Enter your Sign on user name and password.

Forgot password?
Sign In | Sign Up
Start learning today, and be successful in your academic & professional career. Start Today!

Use Chrome browser to play professor video
Raffi Hovasapian

Raffi Hovasapian

Statistical Thermodynamics: The Various Partition Functions II

Slide Duration:

Table of Contents

I. Classical Thermodynamics Preliminaries
The Ideal Gas Law

46m 5s

Intro
0:00
Course Overview
0:16
Thermodynamics & Classical Thermodynamics
0:17
Structure of the Course
1:30
The Ideal Gas Law
3:06
Ideal Gas Law: PV=nRT
3:07
Units of Pressure
4:51
Manipulating Units
5:52
Atmosphere : atm
8:15
Millimeter of Mercury: mm Hg
8:48
SI Unit of Volume
9:32
SI Unit of Temperature
10:32
Value of R (Gas Constant): Pv = nRT
10:51
Extensive and Intensive Variables (Properties)
15:23
Intensive Property
15:52
Extensive Property
16:30
Example: Extensive and Intensive Variables
18:20
Ideal Gas Law
19:24
Ideal Gas Law with Intensive Variables
19:25
Graphing Equations
23:51
Hold T Constant & Graph P vs. V
23:52
Hold P Constant & Graph V vs. T
31:08
Hold V Constant & Graph P vs. T
34:38
Isochores or Isometrics
37:08
More on the V vs. T Graph
39:46
More on the P vs. V Graph
42:06
Ideal Gas Law at Low Pressure & High Temperature
44:26
Ideal Gas Law at High Pressure & Low Temperature
45:16
Math Lesson 1: Partial Differentiation

46m 2s

Intro
0:00
Math Lesson 1: Partial Differentiation
0:38
Overview
0:39
Example I
3:00
Example II
6:33
Example III
9:52
Example IV
17:26
Differential & Derivative
21:44
What Does It Mean?
21:45
Total Differential (or Total Derivative)
30:16
Net Change in Pressure (P)
33:58
General Equation for Total Differential
38:12
Example 5: Total Differential
39:28
II. Energy
Energy & the First Law I

1h 6m 45s

Intro
0:00
Properties of Thermodynamic State
1:38
Big Picture: 3 Properties of Thermodynamic State
1:39
Enthalpy & Free Energy
3:30
Associated Law
4:40
Energy & the First Law of Thermodynamics
7:13
System & Its Surrounding Separated by a Boundary
7:14
In Other Cases the Boundary is Less Clear
10:47
State of a System
12:37
State of a System
12:38
Change in State
14:00
Path for a Change in State
14:57
Example: State of a System
15:46
Open, Close, and Isolated System
18:26
Open System
18:27
Closed System
19:02
Isolated System
19:22
Important Questions
20:38
Important Questions
20:39
Work & Heat
22:50
Definition of Work
23:33
Properties of Work
25:34
Definition of Heat
32:16
Properties of Heat
34:49
Experiment #1
42:23
Experiment #2
47:00
More on Work & Heat
54:50
More on Work & Heat
54:51
Conventions for Heat & Work
1:00:50
Convention for Heat
1:02:40
Convention for Work
1:04:24
Schematic Representation
1:05:00
Energy & the First Law II

1h 6m 33s

Intro
0:00
The First Law of Thermodynamics
0:53
The First Law of Thermodynamics
0:54
Example 1: What is the Change in Energy of the System & Surroundings?
8:53
Energy and The First Law II, cont.
11:55
The Energy of a System Changes in Two Ways
11:56
Systems Possess Energy, Not Heat or Work
12:45
Scenario 1
16:00
Scenario 2
16:46
State Property, Path Properties, and Path Functions
18:10
Pressure-Volume Work
22:36
When a System Changes
22:37
Gas Expands
24:06
Gas is Compressed
25:13
Pressure Volume Diagram: Analyzing Expansion
27:17
What if We do the Same Expansion in Two Stages?
35:22
Multistage Expansion
43:58
General Expression for the Pressure-Volume Work
46:59
Upper Limit of Isothermal Expansion
50:00
Expression for the Work Done in an Isothermal Expansion
52:45
Example 2: Find an Expression for the Maximum Work Done by an Ideal Gas upon Isothermal Expansion
56:18
Example 3: Calculate the External Pressure and Work Done
58:50
Energy & the First Law III

1h 2m 17s

Intro
0:00
Compression
0:20
Compression Overview
0:34
Single-stage compression vs. 2-stage Compression
2:16
Multi-stage Compression
8:40
Example I: Compression
14:47
Example 1: Single-stage Compression
14:47
Example 1: 2-stage Compression
20:07
Example 1: Absolute Minimum
26:37
More on Compression
32:55
Isothermal Expansion & Compression
32:56
External & Internal Pressure of the System
35:18
Reversible & Irreversible Processes
37:32
Process 1: Overview
38:57
Process 2: Overview
39:36
Process 1: Analysis
40:42
Process 2: Analysis
45:29
Reversible Process
50:03
Isothermal Expansion and Compression
54:31
Example II: Reversible Isothermal Compression of a Van der Waals Gas
58:10
Example 2: Reversible Isothermal Compression of a Van der Waals Gas
58:11
Changes in Energy & State: Constant Volume

1h 4m 39s

Intro
0:00
Recall
0:37
State Function & Path Function
0:38
First Law
2:11
Exact & Inexact Differential
2:12
Where Does (∆U = Q - W) or dU = dQ - dU Come from?
8:54
Cyclic Integrals of Path and State Functions
8:55
Our Empirical Experience of the First Law
12:31
∆U = Q - W
18:42
Relations between Changes in Properties and Energy
22:24
Relations between Changes in Properties and Energy
22:25
Rate of Change of Energy per Unit Change in Temperature
29:54
Rate of Change of Energy per Unit Change in Volume at Constant Temperature
32:39
Total Differential Equation
34:38
Constant Volume
41:08
If Volume Remains Constant, then dV = 0
41:09
Constant Volume Heat Capacity
45:22
Constant Volume Integrated
48:14
Increase & Decrease in Energy of the System
54:19
Example 1: ∆U and Qv
57:43
Important Equations
1:02:06
Joule's Experiment

16m 50s

Intro
0:00
Joule's Experiment
0:09
Joule's Experiment
1:20
Interpretation of the Result
4:42
The Gas Expands Against No External Pressure
4:43
Temperature of the Surrounding Does Not Change
6:20
System & Surrounding
7:04
Joule's Law
10:44
More on Joule's Experiment
11:08
Later Experiment
12:38
Dealing with the 2nd Law & Its Mathematical Consequences
13:52
Changes in Energy & State: Constant Pressure

43m 40s

Intro
0:00
Changes in Energy & State: Constant Pressure
0:20
Integrating with Constant Pressure
0:35
Defining the New State Function
6:24
Heat & Enthalpy of the System at Constant Pressure
8:54
Finding ∆U
12:10
dH
15:28
Constant Pressure Heat Capacity
18:08
Important Equations
25:44
Important Equations
25:45
Important Equations at Constant Pressure
27:32
Example I: Change in Enthalpy (∆H)
28:53
Example II: Change in Internal Energy (∆U)
34:19
The Relationship Between Cp & Cv

32m 23s

Intro
0:00
The Relationship Between Cp & Cv
0:21
For a Constant Volume Process No Work is Done
0:22
For a Constant Pressure Process ∆V ≠ 0, so Work is Done
1:16
The Relationship Between Cp & Cv: For an Ideal Gas
3:26
The Relationship Between Cp & Cv: In Terms of Molar heat Capacities
5:44
Heat Capacity Can Have an Infinite # of Values
7:14
The Relationship Between Cp & Cv
11:20
When Cp is Greater than Cv
17:13
2nd Term
18:10
1st Term
19:20
Constant P Process: 3 Parts
22:36
Part 1
23:45
Part 2
24:10
Part 3
24:46
Define : γ = (Cp/Cv)
28:06
For Gases
28:36
For Liquids
29:04
For an Ideal Gas
30:46
The Joule Thompson Experiment

39m 15s

Intro
0:00
General Equations
0:13
Recall
0:14
How Does Enthalpy of a System Change Upon a Unit Change in Pressure?
2:58
For Liquids & Solids
12:11
For Ideal Gases
14:08
For Real Gases
16:58
The Joule Thompson Experiment
18:37
The Joule Thompson Experiment Setup
18:38
The Flow in 2 Stages
22:54
Work Equation for the Joule Thompson Experiment
24:14
Insulated Pipe
26:33
Joule-Thompson Coefficient
29:50
Changing Temperature & Pressure in Such a Way that Enthalpy Remains Constant
31:44
Joule Thompson Inversion Temperature
36:26
Positive & Negative Joule-Thompson Coefficient
36:27
Joule Thompson Inversion Temperature
37:22
Inversion Temperature of Hydrogen Gas
37:59
Adiabatic Changes of State

35m 52s

Intro
0:00
Adiabatic Changes of State
0:10
Adiabatic Changes of State
0:18
Work & Energy in an Adiabatic Process
3:44
Pressure-Volume Work
7:43
Adiabatic Changes for an Ideal Gas
9:23
Adiabatic Changes for an Ideal Gas
9:24
Equation for a Fixed Change in Volume
11:20
Maximum & Minimum Values of Temperature
14:20
Adiabatic Path
18:08
Adiabatic Path Diagram
18:09
Reversible Adiabatic Expansion
21:54
Reversible Adiabatic Compression
22:34
Fundamental Relationship Equation for an Ideal Gas Under Adiabatic Expansion
25:00
More on the Equation
28:20
Important Equations
32:16
Important Adiabatic Equation
32:17
Reversible Adiabatic Change of State Equation
33:02
III. Energy Example Problems
1st Law Example Problems I

42m 40s

Intro
0:00
Fundamental Equations
0:56
Work
2:40
Energy (1st Law)
3:10
Definition of Enthalpy
3:44
Heat capacity Definitions
4:06
The Mathematics
6:35
Fundamental Concepts
8:13
Isothermal
8:20
Adiabatic
8:54
Isobaric
9:25
Isometric
9:48
Ideal Gases
10:14
Example I
12:08
Example I: Conventions
12:44
Example I: Part A
15:30
Example I: Part B
18:24
Example I: Part C
19:53
Example II: What is the Heat Capacity of the System?
21:49
Example III: Find Q, W, ∆U & ∆H for this Change of State
24:15
Example IV: Find Q, W, ∆U & ∆H
31:37
Example V: Find Q, W, ∆U & ∆H
38:20
1st Law Example Problems II

1h 23s

Intro
0:00
Example I
0:11
Example I: Finding ∆U
1:49
Example I: Finding W
6:22
Example I: Finding Q
11:23
Example I: Finding ∆H
16:09
Example I: Summary
17:07
Example II
21:16
Example II: Finding W
22:42
Example II: Finding ∆H
27:48
Example II: Finding Q
30:58
Example II: Finding ∆U
31:30
Example III
33:33
Example III: Finding ∆U, Q & W
33:34
Example III: Finding ∆H
38:07
Example IV
41:50
Example IV: Finding ∆U
41:51
Example IV: Finding ∆H
45:42
Example V
49:31
Example V: Finding W
49:32
Example V: Finding ∆U
55:26
Example V: Finding Q
56:26
Example V: Finding ∆H
56:55
1st Law Example Problems III

