Enter your Sign on user name and password.

Forgot password?
Sign In | Subscribe
Start learning today, and be successful in your academic & professional career. Start Today!

Use Chrome browser to play professor video
Catherine Carpenter

Catherine Carpenter

Gram Negative Bacteria

Slide Duration:

Table of Contents

I.Introduction to Microbiology
History of Microbiology

40m 36s

Intro
0:00
Overview of Microbiology
0:35
What is Microbiology?
0:39
History of Microbiology
0:47
What is Microbiology?
3:11
Study of Biology of Pathogen
4:05
Study of Biology of Vector
4:13
Biology of Human Host
4:28
Microbiology
6:32
Study of Microorganisms
6:35
Includes Viruses, Small Macroscopic Organisms, and Parasites
7:48
Microorganisms are Responsible for Cycling the Chemical Elements Essential for Life
9:32
Produce More Energy Through Photosynthesis Than Plants
10:00
90% of Cells in Our Body are Microbes
11:20
Important Discoveries in Microbiology
11:29
Anton Van Leeuwenhoek
11:48
Invented of the Microscope
11:59
What Was Leeuwenhoek's World?
12:47
The First Smallpox Vaccination: Jenner 1796
13:25
Jenner Invented the First Vaccine
13:35
Protected from Smallpox
13:58
Edward Jenner and Vaccination
14:49
Cowpox Virus
15:25
Material Used for Vaccine Probably Contained Cowpox Virus
15:46
Inoculate James Phipps by Taking Pus from the Lesions on the Hands of a Diary Maid
16:20
Louis Pasteur and Theory of Spontaneous Generation
17:58
Pasteur's S-Shaped Flask Kept Microbes Out but Let Air In
18:04
Disproved Theory of Spontaneous Generation
18:20
Fermentation, Pasteurization, and Vaccination: Louis Pasteur
19:53
Fermentation
19:54
Pasteurizing
20:14
Vaccination
20:56
The Germ Theory of Disease: Robert Koch
21:13
Koch's Postulates
21:47
Koch's Postulates
23:13
Procedure to Determine Criteria to Establish Casual Relationship Between a Microbe and Disease
23:34
A Fortunate Accident: Antibiotics
25:40
Alexander Fleming Discovered the First Antibiotic
25:55
Summary of Important Discoveries
27:12
Ability to Visualize Microorganisms
27:49
Vaccination
28:59
Fermentation, Pasteurization and Vaccination from Rabies
29:21
Germ Theory of Disease
29:42
Antibiotics
30:08
Example 1
31:36
Example 2
32:02
Example 3
33:56
Example 4
37:53
Example 5
38:57
Laboratory Testing & Visualization

44m 19s

Intro
0:00
Laboratory Testing and Visualization
0:37
Serology
1:09
Visualization: Types of Microscopes
1:32
A Clinical Microbiology Lab Report Form
1:57
Generalized Tests for Microorganisms
2:36
Morphological Characteristics
2:44
Differential Staining
3:00
Biochemical Tests
3:45
A Clinical Microbiology Lab Report Form
4:19
Serology
6:38
Detect Levels of Antibodies
6:46
Blood Serum
7:43
Recent of Past Infection
7:59
Differentiate Different Strains
9:39
Example of Serology Testing for HBV
10:02
Direct Agglutination Testing
12:52
Visual Test
13:08
Positive Results
13:16
Antibodies Sufficient in Level
14:13
ELISA Test
15:56
Sandwich ELISA
16:39
Western Blot
18:56
Proteins are Positioned on the Filter so Antibodies Can Bind to the Antigens
19:09
Filter is Then Washed with Patient's Serum
19:27
Positive Test for Particular Microorganisms
20:04
Flow Cytometry
21:09
Used to Identify Bacteria Without Culturing the Bacteria
21:17
Moving Fluid Containing Bacteria is Forced Through Small Opening
22:03
Differences in Electrical Conductivity Between the Cells are Detected
22:17
Results Distinguishing Three Different Species of Microorganisms
22:56
Genetic Testing: DNA Fingerprinting
23:49
Way to Specify and Differentiate Bacteria
25:36
Some Produce Taxon
25:47
Used as a Proxy for Microbial Cell Abundance
26:13
Detailed Figure
26:43
Pattern Matching to Determine Bacterial Strain
27:22
Example
28:00
Picture of That
28:04
Instruments to Visualize Microorganisms
29:36
Light Microscope
30:22
Image
31:18
Darkfield Microscopy
31:44
An Illumination Technique Used to Enhance the Contrast in Unstained Samples
31:51
How It Works
32:01
Planaria in Pond Water
32:19
Electron Microscope
32:55
Uses Electron Beam to Illuminate a Specimen and Produce a Magnified Image
33:23
Electron Microscopy
33:34
Electron Microscope Image
34:23
Atomic Force Microscope
34:41
Manipulates Matter at the Nanoscale
35:09
Atomic Force Microscopy Image
35:37
Atomic Force Imaging
35:54
Instruments to Visualize Microorganisms
37:02
Light Microscopes
37:18
Example 1
37:28
Example 2
40:19
Example 3
40:57
Example 4
42:13
Example 5
42:35
Present Day Importance of Microbiology

43m 48s

Intro
0:00
Two Important Topic Area in Microbiology
0:41
Gut Microbiome
1:21
A Forgotten Organ
1:25
Colonization of the Gut Begins at Birth
2:34
Factors That Alter the Relationship
4:02
Pathologic Inflammation
7:05
Commensal Species
9:47
Pathobionts
10:28
Functional Comparison of the Gut Microbiome with Other Sequenced Microbiomes
10:38
Genes and Microbiome
11:34
Vitamin K Example
12:00
Escherichia Coli
13:07
Genomes of the Bacteria and Viruses of the Human Gut Encode 3.3 Million Genes
14:02
Link to Microbiome and Health
14:57
Antibiotic Resistance
15:42
Natural Selection, Survival of the Fittest, Adaptation
16:39
Theory of Evolution
17:07
Origin of Species
17:13
Darwin Came Up with Theory
17:50
Link to Theory of Evolution
18:01
Natural Selection
19:03
Natural Selection
19:09
Adaptive Trait
19:21
Antibiotic Resistant Bacteria
19:49
Two Week Course of Antibiotics
20:10
Antibiotic Resistant Strains Found in Hospitals and Schools
21:21
Evolution of Resistant Bacteria
22:01
Evolution of Resistance
24:06
Natural Selection
24:08
Some Bacteria Transfers the Resistant Genes to Other Bacteria Who Don't Have It
24:24
It Reproduces and Soon Populates an Antibiotic Resistant Infection
25:06
Antibiotic Resistant Bacteria
25:30
Acquired Resistance
25:31
Resistance Develops by Mutation of Resident or by Acquisition of New Genes
26:55
Flourish in Areas of High Antimicrobial Use
27:10
Spread of Antibiotic Resistance
27:19
Selection of Resistant Bacteria by Overuse and Misuse of Antibiotics
29:02
Multiple Antibiotics
29:46
Antibiotics Used Unnecessarily
30:35
Bacterial and Viral Pneumonia
31:13
Indiscriminant Use of Antibiotic
31:52
Unnecessary Antibiotics Can Promote Resistant Bacteria
32:25
Future Antibiotics May Lose Effectiveness
32:33
Ease of Obtaining Antibiotics
33:11
Over the Counter
33:13
Encourages Indiscriminant and Inappropriate Use of Antibiotics
33:25
Use in Animal Feed
34:26
Prevent Infections and Promote Growth
34:30
Animals Can Develop Resistance Also
35:03
Tutorial on Antibiotic Resistance
36:05
Example 1
36:32
Example 2
39:30
II. Cell Biology
Biology of the Prototype Cell

10m 2s

Intro
0:00
Cellular Organization
0:14
Prokaryotes
0:27
Eukaryotes
0:48
Three Domains of Life
0:51
Eubacteria
1:02
Archaebacteria
1:09
Eukaryotes
1:15
Evolution of Bacteria
1:21
Common Qualities
2:02
Nucleus
2:12
Plasma Membrane
2:47
Cytoplasm
3:09
Multicellularity
3:17
Multicellularity Evolved
3:28
Cells Gave Rise to Earth's First Lineage of Multicellular Organisms
3:57
Fossils of Bangiomorpha Pubescens are 1.2 Billion Years Old
4:18
Cells Differentiated for Attaching to a Substrate
4:37
Longitudinal Division Divides Disc-Shaped Cells Into Radially Arranged Wedge-Shaped Cells
4:54
According to Energy
5:08
Phototrophs
5:36
Chemotrophs
6:02
Introducing Prokaryotic Cells
6:46
Bacteria and Archaea
6:51
Smallest Form of Life
6:58
Similar in Appearance and Size
7:06
Aerobic
7:13
Anaerobic
7:19
Facultative
7:26
Example 1
7:37
Example 2
9:02
Structures in Common & Structures That Are Unique

8m 40s

Intro
0:00
Structures
0:22
Way to Remember Cell Structures
0:23
Membrane Similarities
0:34
Both Prokaryotes and Eukaryotes Have Plasma Membrane
0:42
Replication Molecules
1:17
Prokaryotes and Eukaryotes Have DNA and RNA
1:18
One Way Prokaryotes and Eukaryotes are Different
1:41
Genome Differences
1:49
Eukaryotes
1:52
Prokaryotes
2:12
Cell Division Differences
2:43
Prokaryotes
2:49
Eukaryotes
2:55
Organelle Differences
3:07
Eukaryotes
3:10
Prokaryotes
3:31
Energy Metabolism Differences
3:42
Eukaryotes
3:48
Prokaryotes
4:21
Cytoskeleton Differences
4:41
Eukaryotes
4:50
Prokaryotes
5:27
Example 1
5:46
Example 2
7:13
DNA & RNA

