constant Temperature & Pressure
0:08
Transformation under Constant Temperature & Pressure
0:36
Define: G = U + PV - TS
3:32
Gibbs Energy
5:14
What Does This Say?
6:44
Spontaneous Process & a Decrease in G
14:12
Computing ∆G
18:54
Summary of Conditions
21:32
Constraint & Condition for Spontaneity
21:36
Constraint & Condition for Equilibrium
24:54
A Few Words About the Word Spontaneous
26:24
Spontaneous Does Not Mean Fast
26:25
Putting Hydrogen & Oxygen Together in a Flask
26:59
Spontaneous Vs. Not Spontaneous
28:14
Thermodynamically Favorable
29:03
Example: Making a Process Thermodynamically Favorable
29:34
Driving Forces for Spontaneity
31:35
Equation: ∆G = ∆H - T∆S
31:36
Always Spontaneous Process
32:39
Never Spontaneous Process
33:06
A Process That is Endothermic Can Still be Spontaneous
34:00
The Fundamental Equations of Thermodynamics

30m 50s

Intro
0:00
The Fundamental Equations of Thermodynamics
0:44
Mechanical Properties of a System
0:45
Fundamental Properties of a System
1:16
Composite Properties of a System
1:44
General Condition of Equilibrium
3:16
Composite Functions & Their Differentiations
6:11
dH = TdS + VdP
7:53
dA = -SdT - PdV
9:26
dG = -SdT + VdP
10:22
Summary of Equations
12:10
Equation #1
14:33
Equation #2
15:15
Equation #3
15:58
Equation #4
16:42
Maxwell's Relations
20:20
Maxwell's Relations
20:21
Isothermal Volume-Dependence of Entropy & Isothermal Pressure-Dependence of Entropy
26:21
The General Thermodynamic Equations of State

34m 6s

Intro
0:00
The General Thermodynamic Equations of State
0:10
Equations of State for Liquids & Solids
0:52
More General Condition for Equilibrium
4:02
General Conditions: Equation that Relates P to Functions of T & V
6:20
The Second Fundamental Equation of Thermodynamics
11:10
Equation 1
17:34
Equation 2
21:58
Recall the General Expression for Cp - Cv
28:11
For the Joule-Thomson Coefficient
30:44
Joule-Thomson Inversion Temperature
32:12
Properties of the Helmholtz & Gibbs Energies

39m 18s

Intro
0:00
Properties of the Helmholtz & Gibbs Energies
0:10
Equating the Differential Coefficients
1:34
An Increase in T; a Decrease in A
3:25
An Increase in V; a Decrease in A
6:04
We Do the Same Thing for G
8:33
Increase in T; Decrease in G
10:50
Increase in P; Decrease in G
11:36
Gibbs Energy of a Pure Substance at a Constant Temperature from 1 atm to any Other Pressure.
14:12
If the Substance is a Liquid or a Solid, then Volume can be Treated as a Constant
18:57
For an Ideal Gas
22:18
Special Note
24:56
Temperature Dependence of Gibbs Energy
27:02
Temperature Dependence of Gibbs Energy #1
27:52
Temperature Dependence of Gibbs Energy #2
29:01
Temperature Dependence of Gibbs Energy #3
29:50
Temperature Dependence of Gibbs Energy #4
34:50
The Entropy of the Universe & the Surroundings

19m 40s

Intro
0:00
Entropy of the Universe & the Surroundings
0:08
Equation: ∆G = ∆H - T∆S
0:20
Conditions of Constant Temperature & Pressure
1:14
Reversible Process
3:14
Spontaneous Process & the Entropy of the Universe
5:20
Tips for Remembering Everything
12:40
Verify Using Known Spontaneous Process
14:51
VIII. Free Energy Example Problems
Free Energy Example Problems I

54m 16s

Intro
0:00
Example I
0:11
Example I: Deriving a Function for Entropy (S)
2:06
Example I: Deriving a Function for V
5:55
Example I: Deriving a Function for H
8:06
Example I: Deriving a Function for U
12:06
Example II
15:18
Example III
21:52
Example IV
26:12
Example IV: Part A
26:55
Example IV: Part B
28:30
Example IV: Part C
30:25
Example V
33:45
Example VI
40:46
Example VII
43:43
Example VII: Part A
44:46
Example VII: Part B
50:52
Example VII: Part C
51:56
Free Energy Example Problems II

31m 17s

Intro
0:00
Example I
0:09
Example II
5:18
Example III
8:22
Example IV
12:32
Example V
17:14
Example VI
20:34
Example VI: Part A
21:04
Example VI: Part B
23:56
Example VI: Part C
27:56
Free Energy Example Problems III

45m

Intro
0:00
Example I
0:10
Example II
15:03
Example III
21:47
Example IV
28:37
Example IV: Part A
29:33
Example IV: Part B
36:09
Example IV: Part C
40:34
Three Miscellaneous Example Problems

58m 5s

Intro
0:00
Example I
0:41
Part A: Calculating ∆H
3:55
Part B: Calculating ∆S
15:13
Example II
24:39
Part A: Final Temperature of the System
26:25
Part B: Calculating ∆S
36:57
Example III
46:49
IX. Equation Review for Thermodynamics
Looking Back Over Everything: All the Equations in One Place

25m 20s

Intro
0:00
Work, Heat, and Energy
0:18
Definition of Work, Energy, Enthalpy, and Heat Capacities
0:23
Heat Capacities for an Ideal Gas
3:40
Path Property & State Property
3:56
Energy Differential
5:04
Enthalpy Differential
5:40
Joule's Law & Joule-Thomson Coefficient
6:23
Coefficient of Thermal Expansion & Coefficient of Compressibility
7:01
Enthalpy of a Substance at Any Other Temperature
7:29
Enthalpy of a Reaction at Any Other Temperature
8:01
Entropy
8:53
Definition of Entropy
8:54
Clausius Inequality
9:11
Entropy Changes in Isothermal Systems
9:44
The Fundamental Equation of Thermodynamics
10:12
Expressing Entropy Changes in Terms of Properties of the System
10:42
Entropy Changes in the Ideal Gas
11:22
Third Law Entropies
11:38
Entropy Changes in Chemical Reactions
14:02
Statistical Definition of Entropy
14:34
Omega for the Spatial & Energy Distribution
14:47
Spontaneity and Equilibrium
15:43
Helmholtz Energy & Gibbs Energy
15:44
Condition for Spontaneity & Equilibrium
16:24
Condition for Spontaneity with Respect to Entropy
17:58
The Fundamental Equations
18:30
Maxwell's Relations
19:04
The Thermodynamic Equations of State
20:07
Energy & Enthalpy Differentials
21:08
Joule's Law & Joule-Thomson Coefficient
21:59
Relationship Between Constant Pressure & Constant Volume Heat Capacities
23:14
One Final Equation - Just for Fun
24:04
X. Quantum Mechanics Preliminaries
Complex Numbers

34m 25s

Intro
0:00
Complex Numbers
0:11
Representing Complex Numbers in the 2-Dimmensional Plane
0:56
Addition of Complex Numbers
2:35
Subtraction of Complex Numbers
3:17
Multiplication of Complex Numbers
3:47
Division of Complex Numbers
6:04
r & θ
8:04
Euler's Formula
11:00
Polar Exponential Representation of the Complex Numbers
11:22
Example I
14:25
Example II
15:21
Example III
16:58
Example IV
18:35
Example V
20:40
Example VI
21:32
Example VII
25:22
Probability & Statistics