44m 34s

Intro
0:00
Example I
0:15
Example I: Finding the Final Temperature
3:40
Example I: Finding Q
8:04
Example I: Finding ∆U
8:25
Example I: Finding W
9:08
Example I: Finding ∆H
9:51
Example II
11:27
Example II: Finding the Final Temperature
11:28
Example II: Finding ∆U
21:25
Example II: Finding W & Q
22:14
Example II: Finding ∆H
23:03
Example III
24:38
Example III: Finding the Final Temperature
24:39
Example III: Finding W, ∆U, and Q
27:43
Example III: Finding ∆H
28:04
Example IV
29:23
Example IV: Finding ∆U, W, and Q
25:36
Example IV: Finding ∆H
31:33
Example V
32:24
Example V: Finding the Final Temperature
33:32
Example V: Finding ∆U
39:31
Example V: Finding W
40:17
Example V: First Way of Finding ∆H
41:10
Example V: Second Way of Finding ∆H
42:10
Thermochemistry Example Problems

59m 7s

Intro
0:00
Example I: Find ∆H° for the Following Reaction
0:42
Example II: Calculate the ∆U° for the Reaction in Example I
5:33
Example III: Calculate the Heat of Formation of NH₃ at 298 K
14:23
Example IV
32:15
Part A: Calculate the Heat of Vaporization of Water at 25°C
33:49
Part B: Calculate the Work Done in Vaporizing 2 Mols of Water at 25°C Under a Constant Pressure of 1 atm
35:26
Part C: Find ∆U for the Vaporization of Water at 25°C
41:00
Part D: Find the Enthalpy of Vaporization of Water at 100°C
43:12
Example V
49:24
Part A: Constant Temperature & Increasing Pressure
50:25
Part B: Increasing temperature & Constant Pressure
56:20
IV. Entropy
Entropy

49m 16s

Intro
0:00
Entropy, Part 1
0:16
Coefficient of Thermal Expansion (Isobaric)
0:38
Coefficient of Compressibility (Isothermal)
1:25
Relative Increase & Relative Decrease
2:16
More on α
4:40
More on κ
8:38
Entropy, Part 2
11:04
Definition of Entropy
12:54
Differential Change in Entropy & the Reversible Path
20:08
State Property of the System
28:26
Entropy Changes Under Isothermal Conditions
35:00
Recall: Heating Curve
41:05
Some Phase Changes Take Place Under Constant Pressure
44:07
Example I: Finding ∆S for a Phase Change
46:05
Math Lesson II

33m 59s

Intro
0:00
Math Lesson II
0:46
Let F(x,y) = x²y³
0:47
Total Differential
3:34
Total Differential Expression
6:06
Example 1
9:24
More on Math Expression
13:26
Exact Total Differential Expression
13:27
Exact Differentials
19:50
Inexact Differentials
20:20
The Cyclic Rule
21:06
The Cyclic Rule
21:07
Example 2
27:58
Entropy As a Function of Temperature & Volume

54m 37s

Intro
0:00
Entropy As a Function of Temperature & Volume
0:14
Fundamental Equation of Thermodynamics
1:16
Things to Notice
9:10
Entropy As a Function of Temperature & Volume
14:47
Temperature-dependence of Entropy
24:00
Example I
26:19
Entropy As a Function of Temperature & Volume, Cont.
31:55
Volume-dependence of Entropy at Constant Temperature
31:56
Differentiate with Respect to Temperature, Holding Volume Constant
36:16
Recall the Cyclic Rule
45:15
Summary & Recap
46:47
Fundamental Equation of Thermodynamics
46:48
For Entropy as a Function of Temperature & Volume
47:18
The Volume-dependence of Entropy for Liquids & Solids
52:52
Entropy as a Function of Temperature & Pressure

31m 18s

Intro
0:00
Entropy as a Function of Temperature & Pressure
0:17
Entropy as a Function of Temperature & Pressure
0:18
Rewrite the Total Differential
5:54
Temperature-dependence
7:08
Pressure-dependence
9:04
Differentiate with Respect to Pressure & Holding Temperature Constant
9:54
Differentiate with Respect to Temperature & Holding Pressure Constant
11:28
Pressure-Dependence of Entropy for Liquids & Solids
18:45
Pressure-Dependence of Entropy for Liquids & Solids
18:46
Example I: ∆S of Transformation
26:20
Summary of Entropy So Far

23m 6s

Intro
0:00
Summary of Entropy So Far
0:43
Defining dS
1:04
Fundamental Equation of Thermodynamics
3:51
Temperature & Volume
6:04
Temperature & Pressure
9:10
Two Important Equations for How Entropy Behaves
13:38
State of a System & Heat Capacity
15:34
Temperature-dependence of Entropy
19:49
Entropy Changes for an Ideal Gas

25m 42s

Intro
0:00
Entropy Changes for an Ideal Gas
1:10
General Equation
1:22
The Fundamental Theorem of Thermodynamics
2:37
Recall the Basic Total Differential Expression for S = S (T,V)
5:36
For a Finite Change in State
7:58
If Cv is Constant Over the Particular Temperature Range
9:05
Change in Entropy of an Ideal Gas as a Function of Temperature & Pressure
11:35
Change in Entropy of an Ideal Gas as a Function of Temperature & Pressure
11:36
Recall the Basic Total Differential expression for S = S (T, P)
15:13
For a Finite Change
18:06
Example 1: Calculate the ∆S of Transformation
22:02
V. Entropy Example Problems
Entropy Example Problems I

43m 39s

Intro
0:00
Entropy Example Problems I
0:24
Fundamental Equation of Thermodynamics
1:10
Entropy as a Function of Temperature & Volume
2:04
Entropy as a Function of Temperature & Pressure
2:59
Entropy For Phase Changes
4:47
Entropy For an Ideal Gas
6:14
Third Law Entropies
8:25
Statement of the Third Law
9:17
Entropy of the Liquid State of a Substance Above Its Melting Point
10:23
Entropy For the Gas Above Its Boiling Temperature
13:02
Entropy Changes in Chemical Reactions
15:26
Entropy Change at a Temperature Other than 25°C
16:32
Example I
19:31
Part A: Calculate ∆S for the Transformation Under Constant Volume
20:34
Part B: Calculate ∆S for the Transformation Under Constant Pressure
25:04
Example II: Calculate ∆S fir the Transformation Under Isobaric Conditions
27:53
Example III
30:14
Part A: Calculate ∆S if 1 Mol of Aluminum is taken from 25°C to 255°C
31:14
Part B: If S°₂₉₈ = 28.4 J/mol-K, Calculate S° for Aluminum at 498 K
33:23
Example IV: Calculate Entropy Change of Vaporization for CCl₄
34:19
Example V
35:41
Part A: Calculate ∆S of Transformation
37:36
Part B: Calculate ∆S of Transformation
39:10
Entropy Example Problems II

56m 44s

Intro
0:00
Example I
0:09
Example I: Calculate ∆U
1:28
Example I: Calculate Q
3:29
Example I: Calculate Cp
4:54
Example I: Calculate ∆S
6:14
Example II
7:13
Example II: Calculate W
8:14
Example II: Calculate ∆U
8:56
Example II: Calculate Q
10:18
Example II: Calculate ∆H
11:00
Example II: Calculate ∆S
12:36
Example III
18:47
Example III: Calculate ∆H
19:38
Example III: Calculate Q
21:14
Example III: Calculate ∆U
21:44
Example III: Calculate W
23:59
Example III: Calculate ∆S
24:55
Example IV
27:57
Example IV: Diagram
29:32
Example IV: Calculate W
32:27
Example IV: Calculate ∆U
36:36
Example IV: Calculate Q
38:32
Example IV: Calculate ∆H
39:00
Example IV: Calculate ∆S
40:27
Example IV: Summary
43:41
Example V
48:25
Example V: Diagram
49:05
Example V: Calculate W
50:58
Example V: Calculate ∆U
53:29
Example V: Calculate Q
53:44
Example V: Calculate ∆H
54:34
Example V: Calculate ∆S
55:01
Entropy Example Problems III

57m 6s

Intro
0:00
Example I: Isothermal Expansion
0:09
Example I: Calculate W
1:19
Example I: Calculate ∆U
1:48
Example I: Calculate Q
2:06
Example I: Calculate ∆H
2:26
Example I: Calculate ∆S
3:02
Example II: Adiabatic and Reversible Expansion
6:10
Example II: Calculate Q
6:48
Example II: Basic Equation for the Reversible Adiabatic Expansion of an Ideal Gas
8:12
Example II: Finding Volume
12:40
Example II: Finding Temperature
17:58
Example II: Calculate ∆U
19:53
Example II: Calculate W
20:59
Example II: Calculate ∆H
21:42
Example II: Calculate ∆S
23:42
Example III: Calculate the Entropy of Water Vapor
25:20
Example IV: Calculate the Molar ∆S for the Transformation
34:32
Example V
44:19
Part A: Calculate the Standard Entropy of Liquid Lead at 525°C
46:17
Part B: Calculate ∆H for the Transformation of Solid Lead from 25°C to Liquid Lead at 525°C
52:23
VI. Entropy and Probability
Entropy & Probability I

54m 35s

Intro
0:00
Entropy & Probability
0:11
Structural Model
3:05
Recall the Fundamental Equation of Thermodynamics
9:11
Two Independent Ways of Affecting the Entropy of a System
10:05
Boltzmann Definition
12:10
Omega
16:24
Definition of Omega
16:25
Energy Distribution
19:43
The Energy Distribution
19:44
In How Many Ways can N Particles be Distributed According to the Energy Distribution
23:05
Example I: In How Many Ways can the Following Distribution be Achieved
32:51
Example II: In How Many Ways can the Following Distribution be Achieved
33:51
Example III: In How Many Ways can the Following Distribution be Achieved
34:45
Example IV: In How Many Ways can the Following Distribution be Achieved
38:50
Entropy & Probability, cont.
40:57
More on Distribution
40:58
Example I Summary
41:43
Example II Summary
42:12
Distribution that Maximizes Omega
42:26
If Omega is Large, then S is Large
44:22
Two Constraints for a System to Achieve the Highest Entropy Possible
47:07
What Happened When the Energy of a System is Increased?
49:00
Entropy & Probability II

35m 5s

Intro
0:00
Volume Distribution
0:08
Distributing 2 Balls in 3 Spaces
1:43
Distributing 2 Balls in 4 Spaces
3:44
Distributing 3 Balls in 10 Spaces
5:30
Number of Ways to Distribute P Particles over N Spaces
6:05
When N is Much Larger than the Number of Particles P
7:56
Energy Distribution
25:04
Volume Distribution
25:58
Entropy, Total Entropy, & Total Omega Equations
27:34
Entropy, Total Entropy, & Total Omega Equations
27:35
VII. Spontaneity, Equilibrium, and the Fundamental Equations
Spontaneity & Equilibrium I