11m 46s

Intro
0:00
Which Came First
0:31
RNA Came First
0:38
Short RNA Molecules
0:54
Stored Information
1:05
Early RNA
1:21
Synthesized Proteins and Carried Info
1:24
Information Carrying Role of RNA
1:36
Evolution of Double-Stranded DNA Enabled the Storage of More Complex Info
2:01
DNA Became a Better Mechanism for Information Storage of Complex Traits
2:13
Replicating Molecules
2:35
Replicating Molecules Evolved and Began to Undergo Natural Selection
2:51
Replication
3:05
Protein Synthesis
3:13
RNA Evolves Into DNA
3:24
DNA Contains Instruction
3:32
RNA Transcribes DNA
3:54
Proteins Are Made from the Instructions
3:59
DNA Structure
4:15
Chromosomal DNA
5:02
DNA Coiling
5:26
DNA - Nucleic Functions
5:51
Transcription
6:04
Replication
6:29
Function of DNA
7:10
DNA Replication
7:36
Complete Unzipping of DNA
7:38
Assembly of Complementary Nucleotides
7:47
Only Occurs in Cell Division
8:09
DNA Replication Diagram
8:18
DNA Transcription and Translation
8:41
Example 1
9:46
Example 2
10:27
Example 3
10:45
Motility

11m 24s

Intro
0:00
Motility is an Important Property
0:26
Flagella
0:37
Pili
0:55
Prokaryotic Cell
1:08
Pili
1:38
Fimbriae
1:45
Pili Connect a Bacterium to Others of the Same Species
1:57
Transferred Plasmids Can Bring a New Function to the Cell
2:37
Fimbriae
3:07
Distributed Over the Entire Surface of the Cell
3:08
Have a Tendency to Adhere to Surfaces and to One Another
3:17
Example: Neisseria Gonorrhea
3:40
An Electron Micrograph of E Coli
3:53
Bacterial Conjugation with Pilus
4:12
Prokaryotic Flagella
5:14
Eukaryotes
5:34
Prokaryotes
5:43
Underneath Inner Plasma Membrane in Gram Positive and Gram Negative Bacteria
6:05
Different Types of Flagella
6:13
Flagella Organization
6:14
Bacteria Alters Speed and Direction of Rotation
7:11
Examples
8:07
Example 1
8:41
Example 2
10:05
Plasma Membrane

16m 11s

Intro
0:00
Plasma Membrane
0:22
Functions of Plasma Membrane
0:28
Physical Isolation
0:31
Regulation of Exchange with the Environment
1:05
Communication Between the Cell and Its Environment
1:46
Structural Support
2:28
Plasma Membrane Composition
2:46
Lipids
2:59
Proteins
3:17
Carbohydrates
3:43
Lipid Bi-Layer of Plasma Membrane
4:19
Micelle
4:28
Bilayer
5:11
Liposome
5:40
Cellular Evolution
5:59
Evoloution of Membranes Advantages
6:49
Encased Cells Out-Competed Naked Cells
7:37
Plasma Membrane Structure
7:57
Plasma Membrane Differences
10:59
Eukaryotic Cells Have Carbohydrates
11:11
Eukaryotic Plasma Membranes Contain Sterols
12:08
Prokaryotic Plasma Membranes Consist Mostly of Phospholipids and Proteins
12:26
Example 1
12:41
Example 2
13:30
Example 3
15:02
Antibody & Antigen Recognition

15m 50s

Intro
0:00
Finding and Cell Signaling
0:22
Ligand Binding
1:00
Ligand Binds
1:01
Binding Site is Complementary to the Ligand
1:30
Interaction Between Ligand and Binding Site is Specific
2:39
Induced Fit
3:24
Ligand Binding Illustration 1
3:44
Ligand Binding Illustration 2
4:21
Antibody Structure
4:44
Antigen-Antibody Specificity
5:40
Antigen-Antibody Reaction
6:27
Example 1
10:10
Example 2
11:54
Example 3
13:29
Microbial Metabolism

21m 44s

Intro
0:00
Organisms and Carbon
0:20
Autotrophs
0:40
Heterotrophs
1:12
Organisms and Energy
2:07
Metabolism
3:19
Metabolism
3:26
Catabolism
3:53
Anabolism
4:15
Cellular Respiration
4:56
Aerobic Respiration
5:47
Anaerobic Respiration
6:13
Glucose
6:41
Most Important Carbohydrate
6:42
Three Major Outcomes
7:14
Stored
7:21
Oxidized via Glycolysis
7:22
Oxidized via the Pentose Phosphate
7:50
Outcomes of Glucose I
8:37
Outcomes of Glucose II
10:21
Overview of Aerobic Metabolism
11:50
Glycolysis
12:01
Citric Acid Cycle
12:05
Oxidative Phosphorylation
12:13
Formula
12:17
Aerobic Metabolism
12:28
Respiration and Fermentation
13:52
Carbohydrate Catabolism
15:00
Overview of Anaerobic Metabolism
15:59
Energy in Glucose is Released Without the Presence of Oxygen
16:00
Lactic Acid
16:08
ATP Production Requirements
17:13
Energy Sources
17:22
Electron Carriers
17:41
Final Electron Acceptors
17:49
Example 1
18:09
Example 2
18:41
Example 3
20:13
Microbial Genetics

39m 49s

Intro
0:00
What is a Gene?
0:39
A Portion of the Chromosome That Determines or Affects a Single Character or Phenotype
0:51
Biochemical Definition of a Gene
0:57
Original Definition: One Gene-One Polypeptide
1:20
What is a Gene?
1:48
Regulatory Sequence
1:50
Genetic Code
2:44
Transcription and Replication
3:56
Replication of Bacterial DNA
5:05
Copy Both Sides of DNA Strand
5:20
DNA Transcription
5:53
DNA is Transcribed to Make RNA
6:18
RNA Polymerase Binds to the Promoter Sequence
6:24
Direction
6:29
Transcription Stops When It Reaches the Terminator Sequence
6:33
Bacterial Transcription
6:39
Transcription
6:46
No Nucleus
6:52
Translation
7:51
mRNA is Translated In Codons
8:11
Translation of mRNA Begins at the Start Codon
8:18
Translation Ends at Nonsense Codon
8:22
Gene Regulation
8:34
Constitutive Genes Are Expressed at a Fixed Rate
8:43
Other Genes Are Expressed Only as Needed
8:58
Regulation of Transcription
9:11
Repression
10:16
Induction
11:04
Germline Mutation
12:09
Evolutionary Biology
12:32
Molecular Biology
13:48
Mutations
14:34
Random and Rare
14:36
Can Be Beneficial or Neutral
14:46
Not All Mutations Matter
14:58
Somatic Mutations
15:20
Germline Mutations
16:30
Causes of Mutations
16:44
DNA Fails to Copy Accurately
16:48
External Influences Can Create Mutations
17:21
Types of Mutations
18:14
Substitution
18:18
Examples of Substitutions
18:29
Silent Mutations
19:56
Insertion
20:39
Deletion
20:51
Frame Shift
21:12
Bacterial Gene Recombination
22:16
Vertical Gene Transfer
22:57
Horizontal Gene Transfer
23:16
Genetic Recombination
23:46
Exchange of Genes Between Two DNA Molecules
23:47
Crossing Over Occurs When Two Chromosomes Break and Rejoin
23:52
Recipient Chromosome Contains New DNA
23:57
Bacterial Recombination
24:51
Bacterial Transformation
25:53
Conjugation in E. Coli
28:36
Transduction by a Bacteriophage
30:04
Plasmids
31:53
What are Plasmids?
32:00
F-Factor
32:14
Other Plasmids Encode for Proteins That Enhance the Pathogenicity of a Bacterium
32:39
Dissimilation Plasmids
33:24
R Factors
33:44
R-Factor, A Type of Plasmid
33:53
Transposons
35:04
Move From One Region of DNA to Another
35:29
Contain Insertion Sequences for Cutting and Resealing DNA (Tansposase)
35:34
Example 1
36:14
Example 2
37:34
Example 3
38:15
III. Virus Biology
Viral Structure, Genome, & Replication

16m 50s

Intro
0:00
Medical Virology
0:11
Viral Structure
1:37
Viral Genome
1:55
What is a Virus?
2:09
Smaller
2:15
DNA or RNA with no Nucleus
2:34
Classification of Viruses
3:03
Type and Confirmation of Genomic Nucleic Acid
3:07
Viral Morphology
3:19
Viral Structure
3:54
Virion
3:58
Envelope
4:29
Capsid
5:39
Nucleocapsid
5:55
Viral Genome - Composition
6:27
Viral Genome
6:31
DNA vs. RNA Structure
6:42
RNA
7:49
Pathogenicity & Virulence
7:42
DNA
8:06
Viral Genome - Shape
8:36
Segmented
8:40
Non-segmented
9:22
Changes in the Viral Genome
9:36
Genetic Recombination
9:56
Reassortment
10:26
Changes in the Viral Genome
11:16
Quasi-species
11:24
Ebola Virus
11:58
Example 1
12:33
Example 2
13:42
Example 3
15:13
Viral Entry Into a Cell & Transmission

