Enter your Sign on user name and password.

Forgot password?
Sign In | Subscribe
Start learning today, and be successful in your academic & professional career. Start Today!

Use Chrome browser to play professor video
Raffi Hovasapian

Raffi Hovasapian

Entropy

Slide Duration:

Table of Contents

I. Classical Thermodynamics Preliminaries
The Ideal Gas Law

46m 5s

Intro
0:00
Course Overview
0:16
Thermodynamics & Classical Thermodynamics
0:17
Structure of the Course
1:30
The Ideal Gas Law
3:06
Ideal Gas Law: PV=nRT
3:07
Units of Pressure
4:51
Manipulating Units
5:52
Atmosphere : atm
8:15
Millimeter of Mercury: mm Hg
8:48
SI Unit of Volume
9:32
SI Unit of Temperature
10:32
Value of R (Gas Constant): Pv = nRT
10:51
Extensive and Intensive Variables (Properties)
15:23
Intensive Property
15:52
Extensive Property
16:30
Example: Extensive and Intensive Variables
18:20
Ideal Gas Law
19:24
Ideal Gas Law with Intensive Variables
19:25
Graphing Equations
23:51
Hold T Constant & Graph P vs. V
23:52
Hold P Constant & Graph V vs. T
31:08
Hold V Constant & Graph P vs. T
34:38
Isochores or Isometrics
37:08
More on the V vs. T Graph
39:46
More on the P vs. V Graph
42:06
Ideal Gas Law at Low Pressure & High Temperature
44:26
Ideal Gas Law at High Pressure & Low Temperature
45:16
Math Lesson 1: Partial Differentiation

46m 2s

Intro
0:00
Math Lesson 1: Partial Differentiation
0:38
Overview
0:39
Example I
3:00
Example II
6:33
Example III
9:52
Example IV
17:26
Differential & Derivative
21:44
What Does It Mean?
21:45
Total Differential (or Total Derivative)
30:16
Net Change in Pressure (P)
33:58
General Equation for Total Differential
38:12
Example 5: Total Differential
39:28
II. Energy
Energy & the First Law I

1h 6m 45s

Intro
0:00
Properties of Thermodynamic State
1:38
Big Picture: 3 Properties of Thermodynamic State
1:39
Enthalpy & Free Energy
3:30
Associated Law
4:40
Energy & the First Law of Thermodynamics
7:13
System & Its Surrounding Separated by a Boundary
7:14
In Other Cases the Boundary is Less Clear
10:47
State of a System
12:37
State of a System
12:38
Change in State
14:00
Path for a Change in State
14:57
Example: State of a System
15:46
Open, Close, and Isolated System
18:26
Open System
18:27
Closed System
19:02
Isolated System
19:22
Important Questions
20:38
Important Questions
20:39
Work & Heat
22:50
Definition of Work
23:33
Properties of Work
25:34
Definition of Heat
32:16
Properties of Heat
34:49
Experiment #1
42:23
Experiment #2
47:00
More on Work & Heat
54:50
More on Work & Heat
54:51
Conventions for Heat & Work
1:00:50
Convention for Heat
1:02:40
Convention for Work
1:04:24
Schematic Representation
1:05:00
Energy & the First Law II

1h 6m 33s

Intro
0:00
The First Law of Thermodynamics
0:53
The First Law of Thermodynamics
0:54
Example 1: What is the Change in Energy of the System & Surroundings?
8:53
Energy and The First Law II, cont.
11:55
The Energy of a System Changes in Two Ways
11:56
Systems Possess Energy, Not Heat or Work
12:45
Scenario 1
16:00
Scenario 2
16:46
State Property, Path Properties, and Path Functions
18:10
Pressure-Volume Work
22:36
When a System Changes
22:37
Gas Expands
24:06
Gas is Compressed
25:13
Pressure Volume Diagram: Analyzing Expansion
27:17
What if We do the Same Expansion in Two Stages?
35:22
Multistage Expansion
43:58
General Expression for the Pressure-Volume Work
46:59
Upper Limit of Isothermal Expansion
50:00
Expression for the Work Done in an Isothermal Expansion
52:45
Example 2: Find an Expression for the Maximum Work Done by an Ideal Gas upon Isothermal Expansion
56:18
Example 3: Calculate the External Pressure and Work Done
58:50
Energy & the First Law III

1h 2m 17s

Intro
0:00
Compression
0:20
Compression Overview
0:34
Single-stage compression vs. 2-stage Compression
2:16
Multi-stage Compression
8:40
Example I: Compression
14:47
Example 1: Single-stage Compression
14:47
Example 1: 2-stage Compression
20:07
Example 1: Absolute Minimum
26:37
More on Compression
32:55
Isothermal Expansion & Compression
32:56
External & Internal Pressure of the System
35:18
Reversible & Irreversible Processes
37:32
Process 1: Overview
38:57
Process 2: Overview
39:36
Process 1: Analysis
40:42
Process 2: Analysis
45:29
Reversible Process
50:03
Isothermal Expansion and Compression
54:31
Example II: Reversible Isothermal Compression of a Van der Waals Gas
58:10
Example 2: Reversible Isothermal Compression of a Van der Waals Gas
58:11
Changes in Energy & State: Constant Volume

1h 4m 39s

Intro
0:00
Recall
0:37
State Function & Path Function
0:38
First Law
2:11
Exact & Inexact Differential
2:12
Where Does (∆U = Q - W) or dU = dQ - dU Come from?
8:54
Cyclic Integrals of Path and State Functions
8:55
Our Empirical Experience of the First Law
12:31
∆U = Q - W
18:42
Relations between Changes in Properties and Energy
22:24
Relations between Changes in Properties and Energy
22:25
Rate of Change of Energy per Unit Change in Temperature
29:54
Rate of Change of Energy per Unit Change in Volume at Constant Temperature
32:39
Total Differential Equation
34:38
Constant Volume
41:08
If Volume Remains Constant, then dV = 0
41:09
Constant Volume Heat Capacity
45:22
Constant Volume Integrated
48:14
Increase & Decrease in Energy of the System
54:19
Example 1: ∆U and Qv
57:43
Important Equations
1:02:06
Joule's Experiment

16m 50s

Intro
0:00
Joule's Experiment
0:09
Joule's Experiment
1:20
Interpretation of the Result
4:42
The Gas Expands Against No External Pressure
4:43
Temperature of the Surrounding Does Not Change
6:20
System & Surrounding
7:04
Joule's Law
10:44
More on Joule's Experiment
11:08
Later Experiment
12:38
Dealing with the 2nd Law & Its Mathematical Consequences
13:52
Changes in Energy & State: Constant Pressure

43m 40s

Intro
0:00
Changes in Energy & State: Constant Pressure
0:20
Integrating with Constant Pressure
0:35
Defining the New State Function
6:24
Heat & Enthalpy of the System at Constant Pressure
8:54
Finding ∆U
12:10
dH
15:28
Constant Pressure Heat Capacity
18:08
Important Equations
25:44
Important Equations
25:45
Important Equations at Constant Pressure
27:32
Example I: Change in Enthalpy (∆H)
28:53
Example II: Change in Internal Energy (∆U)
34:19
The Relationship Between Cp & Cv

32m 23s

Intro
0:00
The Relationship Between Cp & Cv
0:21
For a Constant Volume Process No Work is Done
0:22
For a Constant Pressure Process ∆V ≠ 0, so Work is Done
1:16
The Relationship Between Cp & Cv: For an Ideal Gas
3:26
The Relationship Between Cp & Cv: In Terms of Molar heat Capacities
5:44
Heat Capacity Can Have an Infinite # of Values
7:14
The Relationship Between Cp & Cv
11:20
When Cp is Greater than Cv
17:13
2nd Term
18:10
1st Term
19:20
Constant P Process: 3 Parts
22:36
Part 1
23:45
Part 2
24:10
Part 3
24:46
Define : γ = (Cp/Cv)
28:06
For Gases
28:36
For Liquids
29:04
For an Ideal Gas
30:46
The Joule Thompson Experiment

39m 15s

Intro
0:00
General Equations
0:13
Recall
0:14
How Does Enthalpy of a System Change Upon a Unit Change in Pressure?
2:58
For Liquids & Solids
12:11
For Ideal Gases
14:08
For Real Gases
16:58
The Joule Thompson Experiment
18:37
The Joule Thompson Experiment Setup
18:38
The Flow in 2 Stages
22:54
Work Equation for the Joule Thompson Experiment
24:14
Insulated Pipe
26:33
Joule-Thompson Coefficient
29:50
Changing Temperature & Pressure in Such a Way that Enthalpy Remains Constant
31:44
Joule Thompson Inversion Temperature
36:26
Positive & Negative Joule-Thompson Coefficient
36:27
Joule Thompson Inversion Temperature
37:22
Inversion Temperature of Hydrogen Gas
37:59
Adiabatic Changes of State

35m 52s

Intro
0:00
Adiabatic Changes of State
0:10
Adiabatic Changes of State
0:18
Work & Energy in an Adiabatic Process
3:44
Pressure-Volume Work
7:43
Adiabatic Changes for an Ideal Gas
9:23
Adiabatic Changes for an Ideal Gas
9:24
Equation for a Fixed Change in Volume
11:20
Maximum & Minimum Values of Temperature
14:20
Adiabatic Path
18:08
Adiabatic Path Diagram
18:09
Reversible Adiabatic Expansion
21:54
Reversible Adiabatic Compression
22:34
Fundamental Relationship Equation for an Ideal Gas Under Adiabatic Expansion
25:00
More on the Equation
28:20
Important Equations
32:16
Important Adiabatic Equation
32:17
Reversible Adiabatic Change of State Equation
33:02
III. Energy Example Problems
1st Law Example Problems I

42m 40s

Intro
0:00
Fundamental Equations
0:56
Work
2:40
Energy (1st Law)
3:10
Definition of Enthalpy
3:44
Heat capacity Definitions
4:06
The Mathematics
6:35
Fundamental Concepts
8:13
Isothermal
8:20
Adiabatic
8:54
Isobaric
9:25
Isometric
9:48
Ideal Gases
10:14
Example I
12:08
Example I: Conventions
12:44
Example I: Part A
15:30
Example I: Part B
18:24
Example I: Part C
19:53
Example II: What is the Heat Capacity of the System?
21:49
Example III: Find Q, W, ∆U & ∆H for this Change of State
24:15
Example IV: Find Q, W, ∆U & ∆H
31:37
Example V: Find Q, W, ∆U & ∆H
38:20
1st Law Example Problems II

1h 23s

Intro
0:00
Example I
0:11
Example I: Finding ∆U
1:49
Example I: Finding W
6:22
Example I: Finding Q
11:23
Example I: Finding ∆H
16:09
Example I: Summary
17:07
Example II
21:16
Example II: Finding W
22:42
Example II: Finding ∆H
27:48
Example II: Finding Q
30:58
Example II: Finding ∆U
31:30
Example III
33:33
Example III: Finding ∆U, Q & W
33:34
Example III: Finding ∆H
38:07
Example IV
41:50
Example IV: Finding ∆U
41:51
Example IV: Finding ∆H
45:42
Example V
49:31
Example V: Finding W
49:32
Example V: Finding ∆U
55:26
Example V: Finding Q
56:26
Example V: Finding ∆H
56:55
1st Law Example Problems III