59m 57s

Intro
0:00
Probability & Statistics
1:51
Normalization Condition
1:52
Define the Mean or Average of x
11:04
Example I: Calculate the Mean of x
14:57
Example II: Calculate the Second Moment of the Data in Example I
22:39
Define the Second Central Moment or Variance
25:26
Define the Second Central Moment or Variance
25:27
1st Term
32:16
2nd Term
32:40
3rd Term
34:07
Continuous Distributions
35:47
Continuous Distributions
35:48
Probability Density
39:30
Probability Density
39:31
Normalization Condition
46:51
Example III
50:13
Part A - Show that P(x) is Normalized
51:40
Part B - Calculate the Average Position of the Particle Along the Interval
54:31
Important Things to Remember
58:24
SchrÓ§dinger Equation & Operators

42m 5s

Intro
0:00
Schrӧdinger Equation & Operators
0:16
Relation Between a Photon's Momentum & Its Wavelength
0:17
Louis de Broglie: Wavelength for Matter
0:39
Schrӧdinger Equation
1:19
Definition of Ψ(x)
3:31
Quantum Mechanics
5:02
Operators
7:51
Example I
10:10
Example II
11:53
Example III
14:24
Example IV
17:35
Example V
19:59
Example VI
22:39
Operators Can Be Linear or Non Linear
27:58
Operators Can Be Linear or Non Linear
28:34
Example VII
32:47
Example VIII
36:55
Example IX
39:29
SchrÓ§dinger Equation as an Eigenvalue Problem

30m 26s

Intro
0:00
Schrӧdinger Equation as an Eigenvalue Problem
0:10
Operator: Multiplying the Original Function by Some Scalar
0:11
Operator, Eigenfunction, & Eigenvalue
4:42
Example: Eigenvalue Problem
8:00
Schrӧdinger Equation as an Eigenvalue Problem
9:24
Hamiltonian Operator
15:09
Quantum Mechanical Operators
16:46
Kinetic Energy Operator
19:16
Potential Energy Operator
20:02
Total Energy Operator
21:12
Classical Point of View
21:48
Linear Momentum Operator
24:02
Example I
26:01
The Plausibility of the SchrÓ§dinger Equation

21m 34s

Intro
0:00
The Plausibility of the Schrӧdinger Equation
1:16
The Plausibility of the Schrӧdinger Equation, Part 1
1:17
The Plausibility of the Schrӧdinger Equation, Part 2
8:24
The Plausibility of the Schrӧdinger Equation, Part 3
13:45
XI. The Particle in a Box
The Particle in a Box Part I

56m 22s

Intro
0:00
Free Particle in a Box
0:28
Definition of a Free Particle in a Box
0:29
Amplitude of the Matter Wave
6:22
Intensity of the Wave
6:53
Probability Density
9:39
Probability that the Particle is Located Between x & dx
10:54
Probability that the Particle will be Found Between o & a
12:35
Wave Function & the Particle
14:59
Boundary Conditions
19:22
What Happened When There is No Constraint on the Particle
27:54
Diagrams
34:12
More on Probability Density
40:53
The Correspondence Principle
46:45
The Correspondence Principle
46:46
Normalizing the Wave Function
47:46
Normalizing the Wave Function
47:47
Normalized Wave Function & Normalization Constant
52:24
The Particle in a Box Part II

45m 24s

Intro
0:00
Free Particle in a Box
0:08
Free Particle in a 1-dimensional Box
0:09
For a Particle in a Box
3:57
Calculating Average Values & Standard Deviations
5:42
Average Value for the Position of a Particle
6:32
Standard Deviations for the Position of a Particle
10:51
Recall: Energy & Momentum are Represented by Operators
13:33
Recall: Schrӧdinger Equation in Operator Form
15:57
Average Value of a Physical Quantity that is Associated with an Operator
18:16
Average Momentum of a Free Particle in a Box
20:48
The Uncertainty Principle
24:42
Finding the Standard Deviation of the Momentum
25:08
Expression for the Uncertainty Principle
35:02
Summary of the Uncertainty Principle
41:28
The Particle in a Box Part III

48m 43s

Intro
0:00
2-Dimension
0:12
Dimension 2
0:31
Boundary Conditions
1:52
Partial Derivatives
4:27
Example I
6:08
The Particle in a Box, cont.
11:28
Operator Notation
12:04
Symbol for the Laplacian
13:50
The Equation Becomes…
14:30
Boundary Conditions
14:54
Separation of Variables
15:33
Solution to the 1-dimensional Case
16:31
Normalization Constant
22:32
3-Dimension
28:30
Particle in a 3-dimensional Box
28:31
In Del Notation
32:22
The Solutions
34:51
Expressing the State of the System for a Particle in a 3D Box
39:10
Energy Level & Degeneracy
43:35
XII. Postulates and Principles of Quantum Mechanics
The Postulates & Principles of Quantum Mechanics, Part I

46m 18s

Intro
0:00
Postulate I
0:31
Probability That The Particle Will Be Found in a Differential Volume Element
0:32
Example I: Normalize This Wave Function
11:30
Postulate II
18:20
Postulate II
18:21
Quantum Mechanical Operators: Position
20:48
Quantum Mechanical Operators: Kinetic Energy
21:57
Quantum Mechanical Operators: Potential Energy
22:42
Quantum Mechanical Operators: Total Energy
22:57
Quantum Mechanical Operators: Momentum
23:22
Quantum Mechanical Operators: Angular Momentum
23:48
More On The Kinetic Energy Operator
24:48
Angular Momentum
28:08
Angular Momentum Overview
28:09
Angular Momentum Operator in Quantum Mechanic
31:34
The Classical Mechanical Observable
32:56
Quantum Mechanical Operator
37:01
Getting the Quantum Mechanical Operator from the Classical Mechanical Observable
40:16
Postulate II, cont.
43:40
Quantum Mechanical Operators are Both Linear & Hermetical
43:41
The Postulates & Principles of Quantum Mechanics, Part II

39m 28s

Intro
0:00
Postulate III
0:09
Postulate III: Part I
0:10
Postulate III: Part II
5:56
Postulate III: Part III
12:43
Postulate III: Part IV
18:28
Postulate IV
23:57
Postulate IV
23:58
Postulate V
27:02
Postulate V
27:03
Average Value
36:38
Average Value
36:39
The Postulates & Principles of Quantum Mechanics, Part III

35m 32s

Intro
0:00
The Postulates & Principles of Quantum Mechanics, Part III
0:10
Equations: Linear & Hermitian
0:11
Introduction to Hermitian Property
3:36
Eigenfunctions are Orthogonal
9:55
The Sequence of Wave Functions for the Particle in a Box forms an Orthonormal Set
14:34
Definition of Orthogonality
16:42
Definition of Hermiticity
17:26
Hermiticity: The Left Integral
23:04
Hermiticity: The Right Integral
28:47
Hermiticity: Summary
34:06
The Postulates & Principles of Quantum Mechanics, Part IV

29m 55s

Intro
0:00
The Postulates & Principles of Quantum Mechanics, Part IV
0:09
Operators can be Applied Sequentially
0:10
Sample Calculation 1
2:41
Sample Calculation 2
5:18
Commutator of Two Operators
8:16
The Uncertainty Principle
19:01
In the Case of Linear Momentum and Position Operator
23:14
When the Commutator of Two Operators Equals to Zero
26:31
XIII. Postulates and Principles Example Problems, Including Particle in a Box
Example Problems I

54m 25s

Intro
0:00
Example I: Three Dimensional Box & Eigenfunction of The Laplacian Operator
0:37
Example II: Positions of a Particle in a 1-dimensional Box
15:46
Example III: Transition State & Frequency
29:29
Example IV: Finding a Particle in a 1-dimensional Box
35:03
Example V: Degeneracy & Energy Levels of a Particle in a Box
44:59
Example Problems II