12m 31s

Intro
0:00
Medical Virology
0:27
Viral Entry Into a Cell
0:30
Viral Transmission
0:39
Viral Entry into Cells
0:53
Attachment
0:58
Membrane Fusion
1:29
Pre Formation
1:56
Penetration
2:12
Transmission of Viruses
2:34
Aerosol
2:51
Contaminated Food
3:19
Arthropods
4:01
Sexual Contact
5:06
Organ and Tissue Transplant
5:22
Site of Virus Entry
6:17
Respiratory Tract
6:37
GI Tract
7:08
Urethra, Vagina, Anus
7:34
Skin
7:42
Conjunctiva
7:45
Type of Cell Best Suited for Virus
7:57
Example 1
9:23
Example 2
10:13
Medically Important Viruses

24m 41s

Intro
0:00
Medical Virology
0:41
Viruses We Will Study
1:00
How the Viruses Differs
1:10
Medically-Important Viruses
1:23
Selected Viruses of Medical Importance
2:55
Herpesviridae, Simplevirus
2:59
Herpes Virus
4:09
Papillomaviridae, Alphapapillomavirus
4:47
Papilloma Virus
5:27
Reoviridae, Rotavirus
6:57
Rotavirus
7:58
Paramyxovirinae, Morbilivirus
9:04
Measles Virus
10:19
Orthomyxoviridae (Influenza Virus)
10:58
Influenza Virus - Antigenic Drift
12:52
Influenza Virus - Antigenic Shift
15:19
Medically-Important Viruses
18:39
Avian Influenza
18:41
Example 1
20:19
Example 2
21:50
Example 3
23:01
IV. Classification of Microbes
Overall Classification of Microbes

15m 51s

Intro
0:00
What is Taxonomy?
0:18
Science of Classifying Organisms
0:21
Universal Names Used by All Countries
1:11
Reference for Identifying Organisms
1:19
Binomial Nomenclature
1:28
Systematics or Phylogeny
2:11
Phylogeny
2:12
Like Reading a Family Tree
2:28
Root of the Tree
2:33
Moving Forward in Time
2:49
Clade
3:01
Ancestors and Lineage
3:39
Taxonomic Hierarchy
4:17
Genus and Species
4:28
Classification Changes
4:38
History of Microbial Taxonomy
4:51
Discovery of Microscope
5:09
Kingdoms Plantae and Animalia
5:33
Smallpox Vaccine
5:42
Bacteria and Fungi
6:11
Kingdom Portista
6:24
Prokaryotes Introduced as a New Kingdom
6:57
Definition of Prokaryote
7:17
Kingdom Fungi
7:33
Kingdom Prokaryote
7:40
Two Types of Prokaryotic Cells
7:48
Using Molecular Techniques to Classify
7:58
Classify Microbes
8:24
Three Domain System of Classification
9:21
Classification Criteria
9:29
Physiology
9:58
Ecology
10:06
Behavior
10:27
Morphology
10:54
Molecular Evidence (RNA)
11:11
Three Domains of Life
11:39
Eukaryotes
11:46
Prokaryotes
11:48
Archaea
11:54
Example 1
12:13
Example 2
13:15
Prokaryotes: Bacteria & Archaea

12m 14s

Intro
0:00
Classification of Prokaryotes
0:45
Lack of Nucleus
0:51
Culture
1:05
Clone
1:19
Strain
1:37
Phylogenetic Relationship
2:02
Archaea
3:53
Two Distinct Groups: Archaea and Bacteria
4:05
Archaea Lived in High Temperatures
4:29
Habitats
4:51
Only Habitants to Live in Extreme Habitats
5:24
New Research Shoes Archaeans are Abundant in the Open Sea
5:40
Archaea Morphology
5:59
Basic Archaeal Structure: Cytoplasm, Cell Membrane, and Cell Wall
6:08
Archaeal Cell Membranes
6:13
Plasmid
7:11
Archaeal Ribosomes
7:29
Example 1
8:20
Example 2
11:01
V. The Immune System
The Immune System

20m 18s

Intro
0:00
Immune System Introduction
0:28
Body Defends Itself from Anything Foreign
0:49
What Immunity Constitutes
1:13
Immune Responses Can be Classified as Nonspecific or Specific
1:27
Nonspecific Immune Response
1:54
Specific Immune Response
2:22
Physiological Barriers
2:49
The Immune System
3:18
Innate Immune Response
3:20
Adaptive Immune Response
3:42
Immunity
4:47
Immunology
5:32
Immunity
5:39
Immune System
6:21
Barriers to Infection - Mechanical
6:41
Physical Barriers
6:54
Epithelial Surfaces
8:31
Mucosal Surfaces
9:54
Muco-ciliary Escalator
10:40
Barriers to Infection - Chemical
11:25
Enzymes
11:33
pH
12:29
Lung
13:48
Physiological Barriers
14:56
The Immune System
16:52
Example 1
17:15
The Complement System

16m 53s

Intro
0:00
What is Complement?
0:37
Proteins
0:40
Synthesized by Different Cell Types
1:01
Complement System
1:14
Destroy Pathogens Directly
1:51
Activate Other Components of the Immune Response
2:02
Collaborate with Other Components of the Immune Response
2:12
Classical Pathway
2:28
Lection Pathway
3:29
Alternative Pathway
3:52
Integral Protein Types That Function in Cell-Cell Interaction
4:08
Function of the Complement System
4:49
Complement is Activated Upon Infection
4:50
Complement Functions Like Enzymes
6:16
Enzyme Activation
6:37
Function of the Complement System
7:43
Complements the Ability of Antibodies and Phagocytic Cells to Identify and Remove Foreign Pathogens
7:49
Amplification
8:50
Activation of the Complement System
9:17
Cytolysis
9:27
Chemotaxis
9:39
Opsonization
10:41
Anaphylatoxins
11:16
Complement and Membrane Attack Complex
12:10
The Membrane Attached Complex
12:49
Pathways of Complement Activation
13:07
Classical
13:43
Lectin
13:54
Alternative
14:07
Example 1
14:33
Example 2
15:23
Example 3
16:11
Adaptive Immunity

31m 10s

Intro
0:00
What is Adaptive Immunity?
0:27
Primary Immune Response
0:41
Initiated by a Dendritic Cell That Ingested a Pathogen
1:24
Naïve B Cells are Stimulated to Proliferate and Differentiate in Specific Response to the Pathogen
1:49
Process of Adaptive Immunity
2:28
Humoral Immunity
3:03
Development of Acquired Immune Cells
3:41
The B Cell
4:50
Produced in the Bone Marrow
4:52
Outer Surface Contains a Specialized B Cell Receptor
5:01
Initial Activation
5:55
Secondary Activation
6:15
Hallmarks of Humoral Immunity
6:23
B Lymphocyte is the Central Cell
6:51
Antibody-mediated
6:58
Highly Complex
7:03
Step 1: Antigen Recognition
7:18
B Cells Recognize Extracellular Antigenics
7:22
Antigens on Pathogen Surfaces
7:54
Step 2: Clonal Expansion
10:43
B Cell Divides
10:48
Clone
11:46
Maturation of B Cells
12:33
Step 3: Differentiation
13:46
B Cells Differentiate Into Plasma Cells
13:49
Plasma Cell Produces and Secrets Antibodies Specific to the Origin Antigen
14:00
Produce and Secrete Abs Specific to the Original Antigen
15:38
Antigen Presenting Cells Show Protein Antigens to Helper T Cells
15:55
Step 4: Antigen Elimination
16:30
Newly-Manufactured Antibodies Attach to the Antigen
16:36
Termination of the Humoral Immune Response
17:30
Step 5: Immune Memory
18:32
Memory B Cells Reside in Bone Marrow
18:53
High-Affinity Immunoglobulins
19:15
Survive for Years
20:15
Respond Rapidly When the Antigen is Seen Again
20:39
Antibodies
22:34
Classes - IgM
22:41
Example 1
24:51
Example 2
26:54
Example 3
28:03
Antibody & Antigen Interactions

41m 22s

Intro
0:00
Antibody-Antigen
0:22
Where Do Antigens-Antibodies Belong?
0:57
What is an Antibody?
1:12
Immunoglobulin
1:17
Definition of Antibody
1:32
Each Antigen is Specific to an Antigen
1:58
Antigen Binds to an Antigen
2:44
Produced by Plasma Cells
3:18
Antibody Structure
3:55
Paratope
4:17
Hinge Region
4:53
Fragment Crystallizable
5:44
Antibody Function
6:21
Recognizes and Captures Foreign Proteins and Molecules
6:41
Activates Complement
6:52
Binds to Immune Cells to Activate Their Specific Functions
7:55
The Antibody Isotypes
9:25
IgM
9:37
IgG
12:36
IgD
14:01
IgA
14:27
IgE
14:45
What is an Antigen?
15:18
An Antigen is to Provoke an Immune Response
15:53
Exogenous
16:43
Endogenous
17:16
Autogenous
18:10
Antigen-Antibody Reaction
19:08
Affinity
19:33
Avidity
19:57
Specificity
21:02
Cross Reactivity
21:31
Foreignness
22:17
Size
24:32
What Determines Antigenicity?
25:04
Antigenicity Definition
25:13
Conformation
25:29
Composition
26:02
Bacterial Components
26:27
Antigenic Determinants: Innate Immunity
26:53
Example 1
30:41
Example 2
33:15
Example 3
36:37
Tumor Immunology

