Dan Fullerton

Dan Fullerton

Newton's 2nd Law of Motion

Slide Duration:

Table of Contents

Section 1: Introduction
What is Physics?

7m 38s

Intro
0:00
Objectives
0:12
What is Physics?
0:31
What is Matter, Energy, and How to They Interact
0:55
Why?
0:58
Physics Answers the 'Why' Questions.
1:05
Matter
1:23
Matter
1:29
Mass
1:33
Inertial Mass
1:53
Gravitational Mass
2:12
A Spacecraft's Mass
2:58
Energy
3:37
Energy: The Ability or Capacity to Do Work
3:39
Work: The Process of Moving an Object
3:45
The Ability or Capacity to Move an Object
3:54
Mass-Energy Equivalence
4:51
Relationship Between Mass and Energy E=mc2
5:01
The Mass of An Object is Really a Measure of Its Energy
5:05
The Study of Everything
5:42
Introductory Course
6:19
Next Steps
7:15
Math Review

24m 12s

Intro
0:00
Outline
0:10
Objectives
0:28
Why Do We Need Units?
0:52
Need to Set Specific Standards for Our Measurements
1:01
Physicists Have Agreed to Use the Systeme International
1:24
The Systeme International
1:50
Based on Powers of 10
1:52
7 Fundamental Units: Meter, Kilogram, Second, Ampere, Candela, Kelvin, Mole
2:02
The Meter
2:18
Meter is a Measure of Length
2:20
Measurements Smaller than a Meter, Use: Centimeter, Millimeter, Micrometer, Nanometer
2:25
Measurements Larger Than a Meter, Use Kilometer
2:38
The Kilogram
2:46
Roughly Equivalent to 2.2 English Pounds
2:49
Grams, Milligrams
2:53
Megagram
2:59
Seconds
3:10
Base Unit of Time
3:12
Minute, Hour, Day
3:20
Milliseconds, Microseconds
3:33
Derived Units
3:41
Velocity
3:45
Acceleration
3:57
Force
4:04
Prefixes for Powers of 10
4:21
Converting Fundamental Units, Example 1
4:53
Converting Fundamental Units, Example 2
7:18
Two-Step Conversions, Example 1
8:24
Two-Step Conversions, Example 2
10:06
Derived Unit Conversions
11:29
Multi-Step Conversions
13:25
Metric Estimations
15:04
What are Significant Figures?
16:01
Represent a Manner of Showing Which Digits In a Number Are Known to Some Level of Certainty
16:03
Example
16:09
Measuring with Sig Figs
16:36
Rule 1
16:40
Rule 2
16:44
Rule 3
16:52
Reading Significant Figures
16:57
All Non-Zero Digits Are Significant
17:04
All Digits Between Non-Zero Digits Are Significant
17:07
Zeros to the Left of the Significant Digits
17:11
Zeros to the Right of the Significant Digits
17:16
Non-Zero Digits
17:21
Digits Between Non-Zeros Are Significant
17:45
Zeroes to the Right of the Sig Figs Are Significant
18:17
Why Scientific Notation?
18:36
Physical Measurements Vary Tremendously in Magnitude
18:38
Example
18:47
Scientific Notation in Practice
19:23
Example 1
19:28
Example 2
19:44
Using Scientific Notation
20:02
Show Your Value Using Correct Number of Significant Figures
20:05
Move the Decimal Point
20:09
Show Your Number Being Multiplied by 10 Raised to the Appropriate Power
20:14
Accuracy and Precision
20:23
Accuracy
20:36
Precision
20:41
Example 1: Scientific Notation w/ Sig Figs
21:48
Example 2: Scientific Notation - Compress
22:25
Example 3: Scientific Notation - Compress
23:07
Example 4: Scientific Notation - Expand
23:31
Vectors & Scalars

25m 5s

Intro
0:00
Objectives
0:05
Scalars
0:29
Definition of Scalar
0:39
Temperature, Mass, Time
0:45
Vectors
1:12
Vectors are Quantities That Have Magnitude and Direction
1:13
Represented by Arrows
1:31
Vector Representations
1:47
Graphical Vector Addition
2:42
Graphical Vector Subtraction
4:58
Vector Components
6:08
Angle of a Vector
8:22
Vector Notation
9:52
Example 1: Vector Components
14:30
Example 2: Vector Components
16:05
Example 3: Vector Magnitude
17:26
Example 4: Vector Addition
19:38
Example 5: Angle of a Vector
24:06
Section 2: Mechanics
Defining & Graphing Motion

