Enter your Sign on user name and password.

Forgot password?
Sign In | Subscribe
Start learning today, and be successful in your academic & professional career. Start Today!

Use Chrome browser to play professor video
Raffi Hovasapian

Raffi Hovasapian

The Particle in a Box Part II

Slide Duration:

Table of Contents

I. Classical Thermodynamics Preliminaries
The Ideal Gas Law

46m 5s

Intro
0:00
Course Overview
0:16
Thermodynamics & Classical Thermodynamics
0:17
Structure of the Course
1:30
The Ideal Gas Law
3:06
Ideal Gas Law: PV=nRT
3:07
Units of Pressure
4:51
Manipulating Units
5:52
Atmosphere : atm
8:15
Millimeter of Mercury: mm Hg
8:48
SI Unit of Volume
9:32
SI Unit of Temperature
10:32
Value of R (Gas Constant): Pv = nRT
10:51
Extensive and Intensive Variables (Properties)
15:23
Intensive Property
15:52
Extensive Property
16:30
Example: Extensive and Intensive Variables
18:20
Ideal Gas Law
19:24
Ideal Gas Law with Intensive Variables
19:25
Graphing Equations
23:51
Hold T Constant & Graph P vs. V
23:52
Hold P Constant & Graph V vs. T
31:08
Hold V Constant & Graph P vs. T
34:38
Isochores or Isometrics
37:08
More on the V vs. T Graph
39:46
More on the P vs. V Graph
42:06
Ideal Gas Law at Low Pressure & High Temperature
44:26
Ideal Gas Law at High Pressure & Low Temperature
45:16
Math Lesson 1: Partial Differentiation

46m 2s

Intro
0:00
Math Lesson 1: Partial Differentiation
0:38
Overview
0:39
Example I
3:00
Example II
6:33
Example III
9:52
Example IV
17:26
Differential & Derivative
21:44
What Does It Mean?
21:45
Total Differential (or Total Derivative)
30:16
Net Change in Pressure (P)
33:58
General Equation for Total Differential
38:12
Example 5: Total Differential
39:28
II. Energy
Energy & the First Law I

1h 6m 45s

Intro
0:00
Properties of Thermodynamic State
1:38
Big Picture: 3 Properties of Thermodynamic State
1:39
Enthalpy & Free Energy
3:30
Associated Law
4:40
Energy & the First Law of Thermodynamics
7:13
System & Its Surrounding Separated by a Boundary
7:14
In Other Cases the Boundary is Less Clear
10:47
State of a System
12:37
State of a System
12:38
Change in State
14:00
Path for a Change in State
14:57
Example: State of a System
15:46
Open, Close, and Isolated System
18:26
Open System
18:27
Closed System
19:02
Isolated System
19:22
Important Questions
20:38
Important Questions
20:39
Work & Heat
22:50
Definition of Work
23:33
Properties of Work
25:34
Definition of Heat
32:16
Properties of Heat
34:49
Experiment #1
42:23
Experiment #2
47:00
More on Work & Heat
54:50
More on Work & Heat
54:51
Conventions for Heat & Work
1:00:50
Convention for Heat
1:02:40
Convention for Work
1:04:24
Schematic Representation
1:05:00
Energy & the First Law II

1h 6m 33s

Intro
0:00
The First Law of Thermodynamics
0:53
The First Law of Thermodynamics
0:54
Example 1: What is the Change in Energy of the System & Surroundings?
8:53
Energy and The First Law II, cont.
11:55
The Energy of a System Changes in Two Ways
11:56
Systems Possess Energy, Not Heat or Work
12:45
Scenario 1
16:00
Scenario 2
16:46
State Property, Path Properties, and Path Functions
18:10
Pressure-Volume Work
22:36
When a System Changes
22:37
Gas Expands
24:06
Gas is Compressed
25:13
Pressure Volume Diagram: Analyzing Expansion
27:17
What if We do the Same Expansion in Two Stages?
35:22
Multistage Expansion
43:58
General Expression for the Pressure-Volume Work
46:59
Upper Limit of Isothermal Expansion
50:00
Expression for the Work Done in an Isothermal Expansion
52:45
Example 2: Find an Expression for the Maximum Work Done by an Ideal Gas upon Isothermal Expansion
56:18
Example 3: Calculate the External Pressure and Work Done
58:50
Energy & the First Law III

1h 2m 17s

Intro
0:00
Compression
0:20
Compression Overview
0:34
Single-stage compression vs. 2-stage Compression
2:16
Multi-stage Compression
8:40
Example I: Compression
14:47
Example 1: Single-stage Compression
14:47
Example 1: 2-stage Compression
20:07
Example 1: Absolute Minimum
26:37
More on Compression
32:55
Isothermal Expansion & Compression
32:56
External & Internal Pressure of the System
35:18
Reversible & Irreversible Processes
37:32
Process 1: Overview
38:57
Process 2: Overview
39:36
Process 1: Analysis
40:42
Process 2: Analysis
45:29
Reversible Process
50:03
Isothermal Expansion and Compression
54:31
Example II: Reversible Isothermal Compression of a Van der Waals Gas
58:10
Example 2: Reversible Isothermal Compression of a Van der Waals Gas
58:11
Changes in Energy & State: Constant Volume

1h 4m 39s

Intro
0:00
Recall
0:37
State Function & Path Function
0:38
First Law
2:11
Exact & Inexact Differential
2:12
Where Does (∆U = Q - W) or dU = dQ - dU Come from?
8:54
Cyclic Integrals of Path and State Functions
8:55
Our Empirical Experience of the First Law
12:31
∆U = Q - W
18:42
Relations between Changes in Properties and Energy
22:24
Relations between Changes in Properties and Energy
22:25
Rate of Change of Energy per Unit Change in Temperature
29:54
Rate of Change of Energy per Unit Change in Volume at Constant Temperature
32:39
Total Differential Equation
34:38
Constant Volume
41:08
If Volume Remains Constant, then dV = 0
41:09
Constant Volume Heat Capacity
45:22
Constant Volume Integrated
48:14
Increase & Decrease in Energy of the System
54:19
Example 1: ∆U and Qv
57:43
Important Equations
1:02:06
Joule's Experiment

16m 50s

Intro
0:00
Joule's Experiment
0:09
Joule's Experiment
1:20
Interpretation of the Result
4:42
The Gas Expands Against No External Pressure
4:43
Temperature of the Surrounding Does Not Change
6:20
System & Surrounding
7:04
Joule's Law
10:44
More on Joule's Experiment
11:08
Later Experiment
12:38
Dealing with the 2nd Law & Its Mathematical Consequences
13:52
Changes in Energy & State: Constant Pressure

43m 40s

Intro
0:00
Changes in Energy & State: Constant Pressure
0:20
Integrating with Constant Pressure
0:35
Defining the New State Function
6:24
Heat & Enthalpy of the System at Constant Pressure
8:54
Finding ∆U
12:10
dH
15:28
Constant Pressure Heat Capacity
18:08
Important Equations
25:44
Important Equations
25:45
Important Equations at Constant Pressure
27:32
Example I: Change in Enthalpy (∆H)
28:53
Example II: Change in Internal Energy (∆U)
34:19
The Relationship Between Cp & Cv

32m 23s

Intro
0:00
The Relationship Between Cp & Cv
0:21
For a Constant Volume Process No Work is Done
0:22
For a Constant Pressure Process ∆V ≠ 0, so Work is Done
1:16
The Relationship Between Cp & Cv: For an Ideal Gas
3:26
The Relationship Between Cp & Cv: In Terms of Molar heat Capacities
5:44
Heat Capacity Can Have an Infinite # of Values
7:14
The Relationship Between Cp & Cv
11:20
When Cp is Greater than Cv
17:13
2nd Term
18:10
1st Term
19:20
Constant P Process: 3 Parts
22:36
Part 1
23:45
Part 2
24:10
Part 3
24:46
Define : γ = (Cp/Cv)
28:06
For Gases
28:36
For Liquids
29:04
For an Ideal Gas
30:46
The Joule Thompson Experiment

39m 15s

Intro
0:00
General Equations
0:13
Recall
0:14
How Does Enthalpy of a System Change Upon a Unit Change in Pressure?
2:58
For Liquids & Solids
12:11
For Ideal Gases
14:08
For Real Gases
16:58
The Joule Thompson Experiment
18:37
The Joule Thompson Experiment Setup
18:38
The Flow in 2 Stages
22:54
Work Equation for the Joule Thompson Experiment
24:14
Insulated Pipe
26:33
Joule-Thompson Coefficient
29:50
Changing Temperature & Pressure in Such a Way that Enthalpy Remains Constant
31:44
Joule Thompson Inversion Temperature
36:26
Positive & Negative Joule-Thompson Coefficient
36:27
Joule Thompson Inversion Temperature
37:22
Inversion Temperature of Hydrogen Gas
37:59
Adiabatic Changes of State

35m 52s

Intro
0:00
Adiabatic Changes of State
0:10
Adiabatic Changes of State
0:18
Work & Energy in an Adiabatic Process
3:44
Pressure-Volume Work
7:43
Adiabatic Changes for an Ideal Gas
9:23
Adiabatic Changes for an Ideal Gas
9:24
Equation for a Fixed Change in Volume
11:20
Maximum & Minimum Values of Temperature
14:20
Adiabatic Path
18:08
Adiabatic Path Diagram
18:09
Reversible Adiabatic Expansion
21:54
Reversible Adiabatic Compression
22:34
Fundamental Relationship Equation for an Ideal Gas Under Adiabatic Expansion
25:00
More on the Equation
28:20
Important Equations
32:16
Important Adiabatic Equation
32:17
Reversible Adiabatic Change of State Equation
33:02
III. Energy Example Problems
1st Law Example Problems I

42m 40s

Intro
0:00
Fundamental Equations
0:56
Work
2:40
Energy (1st Law)
3:10
Definition of Enthalpy
3:44
Heat capacity Definitions
4:06
The Mathematics
6:35
Fundamental Concepts
8:13
Isothermal
8:20
Adiabatic
8:54
Isobaric
9:25
Isometric
9:48
Ideal Gases
10:14
Example I
12:08
Example I: Conventions
12:44
Example I: Part A
15:30
Example I: Part B
18:24
Example I: Part C
19:53
Example II: What is the Heat Capacity of the System?
21:49
Example III: Find Q, W, ∆U & ∆H for this Change of State
24:15
Example IV: Find Q, W, ∆U & ∆H
31:37
Example V: Find Q, W, ∆U & ∆H
38:20
1st Law Example Problems II

1h 23s

Intro
0:00
Example I
0:11
Example I: Finding ∆U
1:49
Example I: Finding W
6:22
Example I: Finding Q
11:23
Example I: Finding ∆H
16:09
Example I: Summary
17:07
Example II
21:16
Example II: Finding W
22:42
Example II: Finding ∆H
27:48
Example II: Finding Q
30:58
Example II: Finding ∆U
31:30
Example III
33:33
Example III: Finding ∆U, Q & W
33:34
Example III: Finding ∆H
38:07
Example IV
41:50
Example IV: Finding ∆U
41:51
Example IV: Finding ∆H
45:42
Example V
49:31
Example V: Finding W
49:32
Example V: Finding ∆U
55:26
Example V: Finding Q
56:26
Example V: Finding ∆H
56:55
1st Law Example Problems III