46m 58s

Intro
0:00
Review
0:25
Wave Function
0:26
Normalization Condition
2:28
Observable in Classical Mechanics & Linear/Hermitian Operator in Quantum Mechanics
3:36
Hermitian
6:11
Eigenfunctions & Eigenvalue
8:20
Normalized Wave Functions
12:00
Average Value
13:42
If Ψ is Written as a Linear Combination
15:44
Commutator
16:45
Example I: Normalize The Wave Function
19:18
Example II: Probability of Finding of a Particle
22:27
Example III: Orthogonal
26:00
Example IV: Average Value of the Kinetic Energy Operator
30:22
Example V: Evaluate These Commutators
39:02
Example Problems III

44m 11s

Intro
0:00
Example I: Good Candidate for a Wave Function
0:08
Example II: Variance of the Energy
7:00
Example III: Evaluate the Angular Momentum Operators
15:00
Example IV: Real Eigenvalues Imposes the Hermitian Property on Operators
28:44
Example V: A Demonstration of Why the Eigenfunctions of Hermitian Operators are Orthogonal
35:33
XIV. The Harmonic Oscillator
The Harmonic Oscillator I

35m 33s

Intro
0:00
The Harmonic Oscillator
0:10
Harmonic Motion
0:11
Classical Harmonic Oscillator
4:38
Hooke's Law
8:18
Classical Harmonic Oscillator, cont.
10:33
General Solution for the Differential Equation
15:16
Initial Position & Velocity
16:05
Period & Amplitude
20:42
Potential Energy of the Harmonic Oscillator
23:20
Kinetic Energy of the Harmonic Oscillator
26:37
Total Energy of the Harmonic Oscillator
27:23
Conservative System
34:37
The Harmonic Oscillator II

43m 4s

Intro
0:00
The Harmonic Oscillator II
0:08
Diatomic Molecule
0:10
Notion of Reduced Mass
5:27
Harmonic Oscillator Potential & The Intermolecular Potential of a Vibrating Molecule
7:33
The Schrӧdinger Equation for the 1-dimensional Quantum Mechanic Oscillator
14:14
Quantized Values for the Energy Level
15:46
Ground State & the Zero-Point Energy
21:50
Vibrational Energy Levels
25:18
Transition from One Energy Level to the Next
26:42
Fundamental Vibrational Frequency for Diatomic Molecule
34:57
Example: Calculate k
38:01
The Harmonic Oscillator III

26m 30s

Intro
0:00
The Harmonic Oscillator III
0:09
The Wave Functions Corresponding to the Energies
0:10
Normalization Constant
2:34
Hermite Polynomials
3:22
First Few Hermite Polynomials
4:56
First Few Wave-Functions
6:37
Plotting the Probability Density of the Wave-Functions
8:37
Probability Density for Large Values of r
14:24
Recall: Odd Function & Even Function
19:05
More on the Hermite Polynomials
20:07
Recall: If f(x) is Odd
20:36
Average Value of x
22:31
Average Value of Momentum
23:56
XV. The Rigid Rotator
The Rigid Rotator I

41m 10s

Intro
0:00
Possible Confusion from the Previous Discussion
0:07
Possible Confusion from the Previous Discussion
0:08
Rotation of a Single Mass Around a Fixed Center
8:17
Rotation of a Single Mass Around a Fixed Center
8:18
Angular Velocity
12:07
Rotational Inertia
13:24
Rotational Frequency
15:24
Kinetic Energy for a Linear System
16:38
Kinetic Energy for a Rotational System
17:42
Rotating Diatomic Molecule
19:40
Rotating Diatomic Molecule: Part 1
19:41
Rotating Diatomic Molecule: Part 2
24:56
Rotating Diatomic Molecule: Part 3
30:04
Hamiltonian of the Rigid Rotor
36:48
Hamiltonian of the Rigid Rotor
36:49
The Rigid Rotator II

30m 32s

Intro
0:00
The Rigid Rotator II
0:08
Cartesian Coordinates
0:09
Spherical Coordinates
1:55
r
6:15
θ
6:28
φ
7:00
Moving a Distance 'r'
8:17
Moving a Distance 'r' in the Spherical Coordinates
11:49
For a Rigid Rotator, r is Constant
13:57
Hamiltonian Operator
15:09
Square of the Angular Momentum Operator
17:34
Orientation of the Rotation in Space
19:44
Wave Functions for the Rigid Rotator
20:40
The Schrӧdinger Equation for the Quantum Mechanic Rigid Rotator
21:24
Energy Levels for the Rigid Rotator
26:58
The Rigid Rotator III

35m 19s

Intro
0:00
The Rigid Rotator III
0:11
When a Rotator is Subjected to Electromagnetic Radiation
1:24
Selection Rule
2:13
Frequencies at Which Absorption Transitions Occur
6:24
Energy Absorption & Transition
10:54
Energy of the Individual Levels Overview
20:58
Energy of the Individual Levels: Diagram
23:45
Frequency Required to Go from J to J + 1
25:53
Using Separation Between Lines on the Spectrum to Calculate Bond Length
28:02
Example I: Calculating Rotational Inertia & Bond Length
29:18
Example I: Calculating Rotational Inertia
29:19
Example I: Calculating Bond Length
32:56
XVI. Oscillator and Rotator Example Problems
Example Problems I

33m 48s

Intro
0:00
Equations Review
0:11
Energy of the Harmonic Oscillator
0:12
Selection Rule
3:02
Observed Frequency of Radiation
3:27
Harmonic Oscillator Wave Functions
5:52
Rigid Rotator
7:26
Selection Rule for Rigid Rotator
9:15
Frequency of Absorption
9:35
Wave Numbers
10:58
Example I: Calculate the Reduced Mass of the Hydrogen Atom
11:44
Example II: Calculate the Fundamental Vibration Frequency & the Zero-Point Energy of This Molecule
13:37
Example III: Show That the Product of Two Even Functions is even
19:35
Example IV: Harmonic Oscillator
24:56
Example Problems II

46m 43s

Intro
0:00
Example I: Harmonic Oscillator
0:12
Example II: Harmonic Oscillator
23:26
Example III: Calculate the RMS Displacement of the Molecules
38:12
XVII. The Hydrogen Atom
The Hydrogen Atom I

40m

Intro
0:00
The Hydrogen Atom I
1:31
Review of the Rigid Rotator
1:32
Hydrogen Atom & the Coulomb Potential
2:50
Using the Spherical Coordinates
6:33
Applying This Last Expression to Equation 1
10:19
Angular Component & Radial Component
13:26
Angular Equation
15:56
Solution for F(φ)
19:32
Determine The Normalization Constant
20:33
Differential Equation for T(a)
24:44
Legendre Equation
27:20
Legendre Polynomials
31:20
The Legendre Polynomials are Mutually Orthogonal
35:40
Limits
37:17
Coefficients
38:28
The Hydrogen Atom II

35m 58s

Intro
0:00
Associated Legendre Functions
0:07
Associated Legendre Functions
0:08
First Few Associated Legendre Functions
6:39
s, p, & d Orbital
13:24
The Normalization Condition
15:44
Spherical Harmonics
20:03
Equations We Have Found
20:04
Wave Functions for the Angular Component & Rigid Rotator
24:36
Spherical Harmonics Examples
25:40
Angular Momentum
30:09
Angular Momentum
30:10
Square of the Angular Momentum
35:38
Energies of the Rigid Rotator
38:21
The Hydrogen Atom III