28m 42s

Intro
0:00
Reversible & Irreversible
0:24
Reversible vs. Irreversible
0:58
Defining Equation for Equilibrium
2:11
Defining Equation for Irreversibility (Spontaneity)
3:11
TdS ≥ dQ
5:15
Transformation in an Isolated System
11:22
Transformation in an Isolated System
11:29
Transformation at Constant Temperature
14:50
Transformation at Constant Temperature
14:51
Helmholtz Free Energy
17:26
Define: A = U - TS
17:27
Spontaneous Isothermal Process & Helmholtz Energy
20:20
Pressure-volume Work
22:02
Spontaneity & Equilibrium II

34m 38s

Intro
0:00
Transformation under Constant Temperature & Pressure
0:08
Transformation under Constant Temperature & Pressure
0:36
Define: G = U + PV - TS
3:32
Gibbs Energy
5:14
What Does This Say?
6:44
Spontaneous Process & a Decrease in G
14:12
Computing ∆G
18:54
Summary of Conditions
21:32
Constraint & Condition for Spontaneity
21:36
Constraint & Condition for Equilibrium
24:54
A Few Words About the Word Spontaneous
26:24
Spontaneous Does Not Mean Fast
26:25
Putting Hydrogen & Oxygen Together in a Flask
26:59
Spontaneous Vs. Not Spontaneous
28:14
Thermodynamically Favorable
29:03
Example: Making a Process Thermodynamically Favorable
29:34
Driving Forces for Spontaneity
31:35
Equation: ∆G = ∆H - T∆S
31:36
Always Spontaneous Process
32:39
Never Spontaneous Process
33:06
A Process That is Endothermic Can Still be Spontaneous
34:00
The Fundamental Equations of Thermodynamics

30m 50s

Intro
0:00
The Fundamental Equations of Thermodynamics
0:44
Mechanical Properties of a System
0:45
Fundamental Properties of a System
1:16
Composite Properties of a System
1:44
General Condition of Equilibrium
3:16
Composite Functions & Their Differentiations
6:11
dH = TdS + VdP
7:53
dA = -SdT - PdV
9:26
dG = -SdT + VdP
10:22
Summary of Equations
12:10
Equation #1
14:33
Equation #2
15:15
Equation #3
15:58
Equation #4
16:42
Maxwell's Relations
20:20
Maxwell's Relations
20:21
Isothermal Volume-Dependence of Entropy & Isothermal Pressure-Dependence of Entropy
26:21
The General Thermodynamic Equations of State

34m 6s

Intro
0:00
The General Thermodynamic Equations of State
0:10
Equations of State for Liquids & Solids
0:52
More General Condition for Equilibrium
4:02
General Conditions: Equation that Relates P to Functions of T & V
6:20
The Second Fundamental Equation of Thermodynamics
11:10
Equation 1
17:34
Equation 2
21:58
Recall the General Expression for Cp - Cv
28:11
For the Joule-Thomson Coefficient
30:44
Joule-Thomson Inversion Temperature
32:12
Properties of the Helmholtz & Gibbs Energies

39m 18s

Intro
0:00
Properties of the Helmholtz & Gibbs Energies
0:10
Equating the Differential Coefficients
1:34
An Increase in T; a Decrease in A
3:25
An Increase in V; a Decrease in A
6:04
We Do the Same Thing for G
8:33
Increase in T; Decrease in G
10:50
Increase in P; Decrease in G
11:36
Gibbs Energy of a Pure Substance at a Constant Temperature from 1 atm to any Other Pressure.
14:12
If the Substance is a Liquid or a Solid, then Volume can be Treated as a Constant
18:57
For an Ideal Gas
22:18
Special Note
24:56
Temperature Dependence of Gibbs Energy
27:02
Temperature Dependence of Gibbs Energy #1
27:52
Temperature Dependence of Gibbs Energy #2
29:01
Temperature Dependence of Gibbs Energy #3
29:50
Temperature Dependence of Gibbs Energy #4
34:50
The Entropy of the Universe & the Surroundings

19m 40s

Intro
0:00
Entropy of the Universe & the Surroundings
0:08
Equation: ∆G = ∆H - T∆S
0:20
Conditions of Constant Temperature & Pressure
1:14
Reversible Process
3:14
Spontaneous Process & the Entropy of the Universe
5:20
Tips for Remembering Everything
12:40
Verify Using Known Spontaneous Process
14:51
VIII. Free Energy Example Problems
Free Energy Example Problems I

54m 16s

Intro
0:00
Example I
0:11
Example I: Deriving a Function for Entropy (S)
2:06
Example I: Deriving a Function for V
5:55
Example I: Deriving a Function for H
8:06
Example I: Deriving a Function for U
12:06
Example II
15:18
Example III
21:52
Example IV
26:12
Example IV: Part A
26:55
Example IV: Part B
28:30
Example IV: Part C
30:25
Example V
33:45
Example VI
40:46
Example VII
43:43
Example VII: Part A
44:46
Example VII: Part B
50:52
Example VII: Part C
51:56
Free Energy Example Problems II

31m 17s

Intro
0:00
Example I
0:09
Example II
5:18
Example III
8:22
Example IV
12:32
Example V
17:14
Example VI
20:34
Example VI: Part A
21:04
Example VI: Part B
23:56
Example VI: Part C
27:56
Free Energy Example Problems III

45m

Intro
0:00
Example I
0:10
Example II
15:03
Example III
21:47
Example IV
28:37
Example IV: Part A
29:33
Example IV: Part B
36:09
Example IV: Part C
40:34
Three Miscellaneous Example Problems

58m 5s

Intro
0:00
Example I
0:41
Part A: Calculating ∆H
3:55
Part B: Calculating ∆S
15:13
Example II
24:39
Part A: Final Temperature of the System
26:25
Part B: Calculating ∆S
36:57
Example III
46:49
IX. Equation Review for Thermodynamics
Looking Back Over Everything: All the Equations in One Place

25m 20s

Intro
0:00
Work, Heat, and Energy
0:18
Definition of Work, Energy, Enthalpy, and Heat Capacities
0:23
Heat Capacities for an Ideal Gas
3:40
Path Property & State Property
3:56
Energy Differential
5:04
Enthalpy Differential
5:40
Joule's Law & Joule-Thomson Coefficient
6:23
Coefficient of Thermal Expansion & Coefficient of Compressibility
7:01
Enthalpy of a Substance at Any Other Temperature
7:29
Enthalpy of a Reaction at Any Other Temperature
8:01
Entropy
8:53
Definition of Entropy
8:54
Clausius Inequality
9:11
Entropy Changes in Isothermal Systems
9:44
The Fundamental Equation of Thermodynamics
10:12
Expressing Entropy Changes in Terms of Properties of the System
10:42
Entropy Changes in the Ideal Gas
11:22
Third Law Entropies
11:38
Entropy Changes in Chemical Reactions
14:02
Statistical Definition of Entropy
14:34
Omega for the Spatial & Energy Distribution
14:47
Spontaneity and Equilibrium
15:43
Helmholtz Energy & Gibbs Energy
15:44
Condition for Spontaneity & Equilibrium
16:24
Condition for Spontaneity with Respect to Entropy
17:58
The Fundamental Equations
18:30
Maxwell's Relations
19:04
The Thermodynamic Equations of State
20:07
Energy & Enthalpy Differentials
21:08
Joule's Law & Joule-Thomson Coefficient
21:59
Relationship Between Constant Pressure & Constant Volume Heat Capacities
23:14
One Final Equation - Just for Fun
24:04
X. Quantum Mechanics Preliminaries
Complex Numbers

34m 25s

Intro
0:00
Complex Numbers
0:11
Representing Complex Numbers in the 2-Dimmensional Plane
0:56
Addition of Complex Numbers
2:35
Subtraction of Complex Numbers
3:17
Multiplication of Complex Numbers
3:47
Division of Complex Numbers
6:04
r & θ
8:04
Euler's Formula
11:00
Polar Exponential Representation of the Complex Numbers
11:22
Example I
14:25
Example II
15:21
Example III
16:58
Example IV
18:35
Example V
20:40
Example VI
21:32
Example VII
25:22
Probability & Statistics

59m 57s

Intro
0:00
Probability & Statistics
1:51
Normalization Condition
1:52
Define the Mean or Average of x
11:04
Example I: Calculate the Mean of x
14:57
Example II: Calculate the Second Moment of the Data in Example I
22:39
Define the Second Central Moment or Variance
25:26
Define the Second Central Moment or Variance
25:27
1st Term
32:16
2nd Term
32:40
3rd Term
34:07
Continuous Distributions
35:47
Continuous Distributions
35:48
Probability Density
39:30
Probability Density
39:31
Normalization Condition
46:51
Example III
50:13
Part A - Show that P(x) is Normalized
51:40
Part B - Calculate the Average Position of the Particle Along the Interval
54:31
Important Things to Remember
58:24
SchrÓ§dinger Equation & Operators

42m 5s

Intro
0:00
Schrӧdinger Equation & Operators
0:16
Relation Between a Photon's Momentum & Its Wavelength
0:17
Louis de Broglie: Wavelength for Matter
0:39
Schrӧdinger Equation
1:19
Definition of Ψ(x)
3:31
Quantum Mechanics
5:02
Operators
7:51
Example I
10:10
Example II
11:53
Example III
14:24
Example IV
17:35
Example V
19:59
Example VI
22:39
Operators Can Be Linear or Non Linear
27:58
Operators Can Be Linear or Non Linear
28:34
Example VII
32:47
Example VIII
36:55
Example IX
39:29
SchrÓ§dinger Equation as an Eigenvalue Problem

30m 26s

Intro
0:00
Schrӧdinger Equation as an Eigenvalue Problem
0:10
Operator: Multiplying the Original Function by Some Scalar
0:11
Operator, Eigenfunction, & Eigenvalue
4:42
Example: Eigenvalue Problem
8:00
Schrӧdinger Equation as an Eigenvalue Problem
9:24
Hamiltonian Operator
15:09
Quantum Mechanical Operators
16:46
Kinetic Energy Operator
19:16
Potential Energy Operator
20:02
Total Energy Operator
21:12
Classical Point of View
21:48
Linear Momentum Operator
24:02
Example I
26:01
The Plausibility of the SchrÓ§dinger Equation

21m 34s

Intro
0:00
The Plausibility of the Schrӧdinger Equation
1:16
The Plausibility of the Schrӧdinger Equation, Part 1
1:17
The Plausibility of the Schrӧdinger Equation, Part 2
8:24
The Plausibility of the Schrӧdinger Equation, Part 3
13:45
XI. The Particle in a Box
The Particle in a Box Part I

56m 22s

Intro
0:00
Free Particle in a Box
0:28
Definition of a Free Particle in a Box
0:29
Amplitude of the Matter Wave
6:22
Intensity of the Wave
6:53
Probability Density
9:39
Probability that the Particle is Located Between x & dx
10:54
Probability that the Particle will be Found Between o & a
12:35
Wave Function & the Particle
14:59
Boundary Conditions
19:22
What Happened When There is No Constraint on the Particle
27:54
Diagrams
34:12
More on Probability Density
40:53
The Correspondence Principle
46:45
The Correspondence Principle
46:46
Normalizing the Wave Function
47:46
Normalizing the Wave Function
47:47
Normalized Wave Function & Normalization Constant
52:24
The Particle in a Box Part II