44m 34s

Intro
0:00
Example I
0:15
Example I: Finding the Final Temperature
3:40
Example I: Finding Q
8:04
Example I: Finding ∆U
8:25
Example I: Finding W
9:08
Example I: Finding ∆H
9:51
Example II
11:27
Example II: Finding the Final Temperature
11:28
Example II: Finding ∆U
21:25
Example II: Finding W & Q
22:14
Example II: Finding ∆H
23:03
Example III
24:38
Example III: Finding the Final Temperature
24:39
Example III: Finding W, ∆U, and Q
27:43
Example III: Finding ∆H
28:04
Example IV
29:23
Example IV: Finding ∆U, W, and Q
25:36
Example IV: Finding ∆H
31:33
Example V
32:24
Example V: Finding the Final Temperature
33:32
Example V: Finding ∆U
39:31
Example V: Finding W
40:17
Example V: First Way of Finding ∆H
41:10
Example V: Second Way of Finding ∆H
42:10
Thermochemistry Example Problems

59m 7s

Intro
0:00
Example I: Find ∆H° for the Following Reaction
0:42
Example II: Calculate the ∆U° for the Reaction in Example I
5:33
Example III: Calculate the Heat of Formation of NH₃ at 298 K
14:23
Example IV
32:15
Part A: Calculate the Heat of Vaporization of Water at 25°C
33:49
Part B: Calculate the Work Done in Vaporizing 2 Mols of Water at 25°C Under a Constant Pressure of 1 atm
35:26
Part C: Find ∆U for the Vaporization of Water at 25°C
41:00
Part D: Find the Enthalpy of Vaporization of Water at 100°C
43:12
Example V
49:24
Part A: Constant Temperature & Increasing Pressure
50:25
Part B: Increasing temperature & Constant Pressure
56:20
IV. Entropy
Entropy

49m 16s

Intro
0:00
Entropy, Part 1
0:16
Coefficient of Thermal Expansion (Isobaric)
0:38
Coefficient of Compressibility (Isothermal)
1:25
Relative Increase & Relative Decrease
2:16
More on α
4:40
More on κ
8:38
Entropy, Part 2
11:04
Definition of Entropy
12:54
Differential Change in Entropy & the Reversible Path
20:08
State Property of the System
28:26
Entropy Changes Under Isothermal Conditions
35:00
Recall: Heating Curve
41:05
Some Phase Changes Take Place Under Constant Pressure
44:07
Example I: Finding ∆S for a Phase Change
46:05
Math Lesson II

33m 59s

Intro
0:00
Math Lesson II
0:46
Let F(x,y) = x²y³
0:47
Total Differential
3:34
Total Differential Expression
6:06
Example 1
9:24
More on Math Expression
13:26
Exact Total Differential Expression
13:27
Exact Differentials
19:50
Inexact Differentials
20:20
The Cyclic Rule
21:06
The Cyclic Rule
21:07
Example 2
27:58
Entropy As a Function of Temperature & Volume

54m 37s

Intro
0:00
Entropy As a Function of Temperature & Volume
0:14
Fundamental Equation of Thermodynamics
1:16
Things to Notice
9:10
Entropy As a Function of Temperature & Volume
14:47
Temperature-dependence of Entropy
24:00
Example I
26:19
Entropy As a Function of Temperature & Volume, Cont.
31:55
Volume-dependence of Entropy at Constant Temperature
31:56
Differentiate with Respect to Temperature, Holding Volume Constant
36:16
Recall the Cyclic Rule
45:15
Summary & Recap
46:47
Fundamental Equation of Thermodynamics
46:48
For Entropy as a Function of Temperature & Volume
47:18
The Volume-dependence of Entropy for Liquids & Solids
52:52
Entropy as a Function of Temperature & Pressure

31m 18s

Intro
0:00
Entropy as a Function of Temperature & Pressure
0:17
Entropy as a Function of Temperature & Pressure
0:18
Rewrite the Total Differential
5:54
Temperature-dependence
7:08
Pressure-dependence
9:04
Differentiate with Respect to Pressure & Holding Temperature Constant
9:54
Differentiate with Respect to Temperature & Holding Pressure Constant
11:28
Pressure-Dependence of Entropy for Liquids & Solids
18:45
Pressure-Dependence of Entropy for Liquids & Solids
18:46
Example I: ∆S of Transformation
26:20
Summary of Entropy So Far

23m 6s

Intro
0:00
Summary of Entropy So Far
0:43
Defining dS
1:04
Fundamental Equation of Thermodynamics
3:51
Temperature & Volume
6:04
Temperature & Pressure
9:10
Two Important Equations for How Entropy Behaves
13:38
State of a System & Heat Capacity
15:34
Temperature-dependence of Entropy
19:49
Entropy Changes for an Ideal Gas

25m 42s

Intro
0:00
Entropy Changes for an Ideal Gas
1:10
General Equation
1:22
The Fundamental Theorem of Thermodynamics
2:37
Recall the Basic Total Differential Expression for S = S (T,V)
5:36
For a Finite Change in State
7:58
If Cv is Constant Over the Particular Temperature Range
9:05
Change in Entropy of an Ideal Gas as a Function of Temperature & Pressure
11:35
Change in Entropy of an Ideal Gas as a Function of Temperature & Pressure
11:36
Recall the Basic Total Differential expression for S = S (T, P)
15:13
For a Finite Change
18:06
Example 1: Calculate the ∆S of Transformation
22:02
V. Entropy Example Problems
Entropy Example Problems I

43m 39s

Intro
0:00
Entropy Example Problems I
0:24
Fundamental Equation of Thermodynamics
1:10
Entropy as a Function of Temperature & Volume
2:04
Entropy as a Function of Temperature & Pressure
2:59
Entropy For Phase Changes
4:47
Entropy For an Ideal Gas
6:14
Third Law Entropies
8:25
Statement of the Third Law
9:17
Entropy of the Liquid State of a Substance Above Its Melting Point
10:23
Entropy For the Gas Above Its Boiling Temperature
13:02
Entropy Changes in Chemical Reactions
15:26
Entropy Change at a Temperature Other than 25°C
16:32
Example I
19:31
Part A: Calculate ∆S for the Transformation Under Constant Volume
20:34
Part B: Calculate ∆S for the Transformation Under Constant Pressure
25:04
Example II: Calculate ∆S fir the Transformation Under Isobaric Conditions
27:53
Example III
30:14
Part A: Calculate ∆S if 1 Mol of Aluminum is taken from 25°C to 255°C
31:14
Part B: If S°₂₉₈ = 28.4 J/mol-K, Calculate S° for Aluminum at 498 K
33:23
Example IV: Calculate Entropy Change of Vaporization for CCl₄
34:19
Example V
35:41
Part A: Calculate ∆S of Transformation
37:36
Part B: Calculate ∆S of Transformation
39:10
Entropy Example Problems II

56m 44s

Intro
0:00
Example I
0:09
Example I: Calculate ∆U
1:28
Example I: Calculate Q
3:29
Example I: Calculate Cp
4:54
Example I: Calculate ∆S
6:14
Example II
7:13
Example II: Calculate W
8:14
Example II: Calculate ∆U
8:56
Example II: Calculate Q
10:18
Example II: Calculate ∆H
11:00
Example II: Calculate ∆S
12:36
Example III
18:47
Example III: Calculate ∆H
19:38
Example III: Calculate Q
21:14
Example III: Calculate ∆U
21:44
Example III: Calculate W
23:59
Example III: Calculate ∆S
24:55
Example IV
27:57
Example IV: Diagram
29:32
Example IV: Calculate W
32:27
Example IV: Calculate ∆U
36:36
Example IV: Calculate Q
38:32
Example IV: Calculate ∆H
39:00
Example IV: Calculate ∆S
40:27
Example IV: Summary
43:41
Example V
48:25
Example V: Diagram
49:05
Example V: Calculate W
50:58
Example V: Calculate ∆U
53:29
Example V: Calculate Q
53:44
Example V: Calculate ∆H
54:34
Example V: Calculate ∆S
55:01
Entropy Example Problems III

57m 6s

Intro
0:00
Example I: Isothermal Expansion
0:09
Example I: Calculate W
1:19
Example I: Calculate ∆U
1:48
Example I: Calculate Q
2:06
Example I: Calculate ∆H
2:26
Example I: Calculate ∆S
3:02
Example II: Adiabatic and Reversible Expansion
6:10
Example II: Calculate Q
6:48
Example II: Basic Equation for the Reversible Adiabatic Expansion of an Ideal Gas
8:12
Example II: Finding Volume
12:40
Example II: Finding Temperature
17:58
Example II: Calculate ∆U
19:53
Example II: Calculate W
20:59
Example II: Calculate ∆H
21:42
Example II: Calculate ∆S
23:42
Example III: Calculate the Entropy of Water Vapor
25:20
Example IV: Calculate the Molar ∆S for the Transformation
34:32
Example V
44:19
Part A: Calculate the Standard Entropy of Liquid Lead at 525°C
46:17
Part B: Calculate ∆H for the Transformation of Solid Lead from 25°C to Liquid Lead at 525°C
52:23
VI. Entropy and Probability
Entropy & Probability I

54m 35s

Intro
0:00
Entropy & Probability
0:11
Structural Model
3:05
Recall the Fundamental Equation of Thermodynamics
9:11
Two Independent Ways of Affecting the Entropy of a System
10:05
Boltzmann Definition
12:10
Omega
16:24
Definition of Omega
16:25
Energy Distribution
19:43
The Energy Distribution
19:44
In How Many Ways can N Particles be Distributed According to the Energy Distribution
23:05
Example I: In How Many Ways can the Following Distribution be Achieved
32:51
Example II: In How Many Ways can the Following Distribution be Achieved
33:51
Example III: In How Many Ways can the Following Distribution be Achieved
34:45
Example IV: In How Many Ways can the Following Distribution be Achieved
38:50
Entropy & Probability, cont.
40:57
More on Distribution
40:58
Example I Summary
41:43
Example II Summary
42:12
Distribution that Maximizes Omega
42:26
If Omega is Large, then S is Large
44:22
Two Constraints for a System to Achieve the Highest Entropy Possible
47:07
What Happened When the Energy of a System is Increased?
49:00
Entropy & Probability II

35m 5s

Intro
0:00
Volume Distribution
0:08
Distributing 2 Balls in 3 Spaces
1:43
Distributing 2 Balls in 4 Spaces
3:44
Distributing 3 Balls in 10 Spaces
5:30
Number of Ways to Distribute P Particles over N Spaces
6:05
When N is Much Larger than the Number of Particles P
7:56
Energy Distribution
25:04
Volume Distribution
25:58
Entropy, Total Entropy, & Total Omega Equations
27:34
Entropy, Total Entropy, & Total Omega Equations
27:35
VII. Spontaneity, Equilibrium, and the Fundamental Equations
Spontaneity & Equilibrium I

28m 42s

Intro
0:00
Reversible & Irreversible
0:24
Reversible vs. Irreversible
0:58
Defining Equation for Equilibrium
2:11
Defining Equation for Irreversibility (Spontaneity)
3:11
TdS ≥ dQ
5:15
Transformation in an Isolated System
11:22
Transformation in an Isolated System
11:29
Transformation at Constant Temperature
14:50
Transformation at Constant Temperature
14:51
Helmholtz Free Energy
17:26
Define: A = U - TS
17:27
Spontaneous Isothermal Process & Helmholtz Energy
20:20
Pressure-volume Work
22:02
Spontaneity & Equilibrium II