36m 18s

Intro
0:00
The Hydrogen Atom III
0:34
Angular Momentum is a Vector Quantity
0:35
The Operators Corresponding to the Three Components of Angular Momentum Operator: In Cartesian Coordinates
1:30
The Operators Corresponding to the Three Components of Angular Momentum Operator: In Spherical Coordinates
3:27
Z Component of the Angular Momentum Operator & the Spherical Harmonic
5:28
Magnitude of the Angular Momentum Vector
20:10
Classical Interpretation of Angular Momentum
25:22
Projection of the Angular Momentum Vector onto the xy-plane
33:24
The Hydrogen Atom IV

33m 55s

Intro
0:00
The Hydrogen Atom IV
0:09
The Equation to Find R( r )
0:10
Relation Between n & l
3:50
The Solutions for the Radial Functions
5:08
Associated Laguerre Polynomials
7:58
1st Few Associated Laguerre Polynomials
8:55
Complete Wave Function for the Atomic Orbitals of the Hydrogen Atom
12:24
The Normalization Condition
15:06
In Cartesian Coordinates
18:10
Working in Polar Coordinates
20:48
Principal Quantum Number
21:58
Angular Momentum Quantum Number
22:35
Magnetic Quantum Number
25:55
Zeeman Effect
30:45
The Hydrogen Atom V: Where We Are

51m 53s

Intro
0:00
The Hydrogen Atom V: Where We Are
0:13
Review
0:14
Let's Write Out ψ₂₁₁
7:32
Angular Momentum of the Electron
14:52
Representation of the Wave Function
19:36
Radial Component
28:02
Example: 1s Orbital
28:34
Probability for Radial Function
33:46
1s Orbital: Plotting Probability Densities vs. r
35:47
2s Orbital: Plotting Probability Densities vs. r
37:46
3s Orbital: Plotting Probability Densities vs. r
38:49
4s Orbital: Plotting Probability Densities vs. r
39:34
2p Orbital: Plotting Probability Densities vs. r
40:12
3p Orbital: Plotting Probability Densities vs. r
41:02
4p Orbital: Plotting Probability Densities vs. r
41:51
3d Orbital: Plotting Probability Densities vs. r
43:18
4d Orbital: Plotting Probability Densities vs. r
43:48
Example I: Probability of Finding an Electron in the 2s Orbital of the Hydrogen
45:40
The Hydrogen Atom VI

51m 53s

Intro
0:00
The Hydrogen Atom VI
0:07
Last Lesson Review
0:08
Spherical Component
1:09
Normalization Condition
2:02
Complete 1s Orbital Wave Function
4:08
1s Orbital Wave Function
4:09
Normalization Condition
6:28
Spherically Symmetric
16:00
Average Value
17:52
Example I: Calculate the Region of Highest Probability for Finding the Electron
21:19
2s Orbital Wave Function
25:32
2s Orbital Wave Function
25:33
Average Value
28:56
General Formula
32:24
The Hydrogen Atom VII

34m 29s

Intro
0:00
The Hydrogen Atom VII
0:12
p Orbitals
1:30
Not Spherically Symmetric
5:10
Recall That the Spherical Harmonics are Eigenfunctions of the Hamiltonian Operator
6:50
Any Linear Combination of These Orbitals Also Has The Same Energy
9:16
Functions of Real Variables
15:53
Solving for Px
16:50
Real Spherical Harmonics
21:56
Number of Nodes
32:56
XVIII. Hydrogen Atom Example Problems
Hydrogen Atom Example Problems I

43m 49s

Intro
0:00
Example I: Angular Momentum & Spherical Harmonics
0:20
Example II: Pair-wise Orthogonal Legendre Polynomials
16:40
Example III: General Normalization Condition for the Legendre Polynomials
25:06
Example IV: Associated Legendre Functions
32:13
The Hydrogen Atom Example Problems II

1h 1m 57s

Intro
0:00
Example I: Normalization & Pair-wise Orthogonal
0:13
Part 1: Normalized
0:43
Part 2: Pair-wise Orthogonal
16:53
Example II: Show Explicitly That the Following Statement is True for Any Integer n
27:10
Example III: Spherical Harmonics
29:26
Angular Momentum Cones
56:37
Angular Momentum Cones
56:38
Physical Interpretation of Orbital Angular Momentum in Quantum mechanics
1:00:16
The Hydrogen Atom Example Problems III

48m 33s

Intro
0:00
Example I: Show That ψ₂₁₁ is Normalized
0:07
Example II: Show That ψ₂₁₁ is Orthogonal to ψ₃₁₀
11:48
Example III: Probability That a 1s Electron Will Be Found Within 1 Bohr Radius of The Nucleus
18:35
Example IV: Radius of a Sphere
26:06
Example V: Calculate <r> for the 2s Orbital of the Hydrogen-like Atom
36:33
The Hydrogen Atom Example Problems IV

48m 33s

Intro
0:00
Example I: Probability Density vs. Radius Plot
0:11
Example II: Hydrogen Atom & The Coulombic Potential
14:16
Example III: Find a Relation Among <K>, <V>, & <E>
25:47
Example IV: Quantum Mechanical Virial Theorem
48:32
Example V: Find the Variance for the 2s Orbital
54:13
The Hydrogen Atom Example Problems V

48m 33s

Intro
0:00
Example I: Derive a Formula for the Degeneracy of a Given Level n
0:11
Example II: Using Linear Combinations to Represent the Spherical Harmonics as Functions of the Real Variables θ & φ
8:30
Example III: Using Linear Combinations to Represent the Spherical Harmonics as Functions of the Real Variables θ & φ
23:01
Example IV: Orbital Functions
31:51
XIX. Spin Quantum Number and Atomic Term Symbols
Spin Quantum Number: Term Symbols I

59m 18s

Intro
0:00
Quantum Numbers Specify an Orbital
0:24
n
1:10
l
1:20
m
1:35
4th Quantum Number: s
2:02
Spin Orbitals
7:03
Spin Orbitals
7:04
Multi-electron Atoms
11:08
Term Symbols
18:08
Russell-Saunders Coupling & The Atomic Term Symbol
18:09
Example: Configuration for C
27:50
Configuration for C: 1s²2s²2p²
27:51
Drawing Every Possible Arrangement
31:15
Term Symbols
45:24
Microstate
50:54
Spin Quantum Number: Term Symbols II

34m 54s

Intro
0:00
Microstates
0:25
We Started With 21 Possible Microstates
0:26
³P State
2:05
Microstates in ³P Level
5:10
¹D State
13:16
³P State
16:10
²P₂ State
17:34
³P₁ State
18:34
³P₀ State
19:12
9 Microstates in ³P are Subdivided
19:40
¹S State
21:44
Quicker Way to Find the Different Values of J for a Given Basic Term Symbol
22:22
Ground State
26:27
Hund's Empirical Rules for Specifying the Term Symbol for the Ground Electronic State
27:29
Hund's Empirical Rules: 1
28:24
Hund's Empirical Rules: 2
29:22
Hund's Empirical Rules: 3 - Part A
30:22
Hund's Empirical Rules: 3 - Part B
31:18
Example: 1s²2s²2p²
31:54
Spin Quantum Number: Term Symbols III

38m 3s

Intro
0:00
Spin Quantum Number: Term Symbols III
0:14
Deriving the Term Symbols for the p² Configuration
0:15
Table: MS vs. ML
3:57
¹D State
16:21
³P State
21:13
¹S State
24:48
J Value
25:32
Degeneracy of the Level
27:28
When Given r Electrons to Assign to n Equivalent Spin Orbitals
30:18
p² Configuration
32:51
Complementary Configurations
35:12
Term Symbols & Atomic Spectra