45m 24s

Intro
0:00
Free Particle in a Box
0:08
Free Particle in a 1-dimensional Box
0:09
For a Particle in a Box
3:57
Calculating Average Values & Standard Deviations
5:42
Average Value for the Position of a Particle
6:32
Standard Deviations for the Position of a Particle
10:51
Recall: Energy & Momentum are Represented by Operators
13:33
Recall: Schrӧdinger Equation in Operator Form
15:57
Average Value of a Physical Quantity that is Associated with an Operator
18:16
Average Momentum of a Free Particle in a Box
20:48
The Uncertainty Principle
24:42
Finding the Standard Deviation of the Momentum
25:08
Expression for the Uncertainty Principle
35:02
Summary of the Uncertainty Principle
41:28
The Particle in a Box Part III

48m 43s

Intro
0:00
2-Dimension
0:12
Dimension 2
0:31
Boundary Conditions
1:52
Partial Derivatives
4:27
Example I
6:08
The Particle in a Box, cont.
11:28
Operator Notation
12:04
Symbol for the Laplacian
13:50
The Equation Becomes…
14:30
Boundary Conditions
14:54
Separation of Variables
15:33
Solution to the 1-dimensional Case
16:31
Normalization Constant
22:32
3-Dimension
28:30
Particle in a 3-dimensional Box
28:31
In Del Notation
32:22
The Solutions
34:51
Expressing the State of the System for a Particle in a 3D Box
39:10
Energy Level & Degeneracy
43:35
XII. Postulates and Principles of Quantum Mechanics
The Postulates & Principles of Quantum Mechanics, Part I

46m 18s

Intro
0:00
Postulate I
0:31
Probability That The Particle Will Be Found in a Differential Volume Element
0:32
Example I: Normalize This Wave Function
11:30
Postulate II
18:20
Postulate II
18:21
Quantum Mechanical Operators: Position
20:48
Quantum Mechanical Operators: Kinetic Energy
21:57
Quantum Mechanical Operators: Potential Energy
22:42
Quantum Mechanical Operators: Total Energy
22:57
Quantum Mechanical Operators: Momentum
23:22
Quantum Mechanical Operators: Angular Momentum
23:48
More On The Kinetic Energy Operator
24:48
Angular Momentum
28:08
Angular Momentum Overview
28:09
Angular Momentum Operator in Quantum Mechanic
31:34
The Classical Mechanical Observable
32:56
Quantum Mechanical Operator
37:01
Getting the Quantum Mechanical Operator from the Classical Mechanical Observable
40:16
Postulate II, cont.
43:40
Quantum Mechanical Operators are Both Linear & Hermetical
43:41
The Postulates & Principles of Quantum Mechanics, Part II

39m 28s

Intro
0:00
Postulate III
0:09
Postulate III: Part I
0:10
Postulate III: Part II
5:56
Postulate III: Part III
12:43
Postulate III: Part IV
18:28
Postulate IV
23:57
Postulate IV
23:58
Postulate V
27:02
Postulate V
27:03
Average Value
36:38
Average Value
36:39
The Postulates & Principles of Quantum Mechanics, Part III

35m 32s

Intro
0:00
The Postulates & Principles of Quantum Mechanics, Part III
0:10
Equations: Linear & Hermitian
0:11
Introduction to Hermitian Property
3:36
Eigenfunctions are Orthogonal
9:55
The Sequence of Wave Functions for the Particle in a Box forms an Orthonormal Set
14:34
Definition of Orthogonality
16:42
Definition of Hermiticity
17:26
Hermiticity: The Left Integral
23:04
Hermiticity: The Right Integral
28:47
Hermiticity: Summary
34:06
The Postulates & Principles of Quantum Mechanics, Part IV

29m 55s

Intro
0:00
The Postulates & Principles of Quantum Mechanics, Part IV
0:09
Operators can be Applied Sequentially
0:10
Sample Calculation 1
2:41
Sample Calculation 2
5:18
Commutator of Two Operators
8:16
The Uncertainty Principle
19:01
In the Case of Linear Momentum and Position Operator
23:14
When the Commutator of Two Operators Equals to Zero
26:31
XIII. Postulates and Principles Example Problems, Including Particle in a Box
Example Problems I

54m 25s

Intro
0:00
Example I: Three Dimensional Box & Eigenfunction of The Laplacian Operator
0:37
Example II: Positions of a Particle in a 1-dimensional Box
15:46
Example III: Transition State & Frequency
29:29
Example IV: Finding a Particle in a 1-dimensional Box
35:03
Example V: Degeneracy & Energy Levels of a Particle in a Box
44:59
Example Problems II

46m 58s

Intro
0:00
Review
0:25
Wave Function
0:26
Normalization Condition
2:28
Observable in Classical Mechanics & Linear/Hermitian Operator in Quantum Mechanics
3:36
Hermitian
6:11
Eigenfunctions & Eigenvalue
8:20
Normalized Wave Functions
12:00
Average Value
13:42
If Ψ is Written as a Linear Combination
15:44
Commutator
16:45
Example I: Normalize The Wave Function
19:18
Example II: Probability of Finding of a Particle
22:27
Example III: Orthogonal
26:00
Example IV: Average Value of the Kinetic Energy Operator
30:22
Example V: Evaluate These Commutators
39:02
Example Problems III

44m 11s

Intro
0:00
Example I: Good Candidate for a Wave Function
0:08
Example II: Variance of the Energy
7:00
Example III: Evaluate the Angular Momentum Operators
15:00
Example IV: Real Eigenvalues Imposes the Hermitian Property on Operators
28:44
Example V: A Demonstration of Why the Eigenfunctions of Hermitian Operators are Orthogonal
35:33
XIV. The Harmonic Oscillator
The Harmonic Oscillator I

35m 33s

Intro
0:00
The Harmonic Oscillator
0:10
Harmonic Motion
0:11
Classical Harmonic Oscillator
4:38
Hooke's Law
8:18
Classical Harmonic Oscillator, cont.
10:33
General Solution for the Differential Equation
15:16
Initial Position & Velocity
16:05
Period & Amplitude
20:42
Potential Energy of the Harmonic Oscillator
23:20
Kinetic Energy of the Harmonic Oscillator
26:37
Total Energy of the Harmonic Oscillator
27:23
Conservative System
34:37
The Harmonic Oscillator II

43m 4s

Intro
0:00
The Harmonic Oscillator II
0:08
Diatomic Molecule
0:10
Notion of Reduced Mass
5:27
Harmonic Oscillator Potential & The Intermolecular Potential of a Vibrating Molecule
7:33
The Schrӧdinger Equation for the 1-dimensional Quantum Mechanic Oscillator
14:14
Quantized Values for the Energy Level
15:46
Ground State & the Zero-Point Energy
21:50
Vibrational Energy Levels
25:18
Transition from One Energy Level to the Next
26:42
Fundamental Vibrational Frequency for Diatomic Molecule
34:57
Example: Calculate k
38:01
The Harmonic Oscillator III

26m 30s

Intro
0:00
The Harmonic Oscillator III
0:09
The Wave Functions Corresponding to the Energies
0:10
Normalization Constant
2:34
Hermite Polynomials
3:22
First Few Hermite Polynomials
4:56
First Few Wave-Functions
6:37
Plotting the Probability Density of the Wave-Functions
8:37
Probability Density for Large Values of r
14:24
Recall: Odd Function & Even Function
19:05
More on the Hermite Polynomials
20:07
Recall: If f(x) is Odd
20:36
Average Value of x
22:31
Average Value of Momentum
23:56
XV. The Rigid Rotator
The Rigid Rotator I

41m 10s

Intro
0:00
Possible Confusion from the Previous Discussion
0:07
Possible Confusion from the Previous Discussion
0:08
Rotation of a Single Mass Around a Fixed Center
8:17
Rotation of a Single Mass Around a Fixed Center
8:18
Angular Velocity
12:07
Rotational Inertia
13:24
Rotational Frequency
15:24
Kinetic Energy for a Linear System
16:38
Kinetic Energy for a Rotational System
17:42
Rotating Diatomic Molecule
19:40
Rotating Diatomic Molecule: Part 1
19:41
Rotating Diatomic Molecule: Part 2
24:56
Rotating Diatomic Molecule: Part 3
30:04
Hamiltonian of the Rigid Rotor
36:48
Hamiltonian of the Rigid Rotor
36:49
The Rigid Rotator II

30m 32s

Intro
0:00
The Rigid Rotator II
0:08
Cartesian Coordinates
0:09
Spherical Coordinates
1:55
r
6:15
θ
6:28
φ
7:00
Moving a Distance 'r'
8:17
Moving a Distance 'r' in the Spherical Coordinates
11:49
For a Rigid Rotator, r is Constant
13:57
Hamiltonian Operator
15:09
Square of the Angular Momentum Operator
17:34
Orientation of the Rotation in Space
19:44
Wave Functions for the Rigid Rotator
20:40
The Schrӧdinger Equation for the Quantum Mechanic Rigid Rotator
21:24
Energy Levels for the Rigid Rotator
26:58
The Rigid Rotator III

35m 19s

Intro
0:00
The Rigid Rotator III
0:11
When a Rotator is Subjected to Electromagnetic Radiation
1:24
Selection Rule
2:13
Frequencies at Which Absorption Transitions Occur
6:24
Energy Absorption & Transition
10:54
Energy of the Individual Levels Overview
20:58
Energy of the Individual Levels: Diagram
23:45
Frequency Required to Go from J to J + 1
25:53
Using Separation Between Lines on the Spectrum to Calculate Bond Length
28:02
Example I: Calculating Rotational Inertia & Bond Length
29:18
Example I: Calculating Rotational Inertia
29:19
Example I: Calculating Bond Length
32:56
XVI. Oscillator and Rotator Example Problems
Example Problems I

33m 48s

Intro
0:00
Equations Review
0:11
Energy of the Harmonic Oscillator
0:12
Selection Rule
3:02
Observed Frequency of Radiation
3:27
Harmonic Oscillator Wave Functions
5:52
Rigid Rotator
7:26
Selection Rule for Rigid Rotator
9:15
Frequency of Absorption
9:35
Wave Numbers
10:58
Example I: Calculate the Reduced Mass of the Hydrogen Atom
11:44
Example II: Calculate the Fundamental Vibration Frequency & the Zero-Point Energy of This Molecule
13:37
Example III: Show That the Product of Two Even Functions is even
19:35
Example IV: Harmonic Oscillator
24:56
Example Problems II

46m 43s

Intro
0:00
Example I: Harmonic Oscillator
0:12
Example II: Harmonic Oscillator
23:26
Example III: Calculate the RMS Displacement of the Molecules
38:12
XVII. The Hydrogen Atom
The Hydrogen Atom I

40m

Intro
0:00
The Hydrogen Atom I
1:31
Review of the Rigid Rotator
1:32
Hydrogen Atom & the Coulomb Potential
2:50
Using the Spherical Coordinates
6:33
Applying This Last Expression to Equation 1
10:19
Angular Component & Radial Component
13:26
Angular Equation
15:56
Solution for F(φ)
19:32
Determine The Normalization Constant
20:33
Differential Equation for T(a)
24:44
Legendre Equation
27:20
Legendre Polynomials
31:20
The Legendre Polynomials are Mutually Orthogonal
35:40
Limits
37:17
Coefficients
38:28
The Hydrogen Atom II