44m 34s

Intro
0:00
Example I
0:15
Example I: Finding the Final Temperature
3:40
Example I: Finding Q
8:04
Example I: Finding ∆U
8:25
Example I: Finding W
9:08
Example I: Finding ∆H
9:51
Example II
11:27
Example II: Finding the Final Temperature
11:28
Example II: Finding ∆U
21:25
Example II: Finding W & Q
22:14
Example II: Finding ∆H
23:03
Example III
24:38
Example III: Finding the Final Temperature
24:39
Example III: Finding W, ∆U, and Q
27:43
Example III: Finding ∆H
28:04
Example IV
29:23
Example IV: Finding ∆U, W, and Q
25:36
Example IV: Finding ∆H
31:33
Example V
32:24
Example V: Finding the Final Temperature
33:32
Example V: Finding ∆U
39:31
Example V: Finding W
40:17
Example V: First Way of Finding ∆H
41:10
Example V: Second Way of Finding ∆H
42:10
Thermochemistry Example Problems

59m 7s

Intro
0:00
Example I: Find ∆H° for the Following Reaction
0:42
Example II: Calculate the ∆U° for the Reaction in Example I
5:33
Example III: Calculate the Heat of Formation of NH₃ at 298 K
14:23
Example IV
32:15
Part A: Calculate the Heat of Vaporization of Water at 25°C
33:49
Part B: Calculate the Work Done in Vaporizing 2 Mols of Water at 25°C Under a Constant Pressure of 1 atm
35:26
Part C: Find ∆U for the Vaporization of Water at 25°C
41:00
Part D: Find the Enthalpy of Vaporization of Water at 100°C
43:12
Example V
49:24
Part A: Constant Temperature & Increasing Pressure
50:25
Part B: Increasing temperature & Constant Pressure
56:20
IV. Entropy
Entropy

49m 16s

Intro
0:00
Entropy, Part 1
0:16
Coefficient of Thermal Expansion (Isobaric)
0:38
Coefficient of Compressibility (Isothermal)
1:25
Relative Increase & Relative Decrease
2:16
More on α
4:40
More on κ
8:38
Entropy, Part 2
11:04
Definition of Entropy
12:54
Differential Change in Entropy & the Reversible Path
20:08
State Property of the System
28:26
Entropy Changes Under Isothermal Conditions
35:00
Recall: Heating Curve
41:05
Some Phase Changes Take Place Under Constant Pressure
44:07
Example I: Finding ∆S for a Phase Change
46:05
Math Lesson II

33m 59s

Intro
0:00
Math Lesson II
0:46
Let F(x,y) = x²y³
0:47
Total Differential
3:34
Total Differential Expression
6:06
Example 1
9:24
More on Math Expression
13:26
Exact Total Differential Expression
13:27
Exact Differentials
19:50
Inexact Differentials
20:20
The Cyclic Rule
21:06
The Cyclic Rule
21:07
Example 2
27:58
Entropy As a Function of Temperature & Volume

54m 37s

Intro
0:00
Entropy As a Function of Temperature & Volume
0:14
Fundamental Equation of Thermodynamics
1:16
Things to Notice
9:10
Entropy As a Function of Temperature & Volume
14:47
Temperature-dependence of Entropy
24:00
Example I
26:19
Entropy As a Function of Temperature & Volume, Cont.
31:55
Volume-dependence of Entropy at Constant Temperature
31:56
Differentiate with Respect to Temperature, Holding Volume Constant
36:16
Recall the Cyclic Rule
45:15
Summary & Recap
46:47
Fundamental Equation of Thermodynamics
46:48
For Entropy as a Function of Temperature & Volume
47:18
The Volume-dependence of Entropy for Liquids & Solids
52:52
Entropy as a Function of Temperature & Pressure

31m 18s

Intro
0:00
Entropy as a Function of Temperature & Pressure
0:17
Entropy as a Function of Temperature & Pressure
0:18
Rewrite the Total Differential
5:54
Temperature-dependence
7:08
Pressure-dependence
9:04
Differentiate with Respect to Pressure & Holding Temperature Constant
9:54
Differentiate with Respect to Temperature & Holding Pressure Constant
11:28
Pressure-Dependence of Entropy for Liquids & Solids
18:45
Pressure-Dependence of Entropy for Liquids & Solids
18:46
Example I: ∆S of Transformation
26:20
Summary of Entropy So Far

23m 6s

Intro
0:00
Summary of Entropy So Far
0:43
Defining dS
1:04
Fundamental Equation of Thermodynamics
3:51
Temperature & Volume
6:04
Temperature & Pressure
9:10
Two Important Equations for How Entropy Behaves
13:38
State of a System & Heat Capacity
15:34
Temperature-dependence of Entropy
19:49
Entropy Changes for an Ideal Gas

25m 42s

Intro
0:00
Entropy Changes for an Ideal Gas
1:10
General Equation
1:22
The Fundamental Theorem of Thermodynamics
2:37
Recall the Basic Total Differential Expression for S = S (T,V)
5:36
For a Finite Change in State
7:58
If Cv is Constant Over the Particular Temperature Range
9:05
Change in Entropy of an Ideal Gas as a Function of Temperature & Pressure
11:35
Change in Entropy of an Ideal Gas as a Function of Temperature & Pressure
11:36
Recall the Basic Total Differential expression for S = S (T, P)
15:13
For a Finite Change
18:06
Example 1: Calculate the ∆S of Transformation
22:02
V. Entropy Example Problems
Entropy Example Problems I

43m 39s

Intro
0:00
Entropy Example Problems I
0:24
Fundamental Equation of Thermodynamics
1:10
Entropy as a Function of Temperature & Volume
2:04
Entropy as a Function of Temperature & Pressure
2:59
Entropy For Phase Changes
4:47
Entropy For an Ideal Gas
6:14
Third Law Entropies
8:25
Statement of the Third Law
9:17
Entropy of the Liquid State of a Substance Above Its Melting Point
10:23
Entropy For the Gas Above Its Boiling Temperature
13:02
Entropy Changes in Chemical Reactions
15:26
Entropy Change at a Temperature Other than 25°C
16:32
Example I
19:31
Part A: Calculate ∆S for the Transformation Under Constant Volume
20:34
Part B: Calculate ∆S for the Transformation Under Constant Pressure
25:04
Example II: Calculate ∆S fir the Transformation Under Isobaric Conditions
27:53
Example III
30:14
Part A: Calculate ∆S if 1 Mol of Aluminum is taken from 25°C to 255°C
31:14
Part B: If S°₂₉₈ = 28.4 J/mol-K, Calculate S° for Aluminum at 498 K
33:23
Example IV: Calculate Entropy Change of Vaporization for CCl₄
34:19
Example V
35:41
Part A: Calculate ∆S of Transformation
37:36
Part B: Calculate ∆S of Transformation
39:10
Entropy Example Problems II

56m 44s

Intro
0:00
Example I
0:09
Example I: Calculate ∆U
1:28
Example I: Calculate Q
3:29
Example I: Calculate Cp
4:54
Example I: Calculate ∆S
6:14
Example II
7:13
Example II: Calculate W
8:14
Example II: Calculate ∆U
8:56
Example II: Calculate Q
10:18
Example II: Calculate ∆H
11:00
Example II: Calculate ∆S
12:36
Example III
18:47
Example III: Calculate ∆H
19:38
Example III: Calculate Q
21:14
Example III: Calculate ∆U
21:44
Example III: Calculate W
23:59
Example III: Calculate ∆S
24:55
Example IV
27:57
Example IV: Diagram
29:32
Example IV: Calculate W
32:27
Example IV: Calculate ∆U
36:36
Example IV: Calculate Q
38:32
Example IV: Calculate ∆H
39:00
Example IV: Calculate ∆S
40:27
Example IV: Summary
43:41
Example V
48:25
Example V: Diagram
49:05
Example V: Calculate W
50:58
Example V: Calculate ∆U
53:29
Example V: Calculate Q
53:44
Example V: Calculate ∆H
54:34
Example V: Calculate ∆S
55:01
Entropy Example Problems III

57m 6s

Intro
0:00
Example I: Isothermal Expansion
0:09
Example I: Calculate W
1:19
Example I: Calculate ∆U
1:48
Example I: Calculate Q
2:06
Example I: Calculate ∆H
2:26
Example I: Calculate ∆S
3:02
Example II: Adiabatic and Reversible Expansion
6:10
Example II: Calculate Q
6:48
Example II: Basic Equation for the Reversible Adiabatic Expansion of an Ideal Gas
8:12
Example II: Finding Volume
12:40
Example II: Finding Temperature
17:58
Example II: Calculate ∆U
19:53
Example II: Calculate W
20:59
Example II: Calculate ∆H
21:42
Example II: Calculate ∆S
23:42
Example III: Calculate the Entropy of Water Vapor
25:20
Example IV: Calculate the Molar ∆S for the Transformation
34:32
Example V
44:19
Part A: Calculate the Standard Entropy of Liquid Lead at 525°C
46:17
Part B: Calculate ∆H for the Transformation of Solid Lead from 25°C to Liquid Lead at 525°C
52:23
VI. Entropy and Probability
Entropy & Probability I

54m 35s

Intro
0:00
Entropy & Probability
0:11
Structural Model
3:05
Recall the Fundamental Equation of Thermodynamics
9:11
Two Independent Ways of Affecting the Entropy of a System
10:05
Boltzmann Definition
12:10
Omega
16:24
Definition of Omega
16:25
Energy Distribution
19:43
The Energy Distribution
19:44
In How Many Ways can N Particles be Distributed According to the Energy Distribution
23:05
Example I: In How Many Ways can the Following Distribution be Achieved
32:51
Example II: In How Many Ways can the Following Distribution be Achieved
33:51
Example III: In How Many Ways can the Following Distribution be Achieved
34:45
Example IV: In How Many Ways can the Following Distribution be Achieved
38:50
Entropy & Probability, cont.
40:57
More on Distribution
40:58
Example I Summary
41:43
Example II Summary
42:12
Distribution that Maximizes Omega
42:26
If Omega is Large, then S is Large
44:22
Two Constraints for a System to Achieve the Highest Entropy Possible
47:07
What Happened When the Energy of a System is Increased?
49:00
Entropy & Probability II

35m 5s

Intro
0:00
Volume Distribution
0:08
Distributing 2 Balls in 3 Spaces
1:43
Distributing 2 Balls in 4 Spaces
3:44
Distributing 3 Balls in 10 Spaces
5:30
Number of Ways to Distribute P Particles over N Spaces
6:05
When N is Much Larger than the Number of Particles P
7:56
Energy Distribution
25:04
Volume Distribution
25:58
Entropy, Total Entropy, & Total Omega Equations
27:34
Entropy, Total Entropy, & Total Omega Equations
27:35
VII. Spontaneity, Equilibrium, and the Fundamental Equations
Spontaneity & Equilibrium I