34m 38s

Intro
0:00
Transformation under Constant Temperature & Pressure
0:08
Transformation under Constant Temperature & Pressure
0:36
Define: G = U + PV - TS
3:32
Gibbs Energy
5:14
What Does This Say?
6:44
Spontaneous Process & a Decrease in G
14:12
Computing ∆G
18:54
Summary of Conditions
21:32
Constraint & Condition for Spontaneity
21:36
Constraint & Condition for Equilibrium
24:54
A Few Words About the Word Spontaneous
26:24
Spontaneous Does Not Mean Fast
26:25
Putting Hydrogen & Oxygen Together in a Flask
26:59
Spontaneous Vs. Not Spontaneous
28:14
Thermodynamically Favorable
29:03
Example: Making a Process Thermodynamically Favorable
29:34
Driving Forces for Spontaneity
31:35
Equation: ∆G = ∆H - T∆S
31:36
Always Spontaneous Process
32:39
Never Spontaneous Process
33:06
A Process That is Endothermic Can Still be Spontaneous
34:00
The Fundamental Equations of Thermodynamics

30m 50s

Intro
0:00
The Fundamental Equations of Thermodynamics
0:44
Mechanical Properties of a System
0:45
Fundamental Properties of a System
1:16
Composite Properties of a System
1:44
General Condition of Equilibrium
3:16
Composite Functions & Their Differentiations
6:11
dH = TdS + VdP
7:53
dA = -SdT - PdV
9:26
dG = -SdT + VdP
10:22
Summary of Equations
12:10
Equation #1
14:33
Equation #2
15:15
Equation #3
15:58
Equation #4
16:42
Maxwell's Relations
20:20
Maxwell's Relations
20:21
Isothermal Volume-Dependence of Entropy & Isothermal Pressure-Dependence of Entropy
26:21
The General Thermodynamic Equations of State

34m 6s

Intro
0:00
The General Thermodynamic Equations of State
0:10
Equations of State for Liquids & Solids
0:52
More General Condition for Equilibrium
4:02
General Conditions: Equation that Relates P to Functions of T & V
6:20
The Second Fundamental Equation of Thermodynamics
11:10
Equation 1
17:34
Equation 2
21:58
Recall the General Expression for Cp - Cv
28:11
For the Joule-Thomson Coefficient
30:44
Joule-Thomson Inversion Temperature
32:12
Properties of the Helmholtz & Gibbs Energies

39m 18s

Intro
0:00
Properties of the Helmholtz & Gibbs Energies
0:10
Equating the Differential Coefficients
1:34
An Increase in T; a Decrease in A
3:25
An Increase in V; a Decrease in A
6:04
We Do the Same Thing for G
8:33
Increase in T; Decrease in G
10:50
Increase in P; Decrease in G
11:36
Gibbs Energy of a Pure Substance at a Constant Temperature from 1 atm to any Other Pressure.
14:12
If the Substance is a Liquid or a Solid, then Volume can be Treated as a Constant
18:57
For an Ideal Gas
22:18
Special Note
24:56
Temperature Dependence of Gibbs Energy
27:02
Temperature Dependence of Gibbs Energy #1
27:52
Temperature Dependence of Gibbs Energy #2
29:01
Temperature Dependence of Gibbs Energy #3
29:50
Temperature Dependence of Gibbs Energy #4
34:50
The Entropy of the Universe & the Surroundings

19m 40s

Intro
0:00
Entropy of the Universe & the Surroundings
0:08
Equation: ∆G = ∆H - T∆S
0:20
Conditions of Constant Temperature & Pressure
1:14
Reversible Process
3:14
Spontaneous Process & the Entropy of the Universe
5:20
Tips for Remembering Everything
12:40
Verify Using Known Spontaneous Process
14:51
VIII. Free Energy Example Problems
Free Energy Example Problems I

54m 16s

Intro
0:00
Example I
0:11
Example I: Deriving a Function for Entropy (S)
2:06
Example I: Deriving a Function for V
5:55
Example I: Deriving a Function for H
8:06
Example I: Deriving a Function for U
12:06
Example II
15:18
Example III
21:52
Example IV
26:12
Example IV: Part A
26:55
Example IV: Part B
28:30
Example IV: Part C
30:25
Example V
33:45
Example VI
40:46
Example VII
43:43
Example VII: Part A
44:46
Example VII: Part B
50:52
Example VII: Part C
51:56
Free Energy Example Problems II

31m 17s

Intro
0:00
Example I
0:09
Example II
5:18
Example III
8:22
Example IV
12:32
Example V
17:14
Example VI
20:34
Example VI: Part A
21:04
Example VI: Part B
23:56
Example VI: Part C
27:56
Free Energy Example Problems III

45m

Intro
0:00
Example I
0:10
Example II
15:03
Example III
21:47
Example IV
28:37
Example IV: Part A
29:33
Example IV: Part B
36:09
Example IV: Part C
40:34
Three Miscellaneous Example Problems

58m 5s

Intro
0:00
Example I
0:41
Part A: Calculating ∆H
3:55
Part B: Calculating ∆S
15:13
Example II
24:39
Part A: Final Temperature of the System
26:25
Part B: Calculating ∆S
36:57
Example III
46:49
IX. Equation Review for Thermodynamics
Looking Back Over Everything: All the Equations in One Place

25m 20s

Intro
0:00
Work, Heat, and Energy
0:18
Definition of Work, Energy, Enthalpy, and Heat Capacities
0:23
Heat Capacities for an Ideal Gas
3:40
Path Property & State Property
3:56
Energy Differential
5:04
Enthalpy Differential
5:40
Joule's Law & Joule-Thomson Coefficient
6:23
Coefficient of Thermal Expansion & Coefficient of Compressibility
7:01
Enthalpy of a Substance at Any Other Temperature
7:29
Enthalpy of a Reaction at Any Other Temperature
8:01
Entropy
8:53
Definition of Entropy
8:54
Clausius Inequality
9:11
Entropy Changes in Isothermal Systems
9:44
The Fundamental Equation of Thermodynamics
10:12
Expressing Entropy Changes in Terms of Properties of the System
10:42
Entropy Changes in the Ideal Gas
11:22
Third Law Entropies
11:38
Entropy Changes in Chemical Reactions
14:02
Statistical Definition of Entropy
14:34
Omega for the Spatial & Energy Distribution
14:47
Spontaneity and Equilibrium
15:43
Helmholtz Energy & Gibbs Energy
15:44
Condition for Spontaneity & Equilibrium
16:24
Condition for Spontaneity with Respect to Entropy
17:58
The Fundamental Equations
18:30
Maxwell's Relations
19:04
The Thermodynamic Equations of State
20:07
Energy & Enthalpy Differentials
21:08
Joule's Law & Joule-Thomson Coefficient
21:59
Relationship Between Constant Pressure & Constant Volume Heat Capacities
23:14
One Final Equation - Just for Fun
24:04
X. Quantum Mechanics Preliminaries
Complex Numbers

34m 25s

Intro
0:00
Complex Numbers
0:11
Representing Complex Numbers in the 2-Dimmensional Plane
0:56
Addition of Complex Numbers
2:35
Subtraction of Complex Numbers
3:17
Multiplication of Complex Numbers
3:47
Division of Complex Numbers
6:04
r & θ
8:04
Euler's Formula
11:00
Polar Exponential Representation of the Complex Numbers
11:22
Example I
14:25
Example II
15:21
Example III
16:58
Example IV
18:35
Example V
20:40
Example VI
21:32
Example VII
25:22
Probability & Statistics

59m 57s

Intro
0:00
Probability & Statistics
1:51
Normalization Condition
1:52
Define the Mean or Average of x
11:04
Example I: Calculate the Mean of x
14:57
Example II: Calculate the Second Moment of the Data in Example I
22:39
Define the Second Central Moment or Variance
25:26
Define the Second Central Moment or Variance
25:27
1st Term
32:16
2nd Term
32:40
3rd Term
34:07
Continuous Distributions
35:47
Continuous Distributions
35:48
Probability Density
39:30
Probability Density
39:31
Normalization Condition
46:51
Example III
50:13
Part A - Show that P(x) is Normalized
51:40
Part B - Calculate the Average Position of the Particle Along the Interval
54:31
Important Things to Remember
58:24
SchrÓ§dinger Equation & Operators

42m 5s

Intro
0:00
Schrӧdinger Equation & Operators
0:16
Relation Between a Photon's Momentum & Its Wavelength
0:17
Louis de Broglie: Wavelength for Matter
0:39
Schrӧdinger Equation
1:19
Definition of Ψ(x)
3:31
Quantum Mechanics
5:02
Operators
7:51
Example I
10:10
Example II
11:53
Example III
14:24
Example IV
17:35
Example V
19:59
Example VI
22:39
Operators Can Be Linear or Non Linear
27:58
Operators Can Be Linear or Non Linear
28:34
Example VII
32:47
Example VIII
36:55
Example IX
39:29
SchrÓ§dinger Equation as an Eigenvalue Problem

30m 26s

Intro
0:00
Schrӧdinger Equation as an Eigenvalue Problem
0:10
Operator: Multiplying the Original Function by Some Scalar
0:11
Operator, Eigenfunction, & Eigenvalue
4:42
Example: Eigenvalue Problem
8:00
Schrӧdinger Equation as an Eigenvalue Problem
9:24
Hamiltonian Operator
15:09
Quantum Mechanical Operators
16:46
Kinetic Energy Operator
19:16
Potential Energy Operator
20:02
Total Energy Operator
21:12
Classical Point of View
21:48
Linear Momentum Operator
24:02
Example I
26:01
The Plausibility of the SchrÓ§dinger Equation

21m 34s

Intro
0:00
The Plausibility of the Schrӧdinger Equation
1:16
The Plausibility of the Schrӧdinger Equation, Part 1
1:17
The Plausibility of the Schrӧdinger Equation, Part 2
8:24
The Plausibility of the Schrӧdinger Equation, Part 3
13:45
XI. The Particle in a Box
The Particle in a Box Part I

56m 22s

Intro
0:00
Free Particle in a Box
0:28
Definition of a Free Particle in a Box
0:29
Amplitude of the Matter Wave
6:22
Intensity of the Wave
6:53
Probability Density
9:39
Probability that the Particle is Located Between x & dx
10:54
Probability that the Particle will be Found Between o & a
12:35
Wave Function & the Particle
14:59
Boundary Conditions
19:22
What Happened When There is No Constraint on the Particle
27:54
Diagrams
34:12
More on Probability Density
40:53
The Correspondence Principle
46:45
The Correspondence Principle
46:46
Normalizing the Wave Function
47:46
Normalizing the Wave Function
47:47
Normalized Wave Function & Normalization Constant
52:24
The Particle in a Box Part II

45m 24s

Intro
0:00
Free Particle in a Box
0:08
Free Particle in a 1-dimensional Box
0:09
For a Particle in a Box
3:57
Calculating Average Values & Standard Deviations
5:42
Average Value for the Position of a Particle
6:32
Standard Deviations for the Position of a Particle
10:51
Recall: Energy & Momentum are Represented by Operators
13:33
Recall: Schrӧdinger Equation in Operator Form
15:57
Average Value of a Physical Quantity that is Associated with an Operator
18:16
Average Momentum of a Free Particle in a Box
20:48
The Uncertainty Principle
24:42
Finding the Standard Deviation of the Momentum
25:08
Expression for the Uncertainty Principle
35:02
Summary of the Uncertainty Principle
41:28
The Particle in a Box Part III