35m 58s

Intro
0:00
Associated Legendre Functions
0:07
Associated Legendre Functions
0:08
First Few Associated Legendre Functions
6:39
s, p, & d Orbital
13:24
The Normalization Condition
15:44
Spherical Harmonics
20:03
Equations We Have Found
20:04
Wave Functions for the Angular Component & Rigid Rotator
24:36
Spherical Harmonics Examples
25:40
Angular Momentum
30:09
Angular Momentum
30:10
Square of the Angular Momentum
35:38
Energies of the Rigid Rotator
38:21
The Hydrogen Atom III

36m 18s

Intro
0:00
The Hydrogen Atom III
0:34
Angular Momentum is a Vector Quantity
0:35
The Operators Corresponding to the Three Components of Angular Momentum Operator: In Cartesian Coordinates
1:30
The Operators Corresponding to the Three Components of Angular Momentum Operator: In Spherical Coordinates
3:27
Z Component of the Angular Momentum Operator & the Spherical Harmonic
5:28
Magnitude of the Angular Momentum Vector
20:10
Classical Interpretation of Angular Momentum
25:22
Projection of the Angular Momentum Vector onto the xy-plane
33:24
The Hydrogen Atom IV

33m 55s

Intro
0:00
The Hydrogen Atom IV
0:09
The Equation to Find R( r )
0:10
Relation Between n & l
3:50
The Solutions for the Radial Functions
5:08
Associated Laguerre Polynomials
7:58
1st Few Associated Laguerre Polynomials
8:55
Complete Wave Function for the Atomic Orbitals of the Hydrogen Atom
12:24
The Normalization Condition
15:06
In Cartesian Coordinates
18:10
Working in Polar Coordinates
20:48
Principal Quantum Number
21:58
Angular Momentum Quantum Number
22:35
Magnetic Quantum Number
25:55
Zeeman Effect
30:45
The Hydrogen Atom V: Where We Are

51m 53s

Intro
0:00
The Hydrogen Atom V: Where We Are
0:13
Review
0:14
Let's Write Out ψ₂₁₁
7:32
Angular Momentum of the Electron
14:52
Representation of the Wave Function
19:36
Radial Component
28:02
Example: 1s Orbital
28:34
Probability for Radial Function
33:46
1s Orbital: Plotting Probability Densities vs. r
35:47
2s Orbital: Plotting Probability Densities vs. r
37:46
3s Orbital: Plotting Probability Densities vs. r
38:49
4s Orbital: Plotting Probability Densities vs. r
39:34
2p Orbital: Plotting Probability Densities vs. r
40:12
3p Orbital: Plotting Probability Densities vs. r
41:02
4p Orbital: Plotting Probability Densities vs. r
41:51
3d Orbital: Plotting Probability Densities vs. r
43:18
4d Orbital: Plotting Probability Densities vs. r
43:48
Example I: Probability of Finding an Electron in the 2s Orbital of the Hydrogen
45:40
The Hydrogen Atom VI

51m 53s

Intro
0:00
The Hydrogen Atom VI
0:07
Last Lesson Review
0:08
Spherical Component
1:09
Normalization Condition
2:02
Complete 1s Orbital Wave Function
4:08
1s Orbital Wave Function
4:09
Normalization Condition
6:28
Spherically Symmetric
16:00
Average Value
17:52
Example I: Calculate the Region of Highest Probability for Finding the Electron
21:19
2s Orbital Wave Function
25:32
2s Orbital Wave Function
25:33
Average Value
28:56
General Formula
32:24
The Hydrogen Atom VII

34m 29s

Intro
0:00
The Hydrogen Atom VII
0:12
p Orbitals
1:30
Not Spherically Symmetric
5:10
Recall That the Spherical Harmonics are Eigenfunctions of the Hamiltonian Operator
6:50
Any Linear Combination of These Orbitals Also Has The Same Energy
9:16
Functions of Real Variables
15:53
Solving for Px
16:50
Real Spherical Harmonics
21:56
Number of Nodes
32:56
XVIII. Hydrogen Atom Example Problems
Hydrogen Atom Example Problems I

43m 49s

Intro
0:00
Example I: Angular Momentum & Spherical Harmonics
0:20
Example II: Pair-wise Orthogonal Legendre Polynomials
16:40
Example III: General Normalization Condition for the Legendre Polynomials
25:06
Example IV: Associated Legendre Functions
32:13
The Hydrogen Atom Example Problems II

1h 1m 57s

Intro
0:00
Example I: Normalization & Pair-wise Orthogonal
0:13
Part 1: Normalized
0:43
Part 2: Pair-wise Orthogonal
16:53
Example II: Show Explicitly That the Following Statement is True for Any Integer n
27:10
Example III: Spherical Harmonics
29:26
Angular Momentum Cones
56:37
Angular Momentum Cones
56:38
Physical Interpretation of Orbital Angular Momentum in Quantum mechanics
1:00:16
The Hydrogen Atom Example Problems III

48m 33s

Intro
0:00
Example I: Show That ψ₂₁₁ is Normalized
0:07
Example II: Show That ψ₂₁₁ is Orthogonal to ψ₃₁₀
11:48
Example III: Probability That a 1s Electron Will Be Found Within 1 Bohr Radius of The Nucleus
18:35
Example IV: Radius of a Sphere
26:06
Example V: Calculate <r> for the 2s Orbital of the Hydrogen-like Atom
36:33
The Hydrogen Atom Example Problems IV

48m 33s

Intro
0:00
Example I: Probability Density vs. Radius Plot
0:11
Example II: Hydrogen Atom & The Coulombic Potential
14:16
Example III: Find a Relation Among <K>, <V>, & <E>
25:47
Example IV: Quantum Mechanical Virial Theorem
48:32
Example V: Find the Variance for the 2s Orbital
54:13
The Hydrogen Atom Example Problems V

48m 33s

Intro
0:00
Example I: Derive a Formula for the Degeneracy of a Given Level n
0:11
Example II: Using Linear Combinations to Represent the Spherical Harmonics as Functions of the Real Variables θ & φ
8:30
Example III: Using Linear Combinations to Represent the Spherical Harmonics as Functions of the Real Variables θ & φ
23:01
Example IV: Orbital Functions
31:51
XIX. Spin Quantum Number and Atomic Term Symbols
Spin Quantum Number: Term Symbols I

59m 18s

Intro
0:00
Quantum Numbers Specify an Orbital
0:24
n
1:10
l
1:20
m
1:35
4th Quantum Number: s
2:02
Spin Orbitals
7:03
Spin Orbitals
7:04
Multi-electron Atoms
11:08
Term Symbols
18:08
Russell-Saunders Coupling & The Atomic Term Symbol
18:09
Example: Configuration for C
27:50
Configuration for C: 1s²2s²2p²
27:51
Drawing Every Possible Arrangement
31:15
Term Symbols
45:24
Microstate
50:54
Spin Quantum Number: Term Symbols II

34m 54s

Intro
0:00
Microstates
0:25
We Started With 21 Possible Microstates
0:26
³P State
2:05
Microstates in ³P Level
5:10
¹D State
13:16
³P State
16:10
²P₂ State
17:34
³P₁ State
18:34
³P₀ State
19:12
9 Microstates in ³P are Subdivided
19:40
¹S State
21:44
Quicker Way to Find the Different Values of J for a Given Basic Term Symbol
22:22
Ground State
26:27
Hund's Empirical Rules for Specifying the Term Symbol for the Ground Electronic State
27:29
Hund's Empirical Rules: 1
28:24
Hund's Empirical Rules: 2
29:22
Hund's Empirical Rules: 3 - Part A
30:22
Hund's Empirical Rules: 3 - Part B
31:18
Example: 1s²2s²2p²
31:54
Spin Quantum Number: Term Symbols III

38m 3s

Intro
0:00
Spin Quantum Number: Term Symbols III
0:14
Deriving the Term Symbols for the p² Configuration
0:15
Table: MS vs. ML
3:57
¹D State
16:21
³P State
21:13
¹S State
24:48
J Value
25:32
Degeneracy of the Level
27:28
When Given r Electrons to Assign to n Equivalent Spin Orbitals
30:18
p² Configuration
32:51
Complementary Configurations
35:12
Term Symbols & Atomic Spectra

57m 49s

Intro
0:00
Lyman Series
0:09
Spectroscopic Term Symbols
0:10
Lyman Series
3:04
Hydrogen Levels
8:21
Hydrogen Levels
8:22
Term Symbols & Atomic Spectra
14:17
Spin-Orbit Coupling
14:18
Selection Rules for Atomic Spectra
21:31
Selection Rules for Possible Transitions
23:56
Wave Numbers for The Transitions
28:04
Example I: Calculate the Frequencies of the Allowed Transitions from (4d) ²D →(2p) ²P
32:23
Helium Levels
49:50
Energy Levels for Helium
49:51
Transitions & Spin Multiplicity
52:27
Transitions & Spin Multiplicity
52:28
XX. Term Symbols Example Problems
Example Problems I

1h 1m 20s

Intro
0:00
Example I: What are the Term Symbols for the np¹ Configuration?
0:10
Example II: What are the Term Symbols for the np² Configuration?
20:38
Example III: What are the Term Symbols for the np³ Configuration?
40:46
Example Problems II

56m 34s

Intro
0:00
Example I: Find the Term Symbols for the nd² Configuration
0:11
Example II: Find the Term Symbols for the 1s¹2p¹ Configuration
27:02
Example III: Calculate the Separation Between the Doublets in the Lyman Series for Atomic Hydrogen
41:41
Example IV: Calculate the Frequencies of the Lines for the (4d) ²D → (3p) ²P Transition
48:53
XXI. Equation Review for Quantum Mechanics
Quantum Mechanics: All the Equations in One Place

18m 24s

Intro
0:00
Quantum Mechanics Equations
0:37
De Broglie Relation
0:38
Statistical Relations
1:00
The Schrӧdinger Equation
1:50
The Particle in a 1-Dimensional Box of Length a
3:09
The Particle in a 2-Dimensional Box of Area a x b
3:48
The Particle in a 3-Dimensional Box of Area a x b x c
4:22
The Schrӧdinger Equation Postulates
4:51
The Normalization Condition
5:40
The Probability Density
6:51
Linear
7:47
Hermitian
8:31
Eigenvalues & Eigenfunctions
8:55
The Average Value
9:29
Eigenfunctions of Quantum Mechanics Operators are Orthogonal
10:53
Commutator of Two Operators
10:56
The Uncertainty Principle
11:41
The Harmonic Oscillator
13:18
The Rigid Rotator
13:52
Energy of the Hydrogen Atom
14:30
Wavefunctions, Radial Component, and Associated Laguerre Polynomial
14:44
Angular Component or Spherical Harmonic
15:16
Associated Legendre Function
15:31
Principal Quantum Number
15:43
Angular Momentum Quantum Number
15:50
Magnetic Quantum Number
16:21
z-component of the Angular Momentum of the Electron
16:53
Atomic Spectroscopy: Term Symbols
17:14
Atomic Spectroscopy: Selection Rules
18:03
XXII. Molecular Spectroscopy
Spectroscopic Overview: Which Equation Do I Use & Why