57m 49s

Intro
0:00
Lyman Series
0:09
Spectroscopic Term Symbols
0:10
Lyman Series
3:04
Hydrogen Levels
8:21
Hydrogen Levels
8:22
Term Symbols & Atomic Spectra
14:17
Spin-Orbit Coupling
14:18
Selection Rules for Atomic Spectra
21:31
Selection Rules for Possible Transitions
23:56
Wave Numbers for The Transitions
28:04
Example I: Calculate the Frequencies of the Allowed Transitions from (4d) ²D →(2p) ²P
32:23
Helium Levels
49:50
Energy Levels for Helium
49:51
Transitions & Spin Multiplicity
52:27
Transitions & Spin Multiplicity
52:28
XX. Term Symbols Example Problems
Example Problems I

1h 1m 20s

Intro
0:00
Example I: What are the Term Symbols for the np¹ Configuration?
0:10
Example II: What are the Term Symbols for the np² Configuration?
20:38
Example III: What are the Term Symbols for the np³ Configuration?
40:46
Example Problems II

56m 34s

Intro
0:00
Example I: Find the Term Symbols for the nd² Configuration
0:11
Example II: Find the Term Symbols for the 1s¹2p¹ Configuration
27:02
Example III: Calculate the Separation Between the Doublets in the Lyman Series for Atomic Hydrogen
41:41
Example IV: Calculate the Frequencies of the Lines for the (4d) ²D → (3p) ²P Transition
48:53
XXI. Equation Review for Quantum Mechanics
Quantum Mechanics: All the Equations in One Place

18m 24s

Intro
0:00
Quantum Mechanics Equations
0:37
De Broglie Relation
0:38
Statistical Relations
1:00
The Schrӧdinger Equation
1:50
The Particle in a 1-Dimensional Box of Length a
3:09
The Particle in a 2-Dimensional Box of Area a x b
3:48
The Particle in a 3-Dimensional Box of Area a x b x c
4:22
The Schrӧdinger Equation Postulates
4:51
The Normalization Condition
5:40
The Probability Density
6:51
Linear
7:47
Hermitian
8:31
Eigenvalues & Eigenfunctions
8:55
The Average Value
9:29
Eigenfunctions of Quantum Mechanics Operators are Orthogonal
10:53
Commutator of Two Operators
10:56
The Uncertainty Principle
11:41
The Harmonic Oscillator
13:18
The Rigid Rotator
13:52
Energy of the Hydrogen Atom
14:30
Wavefunctions, Radial Component, and Associated Laguerre Polynomial
14:44
Angular Component or Spherical Harmonic
15:16
Associated Legendre Function
15:31
Principal Quantum Number
15:43
Angular Momentum Quantum Number
15:50
Magnetic Quantum Number
16:21
z-component of the Angular Momentum of the Electron
16:53
Atomic Spectroscopy: Term Symbols
17:14
Atomic Spectroscopy: Selection Rules
18:03
XXII. Molecular Spectroscopy
Spectroscopic Overview: Which Equation Do I Use & Why

50m 2s

Intro
0:00
Spectroscopic Overview: Which Equation Do I Use & Why
1:02
Lesson Overview
1:03
Rotational & Vibrational Spectroscopy
4:01
Frequency of Absorption/Emission
6:04
Wavenumbers in Spectroscopy
8:10
Starting State vs. Excited State
10:10
Total Energy of a Molecule (Leaving out the Electronic Energy)
14:02
Energy of Rotation: Rigid Rotor
15:55
Energy of Vibration: Harmonic Oscillator
19:08
Equation of the Spectral Lines
23:22
Harmonic Oscillator-Rigid Rotor Approximation (Making Corrections)
28:37
Harmonic Oscillator-Rigid Rotor Approximation (Making Corrections)
28:38
Vibration-Rotation Interaction
33:46
Centrifugal Distortion
36:27
Anharmonicity
38:28
Correcting for All Three Simultaneously
41:03
Spectroscopic Parameters
44:26
Summary
47:32
Harmonic Oscillator-Rigid Rotor Approximation
47:33
Vibration-Rotation Interaction
48:14
Centrifugal Distortion
48:20
Anharmonicity
48:28
Correcting for All Three Simultaneously
48:44
Vibration-Rotation

59m 47s

Intro
0:00
Vibration-Rotation
0:37
What is Molecular Spectroscopy?
0:38
Microwave, Infrared Radiation, Visible & Ultraviolet
1:53
Equation for the Frequency of the Absorbed Radiation
4:54
Wavenumbers
6:15
Diatomic Molecules: Energy of the Harmonic Oscillator
8:32
Selection Rules for Vibrational Transitions
10:35
Energy of the Rigid Rotator
16:29
Angular Momentum of the Rotator
21:38
Rotational Term F(J)
26:30
Selection Rules for Rotational Transition
29:30
Vibration Level & Rotational States
33:20
Selection Rules for Vibration-Rotation
37:42
Frequency of Absorption
39:32
Diagram: Energy Transition
45:55
Vibration-Rotation Spectrum: HCl
51:27
Vibration-Rotation Spectrum: Carbon Monoxide
54:30
Vibration-Rotation Interaction

46m 22s

Intro
0:00
Vibration-Rotation Interaction
0:13
Vibration-Rotation Spectrum: HCl
0:14
Bond Length & Vibrational State
4:23
Vibration Rotation Interaction
10:18
Case 1
12:06
Case 2
17:17
Example I: HCl Vibration-Rotation Spectrum
22:58
Rotational Constant for the 0 & 1 Vibrational State
26:30
Equilibrium Bond Length for the 1 Vibrational State
39:42
Equilibrium Bond Length for the 0 Vibrational State
42:13
Bₑ & αₑ
44:54
The Non-Rigid Rotator

29m 24s

Intro
0:00
The Non-Rigid Rotator
0:09
Pure Rotational Spectrum
0:54
The Selection Rules for Rotation
3:09
Spacing in the Spectrum
5:04
Centrifugal Distortion Constant
9:00
Fundamental Vibration Frequency
11:46
Observed Frequencies of Absorption
14:14
Difference between the Rigid Rotator & the Adjusted Rigid Rotator
16:51
Adjusted Rigid Rotator
21:31
Observed Frequencies of Absorption
26:26
The Anharmonic Oscillator

30m 53s

Intro
0:00
The Anharmonic Oscillator
0:09
Vibration-Rotation Interaction & Centrifugal Distortion
0:10
Making Corrections to the Harmonic Oscillator
4:50
Selection Rule for the Harmonic Oscillator
7:50
Overtones
8:40
True Oscillator
11:46
Harmonic Oscillator Energies
13:16
Anharmonic Oscillator Energies
13:33
Observed Frequencies of the Overtones
15:09
True Potential
17:22
HCl Vibrational Frequencies: Fundamental & First Few Overtones
21:10
Example I: Vibrational States & Overtones of the Vibrational Spectrum
22:42
Example I: Part A - First 4 Vibrational States
23:44
Example I: Part B - Fundamental & First 3 Overtones
25:31
Important Equations
27:45
Energy of the Q State
29:14
The Difference in Energy between 2 Successive States
29:23
Difference in Energy between 2 Spectral Lines
29:40
Electronic Transitions

1h 1m 33s

Intro
0:00
Electronic Transitions
0:16
Electronic State & Transition
0:17
Total Energy of the Diatomic Molecule
3:34
Vibronic Transitions
4:30
Selection Rule for Vibronic Transitions
9:11
More on Vibronic Transitions
10:08
Frequencies in the Spectrum
16:46
Difference of the Minima of the 2 Potential Curves
24:48
Anharmonic Zero-point Vibrational Energies of the 2 States
26:24
Frequency of the 0 → 0 Vibronic Transition
27:54
Making the Equation More Compact
29:34
Spectroscopic Parameters
32:11
Franck-Condon Principle
34:32
Example I: Find the Values of the Spectroscopic Parameters for the Upper Excited State
47:27
Table of Electronic States and Parameters
56:41
XXIII. Molecular Spectroscopy Example Problems
Example Problems I