33m 16s

Intro
0:00
Antibodies Surrounding Tumor
0:40
Introduction to Tumor Immunology
1:22
Human Papilloma
1:41
Hepatitis B
2:26
Helicobacter Pylori
2:47
Immunology
4:05
Overview of Tumor Immunology
4:17
Immune Surveillance Theory
4:18
Malignant Transformation
4:34
Immune Reactivity to Tumors
4:37
Tumor Antigens
4:43
Tumor Immunotherapies
4:49
Inflammation and Cancer
4:53
Immune Surveillance Theory and Escape
4:59
Amount of Antigen Expressed is Too Low
5:51
Tumor Sheds Antigens That Block Antibodies and T-Cells from binding to the Tumor
6:01
Tumor Does Not Express Immunogenic Antigens
6:15
Tumor Does Not Express MHC Antigens
6:32
Tumor May Secrete Immunosuppressive
6:51
Hallmark of a Cancer Cell is Proliferation That is Dysregulated
7:12
Malignant Transformation
7:39
One Way to Cause Growth Regulations
8:24
Mutations Can Alter the Cellular Machinery Leading to Up Regulation of Oncogenes
8:45
Mutations Can Alter the Cellular Machinery Leading to Down Regulation of Tumor Suppressor Genes
9:15
Tumor Growth Over Time
9:42
Malignant Transformation
10:46
Benign
11:20
Malignant
11:37
Progression of Benign to Malignant
12:35
Micro-Induced Carcinogenesis
13:40
Initiation Promotion Progression Model
14:28
Examples of Malignant Transformation
14:53
Tumor Antigens
15:46
Tumor Must Express Antigens That the Immune System Recognizes as Foreign
16:16
Immune Reactivity to Tumors
16:40
Tumor Antigens
17:07
Tumor Immunotherapies
17:15
Tumorigenesis Secretes Chemical Signals That Change Gene Expression
17:25
Gene Expression Leads To The Following
17:30
Tumors in an Immunosuppressed Host
18:48
HIV and AIDS
19:13
Transplant Patients
19:55
Epstein-Barr Virus
20:19
Malaria
20:27
Tumor Immunotherapies
20:45
Active Therapy
21:01
Passive Therapy
22:02
Inflammation and Cancer
24:05
Chronic Inflammation
24:18
Inflammation as a Response to Cancer
25:23
Neoplastic Cells Induce an Inflammatory Immune System
25:34
Bacteria, Inflammation, and Cancer
25:59
Example 1
27:46
Example 2
29:21
Example 3
30:25
Example 4
31:28
Cell Mediated Immunity

57m 13s

Intro
0:00
Adaptive Immunity
0:43
Cell-Mediated Immunity
1:47
Lymphocyte T Cell
1:56
Antigen-Presenting Cells
2:15
Subset of T Cells
2:22
Immune Tolerance
2:31
Hallmarks of Cell-Mediated Immunity
3:02
Primary Actor is the T Lymphocyte
3:06
Directed at Pathogens That Survive in Phagocytes
3:12
Based on Activation
3:23
Induce Apoptosis in Cells Displaying Epitopes of Foreign Antigens
4:25
Activates Macrophages and Natural Killer Cells
6:34
Stimulates Cells to Secrete Cytokines That Signal Other Cells of the Humoral and Innate Immune Response
6:47
Responds to Intracellular Antigens
7:16
Requires Direct, Cell-to-Cell Contact
7:24
The T-Cell
7:51
Mature in the Thymus
7:58
Presence of the T-Cell Receptor
8:04
Important Components
8:35
Antigen-Presenting Cell
9:36
Type of Leukocyte
11:17
Responsible for the Immune Responses That Lead to the Following
11:25
T-Cell Maturation
13:34
Thymocyte
13:42
Thymopoiesis
13:59
Thymus Conducts a Testing Process of Positive and Negative Selection
14:15
Somatic Gene Rearrangement
15:49
Infinite Number of Configurations That Create TCRs
17:00
Cluster of Differentiation (CD)
17:27
Function
18:23
Immuno-Phenotyping
19:18
Cluster of Differentiation (CD)
19:34
Nomenclature
19:40
Example
20:01
Antigen-Presenting Cells
20:50
Antigen Presentation
21:24
Antigen-Presenting Cells
21:32
Direct Presentation
21:52
Cross-Presentation
22:37
Cross-Dressing
23:04
Professional
23:24
Others
23:55
Contact Between an APC and TCR Stimulates Important Signaling Events
25:20
T-Cell Subset: T-Helper Cells
25:51
Th1
27:05
Th2
28:48
Th17
29:43
T-Cell Subset: Cytotoxic (Killer) T-Cells
31:26
CD8+ Cells
31:28
Target Cells with Antigen
31:50
T-Cell Subset: Cytotoxic (Killer) T-Cells
32:55
Perforin
33:30
Granzyme
34:07
Pharmaceuticals are Designed to Alter T-Cell Responses
35:00
T-Cell Subset: Regulatory T-Cells
37:01
Suppress Activation of the Immune System
37:40
Functions
38:36
T-Cell Subset: Regulatory T-Cells
39:45
Commensal Bacteria
39:51
Graft/ Transplant
41:02
Pregnancy
41:41
Tumors
41:47
Cytokines
42:46
Types of Cytokines
42:57
Chemical Messengers
43:19
Functional Classes of Cytokines
43:38
Chemokines
47:17
Chemotaxis
47:20
Inflammation
48:54
Homeostatic
49:10
Antiviral Response
49:23
Designation
49:27
Pulling It All Together
49:40
Example 1
51:40
Example 2
52:51
Example 3
54:56
VI. The Bacteria
Bacterial Cell Wall

18m 38s

Intro
0:00
Overview
0:45
Gram Negative and Positive Bacteria
1:17
Bacteria Without Cell Walls
1:38
Recall the Prototype Cell
1:52
Plasma Membrane
2:15
Cytoplasm
2:21
Nucleus
2:26
Cell Wall Principles
2:41
Protects Bacteria
2:50
Survive in Fluid Environments
3:08
Attack by Antibiotics
4:26
Source of Identification
4:40
Peptidoglycan
4:47
Murein
5:10
Protects the Plasma Membrane
5:18
Gram Staining
5:42
Gram Positive and Gram Negative
5:55
Gram Positive Bacterial Cell Wall
8:26
Thick Structure
8:45
Gram Staining
8:52
Teichoic Acids in Cell Wall
9:06
Gram Positive Streptococci
9:21
Gram Negative Bacterial Cell Wall
9:57
Allows More Complexity
10:15
Outer Membrane Provides Barrier to Certain Antibiotics
11:00
Outer Membrane Contains Lipid A
11:34
The Gram Stain
12:36
Hans Christian Gram Invented a Stain to Visualize Bacteria
12:52
Gram Positive Bacteria
13:51
Gram Negative Bacteria
14:27
Example 1
14:55
Example 2
15:49
Bacterial Morphology & Shape

15m 4s

Intro
0:00
Bacteria Morphology and Shape
0:28
Classification of Bacteria
0:50
Based on Several Major Properties
0:53
Taxonomy Principles Do Not Quite Fit for Bacteria
1:21
Variation in Shape and Distribution
3:00
Cocci
3:14
Bacilli
4:00
Budding and Appendaged Bacteria
4:27
Others
4:35
Bacterial Distribution
4:51
Shapes of Bacteria
5:45
Bacterial Shapes
6:40
Three Basic Shapes
6:41
Variation in Shapes
7:12
Clusters
7:31
Clusters Example
7:50
Streptococcus Pneumoniae
8:18
Bacterial Shapes
8:56
Streptococci
9:00
Staphylococci
9:12
Comma Shaped
10:28
Vibrios
10:37
Spirilla
11:04
Spirochetes
11:25
Example 1
11:38
Example 2
12:39
Example 3
13:24
Bacterial Metabolic Behavior

23m 50s

Intro
0:00
Energy Metabolism
0:40
Classification of Bacteria
1:48
Metabolic Behavior
1:51
Some Organisms are Anaerobic
1:57
Organisms and Carbon
2:07
Autotrophs
2:10
Heterotrophs
2:43
Organisms and Energy
3:28
Metabolism
4:13
Metabolism
4:14
Catabolism
4:50
Anabolism
5:04
Cellular Respiration
5:49
Aerobic Respiration
6:55
Anaerobic Respiration
7:13
Glucose
7:41
Energy-Currency Molecule for Autotrophs and Heterotrophs
7:42
Three Major Outcomes
7:56
Outcomes of Glucose
8:18
Outcomes of Glucose and Pyruvate
9:07
Overview of Aerobic Metabolism
11:19
Glycolysis
11:25
Citric Acid Cycle
11:28
Oxidative Phosphorylation
11:30
Aerobic Metabolism
11:51
Respiration and Fermentation
13:18
Carbohydrate Catabolism
14:35
Overview of Anaerobic Metabolism
15:37
Energy in Glucose is Released Without the Presence of Oxygen
15:48
Lactic Acid
15:46
Types of Fermentation
16:16
Lactic Acid Fermentation
16:20
Alcohol Fermentation
16:27
Alcohol Fermentation
16:57
Any Spoilage of Food by Microorganisms
17:08
Any Process that Produces Alcoholic Beverages
17:14
Any Large-Scale Microbial Process Occurring With or Without Air
17:25
Yeast and Other Microorganisms Ferment Glucose to Ethanol
17:39
Two Step Process
18:07
Lactic Acid Fermentation
18:34
Classic Anaerobic Metabolism
18:35
Releases Energy from Oxidation of Organic Molecules
18:44
End Products of Fermentation
19:05
Ethanol, Acetic Acid, Lactic Acid
19:22
Propionin Acid and Carbon Dioxide, Acetone, Glycerol, Citric Acid, Sorbose
20:02
Example 1
20:29
Example 2
21:43
Example 3
22:55
Bacterial Infection Patterns