28m 42s

Intro
0:00
Reversible & Irreversible
0:24
Reversible vs. Irreversible
0:58
Defining Equation for Equilibrium
2:11
Defining Equation for Irreversibility (Spontaneity)
3:11
TdS ≥ dQ
5:15
Transformation in an Isolated System
11:22
Transformation in an Isolated System
11:29
Transformation at Constant Temperature
14:50
Transformation at Constant Temperature
14:51
Helmholtz Free Energy
17:26
Define: A = U - TS
17:27
Spontaneous Isothermal Process & Helmholtz Energy
20:20
Pressure-volume Work
22:02
Spontaneity & Equilibrium II

34m 38s

Intro
0:00
Transformation under Constant Temperature & Pressure
0:08
Transformation under Constant Temperature & Pressure
0:36
Define: G = U + PV - TS
3:32
Gibbs Energy
5:14
What Does This Say?
6:44
Spontaneous Process & a Decrease in G
14:12
Computing ∆G
18:54
Summary of Conditions
21:32
Constraint & Condition for Spontaneity
21:36
Constraint & Condition for Equilibrium
24:54
A Few Words About the Word Spontaneous
26:24
Spontaneous Does Not Mean Fast
26:25
Putting Hydrogen & Oxygen Together in a Flask
26:59
Spontaneous Vs. Not Spontaneous
28:14
Thermodynamically Favorable
29:03
Example: Making a Process Thermodynamically Favorable
29:34
Driving Forces for Spontaneity
31:35
Equation: ∆G = ∆H - T∆S
31:36
Always Spontaneous Process
32:39
Never Spontaneous Process
33:06
A Process That is Endothermic Can Still be Spontaneous
34:00
The Fundamental Equations of Thermodynamics

30m 50s

Intro
0:00
The Fundamental Equations of Thermodynamics
0:44
Mechanical Properties of a System
0:45
Fundamental Properties of a System
1:16
Composite Properties of a System
1:44
General Condition of Equilibrium
3:16
Composite Functions & Their Differentiations
6:11
dH = TdS + VdP
7:53
dA = -SdT - PdV
9:26
dG = -SdT + VdP
10:22
Summary of Equations
12:10
Equation #1
14:33
Equation #2
15:15
Equation #3
15:58
Equation #4
16:42
Maxwell's Relations
20:20
Maxwell's Relations
20:21
Isothermal Volume-Dependence of Entropy & Isothermal Pressure-Dependence of Entropy
26:21
The General Thermodynamic Equations of State

34m 6s

Intro
0:00
The General Thermodynamic Equations of State
0:10
Equations of State for Liquids & Solids
0:52
More General Condition for Equilibrium
4:02
General Conditions: Equation that Relates P to Functions of T & V
6:20
The Second Fundamental Equation of Thermodynamics
11:10
Equation 1
17:34
Equation 2
21:58
Recall the General Expression for Cp - Cv
28:11
For the Joule-Thomson Coefficient
30:44
Joule-Thomson Inversion Temperature
32:12
Properties of the Helmholtz & Gibbs Energies

39m 18s

Intro
0:00
Properties of the Helmholtz & Gibbs Energies
0:10
Equating the Differential Coefficients
1:34
An Increase in T; a Decrease in A
3:25
An Increase in V; a Decrease in A
6:04
We Do the Same Thing for G
8:33
Increase in T; Decrease in G
10:50
Increase in P; Decrease in G
11:36
Gibbs Energy of a Pure Substance at a Constant Temperature from 1 atm to any Other Pressure.
14:12
If the Substance is a Liquid or a Solid, then Volume can be Treated as a Constant
18:57
For an Ideal Gas
22:18
Special Note
24:56
Temperature Dependence of Gibbs Energy
27:02
Temperature Dependence of Gibbs Energy #1
27:52
Temperature Dependence of Gibbs Energy #2
29:01
Temperature Dependence of Gibbs Energy #3
29:50
Temperature Dependence of Gibbs Energy #4
34:50
The Entropy of the Universe & the Surroundings

19m 40s

Intro
0:00
Entropy of the Universe & the Surroundings
0:08
Equation: ∆G = ∆H - T∆S
0:20
Conditions of Constant Temperature & Pressure
1:14
Reversible Process
3:14
Spontaneous Process & the Entropy of the Universe
5:20
Tips for Remembering Everything
12:40
Verify Using Known Spontaneous Process
14:51
VIII. Free Energy Example Problems
Free Energy Example Problems I

54m 16s

Intro
0:00
Example I
0:11
Example I: Deriving a Function for Entropy (S)
2:06
Example I: Deriving a Function for V
5:55
Example I: Deriving a Function for H
8:06
Example I: Deriving a Function for U
12:06
Example II
15:18
Example III
21:52
Example IV
26:12
Example IV: Part A
26:55
Example IV: Part B
28:30
Example IV: Part C
30:25
Example V
33:45
Example VI
40:46
Example VII
43:43
Example VII: Part A
44:46
Example VII: Part B
50:52
Example VII: Part C
51:56
Free Energy Example Problems II

31m 17s

Intro
0:00
Example I
0:09
Example II
5:18
Example III
8:22
Example IV
12:32
Example V
17:14
Example VI
20:34
Example VI: Part A
21:04
Example VI: Part B
23:56
Example VI: Part C
27:56
Free Energy Example Problems III

45m

Intro
0:00
Example I
0:10
Example II
15:03
Example III
21:47
Example IV
28:37
Example IV: Part A
29:33
Example IV: Part B
36:09
Example IV: Part C
40:34
Three Miscellaneous Example Problems

58m 5s

Intro
0:00
Example I
0:41
Part A: Calculating ∆H
3:55
Part B: Calculating ∆S
15:13
Example II
24:39
Part A: Final Temperature of the System
26:25
Part B: Calculating ∆S
36:57
Example III
46:49
IX. Equation Review for Thermodynamics
Looking Back Over Everything: All the Equations in One Place

25m 20s

Intro
0:00
Work, Heat, and Energy
0:18
Definition of Work, Energy, Enthalpy, and Heat Capacities
0:23
Heat Capacities for an Ideal Gas
3:40
Path Property & State Property
3:56
Energy Differential
5:04
Enthalpy Differential
5:40
Joule's Law & Joule-Thomson Coefficient
6:23
Coefficient of Thermal Expansion & Coefficient of Compressibility
7:01
Enthalpy of a Substance at Any Other Temperature
7:29
Enthalpy of a Reaction at Any Other Temperature
8:01
Entropy
8:53
Definition of Entropy
8:54
Clausius Inequality
9:11
Entropy Changes in Isothermal Systems
9:44
The Fundamental Equation of Thermodynamics
10:12
Expressing Entropy Changes in Terms of Properties of the System
10:42
Entropy Changes in the Ideal Gas
11:22
Third Law Entropies
11:38
Entropy Changes in Chemical Reactions
14:02
Statistical Definition of Entropy
14:34
Omega for the Spatial & Energy Distribution
14:47
Spontaneity and Equilibrium
15:43
Helmholtz Energy & Gibbs Energy
15:44
Condition for Spontaneity & Equilibrium
16:24
Condition for Spontaneity with Respect to Entropy
17:58
The Fundamental Equations
18:30
Maxwell's Relations
19:04
The Thermodynamic Equations of State
20:07
Energy & Enthalpy Differentials
21:08
Joule's Law & Joule-Thomson Coefficient
21:59
Relationship Between Constant Pressure & Constant Volume Heat Capacities
23:14
One Final Equation - Just for Fun
24:04
X. Quantum Mechanics Preliminaries
Complex Numbers

34m 25s

Intro
0:00
Complex Numbers
0:11
Representing Complex Numbers in the 2-Dimmensional Plane
0:56
Addition of Complex Numbers
2:35
Subtraction of Complex Numbers
3:17
Multiplication of Complex Numbers
3:47
Division of Complex Numbers
6:04
r & θ
8:04
Euler's Formula
11:00
Polar Exponential Representation of the Complex Numbers
11:22
Example I
14:25
Example II
15:21
Example III
16:58
Example IV
18:35
Example V
20:40
Example VI
21:32
Example VII
25:22
Probability & Statistics

59m 57s

Intro
0:00
Probability & Statistics
1:51
Normalization Condition
1:52
Define the Mean or Average of x
11:04
Example I: Calculate the Mean of x
14:57
Example II: Calculate the Second Moment of the Data in Example I
22:39
Define the Second Central Moment or Variance
25:26
Define the Second Central Moment or Variance
25:27
1st Term
32:16
2nd Term
32:40
3rd Term
34:07
Continuous Distributions
35:47
Continuous Distributions
35:48
Probability Density
39:30
Probability Density
39:31
Normalization Condition
46:51
Example III
50:13
Part A - Show that P(x) is Normalized
51:40
Part B - Calculate the Average Position of the Particle Along the Interval
54:31
Important Things to Remember
58:24
SchrÓ§dinger Equation & Operators

42m 5s

Intro
0:00
Schrӧdinger Equation & Operators
0:16
Relation Between a Photon's Momentum & Its Wavelength
0:17
Louis de Broglie: Wavelength for Matter
0:39
Schrӧdinger Equation
1:19
Definition of Ψ(x)
3:31
Quantum Mechanics
5:02
Operators
7:51
Example I
10:10
Example II
11:53
Example III
14:24
Example IV
17:35
Example V
19:59
Example VI
22:39
Operators Can Be Linear or Non Linear
27:58
Operators Can Be Linear or Non Linear
28:34
Example VII
32:47
Example VIII
36:55
Example IX
39:29
SchrÓ§dinger Equation as an Eigenvalue Problem

30m 26s

Intro
0:00
Schrӧdinger Equation as an Eigenvalue Problem
0:10
Operator: Multiplying the Original Function by Some Scalar
0:11
Operator, Eigenfunction, & Eigenvalue
4:42
Example: Eigenvalue Problem
8:00
Schrӧdinger Equation as an Eigenvalue Problem
9:24
Hamiltonian Operator
15:09
Quantum Mechanical Operators
16:46
Kinetic Energy Operator
19:16
Potential Energy Operator
20:02
Total Energy Operator
21:12
Classical Point of View
21:48
Linear Momentum Operator
24:02
Example I
26:01
The Plausibility of the SchrÓ§dinger Equation

21m 34s

Intro
0:00
The Plausibility of the Schrӧdinger Equation
1:16
The Plausibility of the Schrӧdinger Equation, Part 1
1:17
The Plausibility of the Schrӧdinger Equation, Part 2
8:24
The Plausibility of the Schrӧdinger Equation, Part 3
13:45
XI. The Particle in a Box
The Particle in a Box Part I

56m 22s

Intro
0:00
Free Particle in a Box
0:28
Definition of a Free Particle in a Box
0:29
Amplitude of the Matter Wave
6:22
Intensity of the Wave
6:53
Probability Density
9:39
Probability that the Particle is Located Between x & dx
10:54
Probability that the Particle will be Found Between o & a
12:35
Wave Function & the Particle
14:59
Boundary Conditions
19:22
What Happened When There is No Constraint on the Particle
27:54
Diagrams
34:12
More on Probability Density
40:53
The Correspondence Principle
46:45
The Correspondence Principle
46:46
Normalizing the Wave Function
47:46
Normalizing the Wave Function
47:47
Normalized Wave Function & Normalization Constant
52:24
The Particle in a Box Part II