33m 47s

Intro
0:00
Example I: Calculate the Bond Length
0:10
Example II: Calculate the Rotational Constant
7:39
Example III: Calculate the Number of Rotations
10:54
Example IV: What is the Force Constant & Period of Vibration?
16:31
Example V: Part A - Calculate the Fundamental Vibration Frequency
21:42
Example V: Part B - Calculate the Energies of the First Three Vibrational Levels
24:12
Example VI: Calculate the Frequencies of the First 2 Lines of the R & P Branches of the Vib-Rot Spectrum of HBr
26:28
Example Problems II

1h 1m 5s

Intro
0:00
Example I: Calculate the Frequencies of the Transitions
0:09
Example II: Specify Which Transitions are Allowed & Calculate the Frequencies of These Transitions
22:07
Example III: Calculate the Vibrational State & Equilibrium Bond Length
34:31
Example IV: Frequencies of the Overtones
49:28
Example V: Vib-Rot Interaction, Centrifugal Distortion, & Anharmonicity
54:47
Example Problems III

33m 31s

Intro
0:00
Example I: Part A - Derive an Expression for ∆G( r )
0:10
Example I: Part B - Maximum Vibrational Quantum Number
6:10
Example II: Part A - Derive an Expression for the Dissociation Energy of the Molecule
8:29
Example II: Part B - Equation for ∆G( r )
14:00
Example III: How Many Vibrational States are There for Br₂ before the Molecule Dissociates
18:16
Example IV: Find the Difference between the Two Minima of the Potential Energy Curves
20:57
Example V: Rotational Spectrum
30:51
XXIV. Statistical Thermodynamics
Statistical Thermodynamics: The Big Picture

1h 1m 15s

Intro
0:00
Statistical Thermodynamics: The Big Picture
0:10
Our Big Picture Goal
0:11
Partition Function (Q)
2:42
The Molecular Partition Function (q)
4:00
Consider a System of N Particles
6:54
Ensemble
13:22
Energy Distribution Table
15:36
Probability of Finding a System with Energy
16:51
The Partition Function
21:10
Microstate
28:10
Entropy of the Ensemble
30:34
Entropy of the System
31:48
Expressing the Thermodynamic Functions in Terms of The Partition Function
39:21
The Partition Function
39:22
Pi & U
41:20
Entropy of the System
44:14
Helmholtz Energy
48:15
Pressure of the System
49:32
Enthalpy of the System
51:46
Gibbs Free Energy
52:56
Heat Capacity
54:30
Expressing Q in Terms of the Molecular Partition Function (q)
59:31
Indistinguishable Particles
1:02:16
N is the Number of Particles in the System
1:03:27
The Molecular Partition Function
1:05:06
Quantum States & Degeneracy
1:07:46
Thermo Property in Terms of ln Q
1:10:09
Example: Thermo Property in Terms of ln Q
1:13:23
Statistical Thermodynamics: The Various Partition Functions I

47m 23s

Intro
0:00
Lesson Overview
0:19
Monatomic Ideal Gases
6:40
Monatomic Ideal Gases Overview
6:42
Finding the Parition Function of Translation
8:17
Finding the Parition Function of Electronics
13:29
Example: Na
17:42
Example: F
23:12
Energy Difference between the Ground State & the 1st Excited State
29:27
The Various Partition Functions for Monatomic Ideal Gases
32:20
Finding P
43:16
Going Back to U = (3/2) RT
46:20
Statistical Thermodynamics: The Various Partition Functions II

54m 9s

Intro
0:00
Diatomic Gases
0:16
Diatomic Gases
0:17
Zero-Energy Mark for Rotation
2:26
Zero-Energy Mark for Vibration
3:21
Zero-Energy Mark for Electronic
5:54
Vibration Partition Function
9:48
When Temperature is Very Low
14:00
When Temperature is Very High
15:22
Vibrational Component
18:48
Fraction of Molecules in the r Vibration State
21:00
Example: Fraction of Molecules in the r Vib. State
23:29
Rotation Partition Function
26:06
Heteronuclear & Homonuclear Diatomics
33:13
Energy & Heat Capacity
36:01
Fraction of Molecules in the J Rotational Level
39:20
Example: Fraction of Molecules in the J Rotational Level
40:32
Finding the Most Populated Level
44:07
Putting It All Together
46:06
Putting It All Together
46:07
Energy of Translation
51:51
Energy of Rotation
52:19
Energy of Vibration
52:42
Electronic Energy
53:35
XXV. Statistical Thermodynamics Example Problems
Example Problems I

48m 32s

Intro
0:00
Example I: Calculate the Fraction of Potassium Atoms in the First Excited Electronic State
0:10
Example II: Show That Each Translational Degree of Freedom Contributes R/2 to the Molar Heat Capacity
14:46
Example III: Calculate the Dissociation Energy
21:23
Example IV: Calculate the Vibrational Contribution to the Molar heat Capacity of Oxygen Gas at 500 K
25:46
Example V: Upper & Lower Quantum State
32:55
Example VI: Calculate the Relative Populations of the J=2 and J=1 Rotational States of the CO Molecule at 25°C
42:21
Example Problems II

57m 30s

Intro
0:00
Example I: Make a Plot of the Fraction of CO Molecules in Various Rotational Levels
0:10
Example II: Calculate the Ratio of the Translational Partition Function for Cl₂ and Br₂ at Equal Volume & Temperature
8:05
Example III: Vibrational Degree of Freedom & Vibrational Molar Heat Capacity
11:59
Example IV: Calculate the Characteristic Vibrational & Rotational temperatures for Each DOF
45:03
Loading...
This is a quick preview of the lesson. For full access, please Log In or Sign up.
For more information, please see full course syllabus of Physical Chemistry
  • Discussion

  • Download Lecture Slides

  • Table of Contents

  • Transcription

  • Related Books

Start Learning Now

Our free lessons will get you started (Adobe Flash® required).
Get immediate access to our entire library.

Sign up for Educator.com

Membership Overview

  • Unlimited access to our entire library of courses.
  • Search and jump to exactly what you want to learn.
  • *Ask questions and get answers from the community and our teachers!
  • Practice questions with step-by-step solutions.
  • Download lesson files for programming and software training practice.
  • Track your course viewing progress.
  • Download lecture slides for taking notes.
  • Learn at your own pace... anytime, anywhere!

The Relationship Between Cp & Cv

Lecture Slides are screen-captured images of important points in the lecture. Students can download and print out these lecture slide images to do practice problems as well as take notes while watching the lecture.