41m 12s

Intro
0:00
'Hunting the Nightmare Bacteria'
0:42
Classification of Bacteria
2:13
Bacterial Pathogenesis
2:31
First Type of Immunity: Innate Immune System
2:49
Complement System
3:00
Innate Immune Cells: Phagocytosis
3:10
Cytokine Production and Epitopes
3:29
Location of Bacteria Infections
4:05
Steps of Bacterial Infection
5:25
Entry Into Host
5:30
Adherence to Host Tissue
5:53
Colonization
5:58
Overcome a Host's Defense
6:02
Hosts' Immune Response
6:10
Damage the Host Tissues
6:17
Progression or Recovery
6:25
Portals of Entry
6:35
The Skin
7:18
Viral and Bacterial Infection of Respiratory
7:46
Bacteria Entry
8:00
Some Bacteria Produce Toxins and Enzymes
8:28
Immune Response is Disease Causing Part of Bacterial Infection
8:46
Infection of Intestinal Epithelium
8:59
Shigella
9:00
Salmonella
10:16
Numbers of Invading Bacteria
11:05
Virulence
11:30
Potency
12:07
Virulence of Bacillus Anthracis
12:33
Adherence of Bacteria to Host Tissue
13:49
Adhesins or Ligands
14:10
Glycocalyx
14:26
Fimbriae
14:32
M Protein
14:53
Adherence
15:07
Adhesins or Ligands
15:10
E. coli Bacteria
15:53
Bacteria Adhering to Human Skin
16:17
Group A Beta-Hemolytic Streptococci
16:28
Bacterial Penetration of Host Defenses
16:42
Capsules
16:57
Cell Wall Components
17:03
Enzymes
17:18
Antigenic Variation
17:27
Penetration into Host Cell Cytoskeleton
17:57
Capsules
18:06
Capsule
18:07
Glycocalyx
18:19
Functions to Impair Phagocytosis
18:58
Host Can However Develop Antibodies Against the Capsule
19:07
Streptococcus Pneumoniae
19:28
Cell Wall Components
20:06
M Protein
20:18
Neisseria Gonorrhea
20:49
Fimbriae
20:57
Bacterial Enzymes
21:23
Coagulase
22:08
Hyalurpnidase
22:09
Collagenase
22:13
IgA Proteases
22:19
Penetration
22:44
Invasins
22:59
Invasins Cause Host Cell Membrane to Ruffle
23:12
Shigella and Listeria
23:32
Bacterial Damage to Host Cells
23:50
Production of Toxins
24:11
Types of Toxins
24:56
Production of Toxins
25:00
Toxin
25:08
Toxigenicity
25:21
Toxemia
25:25
Toxoid
25:30
Antitoxin
25:38
Exotoxin
25:44
Produced Inside Some Bacteria
25:55
Released When Bacteria Undergoes Lysis
26:06
Proteins and Enzymes That Catalyze Certain Biochemical Reactions
26:39
Bacteria That Produce Exotoxins Can be Gram + or Gram -
26:53
Exotoxins Are Soluble in Body Fluids
27:04
Some Diseases Caused by Their Exotoxins
27:13
Exotoxin Examples
27:35
Action of A-B Exotoxin
28:11
Endotoxin
29:12
Endotoxin Differ from Extoxin in Several Ways
29:21
Endotoxins are Released When Gram - is Liberated
30:24
Antibiotics Used to Treat Gem
30:32
Endotoxins Stimulate Macrophages to Release High Concentrations of Cytokines
30:59
Endotoxins and the Pyrogenic Response
31:17
Example Endotoxins
32:08
Salmonella Typhi
32:15
Neisseria Meningitidis
32:22
Proteus Spp
32:35
Steps of Bacterial Infection
32:42
Bacterial Penetration of Host Defenses
33:59
Example 1
34:41
Example 2
37:25
Example 3
39:39
Bacterial Adaptation to Environment

20m 50s

Intro
0:00
Bacterial Adaptation
0:13
Varied Tissues Within Human Host
0:36
Variable Levels of Oxygenation Both Inside and Outside of Host
0:54
Variable Levels of Moisture Both Inside and Outside Host
1:10
Survive Various Antibiotic and Other Types of Treatment
1:23
Variable Oxygen Environments
1:58
Bacterial Endospores
3:33
Clostridium Botulinum
4:40
Bacillus Anthracis
4:48
Clostridium Tetani
4:50
Botulism: Neurotoxin
5:10
Clostridium Botulinum
6:29
Gram Positive Rod-Shaped Bacteria That are Strictly Anaerobic
6:58
Produce Spores
7:10
Produces Paralysis
7:49
Toxin Can be Destroyed by Heating Food to 80 Degrees Celsius
7:55
Bacillus Anthracis
8:47
Produce Spores
9:08
Anthrax is Mostly a Disease of Herbivores
9:20
Weaponized Anthrax is Primarily Inhalation Form
10:11
Clostridium Tetani
11:50
Spores are Located in Solid and Can Colonize Gastrointestinal Tracts
12:14
Disease Uncommon
12:27
Toxin Produced During Growth Phase of Bacteria When Cell is Lysed
13:14
Toxin Blocks Release of GABA
13:56
Results in Paralysis
14:09
Example 1
15:38
Example 2
16:45
Example 3
18:01
Antigenic Composition of Bacteria

33m 8s

Intro
0:00
Bacteria as Antigens
1:04
Antigen-antibody Interaction
1:12
Bacterial Adaptations as Antigens
1:31
Cell Wall Components
1:44
Capsules as Antigens
1:50
Flagella as Antigens
1:58
Antigenic Variation
2:00
Bacterial Antigenicity and Vaccines
2:13
Antigen-Antibody Interaction
2:20
What are Antigens
2:25
Examples of Antigens
3:09
Bacteria as Antigens
4:33
Adaptation to the Human Host Environment
5:09
Pathogenic Agent
5:30
Criteria for Effective Antigenicity
6:02
Bacterial Adaptations That are Antigenic
7:36
Pila
7:45
Flagella as Antigens
7:57
Fimbriae
7:59
Capsules as Antigens
8:22
Peptidoglycan
8:33
S Proteins
8:45
M Protein and Lipid A
9:09
Cell Wall Components
9:47
Neisseria Gonorrhea
9:52
Fimbriae and Opa
10:03
After Attachment, Host Cell Takes Bacteria
10:22
Secretory Antibodies
10:38
Circulating Antibodies
10:58
Capsule
11:33
Neutralize the Virulence
12:39
Bacterial Capsules as Antigens
13:20
S. Pneumoniae
13:55
B. Anthracis
14:09
S. Pyogenes
14:38
Bacterial Antigenicity
15:30
Motility and Vibrio Cholerae
16:11
Flagella are Antigenic
16:20
Agglutinate or Immobilize Bacterial Cells
17:00
Antigenic Variation
17:49
Antigenic Variation Over Time
18:54
Antigenic Variation by Space and Time
22:12
Bacterial Antigenicity and Vaccines
24:02
Example 1
27:36
Example 2
31:24
VII. Epidemiology of Infectious Diseases
Epidemiology of Infectious Disease

15m 43s

Intro
0:00
Infectious Diseases: Extent of Problem
0:43
26% of Deaths Worldwide
1:21
Ebola Outbreak in Africa
1:50
Cholera in Haiti and South America
2:22
West Nile Virus Infections in U.S.
2:39
Worldwide Cholera Occurrence
3:03
Extent of Research
4:38
Importance to National Security
5:42
Bioterrorism Key Achievements
7:00
Smallpox
7:06
Anthrax
7:22
Botulinum
7:28
Ebola
7:52
Importance of Epidemiology
8:38
Scientific Study of Causes and Determinants of Disease
8:44
Study of Vector and Animal Host Biology
8:56
Patterns of Disease Transmission
9:39
Determine Disease Causation
10:31
Development of Vaccines
11:04
Development and Evaluation of Effective Treatments
11:55
Example 1
12:28
Human Host & Disease Transmission

56m 19s

Intro
0:00
Human Host and Disease Transmission
0:19
Discuss the Basis of Human Disease
0:27
Non-random Distribution of Disease
0:34
Ways Disease are Transmitted
0:44
Occurrence of Disease
1:09
Measures of Disease Transmission
1:19
Disease Outbreaks
1:23
Basis of Human Disease
1:39
How Human Disease Arise
1:43
Host Must be Susceptible
2:08
Capacity to Infect
2:32
Environment
2:53
Non-Random Distribution of Disease
3:27
Genetic Predisposition
3:34
Nutrition
4:16
Immune Status
4:24
Socio-Economic Status
4:40
Modes of Disease Transmission
5:46
Direct Transmission
5:54
Indirect Transmission
6:50
Example of Disease Transmission
8:30
HIV/ AIDS
8:34
Hepatitis A,B,C
10:10
Clinical and Subclinical Disease
12:42
Clinical Disease
12:49
Subclinical Disease
13:10
Non Clinical Disease
15:36
Carrier Status
17:48
Carrier Status Example: Typhoid Mary
18:33
Occurrence of Disease
20:18
Endemic
20:27
Epidemic
21:30
Pandemic
21:45
Epidemic of Obesity
22:22
Measures of Infectious Disease Transmission
23:45
Incubation Period
24:23
Epidemic Curve
27:44
Disease Outbreaks
28:37
One Exposure, Common Vehicle
28:43
Outbreak Analysis
32:14
Food Borne Illness
34:06
76 Million Cases of Food Borne Illness Per Year
34:07
Known Pathogens
35:08
62 Million Cases from Unknown Agents
35:23
Example of Food Outbreak: Salmonella Saintpaul, 2008
35:34
Distribution of Outbreak Strain of Salmonella Found on Tomatoes and/or Jalapeno Peppers
36:21
Number of Persons Infected with Salmonella Saintpaul
38:10
Clinical Features of Salmonella Infection
40:47
Diarrhea
41:06
Abdominal Cramps
41:11
Identified by Stool Sample Culture
41:19
Severe Infection
41:50
Case-Control Studies of Salmonella Saintpaul Infection
42:26
Description of Outbreak Source Investigation
45:02
Example 1
46:25
Example 2
50:43
Example 3
53:13
Difference Measures of Disease