45m 24s

Intro
0:00
Free Particle in a Box
0:08
Free Particle in a 1-dimensional Box
0:09
For a Particle in a Box
3:57
Calculating Average Values & Standard Deviations
5:42
Average Value for the Position of a Particle
6:32
Standard Deviations for the Position of a Particle
10:51
Recall: Energy & Momentum are Represented by Operators
13:33
Recall: Schrӧdinger Equation in Operator Form
15:57
Average Value of a Physical Quantity that is Associated with an Operator
18:16
Average Momentum of a Free Particle in a Box
20:48
The Uncertainty Principle
24:42
Finding the Standard Deviation of the Momentum
25:08
Expression for the Uncertainty Principle
35:02
Summary of the Uncertainty Principle
41:28
The Particle in a Box Part III

48m 43s

Intro
0:00
2-Dimension
0:12
Dimension 2
0:31
Boundary Conditions
1:52
Partial Derivatives
4:27
Example I
6:08
The Particle in a Box, cont.
11:28
Operator Notation
12:04
Symbol for the Laplacian
13:50
The Equation Becomes…
14:30
Boundary Conditions
14:54
Separation of Variables
15:33
Solution to the 1-dimensional Case
16:31
Normalization Constant
22:32
3-Dimension
28:30
Particle in a 3-dimensional Box
28:31
In Del Notation
32:22
The Solutions
34:51
Expressing the State of the System for a Particle in a 3D Box
39:10
Energy Level & Degeneracy
43:35
XII. Postulates and Principles of Quantum Mechanics
The Postulates & Principles of Quantum Mechanics, Part I

46m 18s

Intro
0:00
Postulate I
0:31
Probability That The Particle Will Be Found in a Differential Volume Element
0:32
Example I: Normalize This Wave Function
11:30
Postulate II
18:20
Postulate II
18:21
Quantum Mechanical Operators: Position
20:48
Quantum Mechanical Operators: Kinetic Energy
21:57
Quantum Mechanical Operators: Potential Energy
22:42
Quantum Mechanical Operators: Total Energy
22:57
Quantum Mechanical Operators: Momentum
23:22
Quantum Mechanical Operators: Angular Momentum
23:48
More On The Kinetic Energy Operator
24:48
Angular Momentum
28:08
Angular Momentum Overview
28:09
Angular Momentum Operator in Quantum Mechanic
31:34
The Classical Mechanical Observable
32:56
Quantum Mechanical Operator
37:01
Getting the Quantum Mechanical Operator from the Classical Mechanical Observable
40:16
Postulate II, cont.
43:40
Quantum Mechanical Operators are Both Linear & Hermetical
43:41
The Postulates & Principles of Quantum Mechanics, Part II

39m 28s

Intro
0:00
Postulate III
0:09
Postulate III: Part I
0:10
Postulate III: Part II
5:56
Postulate III: Part III
12:43
Postulate III: Part IV
18:28
Postulate IV
23:57
Postulate IV
23:58
Postulate V
27:02
Postulate V
27:03
Average Value
36:38
Average Value
36:39
The Postulates & Principles of Quantum Mechanics, Part III

35m 32s

Intro
0:00
The Postulates & Principles of Quantum Mechanics, Part III
0:10
Equations: Linear & Hermitian
0:11
Introduction to Hermitian Property
3:36
Eigenfunctions are Orthogonal
9:55
The Sequence of Wave Functions for the Particle in a Box forms an Orthonormal Set
14:34
Definition of Orthogonality
16:42
Definition of Hermiticity
17:26
Hermiticity: The Left Integral
23:04
Hermiticity: The Right Integral
28:47
Hermiticity: Summary
34:06
The Postulates & Principles of Quantum Mechanics, Part IV

29m 55s

Intro
0:00
The Postulates & Principles of Quantum Mechanics, Part IV
0:09
Operators can be Applied Sequentially
0:10
Sample Calculation 1
2:41
Sample Calculation 2
5:18
Commutator of Two Operators
8:16
The Uncertainty Principle
19:01
In the Case of Linear Momentum and Position Operator
23:14
When the Commutator of Two Operators Equals to Zero
26:31
XIII. Postulates and Principles Example Problems, Including Particle in a Box
Example Problems I

54m 25s

Intro
0:00
Example I: Three Dimensional Box & Eigenfunction of The Laplacian Operator
0:37
Example II: Positions of a Particle in a 1-dimensional Box
15:46
Example III: Transition State & Frequency
29:29
Example IV: Finding a Particle in a 1-dimensional Box
35:03
Example V: Degeneracy & Energy Levels of a Particle in a Box
44:59
Example Problems II

46m 58s

Intro
0:00
Review
0:25
Wave Function
0:26
Normalization Condition
2:28
Observable in Classical Mechanics & Linear/Hermitian Operator in Quantum Mechanics
3:36
Hermitian
6:11
Eigenfunctions & Eigenvalue
8:20
Normalized Wave Functions
12:00
Average Value
13:42
If Ψ is Written as a Linear Combination
15:44
Commutator
16:45
Example I: Normalize The Wave Function
19:18
Example II: Probability of Finding of a Particle
22:27
Example III: Orthogonal
26:00
Example IV: Average Value of the Kinetic Energy Operator
30:22
Example V: Evaluate These Commutators
39:02
Example Problems III

44m 11s

Intro
0:00
Example I: Good Candidate for a Wave Function
0:08
Example II: Variance of the Energy
7:00
Example III: Evaluate the Angular Momentum Operators
15:00
Example IV: Real Eigenvalues Imposes the Hermitian Property on Operators
28:44
Example V: A Demonstration of Why the Eigenfunctions of Hermitian Operators are Orthogonal
35:33
XIV. The Harmonic Oscillator
The Harmonic Oscillator I

35m 33s

Intro
0:00
The Harmonic Oscillator
0:10
Harmonic Motion
0:11
Classical Harmonic Oscillator
4:38
Hooke's Law
8:18
Classical Harmonic Oscillator, cont.
10:33
General Solution for the Differential Equation
15:16
Initial Position & Velocity
16:05
Period & Amplitude
20:42
Potential Energy of the Harmonic Oscillator
23:20
Kinetic Energy of the Harmonic Oscillator
26:37
Total Energy of the Harmonic Oscillator
27:23
Conservative System
34:37
The Harmonic Oscillator II

43m 4s

Intro
0:00
The Harmonic Oscillator II
0:08
Diatomic Molecule
0:10
Notion of Reduced Mass
5:27
Harmonic Oscillator Potential & The Intermolecular Potential of a Vibrating Molecule
7:33
The Schrӧdinger Equation for the 1-dimensional Quantum Mechanic Oscillator
14:14
Quantized Values for the Energy Level
15:46
Ground State & the Zero-Point Energy
21:50
Vibrational Energy Levels
25:18
Transition from One Energy Level to the Next
26:42
Fundamental Vibrational Frequency for Diatomic Molecule
34:57
Example: Calculate k
38:01
The Harmonic Oscillator III

26m 30s

Intro
0:00
The Harmonic Oscillator III
0:09
The Wave Functions Corresponding to the Energies
0:10
Normalization Constant
2:34
Hermite Polynomials
3:22
First Few Hermite Polynomials
4:56
First Few Wave-Functions
6:37
Plotting the Probability Density of the Wave-Functions
8:37
Probability Density for Large Values of r
14:24
Recall: Odd Function & Even Function
19:05
More on the Hermite Polynomials
20:07
Recall: If f(x) is Odd
20:36
Average Value of x
22:31
Average Value of Momentum
23:56
XV. The Rigid Rotator
The Rigid Rotator I

41m 10s

Intro
0:00
Possible Confusion from the Previous Discussion
0:07
Possible Confusion from the Previous Discussion
0:08
Rotation of a Single Mass Around a Fixed Center
8:17
Rotation of a Single Mass Around a Fixed Center
8:18
Angular Velocity
12:07
Rotational Inertia
13:24
Rotational Frequency
15:24
Kinetic Energy for a Linear System
16:38
Kinetic Energy for a Rotational System
17:42
Rotating Diatomic Molecule
19:40
Rotating Diatomic Molecule: Part 1
19:41
Rotating Diatomic Molecule: Part 2
24:56
Rotating Diatomic Molecule: Part 3
30:04
Hamiltonian of the Rigid Rotor
36:48
Hamiltonian of the Rigid Rotor
36:49
The Rigid Rotator II

30m 32s

Intro
0:00
The Rigid Rotator II
0:08
Cartesian Coordinates
0:09
Spherical Coordinates
1:55
r
6:15
θ
6:28
φ
7:00
Moving a Distance 'r'
8:17
Moving a Distance 'r' in the Spherical Coordinates
11:49
For a Rigid Rotator, r is Constant
13:57
Hamiltonian Operator
15:09
Square of the Angular Momentum Operator
17:34
Orientation of the Rotation in Space
19:44
Wave Functions for the Rigid Rotator
20:40
The Schrӧdinger Equation for the Quantum Mechanic Rigid Rotator
21:24
Energy Levels for the Rigid Rotator
26:58
The Rigid Rotator III

35m 19s

Intro
0:00
The Rigid Rotator III
0:11
When a Rotator is Subjected to Electromagnetic Radiation
1:24
Selection Rule
2:13
Frequencies at Which Absorption Transitions Occur
6:24
Energy Absorption & Transition
10:54
Energy of the Individual Levels Overview
20:58
Energy of the Individual Levels: Diagram
23:45
Frequency Required to Go from J to J + 1
25:53
Using Separation Between Lines on the Spectrum to Calculate Bond Length
28:02
Example I: Calculating Rotational Inertia & Bond Length
29:18
Example I: Calculating Rotational Inertia
29:19
Example I: Calculating Bond Length
32:56
XVI. Oscillator and Rotator Example Problems
Example Problems I

33m 48s

Intro
0:00
Equations Review
0:11
Energy of the Harmonic Oscillator
0:12
Selection Rule
3:02
Observed Frequency of Radiation
3:27
Harmonic Oscillator Wave Functions
5:52
Rigid Rotator
7:26
Selection Rule for Rigid Rotator
9:15
Frequency of Absorption
9:35
Wave Numbers
10:58
Example I: Calculate the Reduced Mass of the Hydrogen Atom
11:44
Example II: Calculate the Fundamental Vibration Frequency & the Zero-Point Energy of This Molecule
13:37
Example III: Show That the Product of Two Even Functions is even
19:35
Example IV: Harmonic Oscillator
24:56
Example Problems II

46m 43s

Intro
0:00
Example I: Harmonic Oscillator
0:12
Example II: Harmonic Oscillator
23:26
Example III: Calculate the RMS Displacement of the Molecules
38:12
XVII. The Hydrogen Atom
The Hydrogen Atom I