48m 43s

Intro
0:00
2-Dimension
0:12
Dimension 2
0:31
Boundary Conditions
1:52
Partial Derivatives
4:27
Example I
6:08
The Particle in a Box, cont.
11:28
Operator Notation
12:04
Symbol for the Laplacian
13:50
The Equation Becomes…
14:30
Boundary Conditions
14:54
Separation of Variables
15:33
Solution to the 1-dimensional Case
16:31
Normalization Constant
22:32
3-Dimension
28:30
Particle in a 3-dimensional Box
28:31
In Del Notation
32:22
The Solutions
34:51
Expressing the State of the System for a Particle in a 3D Box
39:10
Energy Level & Degeneracy
43:35
XII. Postulates and Principles of Quantum Mechanics
The Postulates & Principles of Quantum Mechanics, Part I

46m 18s

Intro
0:00
Postulate I
0:31
Probability That The Particle Will Be Found in a Differential Volume Element
0:32
Example I: Normalize This Wave Function
11:30
Postulate II
18:20
Postulate II
18:21
Quantum Mechanical Operators: Position
20:48
Quantum Mechanical Operators: Kinetic Energy
21:57
Quantum Mechanical Operators: Potential Energy
22:42
Quantum Mechanical Operators: Total Energy
22:57
Quantum Mechanical Operators: Momentum
23:22
Quantum Mechanical Operators: Angular Momentum
23:48
More On The Kinetic Energy Operator
24:48
Angular Momentum
28:08
Angular Momentum Overview
28:09
Angular Momentum Operator in Quantum Mechanic
31:34
The Classical Mechanical Observable
32:56
Quantum Mechanical Operator
37:01
Getting the Quantum Mechanical Operator from the Classical Mechanical Observable
40:16
Postulate II, cont.
43:40
Quantum Mechanical Operators are Both Linear & Hermetical
43:41
The Postulates & Principles of Quantum Mechanics, Part II

39m 28s

Intro
0:00
Postulate III
0:09
Postulate III: Part I
0:10
Postulate III: Part II
5:56
Postulate III: Part III
12:43
Postulate III: Part IV
18:28
Postulate IV
23:57
Postulate IV
23:58
Postulate V
27:02
Postulate V
27:03
Average Value
36:38
Average Value
36:39
The Postulates & Principles of Quantum Mechanics, Part III

35m 32s

Intro
0:00
The Postulates & Principles of Quantum Mechanics, Part III
0:10
Equations: Linear & Hermitian
0:11
Introduction to Hermitian Property
3:36
Eigenfunctions are Orthogonal
9:55
The Sequence of Wave Functions for the Particle in a Box forms an Orthonormal Set
14:34
Definition of Orthogonality
16:42
Definition of Hermiticity
17:26
Hermiticity: The Left Integral
23:04
Hermiticity: The Right Integral
28:47
Hermiticity: Summary
34:06
The Postulates & Principles of Quantum Mechanics, Part IV

29m 55s

Intro
0:00
The Postulates & Principles of Quantum Mechanics, Part IV
0:09
Operators can be Applied Sequentially
0:10
Sample Calculation 1
2:41
Sample Calculation 2
5:18
Commutator of Two Operators
8:16
The Uncertainty Principle
19:01
In the Case of Linear Momentum and Position Operator
23:14
When the Commutator of Two Operators Equals to Zero
26:31
XIII. Postulates and Principles Example Problems, Including Particle in a Box
Example Problems I

54m 25s

Intro
0:00
Example I: Three Dimensional Box & Eigenfunction of The Laplacian Operator
0:37
Example II: Positions of a Particle in a 1-dimensional Box
15:46
Example III: Transition State & Frequency
29:29
Example IV: Finding a Particle in a 1-dimensional Box
35:03
Example V: Degeneracy & Energy Levels of a Particle in a Box
44:59
Example Problems II

46m 58s

Intro
0:00
Review
0:25
Wave Function
0:26
Normalization Condition
2:28
Observable in Classical Mechanics & Linear/Hermitian Operator in Quantum Mechanics
3:36
Hermitian
6:11
Eigenfunctions & Eigenvalue
8:20
Normalized Wave Functions
12:00
Average Value
13:42
If Ψ is Written as a Linear Combination
15:44
Commutator
16:45
Example I: Normalize The Wave Function
19:18
Example II: Probability of Finding of a Particle
22:27
Example III: Orthogonal
26:00
Example IV: Average Value of the Kinetic Energy Operator
30:22
Example V: Evaluate These Commutators
39:02
Example Problems III

44m 11s

Intro
0:00
Example I: Good Candidate for a Wave Function
0:08
Example II: Variance of the Energy
7:00
Example III: Evaluate the Angular Momentum Operators
15:00
Example IV: Real Eigenvalues Imposes the Hermitian Property on Operators
28:44
Example V: A Demonstration of Why the Eigenfunctions of Hermitian Operators are Orthogonal
35:33
XIV. The Harmonic Oscillator
The Harmonic Oscillator I

35m 33s

Intro
0:00
The Harmonic Oscillator
0:10
Harmonic Motion
0:11
Classical Harmonic Oscillator
4:38
Hooke's Law
8:18
Classical Harmonic Oscillator, cont.
10:33
General Solution for the Differential Equation
15:16
Initial Position & Velocity
16:05
Period & Amplitude
20:42
Potential Energy of the Harmonic Oscillator
23:20
Kinetic Energy of the Harmonic Oscillator
26:37
Total Energy of the Harmonic Oscillator
27:23
Conservative System
34:37
The Harmonic Oscillator II

43m 4s

Intro
0:00
The Harmonic Oscillator II
0:08
Diatomic Molecule
0:10
Notion of Reduced Mass
5:27
Harmonic Oscillator Potential & The Intermolecular Potential of a Vibrating Molecule
7:33
The Schrӧdinger Equation for the 1-dimensional Quantum Mechanic Oscillator
14:14
Quantized Values for the Energy Level
15:46
Ground State & the Zero-Point Energy
21:50
Vibrational Energy Levels
25:18
Transition from One Energy Level to the Next
26:42
Fundamental Vibrational Frequency for Diatomic Molecule
34:57
Example: Calculate k
38:01
The Harmonic Oscillator III

26m 30s

Intro
0:00
The Harmonic Oscillator III
0:09
The Wave Functions Corresponding to the Energies
0:10
Normalization Constant
2:34
Hermite Polynomials
3:22
First Few Hermite Polynomials
4:56
First Few Wave-Functions
6:37
Plotting the Probability Density of the Wave-Functions
8:37
Probability Density for Large Values of r
14:24
Recall: Odd Function & Even Function
19:05
More on the Hermite Polynomials
20:07
Recall: If f(x) is Odd
20:36
Average Value of x
22:31
Average Value of Momentum
23:56
XV. The Rigid Rotator
The Rigid Rotator I

41m 10s

Intro
0:00
Possible Confusion from the Previous Discussion
0:07
Possible Confusion from the Previous Discussion
0:08
Rotation of a Single Mass Around a Fixed Center
8:17
Rotation of a Single Mass Around a Fixed Center
8:18
Angular Velocity
12:07
Rotational Inertia
13:24
Rotational Frequency
15:24
Kinetic Energy for a Linear System
16:38
Kinetic Energy for a Rotational System
17:42
Rotating Diatomic Molecule
19:40
Rotating Diatomic Molecule: Part 1
19:41
Rotating Diatomic Molecule: Part 2
24:56
Rotating Diatomic Molecule: Part 3
30:04
Hamiltonian of the Rigid Rotor
36:48
Hamiltonian of the Rigid Rotor
36:49
The Rigid Rotator II

30m 32s

Intro
0:00
The Rigid Rotator II
0:08
Cartesian Coordinates
0:09
Spherical Coordinates
1:55
r
6:15
θ
6:28
φ
7:00
Moving a Distance 'r'
8:17
Moving a Distance 'r' in the Spherical Coordinates
11:49
For a Rigid Rotator, r is Constant
13:57
Hamiltonian Operator
15:09
Square of the Angular Momentum Operator
17:34
Orientation of the Rotation in Space
19:44
Wave Functions for the Rigid Rotator
20:40
The Schrӧdinger Equation for the Quantum Mechanic Rigid Rotator
21:24
Energy Levels for the Rigid Rotator
26:58
The Rigid Rotator III

35m 19s

Intro
0:00
The Rigid Rotator III
0:11
When a Rotator is Subjected to Electromagnetic Radiation
1:24
Selection Rule
2:13
Frequencies at Which Absorption Transitions Occur
6:24
Energy Absorption & Transition
10:54
Energy of the Individual Levels Overview
20:58
Energy of the Individual Levels: Diagram
23:45
Frequency Required to Go from J to J + 1
25:53
Using Separation Between Lines on the Spectrum to Calculate Bond Length
28:02
Example I: Calculating Rotational Inertia & Bond Length
29:18
Example I: Calculating Rotational Inertia
29:19
Example I: Calculating Bond Length
32:56
XVI. Oscillator and Rotator Example Problems
Example Problems I

33m 48s

Intro
0:00
Equations Review
0:11
Energy of the Harmonic Oscillator
0:12
Selection Rule
3:02
Observed Frequency of Radiation
3:27
Harmonic Oscillator Wave Functions
5:52
Rigid Rotator
7:26
Selection Rule for Rigid Rotator
9:15
Frequency of Absorption
9:35
Wave Numbers
10:58
Example I: Calculate the Reduced Mass of the Hydrogen Atom
11:44
Example II: Calculate the Fundamental Vibration Frequency & the Zero-Point Energy of This Molecule
13:37
Example III: Show That the Product of Two Even Functions is even
19:35
Example IV: Harmonic Oscillator
24:56
Example Problems II

46m 43s

Intro
0:00
Example I: Harmonic Oscillator
0:12
Example II: Harmonic Oscillator
23:26
Example III: Calculate the RMS Displacement of the Molecules
38:12
XVII. The Hydrogen Atom
The Hydrogen Atom I

40m

Intro
0:00
The Hydrogen Atom I
1:31
Review of the Rigid Rotator
1:32
Hydrogen Atom & the Coulomb Potential
2:50
Using the Spherical Coordinates
6:33
Applying This Last Expression to Equation 1
10:19
Angular Component & Radial Component
13:26
Angular Equation
15:56
Solution for F(φ)
19:32
Determine The Normalization Constant
20:33
Differential Equation for T(a)
24:44
Legendre Equation
27:20
Legendre Polynomials
31:20
The Legendre Polynomials are Mutually Orthogonal
35:40
Limits
37:17
Coefficients
38:28
The Hydrogen Atom II

35m 58s

Intro
0:00
Associated Legendre Functions
0:07
Associated Legendre Functions
0:08
First Few Associated Legendre Functions
6:39
s, p, & d Orbital
13:24
The Normalization Condition
15:44
Spherical Harmonics
20:03
Equations We Have Found
20:04
Wave Functions for the Angular Component & Rigid Rotator
24:36
Spherical Harmonics Examples
25:40
Angular Momentum
30:09
Angular Momentum
30:10
Square of the Angular Momentum
35:38
Energies of the Rigid Rotator
38:21
The Hydrogen Atom III

36m 18s

Intro
0:00
The Hydrogen Atom III
0:34
Angular Momentum is a Vector Quantity
0:35
The Operators Corresponding to the Three Components of Angular Momentum Operator: In Cartesian Coordinates
1:30
The Operators Corresponding to the Three Components of Angular Momentum Operator: In Spherical Coordinates
3:27
Z Component of the Angular Momentum Operator & the Spherical Harmonic
5:28
Magnitude of the Angular Momentum Vector
20:10
Classical Interpretation of Angular Momentum
25:22
Projection of the Angular Momentum Vector onto the xy-plane
33:24
The Hydrogen Atom IV