39m 23s

Intro
0:00
Introduction
0:16
What is the Extent of Disease?
1:00
Who is at Risk for the Disease?
1:07
How is Disease Transmitted?
1:36
How is Disease Defined?
1:52
Counts
2:17
Assessment
2:32
Example of Tuberculosis Count
3:04
Counts of Influenza Positive Tests
4:02
Counts of AIDS Cases
5:58
Example of a Food Outbreak Investigation
8:01
Steps Public Health Investigators Follow to Determine Cause of Illness
8:24
Identifying the Source
8:39
Example
9:04
Potential Sources of Contamination
9:44
Production
9:55
Farms
10:14
Distribution
10:31
Retail Establishments
10:39
Restaurant Example
10:56
Food Borne Outbreak Investigation Steps
11:43
Determining if an Outbreak is Occurring
11:57
Defining Signs and Symptoms
12:07
Hypothesis
12:14
Collect Data and Test Hypothesis
12:38
Not Finding Associations
13:09
After Finding Pathogen, You Can Conduct Intervention to Remove Contaminated Food
13:45
Determine the Source
14:09
Clear Outbreak When All Contamination is Gone
14:30
Case Study: Norovirus Outbreak Michigan Jan-Feb, 2006
14:34
Norovirus
16:14
Infects All Ages
16:40
Cause Infection Throughout the Year But There's a Peak in Time
16:44
Recognizing Outbreaks of Norovisur Infection
16:51
Cases of Norovirus Over Time
18:42
Attack Rate
19:24
Definition
19:37
Restaurant Example
21:11
Attack Rate by 3 Hour Time Intervals
22:52
Patrons Who Became Ill
23:35
Case Control Analysis to Determine Food Source
24:21
Attack Rate
25:58
Food Outbreak Measures
26:16
Compute the Denominator
27:06
Compute Attack Rate During Certain Time Period
27:28
Construct Possible Hypotheses
28:14
Conduct Case-Control Analysis with Odds Ratio
29:37
Example 1
29:47
Example 2
34:55
Example 3
36:51
VIII. Eukaryotes-structure, Function, Diversity, and Environmental Niche
Eukaryotic Microbes

20m 53s

Intro
0:00
Introduction to Eukaryotic Microbes
0:38
Helminths
0:57
Why are They Called Microorganisms
1:01
Parasites
1:25
Introduction to Cell Theory
2:03
Evolution of Multi-Cellularity
3:30
Prokaryotes Can Form into Colonies and Biofilms
3:42
Eukaryotic Cells Can Arrange Themselves Into Tissue
3:58
Multicellularity Evolved
5:03
Fossils of Bangiomorpha Pubescens
5:45
Timeline
6:45
Endosymbiosis
8:00
Ancestral Anaerobic Eukaryote
8:05
Aerobic Eukaryote
8:38
Photosynthetic Cyanobacterium
8:54
Photosynthetic Eukaryote
8:58
Phylogeny
9:24
Prokaryotes
9:34
Eukaryotes
9:39
Organization of Eukaryotic Cell
9:50
Level 1: Monomeric Units
10:13
Level 2: Macromolecules
10:16
Level 3: Supramolecular Complexes
10:37
Level 4: The Cell and Its Organelles
10:40
Eukaryotic Animal Cell
11:01
Nuclear Envelope
11:53
Plasma Membrane
11:58
Mitochondrion
12:15
Rough Endoplasmic Reticulum
12:23
Ribosomes
12:51
Peroxisomes
13:00
Cytoskeleton
13:05
Lysosome
13:23
Golgi Complex Processes
13:27
Smooth Endoplasmic Reticulum
13:40
Eukaryotic Plant Cell
14:01
Cell Wall
14:29
Chloroplast
14:49
Starch Granule
15:06
Thylakoids
15:17
Golgi Complex, Cytoskeleton, Ribosomes
15:25
Nucleus, Smooth Endoplasmic Reticulum, Nucleolus
15:33
Mitochondrion
15:39
Example 1
15:56
Example 2
18:44
Eukaryotes: Fungi, Part I

19m 45s

Intro
0:00
Introduction to Fungi
0:15
1.5 Million Different Species on Earth
0:17
Fungal Diseases
1:10
Fungi Live Outdoors and Indoors
1:17
Most Fungi Are Not Dangerous
1:30
Medically Important Fungi
1:38
Contagious Diseases
1:40
Commensal Organisms
2:39
Fungal Growth
3:14
Vegetative Growth
3:36
Septate Hypha
3:43
Continuous Hyphae
3:52
Spore
3:58
Fungal Dimorphism
4:06
Fungi Life Cycle
4:44
Filamentous Fungi
4:49
Fungal Spores
5:21
Fungal Fragmentation
6:05
Fungal Spore Formation
6:29
Fungi Sexual Reproduction
6:57
Plasmogamy
7:06
Karyogamy
7:10
Meiosis
7:11
Sexual Spores
7:45
Ascospore
8:11
Life Cycle of Ascomycete
8:21
Histoplasmosis Capsulatum (Ascomycete)
9:18
Histoplasmosis Distribution
10:54
Histoplasmosis Lifecycle
11:28
Fungal Diseases
13:06
Mycosis
13:08
Chronic and Long Term
13:16
Five Groups
13:21
Systemic
13:30
Subcutaneous
13:37
Cutaneous
13:40
Superficial
13:42
Opportunistic
13:45
Example 1
14:18
Example 2
17:40
Eukaryotes: Fungi, Part II

31m 55s

Intro
0:00
Introduction to Fungi
0:19
Recap of Fungi Part One
0:20
1.5 Million Species
0:28
Focus on Fungi That Cause Human Disease
0:59
Medically Important Fungi
1:42
Contagious Diseases?
1:44
Dermatophytosis Example
2:02
Pneumocystis Example
2:22
Commensal Organisms: Candida Albicans
2:36
Fungal Diseases
3:02
Mycosis
3:06
Fungal Mycoses
3:12
Five Groups
3:22
Superficial Fungal Diseases
4:10
Fungi That are Localized in Hair Shafts and on Skin Surface
4:20
Prevalent in Tropical Climate
4:31
Benign
4:38
Figures Explanation
4:44
Cutaneous Fungal Disease
5:04
Infect the Epidermis
5:05
Dermatomycoses
5:21
Dermatophytes
5:31
Dermatophytes Secrete Keratinase
6:04
Examples
6:31
Subcutaneous Fungal Diseases
6:39
Fungal Infections Beneath the Skin
6:42
Occur After a Puncture Wound
6:58
Infections Occur Among Farmers
8:15
Example: Sporotrichosis
8:26
Candidiasis Albicans
8:57
Most Common in Yeast Infections
8:58
Resides on Skin Surfaces
9:16
Resistant to Phagocytosis
9:46
Opportunistic Fungal Disease
12:25
Host is Debilitated or Traumatized
12:52
Under Treatment with Broad Spectrum Antibiotics
13:20
Immune System is Suppressed by Drugs
14:03
Has an Immune Disorder or Lung Disease
14:19
Pneumocystis Pneumonia
14:47
Caused by Pneumocystis Jirovecii
14:56
Most Frequent and Severe Opportunistic Infection
15:05
Immunocompetent Adults Have Few or No Symptoms
15:59
Example: Pneumocystis Cysts in Lung of Patient with AIDS
16:58
Life Cycle of Pheumocystis Jirovecii
17:34
Early Incidence of Pneumocystis
18:49
Systemic Fungal Disease
21:21
Fungal Infections Deep Within the Body
21:24
Caused by Fungi Living in the Soil
21:44
Infections Begin in Lungs and Spread to Other Tissue
22:13
Example: Coccidiodomycosis Infection of Lung Tissue
22:21
Life Cycle of Coccidiodes Immitis
23:12
Number of Coccidiomycosis Cases
24:10
Distribution of Coccidiomycosis Cases
26:06
Example 1
27:20
Example 2
30:08
Parasites

20m 1s

Intro
0:00
Introduction to Parasites
0:48
Live in Human Hosts
1:00
Example of Parasites
1:29
Extent of Parasitic Diseases
1:47
Parasitic Infections Cause a Tremendous Burden of Disease
1:54
Malaria Example
2:12
Neglected Tropical Diseases
2:38
Extent of Malaria
3:22
Relationships Between Species
6:51
Symbiosis Between Pathogen and Host
7:11
Symbiosis
7:29
Mutualism
7:58
Commensalism
8:05
Parasitism
9:10
Parasite Definitions
9:28
Parasite Definition
9:32
Three Major Classes
9:54
Ectoparasites
10:15
Locations of Parasitic Infection
10:48
Parasite Hosts and Vectors
12:21
Vectors Convey a Parasite from Host to Host
12:27
Anopheles Mosquito and Malaria
12:43
Example 1
13:04
Example 2
15:34
Eukaryotes: Protozoa