40m

Intro
0:00
The Hydrogen Atom I
1:31
Review of the Rigid Rotator
1:32
Hydrogen Atom & the Coulomb Potential
2:50
Using the Spherical Coordinates
6:33
Applying This Last Expression to Equation 1
10:19
Angular Component & Radial Component
13:26
Angular Equation
15:56
Solution for F(φ)
19:32
Determine The Normalization Constant
20:33
Differential Equation for T(a)
24:44
Legendre Equation
27:20
Legendre Polynomials
31:20
The Legendre Polynomials are Mutually Orthogonal
35:40
Limits
37:17
Coefficients
38:28
The Hydrogen Atom II

35m 58s

Intro
0:00
Associated Legendre Functions
0:07
Associated Legendre Functions
0:08
First Few Associated Legendre Functions
6:39
s, p, & d Orbital
13:24
The Normalization Condition
15:44
Spherical Harmonics
20:03
Equations We Have Found
20:04
Wave Functions for the Angular Component & Rigid Rotator
24:36
Spherical Harmonics Examples
25:40
Angular Momentum
30:09
Angular Momentum
30:10
Square of the Angular Momentum
35:38
Energies of the Rigid Rotator
38:21
The Hydrogen Atom III

36m 18s

Intro
0:00
The Hydrogen Atom III
0:34
Angular Momentum is a Vector Quantity
0:35
The Operators Corresponding to the Three Components of Angular Momentum Operator: In Cartesian Coordinates
1:30
The Operators Corresponding to the Three Components of Angular Momentum Operator: In Spherical Coordinates
3:27
Z Component of the Angular Momentum Operator & the Spherical Harmonic
5:28
Magnitude of the Angular Momentum Vector
20:10
Classical Interpretation of Angular Momentum
25:22
Projection of the Angular Momentum Vector onto the xy-plane
33:24
The Hydrogen Atom IV

33m 55s

Intro
0:00
The Hydrogen Atom IV
0:09
The Equation to Find R( r )
0:10
Relation Between n & l
3:50
The Solutions for the Radial Functions
5:08
Associated Laguerre Polynomials
7:58
1st Few Associated Laguerre Polynomials
8:55
Complete Wave Function for the Atomic Orbitals of the Hydrogen Atom
12:24
The Normalization Condition
15:06
In Cartesian Coordinates
18:10
Working in Polar Coordinates
20:48
Principal Quantum Number
21:58
Angular Momentum Quantum Number
22:35
Magnetic Quantum Number
25:55
Zeeman Effect
30:45
The Hydrogen Atom V: Where We Are

51m 53s

Intro
0:00
The Hydrogen Atom V: Where We Are
0:13
Review
0:14
Let's Write Out ψ₂₁₁
7:32
Angular Momentum of the Electron
14:52
Representation of the Wave Function
19:36
Radial Component
28:02
Example: 1s Orbital
28:34
Probability for Radial Function
33:46
1s Orbital: Plotting Probability Densities vs. r
35:47
2s Orbital: Plotting Probability Densities vs. r
37:46
3s Orbital: Plotting Probability Densities vs. r
38:49
4s Orbital: Plotting Probability Densities vs. r
39:34
2p Orbital: Plotting Probability Densities vs. r
40:12
3p Orbital: Plotting Probability Densities vs. r
41:02
4p Orbital: Plotting Probability Densities vs. r
41:51
3d Orbital: Plotting Probability Densities vs. r
43:18
4d Orbital: Plotting Probability Densities vs. r
43:48
Example I: Probability of Finding an Electron in the 2s Orbital of the Hydrogen
45:40
The Hydrogen Atom VI

51m 53s

Intro
0:00
The Hydrogen Atom VI
0:07
Last Lesson Review
0:08
Spherical Component
1:09
Normalization Condition
2:02
Complete 1s Orbital Wave Function
4:08
1s Orbital Wave Function
4:09
Normalization Condition
6:28
Spherically Symmetric
16:00
Average Value
17:52
Example I: Calculate the Region of Highest Probability for Finding the Electron
21:19
2s Orbital Wave Function
25:32
2s Orbital Wave Function
25:33
Average Value
28:56
General Formula
32:24
The Hydrogen Atom VII

34m 29s

Intro
0:00
The Hydrogen Atom VII
0:12
p Orbitals
1:30
Not Spherically Symmetric
5:10
Recall That the Spherical Harmonics are Eigenfunctions of the Hamiltonian Operator
6:50
Any Linear Combination of These Orbitals Also Has The Same Energy
9:16
Functions of Real Variables
15:53
Solving for Px
16:50
Real Spherical Harmonics
21:56
Number of Nodes
32:56
XVIII. Hydrogen Atom Example Problems
Hydrogen Atom Example Problems I

43m 49s

Intro
0:00
Example I: Angular Momentum & Spherical Harmonics
0:20
Example II: Pair-wise Orthogonal Legendre Polynomials
16:40
Example III: General Normalization Condition for the Legendre Polynomials
25:06
Example IV: Associated Legendre Functions
32:13
The Hydrogen Atom Example Problems II

1h 1m 57s

Intro
0:00
Example I: Normalization & Pair-wise Orthogonal
0:13
Part 1: Normalized
0:43
Part 2: Pair-wise Orthogonal
16:53
Example II: Show Explicitly That the Following Statement is True for Any Integer n
27:10
Example III: Spherical Harmonics
29:26
Angular Momentum Cones
56:37
Angular Momentum Cones
56:38
Physical Interpretation of Orbital Angular Momentum in Quantum mechanics
1:00:16
The Hydrogen Atom Example Problems III

48m 33s

Intro
0:00
Example I: Show That ψ₂₁₁ is Normalized
0:07
Example II: Show That ψ₂₁₁ is Orthogonal to ψ₃₁₀
11:48
Example III: Probability That a 1s Electron Will Be Found Within 1 Bohr Radius of The Nucleus
18:35
Example IV: Radius of a Sphere
26:06
Example V: Calculate <r> for the 2s Orbital of the Hydrogen-like Atom
36:33
The Hydrogen Atom Example Problems IV

48m 33s

Intro
0:00
Example I: Probability Density vs. Radius Plot
0:11
Example II: Hydrogen Atom & The Coulombic Potential
14:16
Example III: Find a Relation Among <K>, <V>, & <E>
25:47
Example IV: Quantum Mechanical Virial Theorem
48:32
Example V: Find the Variance for the 2s Orbital
54:13
The Hydrogen Atom Example Problems V

48m 33s

Intro
0:00
Example I: Derive a Formula for the Degeneracy of a Given Level n
0:11
Example II: Using Linear Combinations to Represent the Spherical Harmonics as Functions of the Real Variables θ & φ
8:30
Example III: Using Linear Combinations to Represent the Spherical Harmonics as Functions of the Real Variables θ & φ
23:01
Example IV: Orbital Functions
31:51
XIX. Spin Quantum Number and Atomic Term Symbols
Spin Quantum Number: Term Symbols I

59m 18s

Intro
0:00
Quantum Numbers Specify an Orbital
0:24
n
1:10
l
1:20
m
1:35
4th Quantum Number: s
2:02
Spin Orbitals
7:03
Spin Orbitals
7:04
Multi-electron Atoms
11:08
Term Symbols
18:08
Russell-Saunders Coupling & The Atomic Term Symbol
18:09
Example: Configuration for C
27:50
Configuration for C: 1s²2s²2p²
27:51
Drawing Every Possible Arrangement
31:15
Term Symbols
45:24
Microstate
50:54
Spin Quantum Number: Term Symbols II

34m 54s

Intro
0:00
Microstates
0:25
We Started With 21 Possible Microstates
0:26
³P State
2:05
Microstates in ³P Level
5:10
¹D State
13:16
³P State
16:10
²P₂ State
17:34
³P₁ State
18:34
³P₀ State
19:12
9 Microstates in ³P are Subdivided
19:40
¹S State
21:44
Quicker Way to Find the Different Values of J for a Given Basic Term Symbol
22:22
Ground State
26:27
Hund's Empirical Rules for Specifying the Term Symbol for the Ground Electronic State
27:29
Hund's Empirical Rules: 1
28:24
Hund's Empirical Rules: 2
29:22
Hund's Empirical Rules: 3 - Part A
30:22
Hund's Empirical Rules: 3 - Part B
31:18
Example: 1s²2s²2p²
31:54
Spin Quantum Number: Term Symbols III

38m 3s

Intro
0:00
Spin Quantum Number: Term Symbols III
0:14
Deriving the Term Symbols for the p² Configuration
0:15
Table: MS vs. ML
3:57
¹D State
16:21
³P State
21:13
¹S State
24:48
J Value
25:32
Degeneracy of the Level
27:28
When Given r Electrons to Assign to n Equivalent Spin Orbitals
30:18
p² Configuration
32:51
Complementary Configurations
35:12
Term Symbols & Atomic Spectra

57m 49s

Intro
0:00
Lyman Series
0:09
Spectroscopic Term Symbols
0:10
Lyman Series
3:04
Hydrogen Levels
8:21
Hydrogen Levels
8:22
Term Symbols & Atomic Spectra
14:17
Spin-Orbit Coupling
14:18
Selection Rules for Atomic Spectra
21:31
Selection Rules for Possible Transitions
23:56
Wave Numbers for The Transitions
28:04
Example I: Calculate the Frequencies of the Allowed Transitions from (4d) ²D →(2p) ²P
32:23
Helium Levels
49:50
Energy Levels for Helium
49:51
Transitions & Spin Multiplicity
52:27
Transitions & Spin Multiplicity
52:28
XX. Term Symbols Example Problems
Example Problems I

1h 1m 20s

Intro
0:00
Example I: What are the Term Symbols for the np¹ Configuration?
0:10
Example II: What are the Term Symbols for the np² Configuration?
20:38
Example III: What are the Term Symbols for the np³ Configuration?
40:46
Example Problems II

56m 34s

Intro
0:00
Example I: Find the Term Symbols for the nd² Configuration
0:11
Example II: Find the Term Symbols for the 1s¹2p¹ Configuration
27:02
Example III: Calculate the Separation Between the Doublets in the Lyman Series for Atomic Hydrogen
41:41
Example IV: Calculate the Frequencies of the Lines for the (4d) ²D → (3p) ²P Transition
48:53
XXI. Equation Review for Quantum Mechanics
Quantum Mechanics: All the Equations in One Place

18m 24s

Intro
0:00
Quantum Mechanics Equations
0:37
De Broglie Relation
0:38
Statistical Relations
1:00
The Schrӧdinger Equation
1:50
The Particle in a 1-Dimensional Box of Length a
3:09
The Particle in a 2-Dimensional Box of Area a x b
3:48
The Particle in a 3-Dimensional Box of Area a x b x c
4:22
The Schrӧdinger Equation Postulates
4:51
The Normalization Condition
5:40
The Probability Density
6:51
Linear
7:47
Hermitian
8:31
Eigenvalues & Eigenfunctions
8:55
The Average Value
9:29
Eigenfunctions of Quantum Mechanics Operators are Orthogonal
10:53
Commutator of Two Operators
10:56
The Uncertainty Principle
11:41
The Harmonic Oscillator
13:18
The Rigid Rotator
13:52
Energy of the Hydrogen Atom
14:30
Wavefunctions, Radial Component, and Associated Laguerre Polynomial
14:44
Angular Component or Spherical Harmonic
15:16
Associated Legendre Function
15:31
Principal Quantum Number
15:43
Angular Momentum Quantum Number
15:50
Magnetic Quantum Number
16:21
z-component of the Angular Momentum of the Electron
16:53
Atomic Spectroscopy: Term Symbols
17:14
Atomic Spectroscopy: Selection Rules
18:03
XXII. Molecular Spectroscopy
Spectroscopic Overview: Which Equation Do I Use & Why