33m 55s

Intro
0:00
The Hydrogen Atom IV
0:09
The Equation to Find R( r )
0:10
Relation Between n & l
3:50
The Solutions for the Radial Functions
5:08
Associated Laguerre Polynomials
7:58
1st Few Associated Laguerre Polynomials
8:55
Complete Wave Function for the Atomic Orbitals of the Hydrogen Atom
12:24
The Normalization Condition
15:06
In Cartesian Coordinates
18:10
Working in Polar Coordinates
20:48
Principal Quantum Number
21:58
Angular Momentum Quantum Number
22:35
Magnetic Quantum Number
25:55
Zeeman Effect
30:45
The Hydrogen Atom V: Where We Are

51m 53s

Intro
0:00
The Hydrogen Atom V: Where We Are
0:13
Review
0:14
Let's Write Out ψ₂₁₁
7:32
Angular Momentum of the Electron
14:52
Representation of the Wave Function
19:36
Radial Component
28:02
Example: 1s Orbital
28:34
Probability for Radial Function
33:46
1s Orbital: Plotting Probability Densities vs. r
35:47
2s Orbital: Plotting Probability Densities vs. r
37:46
3s Orbital: Plotting Probability Densities vs. r
38:49
4s Orbital: Plotting Probability Densities vs. r
39:34
2p Orbital: Plotting Probability Densities vs. r
40:12
3p Orbital: Plotting Probability Densities vs. r
41:02
4p Orbital: Plotting Probability Densities vs. r
41:51
3d Orbital: Plotting Probability Densities vs. r
43:18
4d Orbital: Plotting Probability Densities vs. r
43:48
Example I: Probability of Finding an Electron in the 2s Orbital of the Hydrogen
45:40
The Hydrogen Atom VI

51m 53s

Intro
0:00
The Hydrogen Atom VI
0:07
Last Lesson Review
0:08
Spherical Component
1:09
Normalization Condition
2:02
Complete 1s Orbital Wave Function
4:08
1s Orbital Wave Function
4:09
Normalization Condition
6:28
Spherically Symmetric
16:00
Average Value
17:52
Example I: Calculate the Region of Highest Probability for Finding the Electron
21:19
2s Orbital Wave Function
25:32
2s Orbital Wave Function
25:33
Average Value
28:56
General Formula
32:24
The Hydrogen Atom VII

34m 29s

Intro
0:00
The Hydrogen Atom VII
0:12
p Orbitals
1:30
Not Spherically Symmetric
5:10
Recall That the Spherical Harmonics are Eigenfunctions of the Hamiltonian Operator
6:50
Any Linear Combination of These Orbitals Also Has The Same Energy
9:16
Functions of Real Variables
15:53
Solving for Px
16:50
Real Spherical Harmonics
21:56
Number of Nodes
32:56
XVIII. Hydrogen Atom Example Problems
Hydrogen Atom Example Problems I

43m 49s

Intro
0:00
Example I: Angular Momentum & Spherical Harmonics
0:20
Example II: Pair-wise Orthogonal Legendre Polynomials
16:40
Example III: General Normalization Condition for the Legendre Polynomials
25:06
Example IV: Associated Legendre Functions
32:13
The Hydrogen Atom Example Problems II

1h 1m 57s

Intro
0:00
Example I: Normalization & Pair-wise Orthogonal
0:13
Part 1: Normalized
0:43
Part 2: Pair-wise Orthogonal
16:53
Example II: Show Explicitly That the Following Statement is True for Any Integer n
27:10
Example III: Spherical Harmonics
29:26
Angular Momentum Cones
56:37
Angular Momentum Cones
56:38
Physical Interpretation of Orbital Angular Momentum in Quantum mechanics
1:00:16
The Hydrogen Atom Example Problems III

48m 33s

Intro
0:00
Example I: Show That ψ₂₁₁ is Normalized
0:07
Example II: Show That ψ₂₁₁ is Orthogonal to ψ₃₁₀
11:48
Example III: Probability That a 1s Electron Will Be Found Within 1 Bohr Radius of The Nucleus
18:35
Example IV: Radius of a Sphere
26:06
Example V: Calculate <r> for the 2s Orbital of the Hydrogen-like Atom
36:33
The Hydrogen Atom Example Problems IV

48m 33s

Intro
0:00
Example I: Probability Density vs. Radius Plot
0:11
Example II: Hydrogen Atom & The Coulombic Potential
14:16
Example III: Find a Relation Among <K>, <V>, & <E>
25:47
Example IV: Quantum Mechanical Virial Theorem
48:32
Example V: Find the Variance for the 2s Orbital
54:13
The Hydrogen Atom Example Problems V

48m 33s

Intro
0:00
Example I: Derive a Formula for the Degeneracy of a Given Level n
0:11
Example II: Using Linear Combinations to Represent the Spherical Harmonics as Functions of the Real Variables θ & φ
8:30
Example III: Using Linear Combinations to Represent the Spherical Harmonics as Functions of the Real Variables θ & φ
23:01
Example IV: Orbital Functions
31:51
XIX. Spin Quantum Number and Atomic Term Symbols
Spin Quantum Number: Term Symbols I

59m 18s

Intro
0:00
Quantum Numbers Specify an Orbital
0:24
n
1:10
l
1:20
m
1:35
4th Quantum Number: s
2:02
Spin Orbitals
7:03
Spin Orbitals
7:04
Multi-electron Atoms
11:08
Term Symbols
18:08
Russell-Saunders Coupling & The Atomic Term Symbol
18:09
Example: Configuration for C
27:50
Configuration for C: 1s²2s²2p²
27:51
Drawing Every Possible Arrangement
31:15
Term Symbols
45:24
Microstate
50:54
Spin Quantum Number: Term Symbols II

34m 54s

Intro
0:00
Microstates
0:25
We Started With 21 Possible Microstates
0:26
³P State
2:05
Microstates in ³P Level
5:10
¹D State
13:16
³P State
16:10
²P₂ State
17:34
³P₁ State
18:34
³P₀ State
19:12
9 Microstates in ³P are Subdivided
19:40
¹S State
21:44
Quicker Way to Find the Different Values of J for a Given Basic Term Symbol
22:22
Ground State
26:27
Hund's Empirical Rules for Specifying the Term Symbol for the Ground Electronic State
27:29
Hund's Empirical Rules: 1
28:24
Hund's Empirical Rules: 2
29:22
Hund's Empirical Rules: 3 - Part A
30:22
Hund's Empirical Rules: 3 - Part B
31:18
Example: 1s²2s²2p²
31:54
Spin Quantum Number: Term Symbols III

38m 3s

Intro
0:00
Spin Quantum Number: Term Symbols III
0:14
Deriving the Term Symbols for the p² Configuration
0:15
Table: MS vs. ML
3:57
¹D State
16:21
³P State
21:13
¹S State
24:48
J Value
25:32
Degeneracy of the Level
27:28
When Given r Electrons to Assign to n Equivalent Spin Orbitals
30:18
p² Configuration
32:51
Complementary Configurations
35:12
Term Symbols & Atomic Spectra

57m 49s

Intro
0:00
Lyman Series
0:09
Spectroscopic Term Symbols
0:10
Lyman Series
3:04
Hydrogen Levels
8:21
Hydrogen Levels
8:22
Term Symbols & Atomic Spectra
14:17
Spin-Orbit Coupling
14:18
Selection Rules for Atomic Spectra
21:31
Selection Rules for Possible Transitions
23:56
Wave Numbers for The Transitions
28:04
Example I: Calculate the Frequencies of the Allowed Transitions from (4d) ²D →(2p) ²P
32:23
Helium Levels
49:50
Energy Levels for Helium
49:51
Transitions & Spin Multiplicity
52:27
Transitions & Spin Multiplicity
52:28
XX. Term Symbols Example Problems
Example Problems I

1h 1m 20s

Intro
0:00
Example I: What are the Term Symbols for the np¹ Configuration?
0:10
Example II: What are the Term Symbols for the np² Configuration?
20:38
Example III: What are the Term Symbols for the np³ Configuration?
40:46
Example Problems II

56m 34s

Intro
0:00
Example I: Find the Term Symbols for the nd² Configuration
0:11
Example II: Find the Term Symbols for the 1s¹2p¹ Configuration
27:02
Example III: Calculate the Separation Between the Doublets in the Lyman Series for Atomic Hydrogen
41:41
Example IV: Calculate the Frequencies of the Lines for the (4d) ²D → (3p) ²P Transition
48:53
XXI. Equation Review for Quantum Mechanics
Quantum Mechanics: All the Equations in One Place

18m 24s

Intro
0:00
Quantum Mechanics Equations
0:37
De Broglie Relation
0:38
Statistical Relations
1:00
The Schrӧdinger Equation
1:50
The Particle in a 1-Dimensional Box of Length a
3:09
The Particle in a 2-Dimensional Box of Area a x b
3:48
The Particle in a 3-Dimensional Box of Area a x b x c
4:22
The Schrӧdinger Equation Postulates
4:51
The Normalization Condition
5:40
The Probability Density
6:51
Linear
7:47
Hermitian
8:31
Eigenvalues & Eigenfunctions
8:55
The Average Value
9:29
Eigenfunctions of Quantum Mechanics Operators are Orthogonal
10:53
Commutator of Two Operators
10:56
The Uncertainty Principle
11:41
The Harmonic Oscillator
13:18
The Rigid Rotator
13:52
Energy of the Hydrogen Atom
14:30
Wavefunctions, Radial Component, and Associated Laguerre Polynomial
14:44
Angular Component or Spherical Harmonic
15:16
Associated Legendre Function
15:31
Principal Quantum Number
15:43
Angular Momentum Quantum Number
15:50
Magnetic Quantum Number
16:21
z-component of the Angular Momentum of the Electron
16:53
Atomic Spectroscopy: Term Symbols
17:14
Atomic Spectroscopy: Selection Rules
18:03
XXII. Molecular Spectroscopy
Spectroscopic Overview: Which Equation Do I Use & Why

50m 2s

Intro
0:00
Spectroscopic Overview: Which Equation Do I Use & Why
1:02
Lesson Overview
1:03
Rotational & Vibrational Spectroscopy
4:01
Frequency of Absorption/Emission
6:04
Wavenumbers in Spectroscopy
8:10
Starting State vs. Excited State
10:10
Total Energy of a Molecule (Leaving out the Electronic Energy)
14:02
Energy of Rotation: Rigid Rotor
15:55
Energy of Vibration: Harmonic Oscillator
19:08
Equation of the Spectral Lines
23:22
Harmonic Oscillator-Rigid Rotor Approximation (Making Corrections)
28:37
Harmonic Oscillator-Rigid Rotor Approximation (Making Corrections)
28:38
Vibration-Rotation Interaction
33:46
Centrifugal Distortion
36:27
Anharmonicity
38:28
Correcting for All Three Simultaneously
41:03
Spectroscopic Parameters
44:26
Summary
47:32
Harmonic Oscillator-Rigid Rotor Approximation
47:33
Vibration-Rotation Interaction
48:14
Centrifugal Distortion
48:20
Anharmonicity
48:28
Correcting for All Three Simultaneously
48:44
Vibration-Rotation