24m 59s

Intro
0:00
Introduction to Protozoa
0:13
Protozoa Definition
0:14
Intestinal Protozoa
1:19
Insect Vectors
1:47
Transmission of Enteric Protozoa
2:02
Transmission of Blood Borne Protozoa: Leishmaniasis
4:50
Leishmaniasis Transmission Chart
5:33
Cutaneous Leishmaniasis
7:15
Visceral Leishmaniasis
7:37
Medically Important Protozoa
8:07
Four Classes
8:24
Described by the Systems They Infect
8:54
Flagellates
9:10
Intestinal and Genito-Urinary Flagellates
9:32
Blood and Tissue Flagellates
9:42
Ambae
10:45
Typically Amoeboid
10:49
Represented by Entamoeba, Negleria, and Acanthamoeba
11:27
Sporozoa
12:38
Alternating Sexual and Asexual Reproductive Phases
12:56
Cyclospora Life Stage
13:13
Lifecycle of Sporozoa: Cryptosporidium
16:16
Ciliates
17:20
Complex Protozoa Bearing Cilia Distributed in Rows or Patches with Two Kinds of Nuclei in Each Cell
17:24
Balantidium Coli
17:54
Example 1
20:06
Example 2
22:52
Eukaryotes: Helminths

32m 53s

Intro
0:00
Introduction to Helminths
0:30
Definition of Helminths
0:31
Three Types of Helminths
0:54
Biological Properties of Helminths
1:38
Biological Life Cycle of Helminths
1:42
Adult Helminths May Be Dioecious
3:25
Monoecious Helminths
3:58
Characteristics of Helminths
4:12
May Lack a Digestive System
4:16
Nervous System is Reduced
4:41
Incidence of Helminth Infections Worldwide
5:50
Intestinal Helminths
6:29
Soil Transmitted Helminths
8:15
Wuchereria Bancrofti
8:35
Wuchereria Bancrofti Causes Lymphatic Filariasis
9:01
Nematode or Roundword That Inhibits Lymphatic Vessels
9:18
Life Cycle
9:43
Lifecycle of Wuchereria Bancrofti
10:11
Symptoms of Wuchereria Bancrofti
11:41
Elephantiasis
11:59
People Who Develop Lymphedema
12:39
Types of Chronic Tissue Helminth Infection
14:53
Distribution of Lymphatic Filariasis in India
18:08
Taenia Saginata or Solium
19:19
Human Tapeworms
19:20
Cestode That Inhabits Intestinal Tracts of Human Hosts
19:36
Taenia
20:01
Scolex
20:53
Tania or Tapeworms
21:39
Life Cycle of Taenia Saginata or Solium
22:15
Urban Myth of Reality
24:35
Example 1
25:41
Example 2
28:38
Helminths & Immunity

32m 50s

Intro
0:00
The Immune System
0:45
Innate Immune Response
1:04
Adaptive Immune Response
1:15
Autoimmunity and Helminth Infection
2:20
Endemic Type 1 Diabetes
2:26
Endemic Helminth Infections
2:47
Coevolution of Helminths and Immunity
4:43
Helminth Infections are a Driving Force in Shaping
5:53
Helminths Do Not Replicate in Human Host
6:37
Helminths are Able to Maintain a Co-existence With Immune System
7:18
Innate Immunity
7:46
Adaptive Immunity
7:52
Localized Impact of Helminth Infection
9:05
Immune Modulation of Helminth Infection
14:07
Helminths and Immune Response
15:55
Other Ways Helminths Facilitate Immune Response
17:45
Helminth Influence on Immunity
19:07
Types of Chronic Tissue Helminth Infection
22:04
Infected, Low Pathology - Develop Tolerance
22:35
Chronic Pathology
22:50
Pathogen Co-Existence and Immunity
23:29
Helminths and Autoimmunity in Mice
25:31
Summary of Helminths and Immunity
26:39
Hygiene Hypothesis
26:42
Driving Force in Shaping
27:27
Absence of Helminths and the Immune Tolerances
27:46
Example 1
28:10
Example 2
30:23
IX. Survey of Important Bacteria
Gram Positive Bacteria

46m 35s

Intro
0:00
Introduction
1:01
External Peptidoglycan
1:07
Stain Purple
1:16
Reasons How External Peptidoglycan is Important
1:30
Properties of Gram Positive Bacteria
1:51
Immune Attack of Gram Positive Bacteria
3:21
Process of Opsonization
3:29
What is Opsonization
3:39
Complement Forms Membrane Attack Complexes
4:38
Ways Bacteria Gets Recognized by the System
5:14
Properties of Gram Positive Bacteria
6:55
Metabolism
7:00
Survival Mechanisms
7:11
Shapes
7:23
Environments
7:39
Examples of Gram Positive Bacteria
7:59
Shapes of Gram Positive Bacteria
9:13
Streptococci vs. Staphylococci
9:26
Staphylococci Shape
9:38
Streptococci Shape
9:52
Staphylococcus Bacteria
10:04
Staphylococcus
10:20
Salt-Tolerant
11:36
Two Main Species
12:24
Pathogenicity
12:38
Enzymes and Toxins
13:38
Staphylococcus Aureus
14:57
Food Borne Infection
15:04
Skin Infections
15:29
Systemic Disease
16:14
Staphylococcus Bacteria
17:36
Categorized According to Antigens
18:00
Streptococcus Group A
18:09
Streptococcus Pyogenes
19:09
Pathogenicity
19:37
Rheumatic Fever
20:00
Necrotizing Fasciatis
20:39
Glomerulonephritis
21:30
Surface M Protein
21:50
Hyaluronic Acid Capsule
22:25
Enzymes
22:47
Pyrogenic Toxins
22:57
Bacillus
23:34
Has Endospore Stage and Produces Toxins
23:59
Bacillus Anthracis
24:16
Spores Activated
25:12
Toxins Cause Disease
25:40
Clostridium Bacteria
26:02
Gram Positive, Anaerobic, and Endospore Producing
26:30
Different Clostridium Bacteria
26:56
Clostridium Difficile
27:34
Commonly Found Among the Intestinal Microbiota
27:38
Opportunistic Pathogen
27:57
Common in Hospital
28:30
Age-Adjusted Death Rate for Enterocolitis Due to C. Difficile
29:16
Listeria Bacteria
29:54
Avoidance of Immune Reaction by Listeria
31:23
Multi-State Listeriosis Outbreak from Whole Cantaloupes Grown by Jensen Farms, Colorado
33:04
Example 1
36:17
Example 2
39:05
Example 3
43:47
Gram Negative Bacteria

44m 38s

Intro
0:00
Introduction
0:29
Internal Cell Wall
0:45
Characteristic Properties
0:54
Gram Negative Bacterial Cell Wall
2:01
Outer Membrane Provides a Barrier
3:05
Outer Membrane Contains Lipid A
3:16
Properties of Gram Negative Bacteria
3:20
Lipid A Molecule
3:26
Lipopolysaccharides
3:40
Most Gram Negative Bacteria Do Not Form Spores
3:54
Gram Negative Laboratory Algorithm
4:05
Properties of Gram Negative Bacteria
6:45
Outer Membrane
6:50
Genetic Exchange
6:53
Immune Reaction to Gram Negative Bacteria
7:49
Examples of Gram Negative Bacteria
12:12
Endotoxin
12:52
Differ from Exotoxin in Several Ways
13:05
Released When Gram Negative Bacteria Undergo Lysis and Endotoxin is Liberated
13:50
Stimulate Macrophages to Release High Concentrations of Cytokines
14:36
E. Coli Bacteria
15:03
Escherichia Coli
15:06
Pathogenic Strains of E. Coli
15:28
Shiga-Toxin E. Coli Outbreak, Germany 2011
16:24
Salmonella Bacteria
18:29
Pathogenicity
18:36
Infection by Salmonella
20:36
Another Image of Infection by Salmonella
21:41
Bacterial Infections, 2013
23:44
Vibrio Bacteria
25:12
Vibrio Genus
25:37
Most Virulent Species is Vibrio Cholerae
25:50
Cholera Life Cycle
26:59
Worldwide Cholera Cases
29:44
New Cases of Cholera in Haiti During a 2 Year Period
30:24
Preventing Cholera Infection with Gut Flora
31:10
Bordetella Pertussis
32:55
Aerobic Coccobacillus
33:24
Tracheal Toxin
33:40
Pertussis Toxin
33:50
Pertussis Infection Timeline
34:25
Pertussis Symptom Timeline
36:10
Reported Pertussis Cases in US 1922-2003
37:31
Example 1
38:09
Example 2
39:36
Example 3
41:16
Bacteria with Other Cell Walls

24m 6s

Intro
0:00
Bacteria Classification by Cell Wall
0:21
Gram Positive vs. Gram Negative
1:01
Gram Stain
1:18
Shape
1:24
Bacteria Undetectable with Gram Stain
3:07
Mycobacteria
3:23
Mycoplasma Pneumonia
4:02
Chlamydia
4:11
Mycoplasma Pneumoniae Bacteria
4:23
Atypical Small Bacterium Without A Cell Wall
4:30
Lacks Rigid Cell Wall
5:02
Extracellular in Respiratory Tract
7:02
Acid-Fast Bacteria
7:38
Mycobacterium Tuberculosis
8:36
Infectious Process
10:31
Tuberculosis Incidence in 2005
12:45
Chlamydia Trachomatis Bacteria
15:11
Obligate Intracellular Human Parasite
15:39
Gram Negative
16:01
Three Human Biovars
16:15
Life Cycle of Chlamydia
17:33
Example 1
19:42
Example 2
21:01
X. Microbes and Human Disease
Tuberculosis