50m 2s

Intro
0:00
Spectroscopic Overview: Which Equation Do I Use & Why
1:02
Lesson Overview
1:03
Rotational & Vibrational Spectroscopy
4:01
Frequency of Absorption/Emission
6:04
Wavenumbers in Spectroscopy
8:10
Starting State vs. Excited State
10:10
Total Energy of a Molecule (Leaving out the Electronic Energy)
14:02
Energy of Rotation: Rigid Rotor
15:55
Energy of Vibration: Harmonic Oscillator
19:08
Equation of the Spectral Lines
23:22
Harmonic Oscillator-Rigid Rotor Approximation (Making Corrections)
28:37
Harmonic Oscillator-Rigid Rotor Approximation (Making Corrections)
28:38
Vibration-Rotation Interaction
33:46
Centrifugal Distortion
36:27
Anharmonicity
38:28
Correcting for All Three Simultaneously
41:03
Spectroscopic Parameters
44:26
Summary
47:32
Harmonic Oscillator-Rigid Rotor Approximation
47:33
Vibration-Rotation Interaction
48:14
Centrifugal Distortion
48:20
Anharmonicity
48:28
Correcting for All Three Simultaneously
48:44
Vibration-Rotation

59m 47s

Intro
0:00
Vibration-Rotation
0:37
What is Molecular Spectroscopy?
0:38
Microwave, Infrared Radiation, Visible & Ultraviolet
1:53
Equation for the Frequency of the Absorbed Radiation
4:54
Wavenumbers
6:15
Diatomic Molecules: Energy of the Harmonic Oscillator
8:32
Selection Rules for Vibrational Transitions
10:35
Energy of the Rigid Rotator
16:29
Angular Momentum of the Rotator
21:38
Rotational Term F(J)
26:30
Selection Rules for Rotational Transition
29:30
Vibration Level & Rotational States
33:20
Selection Rules for Vibration-Rotation
37:42
Frequency of Absorption
39:32
Diagram: Energy Transition
45:55
Vibration-Rotation Spectrum: HCl
51:27
Vibration-Rotation Spectrum: Carbon Monoxide
54:30
Vibration-Rotation Interaction

46m 22s

Intro
0:00
Vibration-Rotation Interaction
0:13
Vibration-Rotation Spectrum: HCl
0:14
Bond Length & Vibrational State
4:23
Vibration Rotation Interaction
10:18
Case 1
12:06
Case 2
17:17
Example I: HCl Vibration-Rotation Spectrum
22:58
Rotational Constant for the 0 & 1 Vibrational State
26:30
Equilibrium Bond Length for the 1 Vibrational State
39:42
Equilibrium Bond Length for the 0 Vibrational State
42:13
Bₑ & αₑ
44:54
The Non-Rigid Rotator

29m 24s

Intro
0:00
The Non-Rigid Rotator
0:09
Pure Rotational Spectrum
0:54
The Selection Rules for Rotation
3:09
Spacing in the Spectrum
5:04
Centrifugal Distortion Constant
9:00
Fundamental Vibration Frequency
11:46
Observed Frequencies of Absorption
14:14
Difference between the Rigid Rotator & the Adjusted Rigid Rotator
16:51
Adjusted Rigid Rotator
21:31
Observed Frequencies of Absorption
26:26
The Anharmonic Oscillator

30m 53s

Intro
0:00
The Anharmonic Oscillator
0:09
Vibration-Rotation Interaction & Centrifugal Distortion
0:10
Making Corrections to the Harmonic Oscillator
4:50
Selection Rule for the Harmonic Oscillator
7:50
Overtones
8:40
True Oscillator
11:46
Harmonic Oscillator Energies
13:16
Anharmonic Oscillator Energies
13:33
Observed Frequencies of the Overtones
15:09
True Potential
17:22
HCl Vibrational Frequencies: Fundamental & First Few Overtones
21:10
Example I: Vibrational States & Overtones of the Vibrational Spectrum
22:42
Example I: Part A - First 4 Vibrational States
23:44
Example I: Part B - Fundamental & First 3 Overtones
25:31
Important Equations
27:45
Energy of the Q State
29:14
The Difference in Energy between 2 Successive States
29:23
Difference in Energy between 2 Spectral Lines
29:40
Electronic Transitions

1h 1m 33s

Intro
0:00
Electronic Transitions
0:16
Electronic State & Transition
0:17
Total Energy of the Diatomic Molecule
3:34
Vibronic Transitions
4:30
Selection Rule for Vibronic Transitions
9:11
More on Vibronic Transitions
10:08
Frequencies in the Spectrum
16:46
Difference of the Minima of the 2 Potential Curves
24:48
Anharmonic Zero-point Vibrational Energies of the 2 States
26:24
Frequency of the 0 → 0 Vibronic Transition
27:54
Making the Equation More Compact
29:34
Spectroscopic Parameters
32:11
Franck-Condon Principle
34:32
Example I: Find the Values of the Spectroscopic Parameters for the Upper Excited State
47:27
Table of Electronic States and Parameters
56:41
XXIII. Molecular Spectroscopy Example Problems
Example Problems I

33m 47s

Intro
0:00
Example I: Calculate the Bond Length
0:10
Example II: Calculate the Rotational Constant
7:39
Example III: Calculate the Number of Rotations
10:54
Example IV: What is the Force Constant & Period of Vibration?
16:31
Example V: Part A - Calculate the Fundamental Vibration Frequency
21:42
Example V: Part B - Calculate the Energies of the First Three Vibrational Levels
24:12
Example VI: Calculate the Frequencies of the First 2 Lines of the R & P Branches of the Vib-Rot Spectrum of HBr
26:28
Example Problems II

1h 1m 5s

Intro
0:00
Example I: Calculate the Frequencies of the Transitions
0:09
Example II: Specify Which Transitions are Allowed & Calculate the Frequencies of These Transitions
22:07
Example III: Calculate the Vibrational State & Equilibrium Bond Length
34:31
Example IV: Frequencies of the Overtones
49:28
Example V: Vib-Rot Interaction, Centrifugal Distortion, & Anharmonicity
54:47
Example Problems III

33m 31s

Intro
0:00
Example I: Part A - Derive an Expression for ∆G( r )
0:10
Example I: Part B - Maximum Vibrational Quantum Number
6:10
Example II: Part A - Derive an Expression for the Dissociation Energy of the Molecule
8:29
Example II: Part B - Equation for ∆G( r )
14:00
Example III: How Many Vibrational States are There for Br₂ before the Molecule Dissociates
18:16
Example IV: Find the Difference between the Two Minima of the Potential Energy Curves
20:57
Example V: Rotational Spectrum
30:51
XXIV. Statistical Thermodynamics
Statistical Thermodynamics: The Big Picture

1h 1m 15s

Intro
0:00
Statistical Thermodynamics: The Big Picture
0:10
Our Big Picture Goal
0:11
Partition Function (Q)
2:42
The Molecular Partition Function (q)
4:00
Consider a System of N Particles
6:54
Ensemble
13:22
Energy Distribution Table
15:36
Probability of Finding a System with Energy
16:51
The Partition Function
21:10
Microstate
28:10
Entropy of the Ensemble
30:34
Entropy of the System
31:48
Expressing the Thermodynamic Functions in Terms of The Partition Function
39:21
The Partition Function
39:22
Pi & U
41:20
Entropy of the System
44:14
Helmholtz Energy
48:15
Pressure of the System
49:32
Enthalpy of the System
51:46
Gibbs Free Energy
52:56
Heat Capacity
54:30
Expressing Q in Terms of the Molecular Partition Function (q)
59:31
Indistinguishable Particles
1:02:16
N is the Number of Particles in the System
1:03:27
The Molecular Partition Function
1:05:06
Quantum States & Degeneracy
1:07:46
Thermo Property in Terms of ln Q
1:10:09
Example: Thermo Property in Terms of ln Q
1:13:23
Statistical Thermodynamics: The Various Partition Functions I

47m 23s

Intro
0:00
Lesson Overview
0:19
Monatomic Ideal Gases
6:40
Monatomic Ideal Gases Overview
6:42
Finding the Parition Function of Translation
8:17
Finding the Parition Function of Electronics
13:29
Example: Na
17:42
Example: F
23:12
Energy Difference between the Ground State & the 1st Excited State
29:27
The Various Partition Functions for Monatomic Ideal Gases
32:20
Finding P
43:16
Going Back to U = (3/2) RT
46:20
Statistical Thermodynamics: The Various Partition Functions II

54m 9s

Intro
0:00
Diatomic Gases
0:16
Diatomic Gases
0:17
Zero-Energy Mark for Rotation
2:26
Zero-Energy Mark for Vibration
3:21
Zero-Energy Mark for Electronic
5:54
Vibration Partition Function
9:48
When Temperature is Very Low
14:00
When Temperature is Very High
15:22
Vibrational Component
18:48
Fraction of Molecules in the r Vibration State
21:00
Example: Fraction of Molecules in the r Vib. State
23:29
Rotation Partition Function
26:06
Heteronuclear & Homonuclear Diatomics
33:13
Energy & Heat Capacity
36:01
Fraction of Molecules in the J Rotational Level
39:20
Example: Fraction of Molecules in the J Rotational Level
40:32
Finding the Most Populated Level
44:07
Putting It All Together
46:06
Putting It All Together
46:07
Energy of Translation
51:51
Energy of Rotation
52:19
Energy of Vibration
52:42
Electronic Energy
53:35
XXV. Statistical Thermodynamics Example Problems
Example Problems I

48m 32s

Intro
0:00
Example I: Calculate the Fraction of Potassium Atoms in the First Excited Electronic State
0:10
Example II: Show That Each Translational Degree of Freedom Contributes R/2 to the Molar Heat Capacity
14:46
Example III: Calculate the Dissociation Energy
21:23
Example IV: Calculate the Vibrational Contribution to the Molar heat Capacity of Oxygen Gas at 500 K
25:46
Example V: Upper & Lower Quantum State
32:55
Example VI: Calculate the Relative Populations of the J=2 and J=1 Rotational States of the CO Molecule at 25°C
42:21
Example Problems II

57m 30s

Intro
0:00
Example I: Make a Plot of the Fraction of CO Molecules in Various Rotational Levels
0:10
Example II: Calculate the Ratio of the Translational Partition Function for Cl₂ and Br₂ at Equal Volume & Temperature
8:05
Example III: Vibrational Degree of Freedom & Vibrational Molar Heat Capacity
11:59
Example IV: Calculate the Characteristic Vibrational & Rotational temperatures for Each DOF
45:03
Loading...
This is a quick preview of the lesson. For full access, please Log In or Sign up.
For more information, please see full course syllabus of Physical Chemistry
  • Discussion

  • Download Lecture Slides

  • Table of Contents

  • Transcription

  • Related Books

Start Learning Now

Our free lessons will get you started (Adobe Flash® required).
Get immediate access to our entire library.