50m 2s

Intro
0:00
Spectroscopic Overview: Which Equation Do I Use & Why
1:02
Lesson Overview
1:03
Rotational & Vibrational Spectroscopy
4:01
Frequency of Absorption/Emission
6:04
Wavenumbers in Spectroscopy
8:10
Starting State vs. Excited State
10:10
Total Energy of a Molecule (Leaving out the Electronic Energy)
14:02
Energy of Rotation: Rigid Rotor
15:55
Energy of Vibration: Harmonic Oscillator
19:08
Equation of the Spectral Lines
23:22
Harmonic Oscillator-Rigid Rotor Approximation (Making Corrections)
28:37
Harmonic Oscillator-Rigid Rotor Approximation (Making Corrections)
28:38
Vibration-Rotation Interaction
33:46
Centrifugal Distortion
36:27
Anharmonicity
38:28
Correcting for All Three Simultaneously
41:03
Spectroscopic Parameters
44:26
Summary
47:32
Harmonic Oscillator-Rigid Rotor Approximation
47:33
Vibration-Rotation Interaction
48:14
Centrifugal Distortion
48:20
Anharmonicity
48:28
Correcting for All Three Simultaneously
48:44
Vibration-Rotation

59m 47s

Intro
0:00
Vibration-Rotation
0:37
What is Molecular Spectroscopy?
0:38
Microwave, Infrared Radiation, Visible & Ultraviolet
1:53
Equation for the Frequency of the Absorbed Radiation
4:54
Wavenumbers
6:15
Diatomic Molecules: Energy of the Harmonic Oscillator
8:32
Selection Rules for Vibrational Transitions
10:35
Energy of the Rigid Rotator
16:29
Angular Momentum of the Rotator
21:38
Rotational Term F(J)
26:30
Selection Rules for Rotational Transition
29:30
Vibration Level & Rotational States
33:20
Selection Rules for Vibration-Rotation
37:42
Frequency of Absorption
39:32
Diagram: Energy Transition
45:55
Vibration-Rotation Spectrum: HCl
51:27
Vibration-Rotation Spectrum: Carbon Monoxide
54:30
Vibration-Rotation Interaction

46m 22s

Intro
0:00
Vibration-Rotation Interaction
0:13
Vibration-Rotation Spectrum: HCl
0:14
Bond Length & Vibrational State
4:23
Vibration Rotation Interaction
10:18
Case 1
12:06
Case 2
17:17
Example I: HCl Vibration-Rotation Spectrum
22:58
Rotational Constant for the 0 & 1 Vibrational State
26:30
Equilibrium Bond Length for the 1 Vibrational State
39:42
Equilibrium Bond Length for the 0 Vibrational State
42:13
Bₑ & αₑ
44:54
The Non-Rigid Rotator

29m 24s

Intro
0:00
The Non-Rigid Rotator
0:09
Pure Rotational Spectrum
0:54
The Selection Rules for Rotation
3:09
Spacing in the Spectrum
5:04
Centrifugal Distortion Constant
9:00
Fundamental Vibration Frequency
11:46
Observed Frequencies of Absorption
14:14
Difference between the Rigid Rotator & the Adjusted Rigid Rotator
16:51
Adjusted Rigid Rotator
21:31
Observed Frequencies of Absorption
26:26
The Anharmonic Oscillator

30m 53s

Intro
0:00
The Anharmonic Oscillator
0:09
Vibration-Rotation Interaction & Centrifugal Distortion
0:10
Making Corrections to the Harmonic Oscillator
4:50
Selection Rule for the Harmonic Oscillator
7:50
Overtones
8:40
True Oscillator
11:46
Harmonic Oscillator Energies
13:16
Anharmonic Oscillator Energies
13:33
Observed Frequencies of the Overtones
15:09
True Potential
17:22
HCl Vibrational Frequencies: Fundamental & First Few Overtones
21:10
Example I: Vibrational States & Overtones of the Vibrational Spectrum
22:42
Example I: Part A - First 4 Vibrational States
23:44
Example I: Part B - Fundamental & First 3 Overtones
25:31
Important Equations
27:45
Energy of the Q State
29:14
The Difference in Energy between 2 Successive States
29:23
Difference in Energy between 2 Spectral Lines
29:40
Electronic Transitions

1h 1m 33s

Intro
0:00
Electronic Transitions
0:16
Electronic State & Transition
0:17
Total Energy of the Diatomic Molecule
3:34
Vibronic Transitions
4:30
Selection Rule for Vibronic Transitions
9:11
More on Vibronic Transitions
10:08
Frequencies in the Spectrum
16:46
Difference of the Minima of the 2 Potential Curves
24:48
Anharmonic Zero-point Vibrational Energies of the 2 States
26:24
Frequency of the 0 → 0 Vibronic Transition
27:54
Making the Equation More Compact
29:34
Spectroscopic Parameters
32:11
Franck-Condon Principle
34:32
Example I: Find the Values of the Spectroscopic Parameters for the Upper Excited State
47:27
Table of Electronic States and Parameters
56:41
XXIII. Molecular Spectroscopy Example Problems
Example Problems I

33m 47s

Intro
0:00
Example I: Calculate the Bond Length
0:10
Example II: Calculate the Rotational Constant
7:39
Example III: Calculate the Number of Rotations
10:54
Example IV: What is the Force Constant & Period of Vibration?
16:31
Example V: Part A - Calculate the Fundamental Vibration Frequency
21:42
Example V: Part B - Calculate the Energies of the First Three Vibrational Levels
24:12
Example VI: Calculate the Frequencies of the First 2 Lines of the R & P Branches of the Vib-Rot Spectrum of HBr
26:28
Example Problems II

1h 1m 5s

Intro
0:00
Example I: Calculate the Frequencies of the Transitions
0:09
Example II: Specify Which Transitions are Allowed & Calculate the Frequencies of These Transitions
22:07
Example III: Calculate the Vibrational State & Equilibrium Bond Length
34:31
Example IV: Frequencies of the Overtones
49:28
Example V: Vib-Rot Interaction, Centrifugal Distortion, & Anharmonicity
54:47
Example Problems III

33m 31s

Intro
0:00
Example I: Part A - Derive an Expression for ∆G( r )
0:10
Example I: Part B - Maximum Vibrational Quantum Number
6:10
Example II: Part A - Derive an Expression for the Dissociation Energy of the Molecule
8:29
Example II: Part B - Equation for ∆G( r )
14:00
Example III: How Many Vibrational States are There for Br₂ before the Molecule Dissociates
18:16
Example IV: Find the Difference between the Two Minima of the Potential Energy Curves
20:57
Example V: Rotational Spectrum
30:51
XXIV. Statistical Thermodynamics
Statistical Thermodynamics: The Big Picture

1h 1m 15s

Intro
0:00
Statistical Thermodynamics: The Big Picture
0:10
Our Big Picture Goal
0:11
Partition Function (Q)
2:42
The Molecular Partition Function (q)
4:00
Consider a System of N Particles
6:54
Ensemble
13:22
Energy Distribution Table
15:36
Probability of Finding a System with Energy
16:51
The Partition Function
21:10
Microstate
28:10
Entropy of the Ensemble
30:34
Entropy of the System
31:48
Expressing the Thermodynamic Functions in Terms of The Partition Function
39:21
The Partition Function
39:22
Pi & U
41:20
Entropy of the System
44:14
Helmholtz Energy
48:15
Pressure of the System
49:32
Enthalpy of the System
51:46
Gibbs Free Energy
52:56
Heat Capacity
54:30
Expressing Q in Terms of the Molecular Partition Function (q)
59:31
Indistinguishable Particles
1:02:16
N is the Number of Particles in the System
1:03:27
The Molecular Partition Function
1:05:06
Quantum States & Degeneracy
1:07:46
Thermo Property in Terms of ln Q
1:10:09
Example: Thermo Property in Terms of ln Q
1:13:23
Statistical Thermodynamics: The Various Partition Functions I

47m 23s

Intro
0:00
Lesson Overview
0:19
Monatomic Ideal Gases
6:40
Monatomic Ideal Gases Overview
6:42
Finding the Parition Function of Translation
8:17
Finding the Parition Function of Electronics
13:29
Example: Na
17:42
Example: F
23:12
Energy Difference between the Ground State & the 1st Excited State
29:27
The Various Partition Functions for Monatomic Ideal Gases
32:20
Finding P
43:16
Going Back to U = (3/2) RT
46:20
Statistical Thermodynamics: The Various Partition Functions II

54m 9s

Intro
0:00
Diatomic Gases
0:16
Diatomic Gases
0:17
Zero-Energy Mark for Rotation
2:26
Zero-Energy Mark for Vibration
3:21
Zero-Energy Mark for Electronic
5:54
Vibration Partition Function
9:48
When Temperature is Very Low
14:00
When Temperature is Very High
15:22
Vibrational Component
18:48
Fraction of Molecules in the r Vibration State
21:00
Example: Fraction of Molecules in the r Vib. State
23:29
Rotation Partition Function
26:06
Heteronuclear & Homonuclear Diatomics
33:13
Energy & Heat Capacity
36:01
Fraction of Molecules in the J Rotational Level
39:20
Example: Fraction of Molecules in the J Rotational Level
40:32
Finding the Most Populated Level
44:07
Putting It All Together
46:06
Putting It All Together
46:07
Energy of Translation
51:51
Energy of Rotation
52:19
Energy of Vibration
52:42
Electronic Energy
53:35
XXV. Statistical Thermodynamics Example Problems
Example Problems I

48m 32s

Intro
0:00
Example I: Calculate the Fraction of Potassium Atoms in the First Excited Electronic State
0:10
Example II: Show That Each Translational Degree of Freedom Contributes R/2 to the Molar Heat Capacity
14:46
Example III: Calculate the Dissociation Energy
21:23
Example IV: Calculate the Vibrational Contribution to the Molar heat Capacity of Oxygen Gas at 500 K
25:46
Example V: Upper & Lower Quantum State
32:55
Example VI: Calculate the Relative Populations of the J=2 and J=1 Rotational States of the CO Molecule at 25°C
42:21
Example Problems II

57m 30s

Intro
0:00
Example I: Make a Plot of the Fraction of CO Molecules in Various Rotational Levels
0:10
Example II: Calculate the Ratio of the Translational Partition Function for Cl₂ and Br₂ at Equal Volume & Temperature
8:05
Example III: Vibrational Degree of Freedom & Vibrational Molar Heat Capacity
11:59
Example IV: Calculate the Characteristic Vibrational & Rotational temperatures for Each DOF
45:03
Loading...
This is a quick preview of the lesson. For full access, please Log In or Sign up.
For more information, please see full course syllabus of Physical Chemistry
  • Discussion

  • Download Lecture Slides

  • Table of Contents

  • Transcription

  • Related Books

Start Learning Now

Our free lessons will get you started (Adobe Flash® required).
Get immediate access to our entire library.