28m

Intro
0:00
Tuberculosis Introduction
0:47
Malaria
0:51
Acid-Fast Staining
1:04
Tuberculosis Disease
1:42
Latent and Active Disease
1:51
Strong Man Image Example
2:22
Mycobacterium Tuberculosis
2:39
Cell Wall
2:48
Tuberculosis Incidence in 2012
3:21
Worldwide Tuberculosis Incidence
4:19
TB Research Center, Chennai, India
5:00
Tuberculosis in United States
5:47
Estimated HIV Co-Infection Among Individuals Diagnosed with TB in U.S.
6:28
Tuberculosis Pathogenesis
7:40
Infection
7:50
How It's Spread
8:09
What Determines Whether or Not an Individual Will be Exposed
8:49
Bacilli can Multiply Once Reaching the Alveoli
9:21
Mycobacterium Tuberculosis
10:18
Inactive Form of TB
10:34
Active vs. Inactive Form of TB Depends on If Bacilli Stay in Tissue or Break Out
10:44
Tuberculosis Pathogenesis
11:20
Bacilli That Reach Alveoli
11:32
Those Bacilli are Ingested by Macrophages
12:28
No Symptoms of Disease
13:20
More Advanced Stage
13:25
Multiply in Macrophages
13:45
Inflammation
14:24
After a Few Weeks Disease Symptoms Appear
15:00
Caseous Center
15:30
Aerobic Bacilli Do Not Grow Well in the Center
16:18
Granuloma Can Reactivate Later
16:46
Active Disease: The Granuloma Can Rupture with Liquefaction
17:25
Active TB
18:04
Tuberculosis Staging
18:12
Stage 3 Important Stage
18:40
Stage 5 You Have TB
18:55
Tuberculosis Testing
19:31
Tuberculin Skin Test
19:32
Positive Skin Reaction Image Example
20:14
Tuberculosis Vaccination
20:32
BCG Vaccination in Other Areas Around the World
20:48
BCG Protects from the Active Form of Tuberculosis
21:06
BCG Does Not Confer Lifelong Protection
22:34
Mycobacterium Tuberculosis
22:51
Target Different Parts
23:09
Regiment
23:32
Example 1
24:34
Example 2
26:40
Malaria, a Protozoan Disease

29m 59s

Intro
0:00
Protozoa Introduction
1:13
One-Celled Organisms
1:14
Free Living or Parasitic
1:19
Can Multiply in Humans
1:27
How Does a Pathogen Get to the Digestive Tract
1:44
Worldwide Cases of Malaria
3:06
Found Where There a Lot of Mosquitoes
3:14
Malaria Introduction
4:00
Protozoa
4:03
Lives Partially in Human Host, Partially in Mosquito
4:06
Four Major Species
4:29
Carried by Anopheles Mosquitoes
4:49
Lifecycle of Malaria
5:08
Two Stages in Human Host and One Stage in Mosquito
5:30
Mosquito Bites and Injects Sporozoites
5:49
Parasite Goes Into Liver
7:14
Blood Supply
7:33
Diagnostic Stage
7:55
Erythrocytes
8:11
Gametocytes
9:04
Final Stage: Release of Sporozoites
9:39
Sickle Cell Anemia and Moleria
10:16
Sickle Cell Anemia is a Genetic Mutation Disease
10:34
Function
11:05
Hemoglobin Shape and Oxygen Capacity are Slightly Different
11:16
Selective Advantages and Disadvantages
12:04
Effects at a Cellular Level
12:06
Effects at the Organismal Level
12:39
Effects at the Population Level
12:54
Evolution of Human Malaria
13:31
Plasmodium Parasite Has Evolved
13:40
Plasmodium Reichenowi
13:56
What's Going on in India
14:43
Malaria Pathogenicity
15:40
Incubation Period
15:41
Symptoms
16:05
P. vivax and P. ovale
16:41
Dormant Liver Stage
16:57
Diagnosis
18:33
Malaria Treatment
19:30
Depends on Many Factors
19:32
Medications
20:32
Example 1
22:28
Example 2
27:38
HIV/AIDS

38m 7s

Intro
0:00
What is HIV / AIDS?
0:31
Human Immunodeficiency Virus
0:32
Once Infected, the Virus Will Always Be There
1:28
Exception
1:45
Transmitted Through Body Fluids
2:10
Virus
2:15
HIV Can be Transmitted Through
3:13
Sexual Contact, Injection Drug Use, Occupational Exposure, Pregnancy, Blood Transfusion
3:14
Blood Transfusion Used to be Significant for Disease Transmission
3:31
Adult HIV Prevalence, 2012
4:30
Africa is Highest
4:40
North and South America are Also High Prevalence
4:44
India
5:02
Counts of AIDS Cases
5:22
Example of Disease Transmission
7:19
Males
7:31
Females
7:42
HIV/ AIDS Methods of Transmission
8:33
HIV Retrovirus
9:10
Retrovirus
9:21
Replicate the Virus
10:13
Life Cycle of HIV Virus
10:55
Genome
11:10
Reverse Transcription
11:16
Host DNA Produces Goes Through Transcription and Translation
11:26
Produce Viral RNA
11:36
Importance of Figure
12:00
Viral Load and Immune Cell
12:45
Individual Infected
12:52
Plasma Virus Load Increases then Rapidly Declines
12:58
CD4+ T Cell
13:34
Immune System is Suppressed Enough That AIDs Develops
14:20
Evolution of HIV/ AIDS
15:31
Immunodeficiency and Development of Opportunistic Infections
17:40
Herpes Simplex Virus
18:00
Herpes Zoster Ophthalmicus
18:10
Kaposi Sarcoma and Many More
18:22
Disease Emerge at Different Time Depending on Degree of Suppression
18:40
Opportunistic Infections with HIV
18:52
Early 1900s
19:04
Pneumocystis
19:21
Opportunistic Fungal Disease
20:15
Harmless, Opportunistic Fungi
20:31
Can Happen to Individuals Who are Taking Drugs to Suppress Immune System
20:44
Pneumocystis Pneumonia
21:13
Pathogen
21:32
Immunodeficient Adults
21:41
Estimated HIV Co-Infection Among Individuals Diagnosed with TB in U.S.
22:00
Kaposi Sarcoma
22:42
Rare Cancer
22:49
Skin Neoplasm
23:14
Subtypes All Have Human Herpesvirus-8
23:31
How It Looks
23:57
Kaposi Sarcoma Spindle Cells
24:29
How to Treat Kaposi Sarcoma
25:17
HIV Prevalence Among Young Adult Women in India
26:02
Example 1
31:24
Example 2
33:32
Ebola

43m 9s

Intro
0:00
Ebola Virus Overview
0:22
Ebola Virus Outbreak Distribution
0:59
1976 Ebola Outbreak First Identified
1:00
Recent Outbreak in Zaire
2:15
Three Countries Most Affected Today
2:39
Amount of Hospitals in Those Countries
3:40
Ebola Virus Ecology
4:14
Thought to Just Infect Warm Blooded Animals
4:24
Epidemic Starts When Virus Infects Humans
4:45
Ebola Virus Infection
5:55
Virus Comes From Animal and Infects Human
5:57
Infected Cells
6:10
Endothelial Cell Gaps Causes Leakage of Blood and Virus
6:35
Ebola Virus Symptoms
7:37
Fever
7:43
Early Signs
7:54
Big Sign of Being Infected: Travel History
8:18
Key About the Symptom Emerging
9:40
Timeline of Ebola Virus Symptoms
11:21
Day 2: First Symptoms
11:36
Day 10: High Fever and Vomiting
12:29
Day 11: Brain Damage and Bleeding
13:13
Day 12: Loss of Consciousness
13:44
Ebola Virus Characteristics
14:14
Filovirus
14:27
Enveloped, Helical Viruses
14:31
Ebola and Marburg Viruses
14:36
Morphology of Helical Ebola Virus
14:52
Capsid
14:56
Nucleic Acid
15:04
Ebola Virus Structure
15:38
Outside of the Structure
15:42
Inside the Envelope
15:56
Virus Can Recreate Itself in the Cytoplasm
16:54
RNA Viral Replication
18:04
Negative and Positive Strand
18:32
Ebola Virus Entry
20:26
Cell the Virus Penetrates
21:18
Inflammatory Reaction
21:45
Viruses Released Into Individuals Body
22:23
Ebola Virus: Immune Reaction
23:08
Survivors
23:20
Individuals Who Die From Ebola
23:33
Effective Dose
24:03
Host Immune Response to Ebola
24:36
Monocyte
24:44
Cytokines Storm
25:01
Ebola Virus Pathogenisis
25:40
Infection
25:46
Neutrophil
25:56
Depletion of Natural Killer Cells
26:06
Ebola Virus Can Serve to Surpress the Immune Reaction
26:37
How Contagious is Ebola?
27:49
Not Very Contagious, But Very Infectious
27:58
In Relation to Other Diseases
28:43
Ebola Transmission
29:24
Patient Zero Thought to be Infected by Animal
29:28
Eating Bushmeat In West Africa
29:46
Ebola Spreads by Direct Contact
30:16
Ebola in Healthcare Settings
31:13
Healthcare Workers at Higher Risk Because They Handle Body Fluids
31:22
Precautions
32:07
Treatment of Ebola
34:13
No Vaccine, but There Are Experimental Treatments (ZMAPP)
34:18
Basic Interventions When Done Early, Can Improve Chances of Survival
36:27
Example 1
37:41
Example 2
39:18
Example 3
41:05
Loading...
This is a quick preview of the lesson. For full access, please Log In or Sign up.
For more information, please see full course syllabus of Microbiology
  • Discussion

  • Study Guides

  • Download Lecture Slides

  • Table of Contents

  • Related Books

Invalid MySQL query:SQLSTATE[HY000]: General error: 1 Can't create/write to file '/tmp/#sql_2a4_0.MYI' (Errcode: 13)
Fatal error: Call to a member function fetchAll() on null in /home/educato8/public_html/commentcp/classes/db.class.php on line 111