Sign up for Educator.com

Membership Overview

  • Unlimited access to our entire library of courses.
  • Search and jump to exactly what you want to learn.
  • *Ask questions and get answers from the community and our teachers!
  • Practice questions with step-by-step solutions.
  • Download lesson files for programming and software training practice.
  • Track your course viewing progress.
  • Download lecture slides for taking notes.
  • Learn at your own pace... anytime, anywhere!

The Particle in a Box Part II

Lecture Slides are screen-captured images of important points in the lecture. Students can download and print out these lecture slide images to do practice problems as well as take notes while watching the lecture.

  • Intro 0:00
  • Free Particle in a Box 0:08
    • Free Particle in a 1-dimensional Box
    • For a Particle in a Box
  • Calculating Average Values & Standard Deviations 5:42
    • Average Value for the Position of a Particle
    • Standard Deviations for the Position of a Particle
    • Recall: Energy & Momentum are Represented by Operators
    • Recall: Schrӧdinger Equation in Operator Form
    • Average Value of a Physical Quantity that is Associated with an Operator
    • Average Momentum of a Free Particle in a Box
  • The Uncertainty Principle 24:42
    • Finding the Standard Deviation of the Momentum
    • Expression for the Uncertainty Principle
    • Summary of the Uncertainty Principle

Transcription: The Particle in a Box Part II

Hello and welcome to www.educator.com and welcome back to Physical Chemistry.0000

Today, we are going to continue our discussion of the particle in a box.0004

Let us jump right on in.0008

We have from the previous lesson, for a free particle in a one dimensional box, we have the following.0010

I’m going to stop using the letter ψ because I personally do not like the letters.0017

I’m going to use a different letter for the wave function.0024

I’m going to use W.0026

For a free particle and a one dimensional box, the particles just moving back and forth.0034

It can only move one dimension between 0 and A.0053

We have the wave function W sub N of X = 2/ A¹/2 × the sin of N π / A × X.0059

The energy for that particular state of N was equal to H² N²/ A² × 8M.0074

Let me make M a little bit clear here.0086

We are going to say X is between 0 and A, and N of course takes on integer values 123 and so on.0094

This was the solution to our particle in a box problem.0105

Recall from the lesson on the mathematical interlude on probability and statistics, we have the following.0108

We had the average value of X was equal to the integral of X × the probability of X DX.0117

We have the average value of X² that was something that we call the second moment.0130

That was going to be integral of X² × the probability of X DX.0135

And we have something called the variance.0143

The variance which we symbolized as that, that was equal to the integral of the real value of X - the average value of X² × the probability of X DX.0145

And again, just treat these mathematically.0166

A lot of what we are doing in quantum mechanics.0168

If we do not entirely understand what is happening, it is okay.0170

Just treat it mathematically, become accustomed to the mechanics and eventually the understanding will emerge as you do more and more problems.0173

As you and your teacher and your friends and colleagues discuss things more.0181

Just deal mathematically if all of this does not entirely make sense.0187

That was also equal to the averages value of the second moment which is X² – the square of the average value.0191

There are 2 ways, you can find this and find that, and define the variance that way.0199

Or you can just go ahead and integrate this function.0204

In all these cases, this piece of X , piece of X ,piece of X, the PX DX including the DX that is the probability.0209

I will write where P of X DX is the probability of a given state.0224

For a particle in a box, our probability, our PX DX = W* × W × DX.0239

W* W DX = this × itself DX.0262

I will go ahead and just write it, that is not a problem.0275

2/ A¹/2 × sin N π AX × 2/ A¹/2 sin of N π / AX DX.0281

This thing is our probability.0303

Again, 0 less than or equal to X, less than or equal to A and it is equal to 0 otherwise outside of the interval.0308

Let us go ahead and write that here just in case we forgot.0317

The left of 0 to the right of A, the probability is 0.0320

In other words, the particle will never be found there.0323

That is all that means.0326

We are going to use this probability to put it into these equations to calculate some average values and some standard deviations and variances.0328

We use this W* W DX to calculate some average values and standard deviations.0346

And if you remember, the standard deviation is the square root of the variance.0373

The variance is the σ² X.0385

Let us go ahead and calculate the average value of X.0393

The average value of X, in other words the average value of the position of the particle.0397

That is what X represents.0401

X is just where the particle is.0403

I take a measurement, I take another measurement, each measurement that I take, the particles are going to be somewhere.0409

It is just going to be somewhere.0415

Sometimes it is here, sometimes it is there.0417

We take 10 measurements, 50 measurements, 100, 10,000, 100,000, a 1,000,000 measurements.0421

Once I have those million measurements, I want to find the average value.0426

It is going to equal this.0432

It is going to equal by definition the integral of X PX DX, that is the definition of the average value.0434

In this particular case, it is going to be the integral from 0 to A of X W* W DX.0442

X × the probability, X × in this particular case the probability of a particle in a box is this.0452

And we integrate it from 0 to A.0458

What we end up having is the integral from 0 to A of 2/ A.0461

I'm sorry X × 2/ A sin² N π/ A X DX.0469

If you look at this particular integral, let me pull the constant out.0483

2/ A, 0 to A of X sin² N π A/ X DX.0491

If you look up this integral in a table, you will find it.0501

Or have your software do it, you are going to end up with the following.0506

It turns out that the average value of X is going to equal 2/ A × when you do this integral here, you are going to end up with A²/ 4 A/ 2.0511

It turns out that the average value of the position of the particle is A/ 2.0524

What is that mean?0530

Our interval is 0 to A.0531

If I take a million measurements on average, sometimes it is going to be here, sometimes here.0534

If I average it out over many, it is going to be A or 2.0543

In other words, on average I'm going to find it right in the middle.0547

That is all what average is.0551

It is a mean value.0554

On average, I'm going to find the particle right there, that is all this is saying.0557

This make sense, I mean the particles can sometimes be here, sometimes here,0563

Over a bunch of measurements, it is going to average out to right down in the middle.0572

If you flip a coin and get heads, if you flip a coin you get tails.0577

If you keep flipping 100, 200, 300, or 1000 flips, you are going to end up getting just as many heads as you get tails on average.0579

Let us go ahead and find the average value of X² which is something called the second moment.0591

The average value of X² that is equal to the integral of X² × PX DX, that is the definition.0597

It is going to equal the integral from 0 to A of X² × the wave function × itself DX, that is going to equal,0608

I’m going to pull the constant out, the integral from 0 to A of X² sin² N π/ A DX.0620

When you solve this integral, you are going to end up with A²/ 3 - A²/ 2 N² π².0631

The variance is equal to the average value of X² - the average value of X².0654

When I do that, I get A²/ 3 - A²/ 2 N² π² - A/ 2²,0667

Because the average value of X was A/ 2.0681

It was A/ 2².0684

That is fine, I will just do it.0693

It is going to be A²/3 – A²/ 2 N² π² – A²/ 4.0697

I find myself a common denominator with the 4 and 3.0714

Let us go ahead and do this A²/ 12.0718

4A² – 3A²/ 12.0722

A²/ 12 – A²/ 2 N² π².0724

This is our σ² X.0733

When I take the square root of that, I get the actual standard deviation S sub X.0736

I get σ sub X is going to equal A²/ 12 - A²/ 2 N² π² all raise to the ½.0744

I found the average value of X.0762

I found the average value of X².0766

And I use these two to find this one.0768

That is that right there.0772

What happens when I want to calculate the average value of the energy or the average value of the momentum?0780

Now, we want to calculate the average value of the energy or the average value of the momentum.0789

I recall that things like energy and momentum they are represented by operators.0801

In this particular case, they are represented by differential operators so it creates a little bit of a problem how do we actually do that?0807

Recall that energy and momentum are represented in quantum mechanics by differential operators.0814

Remember, the energy operator which was the Hamiltonian operator which was – H ̅²/ 2 MD² DX² + VX that was the operator.0849

Of course, we had the momentum operator which was -I H ̅ DDX.0868

Now the question is how do I find the average value of the momentum?0879

When the momentum is represented by this differential operator, on what function do I actually operate?0886

We have a wave function, that is not a problem.0893

We have our wave function, the 2/ A ⁺square root.0895

√2/ A × the sin N π/ AX.0900

We have the wave function and we know that if we want to extract some information,0905

like something about momentum, we operate on that function.0908

We want to find the average value so are we operating on the complex conjugate W?0913

Are we are going to operate on W*?0919

Are we going to operate on W? Are we going to operate on W* × W?0923

What is it that we do?0928

The question is, on which function does the operator operate?0930

Is it the conjugate?0946

Is it the function itself?0948

Is it the probability density? Is it the square of the wave function?0952

Which one is it?0957

Let us go ahead and see if we can find out.0959

Let us go ahead and recall how our operator version, our Eigen value problem.0960

I have got the Hamiltonian operator operating on the wave function WN.0974

It is going to equal the energy, the wave function.0980

This was our Eigen value problem.0984

This was the Schrӧdinger equation expressed.0986

This is the Schrӧdinger equation in operator form or Eigen function, Eigen value form.0988

WN is the Eigen function, E sub N is the Eigen value.1014

Here is what I’m going to do.1019

I’m going to fiddle around with this a little bit.1020

I’m going to multiply on the left by the conjugate of the wave function and I’m going to integrate.1023

I'm going to get the following.1028

I'm going to get the integral of W* HW = the integral of W* E sub NW.1030

I can pull the Z sub N, it is just a number.1051

It is a scalar so I can pull it out.1053

That is equal to E sub N × the integral of W* W.1056

The wave function is normalized so the integral of the square of the wave function, this is just going to end up being 1.1062

We end up with that.1076

I found the energy simply by multiplying on the left by operating on the function and1079

then multiplying on left by the complex conjugate, and then integrating over the particular interval.1087

That ends up giving me my energy.1093

This is extraordinary.1095

Find the average value of a physical quantity like energy or like momentum that is associated with a quantum mechanical operator...1099

Whatever, we have to find the physical quantity that is associated with an operator.1163

If I have the momentum operator and if I want to find the average momentum, I take the wave function,1167

I operate on the wave function, I multiply it on the left by the conjugate of the wave function, and then I integrate over the entire interval.1175

That gives me the average value.1183

This is the definition of finding the average value of a physical quantity that is associated with an operator.1186

Here, L is the operator and L is the average value of that operator.1194

Is the average value, I should say of the quantity for the particle in the state described by W sub N.1215

Let us go ahead and calculate the average momentum of the particle in a box.1243

We have the average momentum of the particle in a box.1251

That is equal to the integral of W conjugate × the momentum operator W DX.1254

That is going to equal the integral of 2/ A ^½.1265

You literally just put everything in.1274

It looks really complicated, but it is not.1276

Sin of N π/ A × X.1281

This momentum operator you have – I H ̅² DDX.1287

We are going to operate on 2/ A ^½ sin N π/ A × X.1295

And you are going to integrate all of that from 0 to A.1309

Here, let us pull some things out.1321

I pull this out, I pull this out, I can pull this out, and when I differentiate this,1327