59m 47s

Intro
0:00
Vibration-Rotation
0:37
What is Molecular Spectroscopy?
0:38
Microwave, Infrared Radiation, Visible & Ultraviolet
1:53
Equation for the Frequency of the Absorbed Radiation
4:54
Wavenumbers
6:15
Diatomic Molecules: Energy of the Harmonic Oscillator
8:32
Selection Rules for Vibrational Transitions
10:35
Energy of the Rigid Rotator
16:29
Angular Momentum of the Rotator
21:38
Rotational Term F(J)
26:30
Selection Rules for Rotational Transition
29:30
Vibration Level & Rotational States
33:20
Selection Rules for Vibration-Rotation
37:42
Frequency of Absorption
39:32
Diagram: Energy Transition
45:55
Vibration-Rotation Spectrum: HCl
51:27
Vibration-Rotation Spectrum: Carbon Monoxide
54:30
Vibration-Rotation Interaction

46m 22s

Intro
0:00
Vibration-Rotation Interaction
0:13
Vibration-Rotation Spectrum: HCl
0:14
Bond Length & Vibrational State
4:23
Vibration Rotation Interaction
10:18
Case 1
12:06
Case 2
17:17
Example I: HCl Vibration-Rotation Spectrum
22:58
Rotational Constant for the 0 & 1 Vibrational State
26:30
Equilibrium Bond Length for the 1 Vibrational State
39:42
Equilibrium Bond Length for the 0 Vibrational State
42:13
Bₑ & αₑ
44:54
The Non-Rigid Rotator

29m 24s

Intro
0:00
The Non-Rigid Rotator
0:09
Pure Rotational Spectrum
0:54
The Selection Rules for Rotation
3:09
Spacing in the Spectrum
5:04
Centrifugal Distortion Constant
9:00
Fundamental Vibration Frequency
11:46
Observed Frequencies of Absorption
14:14
Difference between the Rigid Rotator & the Adjusted Rigid Rotator
16:51
Adjusted Rigid Rotator
21:31
Observed Frequencies of Absorption
26:26
The Anharmonic Oscillator

30m 53s

Intro
0:00
The Anharmonic Oscillator
0:09
Vibration-Rotation Interaction & Centrifugal Distortion
0:10
Making Corrections to the Harmonic Oscillator
4:50
Selection Rule for the Harmonic Oscillator
7:50
Overtones
8:40
True Oscillator
11:46
Harmonic Oscillator Energies
13:16
Anharmonic Oscillator Energies
13:33
Observed Frequencies of the Overtones
15:09
True Potential
17:22
HCl Vibrational Frequencies: Fundamental & First Few Overtones
21:10
Example I: Vibrational States & Overtones of the Vibrational Spectrum
22:42
Example I: Part A - First 4 Vibrational States
23:44
Example I: Part B - Fundamental & First 3 Overtones
25:31
Important Equations
27:45
Energy of the Q State
29:14
The Difference in Energy between 2 Successive States
29:23
Difference in Energy between 2 Spectral Lines
29:40
Electronic Transitions

1h 1m 33s

Intro
0:00
Electronic Transitions
0:16
Electronic State & Transition
0:17
Total Energy of the Diatomic Molecule
3:34
Vibronic Transitions
4:30
Selection Rule for Vibronic Transitions
9:11
More on Vibronic Transitions
10:08
Frequencies in the Spectrum
16:46
Difference of the Minima of the 2 Potential Curves
24:48
Anharmonic Zero-point Vibrational Energies of the 2 States
26:24
Frequency of the 0 → 0 Vibronic Transition
27:54
Making the Equation More Compact
29:34
Spectroscopic Parameters
32:11
Franck-Condon Principle
34:32
Example I: Find the Values of the Spectroscopic Parameters for the Upper Excited State
47:27
Table of Electronic States and Parameters
56:41
XXIII. Molecular Spectroscopy Example Problems
Example Problems I

33m 47s

Intro
0:00
Example I: Calculate the Bond Length
0:10
Example II: Calculate the Rotational Constant
7:39
Example III: Calculate the Number of Rotations
10:54
Example IV: What is the Force Constant & Period of Vibration?
16:31
Example V: Part A - Calculate the Fundamental Vibration Frequency
21:42
Example V: Part B - Calculate the Energies of the First Three Vibrational Levels
24:12
Example VI: Calculate the Frequencies of the First 2 Lines of the R & P Branches of the Vib-Rot Spectrum of HBr
26:28
Example Problems II

1h 1m 5s

Intro
0:00
Example I: Calculate the Frequencies of the Transitions
0:09
Example II: Specify Which Transitions are Allowed & Calculate the Frequencies of These Transitions
22:07
Example III: Calculate the Vibrational State & Equilibrium Bond Length
34:31
Example IV: Frequencies of the Overtones
49:28
Example V: Vib-Rot Interaction, Centrifugal Distortion, & Anharmonicity
54:47
Example Problems III

33m 31s

Intro
0:00
Example I: Part A - Derive an Expression for ∆G( r )
0:10
Example I: Part B - Maximum Vibrational Quantum Number
6:10
Example II: Part A - Derive an Expression for the Dissociation Energy of the Molecule
8:29
Example II: Part B - Equation for ∆G( r )
14:00
Example III: How Many Vibrational States are There for Br₂ before the Molecule Dissociates
18:16
Example IV: Find the Difference between the Two Minima of the Potential Energy Curves
20:57
Example V: Rotational Spectrum
30:51
XXIV. Statistical Thermodynamics
Statistical Thermodynamics: The Big Picture

1h 1m 15s

Intro
0:00
Statistical Thermodynamics: The Big Picture
0:10
Our Big Picture Goal
0:11
Partition Function (Q)
2:42
The Molecular Partition Function (q)
4:00
Consider a System of N Particles
6:54
Ensemble
13:22
Energy Distribution Table
15:36
Probability of Finding a System with Energy
16:51
The Partition Function
21:10
Microstate
28:10
Entropy of the Ensemble
30:34
Entropy of the System
31:48
Expressing the Thermodynamic Functions in Terms of The Partition Function
39:21
The Partition Function
39:22
Pi & U
41:20
Entropy of the System
44:14
Helmholtz Energy
48:15
Pressure of the System
49:32
Enthalpy of the System
51:46
Gibbs Free Energy
52:56
Heat Capacity
54:30
Expressing Q in Terms of the Molecular Partition Function (q)
59:31
Indistinguishable Particles
1:02:16
N is the Number of Particles in the System
1:03:27
The Molecular Partition Function
1:05:06
Quantum States & Degeneracy
1:07:46
Thermo Property in Terms of ln Q
1:10:09
Example: Thermo Property in Terms of ln Q
1:13:23
Statistical Thermodynamics: The Various Partition Functions I

47m 23s

Intro
0:00
Lesson Overview
0:19
Monatomic Ideal Gases
6:40
Monatomic Ideal Gases Overview
6:42
Finding the Parition Function of Translation
8:17
Finding the Parition Function of Electronics
13:29
Example: Na
17:42
Example: F
23:12
Energy Difference between the Ground State & the 1st Excited State
29:27
The Various Partition Functions for Monatomic Ideal Gases
32:20
Finding P
43:16
Going Back to U = (3/2) RT
46:20
Statistical Thermodynamics: The Various Partition Functions II

54m 9s

Intro
0:00
Diatomic Gases
0:16
Diatomic Gases
0:17
Zero-Energy Mark for Rotation
2:26
Zero-Energy Mark for Vibration
3:21
Zero-Energy Mark for Electronic
5:54
Vibration Partition Function
9:48
When Temperature is Very Low
14:00
When Temperature is Very High
15:22
Vibrational Component
18:48
Fraction of Molecules in the r Vibration State
21:00
Example: Fraction of Molecules in the r Vib. State
23:29
Rotation Partition Function
26:06
Heteronuclear & Homonuclear Diatomics
33:13
Energy & Heat Capacity
36:01
Fraction of Molecules in the J Rotational Level
39:20
Example: Fraction of Molecules in the J Rotational Level
40:32
Finding the Most Populated Level
44:07
Putting It All Together
46:06
Putting It All Together
46:07
Energy of Translation
51:51
Energy of Rotation
52:19
Energy of Vibration
52:42
Electronic Energy
53:35
XXV. Statistical Thermodynamics Example Problems
Example Problems I

48m 32s

Intro
0:00
Example I: Calculate the Fraction of Potassium Atoms in the First Excited Electronic State
0:10
Example II: Show That Each Translational Degree of Freedom Contributes R/2 to the Molar Heat Capacity
14:46
Example III: Calculate the Dissociation Energy
21:23
Example IV: Calculate the Vibrational Contribution to the Molar heat Capacity of Oxygen Gas at 500 K
25:46
Example V: Upper & Lower Quantum State
32:55
Example VI: Calculate the Relative Populations of the J=2 and J=1 Rotational States of the CO Molecule at 25°C
42:21
Example Problems II

57m 30s

Intro
0:00
Example I: Make a Plot of the Fraction of CO Molecules in Various Rotational Levels
0:10
Example II: Calculate the Ratio of the Translational Partition Function for Cl₂ and Br₂ at Equal Volume & Temperature
8:05
Example III: Vibrational Degree of Freedom & Vibrational Molar Heat Capacity
11:59
Example IV: Calculate the Characteristic Vibrational & Rotational temperatures for Each DOF
45:03
Loading...
This is a quick preview of the lesson. For full access, please Log In or Sign up.
For more information, please see full course syllabus of Physical Chemistry
  • Discussion

  • Download Lecture Slides

  • Table of Contents

  • Transcription

  • Related Books

Lecture Comments (4)

1 answer

Last reply by: Professor Hovasapian
Thu Dec 17, 2015 2:03 AM

Post by Jinhai Zhang on December 16, 2015

heating curve flat region is that the critical point?

1 answer

Last reply by: Professor Hovasapian
Wed Nov 11, 2015 4:32 AM

Post by Manish Shinde on November 10, 2015

under what condition would a substance have a melting point that is independent of pressure?


Entropy

Lecture Slides are screen-captured images of important points in the lecture. Students can download and print out these lecture slide images to do practice problems as well as take notes while watching the lecture.

  • Intro 0:00
  • Entropy, Part 1 0:16
    • Coefficient of Thermal Expansion (Isobaric)
    • Coefficient of Compressibility (Isothermal)
    • Relative Increase & Relative Decrease
    • More on α
    • More on κ
  • Entropy, Part 2 11:04
    • Definition of Entropy
    • Differential Change in Entropy & the Reversible Path
    • State Property of the System
    • Entropy Changes Under Isothermal Conditions
    • Recall: Heating Curve
    • Some Phase Changes Take Place Under Constant Pressure
  • Example I: Finding ∆S for a Phase Change 46:05

Transcription: Entropy

Hello and welcome back to www.educator.com and welcome back to Physical Chemistry.0000

We have been talking about energy and we did a bunch of problems concerning energy.0005

Today, we are going to talk about our next most important state property which is entropy.0010

Let us jump right on in.0015

Before we actually begin our discussion of entropy, there are a couple of quantities that I wanted to introduce mathematically.0019

And then from there we will begin our discussion of entropy.0025

These quantities tend to come up on a regular basis so I just want to introduce them here.0028

The first one is something called the coefficient of thermal expansion.0035

Let us go ahead and stick with black, the coefficient of thermal expansion.0039

And I'm going to put in here, in parentheses isobaric because this is done under constant pressure so0055

we designate it with a letter α = 1 / V × the partial derivative of V with respect to T at constant pressure.0068

I’m going to introduce them and I will go ahead and discuss what each one is individually.0079

The other one is called the coefficient of compressibility.0083

The coefficient of compressibility and this one is isothermal.0092

You will sometimes hear this we refer to as the coefficient of isothermal compressibility, it does not really matter.0107

The coefficient of the thermal expansion or coefficient of compressibility and this one we designate with the Greek letter kappa K.0113

Let us make this look a little bit more like a K here.0122

K = V the partial derivative of the volume with respect to a change in pressure under conditions of constant temperature.0125