Sign up for Educator.com

Membership Overview

  • Unlimited access to our entire library of courses.
  • Search and jump to exactly what you want to learn.
  • *Ask questions and get answers from the community and our teachers!
  • Practice questions with step-by-step solutions.
  • Download lesson files for programming and software training practice.
  • Track your course viewing progress.
  • Download lecture slides for taking notes.
  • Learn at your own pace... anytime, anywhere!

Statistical Thermodynamics: The Various Partition Functions II

Lecture Slides are screen-captured images of important points in the lecture. Students can download and print out these lecture slide images to do practice problems as well as take notes while watching the lecture.

  • Intro 0:00
  • Diatomic Gases 0:16
    • Diatomic Gases
    • Zero-Energy Mark for Rotation
    • Zero-Energy Mark for Vibration
    • Zero-Energy Mark for Electronic
    • Vibration Partition Function
    • When Temperature is Very Low
    • When Temperature is Very High
    • Vibrational Component
    • Fraction of Molecules in the r Vibration State
    • Example: Fraction of Molecules in the r Vib. State
    • Rotation Partition Function
    • Heteronuclear & Homonuclear Diatomics
    • Energy & Heat Capacity
    • Fraction of Molecules in the J Rotational Level
    • Example: Fraction of Molecules in the J Rotational Level
    • Finding the Most Populated Level
  • Putting It All Together 46:06
    • Putting It All Together
    • Energy of Translation
    • Energy of Rotation
    • Energy of Vibration
    • Electronic Energy

Transcription: Statistical Thermodynamics: The Various Partition Functions II

Hello and welcome back to www.educator.com, welcome back to Physical Chemistry.0000

Today, we are going to continue our discussion of the various partition functions and0004

we are going to talk about diatomic molecules.0008

In the last lesson, we talked about monoatomic ideal gases.0010

Let us go ahead and get started.0017

I will go ahead and stick with black, it is not a problem.0022

For a diatomic gas, the total energy is equal to the energy of translation +0025

the energy of vibration + the energy of rotation + the electronic energy.0038

Therefore, the total partition function is equal to partition function of translation ×0044

the partition function of vibration × the partition function of rotation × the partition function for the electronic energy.0051

The partition function of the system is the individual partition function over that.0062

This Q is this Q, which is composed of these 4Q.0068

Which = 1/ N! Of 2T QV QR QE ⁺nth.0075

We defined the QT, the QV, the QR, and the QE.0092

The translational partition function for a diatomic molecule is actually the same as for a monoatomic.0096

QT, the Q of translation that is just equal to 2 π.0104

The only difference is now we are just going to add the masses M1 + M2.0109

The individual masses of the atoms that make up the diatomic molecule.0114

In other words, the total mass × KT/ H²³/2 × V.0118

That takes care of the translational partition function.0134

We must now choose, now we are going to deal with the rotation, vibration, and electronic.0149

We must now choose our 0 energy marks for these 3 energies because we are going to measure everything from that.0156

We need to pick a 0.0168

We must now choose our 0 energy marks for rotation, vibration, and electronic.0170

The rotation part is easy.0193

The rotation, we will just take the J = 0 quantum state as our 0 energy.0195

That is nice and easy.0201

For the vibration, let me go ahead and draw a little picture here.0203

We have our potential energy curve, looked something like that.0211

For the vibration, this was our ground state energy.0217

The R = 0, it does not equal 0.0222

We can either choose this state, we can choose as the 0 mark the R = 0, or we can choose this.0226

We can choose the minimum of the potential energy curve as the 0 energy mark.0240

We can choose the min of the potential energy curve.0250

Those are two choices.0263

We can pick that as our 0 energy or we can pick that as our 0 energy, that we are going to measure everything relative to.0264

We are going to choose the minimum.0274

We are going to choose that as our 0 energy.0276

For vibration, we choose the min of the potential energy curve.0283

The R = 0 state which we did not pick for our 0 energy, the R = 0 vibrational state has energy R = 0 = H ν × 0 + ½ = ½ H ν.0310

That is the energy of the 0 ground state vibration of energy, not the 0 point energy.0337

That takes care of the vibration, let us talk about the electronic.0346

Let me go back to black here.0351

For electronic, I’m going to draw 2 pictures.0357

Actually 1 picture, 2 potential energy curves.0363

I got 1 potential energy curve here and let us say I got another one.0369

Here is how we can do it.0379

We are going to take our 0 point energy right here.0382

We are going to take the fully dissociated diatomic molecule.0389

When the atoms in infinite distance apart from each other at rest.0392

That is what we are going to take this our 0 point energy.0396

This up here, the first excited state, that is going to be energy 2.0400

Now, we have to energies that we can take.0407

From the 0 down to here, we call that the dissociation energy from the 0 point vibration.0415

The R = 0 vibrational state.0430

We also have this one, we also have this energy.0433

From the 0 point energy, all the way to the energy minimum.0437

This we call the DV.0441

There are 2, right there.0443

We take this as our 0 energy mark for electronic.0446

For the electronic partition function, the fully dissociated molecule is going to be our 0 energy mark.0455

Our energy 1 is actually going to be –DE.0463

These values have been tabulated.0467

This is the dissociation energy.0470

It is dissociation energy of the molecule from the potential minimum.0472

-D0 = - DE + ½ H ν, this energy is just this energy + that little bit.0480

Therefore, the electronic partition function by definition is equal to the sum is equal0493

to the degeneracy of that level × E ^- E1/ KT E + the energy degeneracy of the second level × E ⁻E2/ KT, and so on.0501

But we can stick with two terms.0514

Again E2, the electronic energy is much higher than E1 that we can essentially ignore the second term.0517

We can usually ignore the second term because this energy here is much higher than this,0550

that most atoms of the ordinary temperatures are not going to be in the state.0555

Our electronic function partition function is equal to the degeneracy of that particular level E ⁺D0/ KT.0563

That is the electronic partition function of the diatomic molecule.0574

Let us flip that page and let us see if I can move to the next page here.0582

For Q vibration, let us find the Q of vibration.0588

The diatomic of molecule vibrating harmonic oscillator.0599

The energy of a harmonic oscillator in the vibrational quantum state R is equal to H ν × R + ½.0604

R = 0, 1, 2, and so on.0620

QV is equal to the definition of the partition function.0627

The sum of G sub I E ^- E sub I/ KT.0632

The vibrational levels are none degenerate.0640

G sub I is always equal to 1.0642

The vibrational levels are non degenerate for G sub I=1 always.0652

Therefore, Q sub V = the sum R goes from 0 to infinity of E ⁻H ν R + ½ divided by KT.0666

We go through a bunch of math, I will just go ahead and write it off, which is absolutely not altogether that important.0684

And we end up with QV is equal to E ^- H ν/ 2 KT divided by 1 - E ⁻H ν/ KT.0692

And now this is our vibrational partition function.0712

Now we define something called the characteristic vibrational temperature.0716

We define the characteristic vibrational temperature, it signified θ sub V is equal to H ν/ K.0722

For that particular ν is the fundamental vibration frequency of that molecule.0752

Therefore, expressed in terms of this thing here I can put the H ν and K together.0757

I end up with the vibrational partition function is equal to E ⁻θ/ 2T divided by 1 – E ^- θ/ T.0763

There you have your vibrational partition function for a diatomic molecule.0779

Let us see if I want to actually do, that is fine.0786

I will go ahead and do this part.0801

If the temperature, if the 10th is very high or very low, this last expression can be simplified.0804

I will go ahead and write the simplified expression but the simplified expressions are not the ones that you are going to use.0825

It is only for very high or very low temperatures.0830

I’m just listing them here for the sake of completion.0832

Where it can be used when you use the vibrational partition function is the expression that we just wrote.0835

That is the one that you want to use, not be simplified versions.0839

This expression can be simplified.0844

Let us see, case 1 temperature is very low.0846

If the temperature is very low then the θ of V divided by one of the temperature is going to be a lot greater than 1.0854

That implies that E ⁻θ sub V/ 2T is going to be a lot less than 1.0866

The second term in the denominator can be ignored.0878

What we end up with is E ⁻θ/ 2T, this is the original expression E ⁻θ/ T.0894

We can ignore this term and we end up with QV is equal to E ^- θ/ 2T, if the temperature is very low.0905

In other words, if θ V over whatever temperature it happens to be.0916

10 K is a lot greater than 1.0920

The other one is, if the T is very high.0925

If T is very high and the θ of V/ T is a lot less than 1 which implies that we can write E ^- θ V/ T as - θ/ T,0932

that implies that the denominator is -1 -θ of V/ T which = θ V/ T.0957

Q of V = E ⁻θ V/ 2T/ θ V/ T which = T × E ⁻θ V/ 2T/ θ V.0976

This gives us the high temperature partition function.0997

In general again, try to avoid this unless you are talking about really very higher or very low temperatures.1000

In general, use QV is equal to E ^- θ V/ 2T / 1 –E ⁻θ V/ T.1015

Note, you do not have to wait until the final Q to find U = KT² D LN Q DT which is equal to N KT² D Q DT.1039

You do not have to wait until that.1087

You can do anytime.1089

Any time you find any partition function vibration, rotation, electronic, translational,1090

you can go ahead and use that Q in here to find that contribution to the energy.1095

It is that simple.1101

You can do at any time to find U C V, etc. for any component.1109

For example, for the vibrational component.1130

The energy of vibration is equal to the average energy of the vibration is equal to N KT² D LN Q of vibration/ T.1149

CV for vibration is nothing more than a derivative of what we just get above, the derivative of U of vibration DT.1173

If I want to know how much the vibrations of a molecule contribute to the overall energy heat capacity whatever,1192

let us just pick that one, overall heat capacity, I simply find the heat capacity of the vibrational component.1229

Let us find the fraction of molecules in the rth vibrational states.1253

We are always concerned with the fraction that is in a particular state.1258

We found the vibrational partition function, now let us find the fraction.1262

Fraction of molecules in the R quantum state, in the rth vibrational state.1271

Let me go back to black here.1285

A fraction is equal to the term for that energy divided by the total partition function E ^- H ν R + ½ divided KT/ Q of vibration.1290

It = E ^- H ν R + ½ divided by KT/ E ⁻H ν/ 2 KT/ 1 - E ^- H ν/ 2 KT.1313

Once again, we go through a bunch of math and we get that the fraction is equal to 1 - E ^- H ν/ KT × E ^- H ν R/ KT1356

or in terms of this thing called the characteristic vibrational temperature, we have 1 - E ⁻θ V/ T × E ⁻R θ V/ T.1380

This gives me the fraction of molecules in the rth vibrational state.1398

If I want to k now which fraction is in the 3rd vibrational state, I put 3 in there and I work this out for the molecule.1402

For example, let me go to red.1410

At 298 K, what fraction of carbon monoxide molecules are in the R = 0 and R = 1 states?1423

Θ V for carbon monoxide is equal to 3103 K, that is tabulated.1457

The fraction in the R = 0 state = 1.1467

I will just put R in there.1475

1 - E⁻³¹⁰³ divided by 298 × E⁰ × 3103 divided by 298 and this is going to be approximately 1.1479

Let us see.1505

When I do the same thing, when I do the fraction of the R = 1 state,1508

that is going to equal 1 - E⁻³¹⁰³ divided by 298 × E⁻¹ × 3103 divided by 298.1512