I’m not going to go through all the steps, here is what I end up with.1333

-I H ̅ that takes care of that.1338

-I H this is not squared, this is a momentum operator.1347

-IH and then this and this, gives me 2/ A.1350

All I’m left with is, take the derivative of this function, that is what we are doing.1361

You are going to apply this operator to this function and then multiply it by that.1366

When I take the derivative of sin of N π A/ N π/ A of X, I end up with N π/ A × cos of N π A/ X.1371

That constant also comes out N π/ A × integral from 0 to A of the sin of N π/ AX × the cos of N π/ A × X × DX.1386

This integral = 0.1410

Therefore, my average momentum is equal to 0.1415

Again, this makes sense and here is why.1419

If I have 0 to A, this is an average value.1424

This is that if I take 10,000 measurements, there going to be times that the particle is moving in this direction.1427

There are going to be times that the particle is moving in that direction.1432

This direction, that direction, that direction.1435

When I average it out, these directions are going to cancel out.1442

The average momentum of the particle is going to end up being 0, that is what this means.1447

The average value that you get from taking thousands and thousands of measurements.1453

Not even thousands, maybe just hundreds of measurements, maybe 50.1458

On average, this is what is going to happen and it makes sense physically.1462

In a way of looking at is your equally likely to find a particle moving to the left as it is moving to the right.1471

On average, it is not moving at all.1477

Let us go ahead and talk about something called the uncertainty principle.1484

This is very important.1487

It is fine, I will stick with blue.1491

The uncertainty principle or the Heisenberg uncertainty principle.1497

We have calculated the average value of X and we also found the σ of X.1509

We found the standard deviation and we also found the average momentum.1522

Let us go ahead and let us find.1529

We found the average value of X and the standard deviation of X.1538

We found the average momentum, the average value of P.1541

Now, let us find the standard deviation of the momentum.1543

Let us find σ sub P.1546

OK so we know that σ² of P that is going to equal the average value of the P² - the average value for P quantity².1550

I need to find this value now and subtract in order to find this, and take the square root of it, in order to get that right there.1564

The first thing we need to do is find the second moment of the momentum.1572

The average value of P² that is going to equal, what you got is the integral of the conjugate, the operator² that.1577

Remember, an operator² is the same as just doing the operator and doing it again.1595

That just means do it twice, that is all the squared means, do it twice.1602

What we are going to have is the following.1610

This is equal to.1614

Let me write the whole thing.1616

0 to A, 2/ A × sin N π/ A × X × -I H ̅ DDX, that is one operation.1619

We have – I H ̅ DDX is the second operation and we are operating on that function which is sin of N π/ A × X.1636

We are integrating from 0 to A.1653

This is what we are integrating.1657

This means take the derivative of this and then take the derivative of it again.1659

That is a constant, that is a constant, I forgot the 2A over here.1668

It is the hardest part of quantum mechanics, just keeping all of that straight.1693

It is not that it is conceptually difficult.1697

Let us go back to red.1700

This is a constant, that is a constant.1702

When you pull all of that out, you end up with the following.1707

You will end up with - H ̅² × 2/ A the integral from 0 to A.1712

I’m just going to go ahead.1724

That is fine, I will write it all out.1728

Sin of N π/ A × X.1730

Now we have D² DX² of the sin N π/ A × X DX.1734

What you will end up with is, we have 2 H ̅² N² π²/ A × A² × the integral from 0 to A of sin² N π/ A X DX.1746

The derivative of sin is cos, the derivative of cos is negative sin.1772

The negative and negative cancel to give me a positive.1778

The derivative of sin of this thing, that constant comes out once, the constant comes out twice.1780

You are going to get N² π²/ A².1786

Here is the N² π²/ A².1788

We have H ̅ 2/ A, H ̅ 2/ A.1791

That is all where this comes from.1794

Now when I do this, I’m going to get the following.1796

I'm going to get 2 H ̅² N² π²/ A × A² × A / 2.1801

In other words, when I solve this integral I'm going to end up with A/ 2.1815

To again, just use the table, use mathematical software whatever it is that you need to do in order to integrate it.1822

A cancels with A, 2 cancels with 2, and what I am left with is the average value of the momentum² is going to equal H ̅² N² π²/ A².1828

There we have that.1853

We know that the average value of the momentum = 0 and we know that1858

the average value of the second moment of the momentum = H ̅² N² π²/ A².1864

Now, the variance = this² - that².1875

This is just 0 so this goes to 0.1885

I'm left with P = H ̅² N² π²/ A²,1887

Which implies that the σ of the P = H ̅ N π/ A.1900

There we have it.1908

We have σ P, we have the σ X, let us see what we can do.1912

Let us go back to blue here.1920

Both σ P standard deviation and σ P² variance, are measures of the extent of deviation from the mean value.1926

That is what they represent.1963

You have a certain set of data.1965

That certain set of data has an average value.1966

The standard deviation is a numerical measure of the extent to which all of the data as a whole deviate from that mean value.1968

The standard deviation of the mean value.1981

Therefore, we can interpret σ P as a measure of the uncertainty involved in the measurement.1985

You have a set of data, that set of data has an average value.2032

If I take any particular measurement that I have made and if I subtract from it the average value, if I take the absolute value,2039

Basically, it is the difference between any one measurement and the mean value of all the measurements,2049

there is going to be some sort of a gap there.2055

That gap is what the variance is.2057

It is a numerical measure of the actual deviation from the mean value.2060

For example, if I had a bunch of values and a mean value happens to be 5 and if I take some random data point 5.3.2068

That 5.3 and the 5, there is a difference of 0.3.2076

There is some sort of an error if you will, in that measurement.2081

The standard deviation, it is a measure of the extent to which any given measurement actually deviates from the average value.2086

We are going to interpret it as the uncertainty in any given measurement.2094

That is what we are going to do.2099

Let us go ahead and take the variance of our position σ sub X.2102

We said that was equal to A²/ 12 - A²/ 2 N² π².2121

I’m going to write this in a way that makes it a little bit more convenient.2132

I’m going to write this is A²/ 4 π² N² × N² π²/ 3 – 2.2134

I also have the variance of the momentum which is H ̅² N² π²/ A².2147

Notice, as far as the variance with a measure of the standard deviation,2157

measure of the uncertainty and as far as the position is concerned, everything else here is a constant.2164

It is a function of A but it is A in the numerator.2173

For the uncertainty and the momentum, A is in the denominator.2178

This is important.2184

Watch what happens here.2186

Let me go ahead and write it actually on the next page again.2189

Σ² of X = A²/ 4 π² N² × N² π²/ 3 – 2.2195

And then I have over here, I have the variance of the momentum which is equal to H ̅² N² π²/ A².2208

Here is A is in the numerator, here A is in the denominator.2219

Here is what happens.2223

As A increases, the σ sub X also increases.2232

Σ sub X², I just took the square root of this, it also increases.2240

The σ sub P, as A increases the σ sub P decreases.2248

As A decreases, the uncertainty in the position decreases but the uncertainty on the momentum increases.2258

Basically, if I have some interval from 0 to A, if I now make a bigger.2269

In other words, if I give more room for the particle to be my uncertainty in where the particle is, goes up.2274

Now, it is very delocalize.2284

It could be anywhere from 0 to A.2287

It is a huge area but mathematically, as A gets bigger, the uncertainty and the momentum drops.2289

Now, I can be very certain about what the momentum is.2295

If I make A smaller, I’m actually localizing the particle.2298

I'm saying the particle is there.2302

If I’m making A smaller and smaller, my uncertainty in where the particle actually is become smaller2305

but the problem is as A gets smaller, this whole quantity gets bigger.2312

The momentum of the particle now I can say anything about the momentum.2318

This is the relationship and it is based on the mathematics like that.2322

Let us go ahead and take the product of the two.2328

Σ X σ sub P = this is going to be A/ 2 π N × N² π²/ 3 – 2 ^½ × H ̅ N π/ A.2331

When I multiply the two, the A cancels with the A.2360

N cancels the N, the π cancels the π.2368

And I'm left with the following.2374

The σ X σ P = H ̅/ 2 × N² π²/ 3 - 2 all to the ½.2376

This right here is greater than H ̅/ 2.2395

The reason is because this term right here, because N² π²/ 3 -2¹/2 is always greater than 1.2402

Because it is greater than 1, this is always to be going to be greater than this.2416

We have it.2420

Any uncertainty in the measurement of the position, multiplied by the uncertainty2423

in the measurement of the momentum is always going to be greater than H ̅/ 2.2428

In other words, if I become more certain of the position, I become less certain of the momentum.2433

As I become less certain of the position, I become more certain of the momentum.2445

Maximizing and minimizing the relationship between them is this.2451

This is an expression of the uncertainty principle.2455

When it comes to position an momentum, I can only maximize.2457

If I maximize one, I minimize the other.2463

If I minimize one, I maximize the other.2465

There is a point, I have to come to some sort of compromise.2467

I have to decide what is important to me.2470

Do I want to know more about the position?2472

Do I want to know more about the momentum?2473

Or do I want to know a little bit about both?2475

This expresses the relationship between the uncertainties in these measurements.2477

Again, let me write final page here.2485

As I increase the space over which the particle can move, the uncertainty in where the particle is rises.2490

But the uncertainty of the particle’s momentum drops, vice versa.2546

As I decrease the space over which particle can roam.2569

In other words, as I can find the particle more and more, as I can find the particle to a smaller region,2573

I have a better idea of where the particle is.2599

In other words, my uncertainty of my particle’s position drops but I have a better idea of where the particle is.2611

I have a worse idea of the particle’s momentum.2634

The uncertainty in the position and the uncertainty of the momentum are inversely related.2651

Once again, the uncertainty in the particle’s position × uncertainty in the particle’s momentum is going to be greater than H/2.2656

This is one of the statements of the uncertainty principle.2666

In the last couple of lessons we have been just been going over material and presenting theory, we have not done any problems.2673

I want you to know that the problem sets are going to be in several lessons to come.2681

I’m going to be doing them all at once.2687

The nature of the material was such that with quantum mechanics, it is true that you can present a little bit of the topic and do a problem.2689

I think it is better to just go ahead and present a certain amount of theory and then go back and then do a whole bunch of problems,2697

Because I’m given a chance to actually review the material as we are doing the problems.2707

If you are wondering where the problems are, do not worry we are going to be doing it and absolute ton of them and a variety of them.2712

Do not worry about that.2718

Thank you so much for joining us here at www.educator.com.2721

We will see you next time, bye.2722

Educator®

Please sign in for full access to this lesson.

Sign-InORCreate Account

Enter your Sign-on user name and password.

Forgot password?

Start Learning Now

Our free lessons will get you started (Adobe Flash® required).
Get immediate access to our entire library.

Sign up for Educator.com

Membership Overview

  • Unlimited access to our entire library of courses.
  • Search and jump to exactly what you want to learn.
  • *Ask questions and get answers from the community and our teachers!
  • Practice questions with step-by-step solutions.
  • Download lesson files for programming and software training practice.
  • Track your course viewing progress.
  • Download lecture slides for taking notes.

Use this form or mail us to .

For support articles click here.