Let us go ahead and define what these are.0137

Α the coefficient of thermal expansion.0139

Α is a relative increase in volume per unit increase in temperature.0146

That is what the partial derivative is.0176

It just says the rate of change in volume with respect to temperature.0177

If I increase the temperature, how is the volume going to increase?0180

That is exactly what this is.0184

This relative part, I will discuss it a little bit more in second but real quickly.0185

Relative means I’m dividing it by the initial volume I started off with.0189

I know that if I heat something up in general, it expands like cool it down it contracts.0192

This DV DT, if I keep the pressure constant it is just the rate of change of volume with respect to temperature.0200

It is a relative increase in volume per unit increase in temperature.0208

Kappa is the relative decrease in volume per unit increase in temperature.0212

If I increase the temperature, I’m sorry unit increase in pressure, the denominator is actually pressure.0241

Now this says, if I keep the change in volume with respect to pressure.0251

As I change the pressure, how is the volume changed?0259

If I keep the temperature constant of the system, if I increase the pressure of the system, what has to happen to volume has to decrease.0262

That is what this negative sign comes from, that is what this is saying.0271

kappa is a measure of the relative decrease in volume per unit increase in pressure.0273

Let us go ahead and talk a little bit more about what these are.0281

For α, the partial derivative part DV DT at constant P is a change in volume of the relative.0283

It is just a straight change in volume per unit change in the temperature.0300

However, we take this rate of change so we take this and we divide by the volume that we actually start off with.0315

We take this rate of change and divide by,0336

I will just go ahead and call it the volume.0349

We start with, before we make any change, before the change actually begins.0356

I’m just going to call the initial volume, just divide by the initial volume.0361

You start with a certain volume, you heat something up by the initial volume, I think it is better.0366

We do not have to write quite so much.0372

When we take the rate of change and when we divided by the initial volume that we start off with, this is what gives us.0379

What this does is tell us what percentage of the original volume, what percentage of the initial volume V does the change DV represent.0388

In other words, if I had 10 ml of something and if I heat that up and now the new volume is 11 ml.0434

The change is 1 ml, it went from 10 to 11 so that is 1.0442

If I divide that 1 by the initial amount that I started off with which was 10, I get 1/10.0446

So that gives me the percentage which means the volume increased by 10%.0452

What is nice about this, when we actually divide by the initial amount to get a relative increase,0456

instead of just a normal increase is it does not matter how much we start off with.0462

I start off with, in this first example that I gave I had 10 that went to 1, that is a 10% increase.0469

It is at 10 ml of the particular solution what if I had 100 ml of that solution?0475

That solution, it is the same solution so it is going to behave the same way.0480

That 100 ml, if I heat it up by the same amount, it is going to go up.0485

The change is going to go from 100 to 110 ml.0490

The 10 ml change divided by 100 that I start off with still gives me 10%.0494

This α, this relative increase, the change divided by the amount that I start off with gives me a percentage change0499

that eliminates the need to worry about how much is actually there.0508

That is why it is relative increase is more important, it is more valuable information that just the increase.0513

For K, this -DV DP at constant temperature this is just the normal change.0522

It is the change in volume per unit change in pressure.0541

Now by dividing this by the initial volume of the system, we recover the percentage of the initial volume that this – δ V represents.0553

When we take a particular change and we divide it by the initial amount that we started off with, it gives us a relative change.0604

That δ V represents how much of the original V, it gives us a percentage.0612

Notice, if we do so we have something like this.0618

In the case of kappa, we have this K = -1 / V DV DP this is a unit of volume.0623

The units of volume cancel which are left with is just a particular unit of pressure.0632

When you divide this, the change by the initial amount, you get a percentage, that is what it is saying.0639

It is saying a 100 ml of something will change by certain percentage.0645

It is giving it to you relative to the amount that you start off with.0649

That is really nice.0653

I will not go ahead and I will not say any more about that, I hope that actually makes sense.0658

Let us go ahead and now begin our discussion of entropy.0662

Entropy, I’m going to begin by just giving you the classical thermodynamic definition of entropy.0671

I'm not going to tell you what entropy is.0680

I’m not going to try to tell you what entropy is.0682

What we are going to do is we are going to give this mathematical definition and then we are going to star playing with this mathematical definition.0685

We are going to start investigating how entropy behaves and in the process of discovering how it behaves,0692

the hope is that it will give you a sense of what entropy is.0701

Entropy is a very elusive property.0704

To this day, I still think that the best way to think about entropy is sort of the way that0707

it was introduced you in General Chemistry, just qualitatively in general.0711

You want think about it as the disorder of the system.0716

How much general disorder is there in a system.0719

I still think that is the best qualitative way of actually looking at it.0722

Now later on, we will give a precise definition of what entropy is in terms of the distribution of energy and the distribution of particles within a given volume.0726

But the definition I’m about to give does not require that we actually think about something in terms of particles.0735

If I just have a block of steel, it does not matter what that block of steel is made of, it is still going to behave a certain way.0742

That is what our experiences are, our empirical experience of the thermodynamic behavior of things.0749

The definition I'm going to give is a purely empirical, purely thermodynamic definition.0755

We are going to use this definition and later we will define what entropy actually is.0761

We want to get a sense of how it behaves so if you come a little bit more comfortable with it.0766

I’m going to be writing all of these down so no worries.0772

The definition of entropy is this, DS = DQ reversible/ T.0775

Just take that as your basic definition.0788

Do not worry about it, do not clutter up your mind around that just yet.0792

It is absolutely fine, reversible T.0796

Let us go ahead and say some things about it.0802

Pretty much what I just said a moment ago.0806

We will not discuss what entropy which is designated with the letter S.0811

We will not discuss what entropy is right now.0827

For now, we will treat it mathematically which really is the best approach when dealing with entropy.0843

Entropy is one of those things that you can end up actually saying too much about in the beginning0856

and it ends up making it much more difficult to deal with.0860

If you just deal with the mathematically first, it actually makes it easier to understand.0863

For now, we will treat it mathematically and investigate how entropy behaves under various circumstances.0872

How entropy behaves, if we know how something behaves, we are going to get more comfortable with it.0887

It is going to give us a better sense of what it is and how entropy behaves under various circumstances.0893

And what I mean by various circumstances, under conditions of temperature pressure and volume.0902

What happens if I raise the temperature and raise the pressure but keep the volume constant, things like that.0907

How it behaves under different circumstances and a given system.0912

Knowing how this behaves will help us eventually understand what it is.0924

I apologize for all this writing, this is just the initial phase, we want to get a couple of things out of the way.0951

We will relate entropy to the spatial and energy distributions of the particles that actually make up the system.0964

We will do the later on.1009

Now, these particles which make up the system, they comprise the structural model.1011

They comprise a structural model, what I mean by that is we are actually telling you what the structural of particular piece of iron is or a particular gas in a flask is.1035

We are telling you what it is made of.1049

We are giving you what its structure is.1051

These particle make it comprises structural model.1055

The above definition the DS = DQ/ T.1058

I will write that out again.1064

The definition DS = DQ reversible/ T, it does not require a structural model, that is what is nice about it.1067

It does not require a structural model.1079

You do not need to know what a system is comprised of.1084

You do not need to know how it is constructed and the behavior is the same, this represents a behavior.1087

This is very convenient.1097

Entropy is an extensive state property like energy which we designated as U.1104

Extensive means it depends on how much is there.1129

If 2 mol of a particular gas has a change in entropy of 10, 4 mol of that is going to have a change in entropy of 20.1132

It just depends on how much is there.1140

Remember what state property is, a state property does not depend on the path that you take in order to get from one state to another.1143

Heat and work are not state properties.1152

How much heat and work is involved in a particular transformation depends on the path that you take.1155

Energy, it does not, all that matters is where you begin and where you end.1159

The path that you take absolutely does not matter.1165

The only thing that matters is the ending and the beginning.1167

That is a state property.1169

Entropy is a state property, volume is a state property, pressure is a state property, temperature is a state property.1171

Heat and work are not state properties.1177

As a state property or state function, DS is an exact differential.1181

It is very important, it is as profound consequences for its mathematics.1196

Let us talk about what the definition actually says.1205

I will write the definition again, I will write it up here for convenience DS = DQ reversible/ T.1208

It means exactly what it says.1217

The definitions says, if I make the differential change to a system in going from state 1 to state 2 and1227

going from state 1 to state 2 and I conduct this change along a reversible path.1256

That is why this RV is here, along a reversible path.1275

DQ which is a heat and that is gained or lost in that transformation, I will call it the heat withdrawn from the surroundings1290

because we generally view things from the point of view of the surroundings.1306

The heat withdrawn from the surroundings, it is not big deals it is the negative of we are withdrawing something from the surroundings.1310

We are putting it into the system.1321

It is just a question of perspective.1322

The heat withdrawn from the surroundings for the transformation divided by T the temperature at which you are conducting this transformation,1325

the temperature at which this differential change is taking place,1362

It gives me a numerical measure for the differential change and this so called state property as change in entropy.1387

Here is the definition.1416

This basically says, if I take a system from state 1 to state 2 and right now we are just worried about the differential change.1419

If I make a differential change, if going from state 1 to state 2, and if I conduct this change along a reversible path the amount of heat1427

that is gained or lost in this transformation depending on your perspective of the surroundings or system.1436

If I take that amount of heat and if I divide it by the temperature at which the transformation is taking place,1446

I get the change in entropy of the system or the surroundings depending on your particular point of view.1453

It is just a straight definition, this is really no different than the definition that was given for energy.1458

You remember the definition for energy was DU = DQ – DW.1464

Again, energy was expressed in terms of the heat and work that transpires during a transformation.1471

In the case of the state property, entropy it is only has nothing to do with the work, it is only related to the heat that transpires during this transformation.1478

It is really no different than what came before.1489

DU was expressed in terms of heat and work, DS change in entropy is expressed in terms of the heat.1493

The only difference is we decide as far as the definition is concern that this heat has to be, that has transpired during a reversible path.1499

You remember what a reversible path was.1508

Remember, let us say we are expanding a gas, let us say that this was pressure, this was the volume axis with a PV diagram,1510

this was pressure 1 and this was pressure 2, volume 1 and volume 2.1521

We can go from here to here, that is one path.1525

We can go from here to here, it is another path.1528

If we go from here to here, or if we follow this path, if we follow the isotherm that actually made a reversible path.1531

That is all this is saying.1539

Now instead of working with energy, if I go from here to here and if I calculate the heat that is gained or lost and1540

if I divide the heat by the temperature during each increment of that step, I get the change in this property called entropy.1547

We have defined what entropy is in terms of what it really is.1556

We just defined it mathematically.1560

There is some number that is changing to some property of the system that is changing and1562

we can assign a numerical measure for it, based on some things that we can measure.1567

We can measure the heat gained or lost and we can measure the temperature at any step of that change.1571

We have DS = DQ along a reversible path divided by T.1582

If we integrate over the entire path, this is a differential.1590

If we integrate along the entire path, the whole thing not just the differential change we get the following.1599

We get the integral DS = the integral from state 1 to state 2 of DQ reversible/ T.1612

This is an exact differential so the integral of an exact differential is just δ S if you find that change state 1 to state 2.1624

And that is going to = the integral from 1 to 2 DQ reversible/ T, whatever this happens to be in our particular measurement.1637

It is very important to be very clear about what this definition is.1650

In fact, what any definition is.1672

Let us go over here.1684

Let us be very clear about what we give a definition of something, what is actually it is saying.1687