  • Intro 0:00
  • The Relationship Between Cp & Cv 0:21
    • For a Constant Volume Process No Work is Done
    • For a Constant Pressure Process ∆V ≠ 0, so Work is Done
    • The Relationship Between Cp & Cv: For an Ideal Gas
    • The Relationship Between Cp & Cv: In Terms of Molar heat Capacities
    • Heat Capacity Can Have an Infinite # of Values
    • The Relationship Between Cp & Cv
  • When Cp is Greater than Cv 17:13
    • 2nd Term
    • 1st Term
  • Constant P Process: 3 Parts 22:36
    • Part 1
    • Part 2
    • Part 3
  • Define : γ = (Cp/Cv) 28:06
    • For Gases
    • For Liquids
    • For an Ideal Gas

Transcription: The Relationship Between Cp & Cv

Hello and welcome back to www.educator.com, and welcome back to Physical Chemistry and Thermodynamics.0000

In the last couple of lessons we have introduced this thing called the constant volume heat capacity C sub V.0005

And we have introduced this thing called the constant pressure heat capacity C sub P.0011

Let us see if we can elucidate the relationship between the two.0016

First of all, know that numerically the constant pressure heat capacity is greater than the constant volume heat capacity.0024

The qualitative reason for that is, the intuitive reason is this, for a constant volume process no work is done because the change in volume is 0.0032

Remember, work is pressure times the change in volume.0043

The change in volume is 0, the work is 0.0045

Therefore, all of the heat transfer during the process goes just straight into the chaotic motion of the molecules of the system.0049

All of the heat transfer during the process accounts for the energy change that is why we have that0059

the heat transfer during constant volume process = a change in energy.0066

All of the heat goes to change in energy.0073

For constant pressure process, the change in volume is not 0 so work is done.0077

Therefore, the heat transfer to the process, some of this energy that is transferred as heat is used to perform work.0083

Heat goes in and a part of that heat is used to do work in the expansion leaving δ U to be less than expected.0098

Thus, the change in energy is equal to the heat transfer which is similar to this - the energy lost as pressure volume work.0107

The change in energy is going to be less than heat transferred or is for constant volume process, all of the heat accounts for the energy change.0117

If the change in energy is less than expected, the change in temperature is going to be0127

less than expected because energy and temperature are the same essentially.0131

That is what energy is a function of temperature so if energy is less that means the temperature of the system is less.0137

In order to achieve the same unit change in temperature, the same 1° increase in temperature,0145

more heat has to be transferred during the constant pressure process.0151

The more heat for the same change in temperature means a higher heat capacity.0156

The constant volume heat capacity, a certain amount of heat is transferred, it is all energy.0162

In a constant pressure process, a certain amount of heat is transferred of that heat, some of it is actually used to expand the gas.0167

My energy is less, my temperature is less.0176

In order to achieve the same change in temperature, I have to put more heat in.0179

Therefore, my constant pressure heat capacity is greater than my constant volume heat capacity.0184

Under conditions of constant pressure, I have to put more heat to achieve the same 1° change in temperature.0190

It is the qualitative reason so you should be able to qualitatively, intuitively, that is why it is true.0199

Let us go ahead and do a little bit of work here.0207

For an ideal gas, in other words let us find out what this relationship between CP and CV actually is.0212

Let us find an equation.0219

For an ideal gas it is really simple, there are several ways to get this.0221

I just decided to take what I consider to be the easiest, quickest approach.0230

Let us begin with the definition enthalpy.0235

Begin with the enthalpy is equal to the energy + PV.0240

For ideal gas, we know that PV = nRT so we can just go ahead and substitute that into that and we get that H =U + nRT.0252

Let us go ahead and take the derivative of both sides with respect to T.0265

We get DH DT = DU DT = nR.0269

We know what DH DT is DHDT is the constant pressure heat capacity, the change in enthalpy per unit change in temperature.0279

We know what DUDT is, the change in the energy vs. the unit change in temperature, this is the constant volume heat capacity.0288

Let us keep our = and + separate here, that is our relationship.0304

For an ideal gas, its constant pressure heat capacity is equal to its constant volume heat capacity + the number of mol × R or you can write it this way CP - CV = nr.0311

In terms of molar heat capacities, molar quantities is per mol, which means just divide everything by n, dividing everything by the number of moles.0331

When I divide everything by n, what I get is the following.0341

In terms of molar heat capacities, CP this is J/ K.0346

When we divide by mol we get J/ K/ mol, the one that we are used to seeing.0360

In terms of molar heat capacity, divide everything by n and what you get is CP/ N + CD/ n = R.0366

All molar variables just put a line over them.0386

I’m missing a bunch of + and - signs here, - there you go - CV = R, these are our relations right here.0395

You can think of it this way, it does not matter.0407

Any time you see a line over something it is a molar, that means that you just divide everything by n, the number of mol.0409

There you go.0415

To for an ideal gas, this is the relationship the constant pressure heat capacity is equal to the constant volume heat capacity + nr or CP - CV = nr.0416

Either one is fine depending on how you want to use it.0427

In general, if the system has a differential change in temperature that is associated with a change of state,0433

if it is going from state 1 to state 2, there is some change in temperature for the system.0463

Then Q, the amount of heat transfer, the amount withdrawn from the surroundings0474

then Q can have an infinite number of values and because heat Q is a path function.0483

Temperature is a state function.0510

If I want to take something from 10° C to 25° C, the 25° change I can do a whole bunch of ways.0512

I can just go straight to it, I can go off to 100 and other 25, I can go down to 100 then back to 15 then to 25.0520

The heat transfer as the heat changes the temperatures itself is a state function.0529

Q was a path function.0538

Therefore, the heat transfer can have an infinite number of values going from state 1 of one temperature to state 2 of different temperature.0540

There are a bunch of ways that heat can transfer.0548

The heat transfer can have an infinite number of values.0551

Heat capacity is defined as the change in heat per a change in temperature.0559

If the quantities for heat have an infinite number of values, the truth is for a given change in temperature0570

there are an infinite number of heat capacities.0577

Heat capacity can also have an infinite number of values for a particular temperature change because0584

they are a bunch of paths in order to get from one temperature to another.0600

Only two heat capacities are generally important, heat capacity under constant pressure and heat capacity under constant volume.0606

When we put these two constraints on there, those are the two that matter not the infinite variety of them.0621

In another words, we want to go from temperature 1 to temperature 2 under constant volume.0629

We want to go from temperature 1 to temperature 2 under constant pressure.0633

In both of those cases, there is heat capacity associated with both of the paths, with both of those processes.0637

Only 2 heat capacities are generally important.0643

But it is important for you to know again, that heat capacity there is an infinite number of them depending on the path that you take.0650

It depends on the heat transfer.0656

The heat capacity is defined as the heat transfer per unit change in temperature.0658

If there is an infinite number of heat, heat has to be transferred as an infinite number of heat capacities CP and CV.0662

There you go, constant pressure and constant volume heat capacity.0677

Let us go back.0681

Let us return to our mathematics, DU = DU DT VDT.0684

Let us see if I can keep it all straight, DU/ DV constant TDV.0700

We also have DU is equal to DQ - DW which is equal to DQ - P external DV.0708

The definition of work is pressure × volume.0728

We have our equation DQ - P external DV = this side is going to be DU/ DV constant V × DT + DU/ DV constant T × DV.0734

Let us see what we can do.0760

At constant pressure under conditions of constant P, the P of the system is equal to P external.0763

I put P over here and move it over the other side and I get the following.0783

I get DQ sub P because now we are at under constant pressure, DQ without the subscript it just means that heat transfer.0788

DQ sub P is under conditions of constant pressure is equal to DUDT sub V × DT was DUDV under TDV + P DV.0797

I just put this into here and moved it over to that side.0824

I’m going to go ahead and I have a DV here and here.0828

Let me combine some terms.0831

I have got DQP is equal to CVDT because the DUDT is equal to the constant volume heat capacity + DU DV T + P × DV.0834

Now I'm going to divide DT.0857

If I divide everything by DT, I get the following.0864

I get DQP DT this is just mathematical manipulation.0868

It is just people playing with symbols.0877

They did not know where they are going when they are doing it, they just started doing it.0882

It looks like we know what we are doing because we have the result of their fruitful work.0886

We have CV, DT DT is just 1 + DU DV sub T + P × DV DT under constant pressure conditions.0894

What it is that we have got, DQ DP DQ PDT this is a constant pressure heat capacity.0929

We have constant pressure heat capacity = constant volume heat capacity + DU DV T + P × DV.0938