I get the 3.0 × 10⁻⁵.1534

Once again, the fraction that is in the first excited electronic state is only this.1544

It is about 0.003%.1549

Virtually, all of the molecules at 298 are going to be in the first, are going to be in the ground electronic state.1553

Let us find the Q of rotation.1570

The energy of rotation E sub J is equal to H ̅²/ 2I × J × J + 1.1581

Let us make this J a little bit better.1593

J × J + 1, or J takes on the values of 0, 1, 2, and so on.1596

These are the energies of a diatomic molecule.1601

These are the rotational energies.1604

G sub J, t he degeneracy is equal to 2J + 1.1606

Well, the Q of rotation = the sum/ I of the G sub I × E ⁻E sub I / KT.1612

Q sub R, when I put this into there, this expression into there, I get the sum J takes on the values1630

0 to infinity G sub J × E ⁻E sub J/ KT is equal to the some as J goes from 0 to infinity 2J + 1 × E ⁻H ̅² J × J + 1/ 2I KT.1641

We are now going to define something called a characteristic rotational temperature, θ sub R.1682

That is equal to H ̅²/ 2 I K, Boltzmann constant K.1692

Therefore, we get Q sub R is equal to the sum J = 0 to infinity 2J + 1 × E ^- θ R × J × J + 1 divided by T.1702

This is the rotational partition function.1724

There is no close form expression for the summation.1732

I simply have to take however many terms I think I need, 2, 4, 6, 8, 10, 20, 30, 40.1735

It does not really matter.1740

Let us stick with blue, it is a happy color.1745

There is no closed form expression for the summation.1760

However, because θ R is usually a lot less than the temperature at which we happen to be dealing,1778

θ R is a lot less than T.1791

In most cases, we can make simplifying approximations to give Q sub R = T/ θ sub R which is equal to 2I KT/ H ̅².1793

Most of the time we can go ahead and use this.1834

If θ sub R is a lot less than the particular temperature that we happen to be dealing with.1836

Now when θ sub R is not much less than T, we simply use the expression we have.1842

Q sub R = the sum J = 0 to infinity 2J + 1 × E ^- θ R × J × J + 1/ TT and take as many terms as necessary.1865

Let us see.1908

For example, at 298 K for carbon monoxide, the θ of R = 2.77.1912

This is definitely a lot less than 298.1933

For H2, R θ R is equal to 85.3.1940

This is not a lot less than 298.1947

For this case with carbon dioxide, we can use this approximation.1951

In the case of hydrogen, we can use this approximation.1954

We have to use the actual partition function itself.1957

Here, we must use the sum.1963

It is not a problem.1970

It is an easy thing, not a big deal.1971

You have math software to do this for us.1974

This expression QR = T/ θ R is valid for hetero nuclear diatomic molecules, No, Co, Hcr, Hbr,1995

For homonuclear or homonuclear diatomics, CL2, BL2, N2.2025

QR is actually equal to T/ σ θ R.2041

There is a σ! or that we have to put in.2045

The reason we have to put in is called a symmetry number.2049

The reason it is there is because a homonuclear has extra symmetry but a heteronuclear does not.2052

In general expression, for all diatomic molecules is Q sub R = T/ σ θ sub R = 2I KT/ σ H ̅².2084

Σ is the cemetery number of the molecule that has been tabulated for various molecules.2122

Symmetry number of the molecule, it is really easy.2130

For a homonuclear, σ is equal to 2.2138

For heteronuclear, σ is just equal to 1.2149

And again, some of the numbers have been tabulated for various molecules.2157

Let us see what we have got here.2163

Let us go back to blue.2165

Our U of rotation or energy of rotation is equal to N KT² D LN Q of rotation DT constant V.2168

Using Q of R = T/ θ sub R, we get LN of Q of R = LN of T - LN of θ sub R.2187

DDT constant V of LN Q sub R = the derivative of this which is 1/ T – 0, we get 1/ T.2210

N KT² × 1/ T gives you equal N KT or RT.2230

The heat capacity is just equal to the derivative of this.2248

At constant volume, the derivative of this is just R.2255

The rotational contribution of energy is RT.2260

The rotational contribution, the heat capacity is R.2262

Now, a diatomic molecule has 2 rotational degrees of freedom.2267

In other words, if this is a diatomic molecule, it can rotate this way or it can rotate this way.2274

This rotation does not count, only this and this.2278

A diatomic has 2 rotational degrees of freedom.2292

A degree of freedom is just a fancy word for motion.2301

It has 2 ways it can move.2305

When we say something has 3° of vibrational freedom that means we are saying it has 3 ways that it can actually vibrate.2305

That is it, that is all degree of freedom means.2313

If it has 3 translational degrees of freedom, it has 3 ways it can actually move in space.2315

There you go.2321

A diatomic molecule has 2 rotational degrees of freedom.2324

U is equal to RT, it is equal to ½ RT + ½ RT.2327

Each degree of freedom contributes RT to the energy.2334

CV = R, each degree of freedom contributes ½ R to the heat capacity.2338

Let me see, it is a little long here, we are almost there.2349

Fraction of molecules in the various rotational states.2357

Fraction of molecules in the Jth rotational level.2370

Again, we choose level because we have the degeneracy.2378

There are going to be many states in that particular energy level.2382

That is equal to this.2386

A fraction in the Jth energy level, the equation is going to be 2J + 1 × E ⁻θ R ×,2387

The fraction in the Jth level is equal to 2J + 1 × E ^- θ R × J × J + 1/ T divided by T/ θ R.2408

The particular energy provided by the partition function.2428

For example, at 298 K.2433

Let me see, the fraction of N2 molecules in the first 12 rotational levels is,2461

in this particular case we have θ of rotation of N2 is equal to 2.88.2492

In this particular case, the T/ θ R molecule of rotational level.2499

Do not forget the σ.2504

Let me go ahead and we have these values.2507

We have J and we have F of J.2509

I’m just going to go ahead and do the,2516

You know what, I do not think I have enough room here.2518

I’m just going to do the even ones, the even values of J.2520

At 0, 0.0097, 2nd 0.0456, 4, 6, 8, 10, 12.2525

The 4th is 0.0717, 0.08, 6th 0.0837, 0.0819, 0.0701, 12th 0.0535.2542

Notice how it goes up, that it peaks out and then it starts coming down again.2567

That means that somewhere around the 6th and 7th rotational level that is the one that is most heavily populated.2573

The fraction of 0, the fraction of 2nd level, the fraction of the 4th level, fraction of the 6th level.2581

You also have 12, 1, 3, 5, 7, 9.2585

I did not have enough room here on this page and I want to do it on one page.2588

I just put the even numbers.2591

At normal temperatures, let me go back to black.2595

At normal temperatures, most molecules are in the excited rotational states.2602

That is what these numbers prove.2623

Under normal temperatures, for vibrational states they are in the ground state.2628

For electronic states, they are in the ground state.2633

For rotational states, they are in excited rotational levels.2635

Most molecules that are in the ground state, they are in excited states rotating very fast.2638

Most molecules are in excited rotational states.2645

Now, if we treat F of J as a continuous function, it is not a continuous function.2647

J is discrete 0, 1, 2, 3, 4, 5 but we treat it as a continuous function.2661

We can take the derivative, we can take D of F of J with respect to J and we consider it equal to 0 to find the maximum.2672

What J value is the most highly populated, = 0.2688

If we know what function, we can take that and find the most populated level.2694

It ends up being the J max is equal to T/ 2 θ R ^½ - ½.2713

For our example above which was nitrogen, the J max of N2 is equal to 298/ 2 × 2.288 ^½ - ½, we got 7.2727

The most populated rotational level is J = 7 at 298 K.2755

Let us go ahead and put all this together now.2763

Let us see what we have got.2767

Let us put it all together.2769

I will do blue.2784

Q is equal to Q of translation, Q of vibration, Q of rotation, Q of electronic.2792

Therefore, Q is equal to 2 π M KT.2802

M is the mass of the molecule/ H².2808

3/2 V × T/ σ θ R ×, in this particular case, V is the approximation if θ R is a lot less than T.2816

If not then we have to use the summation, this is the rotational partition function.2835

I’m sorry, let me switch orders here.2842

Let me make sure.2844

Rotation vibration, θ × vibrational partition function which is E ⁻θ of V/ 2T/ 1 - E ⁻θ V/ T × G of 1 E ⁺D of E/ KT.2846

Q = Q ⁺nth/ N! Is this whole thing.2876

This is crazy.2888

Let me see, I think I do not have to go through all of the math here.2892

You know what, that is fine.2901

Q is equal to KT² D LN Q DT = N KT² D LN Q DT LN Q.2907

This whole thing is equal to 3/2 LN of 2 π M KT – 3/2 LN H² + LN V + LN T - LN σ θ R2933

- θ of V/ 2T - LN of 1 - E ^- θ V/ T + LN of G1 + DE/ KT.2967

LN Q is all of that.2987

D of LN Q DT, I’m going to differentiate all of this with respect to T.2992

Not all of these are constants not a problem.2995

D LN Q DT holding V constant is going to equal 3/ 2T - 0 + 0 + 1/ T - 0 + θ V/ 2T² +2998

θ V/ T × E ⁻θ V/ T/ 1 – E ⁻θ V/ T + 0 - DE/ KT².3027

I think I’m going to skip a couple of steps because there is a lot of math here.3062

There is a lot of algebra, it is all algebra.3065

What is it that I wrote, if you to simplify everything, multiply a few things out and collect terms,3068

what you will end up with is the following.3072

You end up with 3/2 RT + RT + R × θ of V/ 2 + R × θ V3074

× E ^- θ/ T/ 1 – E ⁻θ V/ T – N DE.3093

Let us call this term 1, term 2, term 3, term 4, and term 5.3107

Term 1 is the energy of translation.3113

We have RT/ 2 for each degree of freedom, translation of X, translation of Y, translation of Z.3125

They add up to 3/2 R.3137

Term 2, that is the energy of rotation.3142

We have RT/ 2 for each degree of freedom.3153

A diatomic molecule has 2° of rotational freedom.3160

Number 3 is the energy of vibration.3165

This one is the 0 point energy.3176

This is also energy of vibration at beyond the 0 point.3187

And this is the electronic energy, the first term.3217

This is relative to 0 mark, we chose which was a fully dissociated molecule.3225

There you have it, those are the partition functions for monoatomic and diatomic molecules.3241

Thank you so much for joining us here at www.educator.com.3246

We will see you next time, bye.3248

Educator®

Please sign in for full access to this lesson.

Sign-InORCreate Account

Enter your Sign-on user name and password.

Forgot password?

Start Learning Now

Our free lessons will get you started (Adobe Flash® required).
Get immediate access to our entire library.

Sign up for Educator.com

Membership Overview

  • Unlimited access to our entire library of courses.
  • Search and jump to exactly what you want to learn.
  • *Ask questions and get answers from the community and our teachers!
  • Practice questions with step-by-step solutions.
  • Download lesson files for programming and software training practice.
  • Track your course viewing progress.
  • Download lecture slides for taking notes.

Use this form or mail us to .

For support articles click here.