What does it mean? What does the left side of the equality sign mean?1693

What does the right side of the equality sign mean?1696

Let me rewrite the definition again up here so we have a page DQ reversible/ T.1699

S is a state property of the system, there is some property that is measurable.1708

However, we do not measure S directly, the way we measure a length or a volume.1725

We do not measure S or DS directly.1738

However, we have discovered that many years of experimentation discovered that if we measure the heat1749

that transpires along reversible path and divide by T, then add the sum of all of these along the entire path.1770

In other words, integrate the entire path.1795

We get δ S for the transformation.1814

That is what this is saying, that is what the definition is.1820

There are something that we want to identify, this thing called S.1824

We are going to identify in terms of things that we already know DQ and T, that is what the definition is.1834

We do not measure S directly, what we do is we measure the heat that has given off or withdrawn in a process and1840

we divide by the temperature at which a process that takes place that gives a number.1847

That number we say is equal to the state property, that is what the definition is.1851

When you see definition of mathematics, what is on the left they are saying that what is on the left = what is on the right.1856

It is the thing on the right hand side of the equality that is what you are measuring.1864

That is what your experimental data is that stuff.1867

It is equal to this thing that we are defining on the left.1870

So definitions are very important.1874

It is very important since S is a state property δ S absolutely does not depend on the path taken to go from S1 to S2.1882

Since S is a state property, δ S does not depend on the path taken to go from S1 to S2.1923

That is the whole idea behind a state property.1929

All that matters is where you begin and where you end that is why we have a δ S.1931

Now the path can be reversible or irreversible.1939

The path, do not worry I will just contradict myself of what came before.1945

The path can be reversible or irreversible.1949

However, if we use the equation δ S = the integral from state 1 to state 2 of the heat withdrawn during the process divided by the temperature,1960

if we use this equation to actually calculate δ S by solving this integral, if we use the equation to calculate δ S then the path has to be reversible.1982

And the path has to be has to be irreversible path.2004

You are going to discover in mathematics and in science that we will give a definition of something.2013

Definition is there for the sake of having a definition, it is a starting point.2021

It gives us the starting point on which we can actually build but when we actually go to measure or calculate things like the DS,2027

we often do not use the definition because we find simpler ways of doing it.2040

We find other ways of actually doing it.2043

The definition is there as more of a formal structure but we do not necessarily use it.2045

In this particular case, to calculate the δ S.2051

This is the definition and it depends on a reversible path.2055

If we use this equation to calculate δ S then we have to use irreversible path but there other ways to calculate δ S.2060

And in that case, the path does not matter.2067

That is the difference because S is a state property, how you get from one state to another does not matter,2070

only if you can use this particular equation, the definition, and calculate δ S that is when you have to use a reversible path.2076

Fortunately, we do not have to do that.2082

Let us start investigating how S actually behaves.2089

The first thing we are going to discuss is entropy changes under isothermal conditions.2093

Let us go ahead and do that.2100

Entropy changes under isothermal conditions and again you know the isothermal means that the temperature is held constant.2104

We do the same thing with energy.2120

How does energy behave under isothermal conditions?2122

Now we are doing it with entropy.2125

We have δ S = the integral from state 1 to state 2 of DQ reversible/ T.2129

Isothermal means T is constant.2140

If T is constant we can pull it out from under the integral sign so what we have is δ S = 1/ T × the integral 1 to 2 of DQ reversible.2142

Δ S = 1/ T the integral of DQ is just Q, it is the entire heat for the entire path.2160

This is the differential for one piece of it.2170

If I follow the entire path, I get Q, I get the particular heat that is withdrawn from the surroundings.2173

Q reversible/ T that is our important equation.2182

Δ S = Q reversible/ T.2188

If a particular transformation takes place isothermally, if I keep the temperature constant during that transformation,2193

all I have to do is find out the heat that was withdrawn from the surroundings or the heat that went into the system,2199

But depending on your perspective and divide by the temperature at which that took place.2205

Once the temperature is constant, I just divide by the temperature and that gives me my change in entropy for that particular process.2209

Notice the unit Q/ T J/ K.2216

Let me repeat that.2225

This says in going from S1 to S2, I simply take the heat for the entire process which is Q reversible and divide by T which happens to be constant happens.2228

Isothermal conditions are very easy to find the entropy change because it is really easy to measure how much heat is gained or lost in the process.2277

We just measure it and take the temperature.2284

It just tells you how much heat is gained or lost in a particular process.2289

You divide by the temperature that you run the experiment under and then you have a change in entropy.2292

That is pretty fantastic.2297

This gives me δ S for the process.2301

This equation, this is what used to calculate changes in entropy involving a change of phase, liquid to gas or gas to liquid, solid to liquid, liquid to solid, things like that.2312

This equation is used to calculate δ S values for changes of phase specifically the δ S of vaporization and δ S of fusion.2328

Δ S of vaporization is the change in entropy in going from liquid to gas.2362

The δ S of fusion is the change in phase in going from solid to liquid or liquid to solid vaporization, liquid to gas, gas to liquid, either direction is fine.2367

I said earlier that the best way to think about entropy qualitatively is still in terms of these orders.2381

In terms of the randomness of the system.2387

A solid is a very order thing, as it melts, as it becomes liquid it is becoming more disordered.2390

δ S is going to be positive.2396

As a liquid goes to gas, a gas is a much more disorder thing than a liquid is.2399

In going from liquid to gas vaporization the entropy is going to be positive.2405

In other words, the entropy of the gas is going to be higher than the entropy of the liquid.2411

Therefore, the final - the initial entropy of the gas - the initial of the entropy of liquid, you are going to get a positive number.2416

That is what is going on.2424

If you are going the other way, if you are condensing from gas to liquid we have a negative entropy, -δ S, negative change in entropy.2425

If you are going from liquid to solid you are becoming more ordered.2433

There is going to be less order in your final product, the solid and there was in the liquid the initial phase so you are δ S is going to be negative.2437

Qualitatively thinking of it in terms of disorder is very important.2446

This equation is used to calculate δ S values for changes in phase specifically the δ S of vaporization and the δ S of fusion.2453

Let us go ahead and recall what a heating curve looks like from general chemistry.2460

Recall the heating curve, what happens when I take a piece of something, solid piece I just keep heating up and keep putting more energy to it.2466

What happens to it?2481

Here is what it looks like it.2482

We are making too big here.2485

This axis is temperature and this axis is energy, we are going to just keep adding energy to something.2487

Solid phase, let us go ahead and draw it first and tell you what is going on here.2494

This is the solid phase, this is the liquid phase, and this is the gas phase.2501

There is a temperature at which it melts and there is a temperature at which the thing boils.2506

Let us take ice not water, if I have solid ice and it is below 0°C, if I keep heating up the temperature is going to rise.2510

I’m adding energy to it and the temperature is rising.2525

It is going to get to a particular temperature, in this particular case it is going to be 0°C.2529

At 0°C, that ice starts to melt.2533

The solid starts turning into water, the phase is changing.2536

As that phase change is taking place, as it is melting notice the temperature does not rise.2540

All of the energy that I put into it from this point to this point, it goes toward converting the solid to the liquid.2546

Here is our phase change, our phase change from solid to liquid.2554

If I go the other way it is liquid to solid.2564

Once it is actually all converted to liquid, as I keep adding energy to it, the temperature is going to rise.2566

It is going to rise and I put energy and heated it up.2575

At some point, it is going to reach the point at which the liquid, the water starts to boil.2577

Now from here to here, the temperature does not change any more, the temperature does not rise.2582

I’m still adding energy and still heating the thing up but all the energy that put into it is being used to convert the liquid water to water vapor.2588

This is the other phase change.2597

The two important temperatures are the melting temperature and the boiling temperature.2602

This phase change is from liquid to gas.2605

It behave like this solid, liquid, gas, this is what a heating curve looks like.2610

Once everything is gas, I had more energy to it, now of course the temperature just keeps rising.2614

Notice, the temperature does not change during changes of phase, the process is isothermal, the temperature stays the same.2621

That is why we can use what we just did with entropy.2631

During changes of phase, the change is isothermal, the temperature does not change so we can use this.2633

Now since phase changes take place not only isothermally but they also take place under constant pressure2648

we usually do not pressurize to watch the phase change.2661

We can in certain circumstances but when we are watching ice melt and then vaporize, it is just happening just under normal atmosphere pressure.2664

It is just a constant pressure process.2671

Since phase changes take place under constant pressure, we remember that Q is actually = to the enthalpy under conditions of constant pressure,2674

the heat of a particular transformation is actually = to the enthalpy of the transformation.2690

This δ S a vaporization which = the Q of vaporization/ T = δ H of vaporization/ T.2696

In order to find the entropy of the vaporization process, as it goes from liquid to solid, all I have to do is calculate the δ.2714

If I look it up or I calculate it, it is the same in the heat and that δ H because you are under constant pressure conditions, the heat and δ H are the same thing.2724

I just divide it by the particular temperature.2735

In this particular case, it is going to be a boiling temperature.2737

Similarly, if I want the δ S of fusion it is just the heat of fusion / T which in chemistry we call the δ H of fusion.2741

And we divide in this particular case the melting temperature.2754

That is very important.2759

For any phase change, that δ S of that process of that phase change = enthalpy of the process divided by the particular temperature at which that phase change takes place.2762

Let us go ahead and do example problem nice and simple.2780

What is the δ S, what is the change in entropy for the transformation of 150 ml of water from the liquid to gas phase as boiling point?2789

For water, the δ H of vaporization is 40.7 kl J /mol .2798

What that means is that for every mol of water I have to put 40.7 kl J of heat into it to convert liquid water to gas water, that is all δ H means.2802

Again, because this is an extensive property, it actually matters how much is there.2813

Let us see what we can do, 150 ml of water is about = 250 g because the density of water is 1 g /ml g/ cm³.2819

Let us find how many mol is this.2831

150 g × 1 mol of water is 18 g so what we have is 8.33 mol of H2O.2833

The δ S of vaporization = the δ H of vaporization divided by the boiling temperature.2847

The δ H of vaporization is 40.7 so we have 40.7, it is kl J/ mol and the boiling point is 100°C but we do not use Celsius temperature, we use K.2855

This is going to be 373 K.2868

When I do this division, I end up with 0.109 kl J /mol K.2872

I have a 8.33 mol, mol cancels mol, so I end up with 0.909 kl J/ K or if I want 909 J/ K.2892

This is the change in entropy.2909

If I have 1 mol of water, the change in entropy as I take it from a liquid to a gas phase at 100°C is going to be 0.109 kl J/ mol K.2912

For the 150 ml the change in entropy is 909 J/ K that is it.2929

Isothermal process, δ S of vaporization just use the δ H of vaporization divide by the boiling temperature.2938

Δ S of fusion just take the δ H of fusion divide by the melting temperature.2947

Thank you so much for joining us here at www.educator.com.2954

We will see you next time, bye.2955

Educator®

Please sign in for full access to this lesson.

Sign-InORCreate Account

Enter your Sign-on user name and password.

Forgot password?

Start Learning Now

Our free lessons will get you started (Adobe Flash® required).
Get immediate access to our entire library.

Sign up for Educator.com

Membership Overview

  • Unlimited access to our entire library of courses.
  • Search and jump to exactly what you want to learn.
  • *Ask questions and get answers from the community and our teachers!
  • Practice questions with step-by-step solutions.
  • Download lesson files for programming and software training practice.
  • Track your course viewing progress.
  • Download lecture slides for taking notes.

Use this form or mail us to .

For support articles click here.