I’m trying to keep this all straight is not easy.0960

There you go, this is the relationship that we are looking for.0963

This expresses a relationship between the constant pressure heat capacity and the constant volume heat capacity.0966

The constant volume heat capacity + something accounts for the constant pressure heat capacity.0974

Let us talk about what this something is.0981

You can move the CV over there to write in a different way.0984

I'm going to go ahead and actually multiply and distribute this over this and over this and write it this way.0989

CP =, let me go ahead and first to bring the CV over for our discussion.0998

I'm going to get DU DV under constant temperature conditions × DVDT, our constant pressure + P × DVDT under constant pressure conditions.1010

The amount by which CP is greater than CV has two components.1036

This is one component that is the other component.1054

I’m going to the second term first.1064

Let me actually rewrite it here so I have on top.1067

I have got CP - CV = DU/ DV under conditions of constant pressure × DVDT under conditions of constant pressure + PDVDT conditions of constant pressure.1071

That is the second term first.1091

This term right here, the second term.1094

This is the work that the system does on the surroundings per unit change in temperature at constant pressure, constant P.1096

Just take a look at the units.1127

We have pressure × volume divided by temperature.1129

Pressure × volume is work per unit temperature.1136

First term, the first term is a little stranger.1143

It is a little harder to wrap your mind around this one.1148

In this particular case, I’m going to ask to take it off.1150

This is the change in energy per unit change in volume under conditions of constant pressure × a change in volume1154

or the change in temperature under conditions of constant pressure.1161

This is the energy required to pull molecules apart against intermolecular attractive forces.1166

This term right here, this accounts for the amount of energy it takes to actually pull molecules apart against attractive forces1207

and separate them by a certain distance.1217

In the active separating at a certain distance, the gas is going to expand.1219

If you are taking a molecule, collection of molecules, are pulling further way from other molecules the gas is going to expand.1223

That expansion is going to do work on the surroundings.1230

Some of the energy is lost in actually pushing the atmosphere away as the gas expands.1234

That is the difference between the two heat capacities, two of the terms of the energy that transfers heat.1241

Some of the energy goes to pull the molecules apart against intermolecular forces.1251

Some of the energy goes to doing pressure and the process of pulling them apart against the atmosphere that you are pushing.1258

The rest of it is leftover, that is your CV component, that is the part that goes straight into the random motion of the molecules.1266

The temperature changes accounted by this term not by this term and not by this term.1275

We will say more about it in just a second.1281

Let me rewrite this way so CP = CV + DU DV constant pressure DVDT, what makes sense is the amount of energy to have to put the system1286

in order to change its volume or separate, that is what change in volume is.1310

You are separating gas molecules and then the amount of separation per unit change in temperature.1315

It is the amount of energy that takes per change in temperature was accompanied by a change in volume.1323

In other words, the amount of energy I have to take in order to take this molecule and pull them apart because it requires energy,1329

because of the inter molecular attraction.1335

Under constant pressure + the pressure × the change in volume over the change in temperature at constant pressure.1339

For a constant pressure process, for constant P process, the heat was transferred per unit T change in temp per unit T change.1350

The heat transferred per unit change in T, in other words the CP heat capacity is divided into three parts.1393

Part 1, did not do this in order for the equation is concerned.1419

So one part pulls the molecules apart.1426

Let us slow down, pulls the molecules apart and separates them.1440

Another part, does work on the surroundings in the process of separation, that is what we call expansion is.1452

The third part, is the actual increase in chaotic motion.1488

In other words the δ U, only this part reflects the temperature change.1508

Let me write the equation again, the constant pressure heat capacity is equal to the constant volume heat capacity + DU DV1531

under T and this is DVD T under P + P × DVDT under P.1549

The constant pressure heat capacity is divided into three parts, the amount of heat transfer per unit change in temperature.1562

One part of it does work on the surroundings.1571

One part pulls the molecules apart and separates them, that is this part.1573

That is the amount of energy it takes to actually pull molecules apart against their intermolecular forces.1579

Another part does work on the surroundings in the process of separation.1588

In the process it pulled the energy it takes to pull it apart and separate them, that separation, that pushing or pulling molecules away from each other,1591

in order to pull it this way, I have to push it against the atmosphere.1600

That ends up doing work on the surroundings.1604

What is left over the third part is the actual increase in the chaotic motion.1607

This is what accounts for the δ U, this is what accounts for the temperature increase.1612

This is not change temperature.1618

This is where the temperature change happens.1622

Therefore, in order to achieve the same amount of temperature increase as a constant volume process, the constant pressure process has to put all this.1625

You have to put this much + this much + this much, more heat is required in order to achieve1634

the same 1° temperature rise which is the definition of heat capacity.1642

This is the relationship.1646

It is very important.1648

Again, there is nothing here that is counterintuitive.1650

You get it now, you understand where this is coming from.1652

Under a constant volume process, I have to put a certain amount of heat under constant pressure process,1656

a certain heat is transferred but all the heat that is transferred some of the heat has to go to pulling this molecules apart.1662

In the process of pulling them apart, some of that heat has to be converted to work to actually push the atmosphere away so that we can pull the molecules apart.1670

The rest of it just goes to the energy of the system.1678

That is what is happening here.1682

Let us go ahead and finish up with a couple of definitions.1688

Excuse me, we are going to define this thing called gamma.1691

Let us make it a little bit better, you will see it every so often.1700

Gamma is equal to, it is a ratio of the constant pressure heat capacity to the constant volume heat capacity.1705

This is going to be greater than 1.1712

You knew this already because CP is greater than CV.1714

For gases, the difference between CP and CV is significant, of course it is, because gases expand.1719

For liquids and solids, because the change in volume is so small, it is not nearly 0.1748

It is small but we do not say it is close to 0 because it is reasonably significant.1771

Because the change in volume is so small CP is approximately equal to CV.1776

Tabulated values, the values that you see for heat capacity for liquid and solids in your books and in all the table that you read, that constant pressure heat capacities.1783

Tabulated values for liquids and solids are constant pressure heat capacities and the reason is it is very easy to measure.1798

We just do it under atmosphere conditions because these are easy to measure experimentally.1818

Not quite so easy to do constant volume for a liquid or solid.1836

This is kind of messy actually.1844

For an ideal gas, as we said the CP - CV = nr or for molar CP - CV = R, that is just heat capacity per mol.1847

This is actually good approximation for real gas as well.1873

When you are dealing with the real gas and if you are given the constant pressure heat capacity and1891

you need the constant volume heat capacity, just go ahead and solve this equation.1897

That is fine, for all practical purposes.1902

Real gases under conditions of low pressure and high temperature they behave ideally which is why we use the Pv=nRT unless, we are doing really precise work.1906

For a real gas, that is a good approximation for a real gas also.1916

There you have it, there is the relationship between the constant pressure heat capacity and the constant volume heat capacity.1923

Who know that there was a relationship?1929

You know you probably never thought that there is actually an infinite number of heat capacities but there are.1931

There are only two we are concerned with constant pressure and constant volume.1935

Thank you so much for joining us here at www.educator.com.1940

We will see you next time, bye.1942

Educator®

Please sign in for full access to this lesson.

Sign-InORCreate Account

Enter your Sign-on user name and password.

Forgot password?

Start Learning Now

Our free lessons will get you started (Adobe Flash® required).
Get immediate access to our entire library.

Sign up for Educator.com

Membership Overview

  • Unlimited access to our entire library of courses.
  • Search and jump to exactly what you want to learn.
  • *Ask questions and get answers from the community and our teachers!
  • Practice questions with step-by-step solutions.
  • Download lesson files for programming and software training practice.
  • Track your course viewing progress.
  • Download lecture slides for taking notes.

Use this form or mail us to .

For support articles click here.