30m 11s

Intro
0:00
Objectives
0:07
Position
0:40
An Object's Position Cab Be Assigned to a Variable on a Number Scale
0:43
Symbol for Position
1:07
Distance
1:13
When Position Changes, An Object Has Traveled Some Distance
1:14
Distance is Scalar and Measured in Meters
1:21
Example 1: Distance
1:34
Displacement
2:17
Displacement is a Vector Which Describes the Straight Line From Start to End Point
2:18
Measured in Meters
2:27
Example 2: Displacement
2:39
Average Speed
3:32
The Distance Traveled Divided by the Time Interval
3:33
Speed is a Scalar
3:47
Example 3: Average Speed
3:57
Average Velocity
4:37
The Displacement Divided by the Time Interval
4:38
Velocity is a Vector
4:53
Example 4: Average Velocity
5:06
Example 5: Chuck the Hungry Squirrel
5:55
Acceleration
8:02
Rate At Which Velocity Changes
8:13
Acceleration is a Vector
8:26
Example 6: Acceleration Problem
8:52
Average vs. Instantaneous
9:44
Average Values Take Into Account an Entire Time Interval
9:50
Instantaneous Value Tells the Rate of Change of a Quantity at a Specific Instant in Time
9:54
Example 7: Average Velocity
10:06
Particle Diagrams
11:57
Similar to the Effect of Oil Leak from a Car on the Pavement
11:59
Accelerating
13:03
Position-Time Graphs
14:17
Shows Position as a Function of Time
14:24
Slope of x-t Graph
15:08
Slope Gives You the Velocity
15:09
Negative Indicates Direction
16:27
Velocity-Time Graphs
16:45
Shows Velocity as a Function of Time
16:49
Area Under v-t Graphs
17:47
Area Under the V-T Graph Gives You Change in Displacement
17:48
Example 8: Slope of a v-t Graph
19:45
Acceleration-Time Graphs
21:44
Slope of the v-t Graph Gives You Acceleration
21:45
Area Under the a-t Graph Gives You an Object's Change in Velocity
22:24
Example 10: Motion Graphing
24:03
Example 11: v-t Graph
27:14
Example 12: Displacement From v-t Graph
28:14
Kinematic Equations

36m 13s

Intro
0:00
Objectives
0:07
Problem-Solving Toolbox
0:42
Graphs Are Not Always the Most Effective
0:47
Kinematic Equations Helps us Solve for Five Key Variables
0:56
Deriving the Kinematic Equations
1:29
Kinematic Equations
7:40
Problem Solving Steps
8:13
Label Your Horizontal or Vertical Motion
8:20
Choose a Direction as Positive
8:24
Create a Motion Analysis Table
8:33
Fill in Your Givens
8:42
Solve for Unknowns
8:45
Example 1: Horizontal Kinematics
8:51
Example 2: Vertical Kinematics
11:13
Example 3: 2 Step Problem
13:25
Example 4: Acceleration Problem
16:44
Example 5: Particle Diagrams
17:56
Example 6: Quadratic Solution
20:13
Free Fall
24:24
When the Only Force Acting on an Object is the Force of Gravity, the Motion is Free Fall
24:27
Air Resistance
24:51
Drop a Ball
24:56
Remove the Air from the Room
25:02
Analyze the Motion of Objects by Neglecting Air Resistance
25:06
Acceleration Due to Gravity
25:22
g = 9.8 m/s2
25:25
Approximate g as 10 m/s2 on the AP Exam
25:37
G is Referred to as the Gravitational Field Strength
25:48
Objects Falling From Rest
26:15
Objects Starting from Rest Have an Initial velocity of 0
26:19
Acceleration is +g
26:34
Example 7: Falling Objects
26:47
Objects Launched Upward
27:59
Acceleration is -g
28:04
At Highest Point, the Object has a Velocity of 0
28:19
Symmetry of Motion
28:27
Example 8: Ball Thrown Upward
28:47
Example 9: Height of a Jump
29:23
Example 10: Ball Thrown Downward
33:08
Example 11: Maximum Height
34:16
Projectiles

20m 32s

Intro
0:00
Objectives
0:06
What is a Projectile?
0:26
An Object That is Acted Upon Only By Gravity
0:29
Typically Launched at an Angle
0:43
Path of a Projectile
1:03
Projectiles Launched at an Angle Move in Parabolic Arcs
1:06
Symmetric and Parabolic
1:32
Horizontal Range and Max Height
1:49
Independence of Motion
2:17
Vertical
2:49
Horizontal
2:52
Example 1: Horizontal Launch
3:49
Example 2: Parabolic Path
7:41
Angled Projectiles
8:30
Must First Break Up the Object's Initial Velocity Into x- and y- Components of Initial Velocity
8:32
An Object Will Travel the Maximum Horizontal Distance with a Launch Angle of 45 Degrees
8:43
Example 3: Human Cannonball
8:55
Example 4: Motion Graphs
12:55
Example 5: Launch From a Height
15:33
Example 6: Acceleration of a Projectile
19:56
Relative Motion

10m 52s

Intro
0:00
Objectives
0:06
Reference Frames
0:18
Motion of an Observer
0:21
No Way to Distinguish Between Motion at Rest and Motion at a Constant Velocity
0:44
Motion is Relative
1:35
Example 1
1:39
Example 2
2:09
Calculating Relative Velocities
2:31
Example 1
2:43
Example 2
2:48
Example 3
2:52
Example 1
4:58
Example 2: Airspeed
6:19
Example 3: 2-D Relative Motion
7:39
Example 4: Relative Velocity with Direction
9:40
Newton's 1st Law of Motion

10m 16s

Intro
0:00
Objective
0:05
Newton's 1st Law of Motion
0:16
An Object At Rest Will Remain At Rest
0:21
An Object In Motion Will Remain in Motion
0:26
Net Force
0:39
Also Known As the Law of Inertia
0:46
Force
1:02
Push or Pull
1:04
Newtons
1:08
Contact and Field Forces
1:31
Contact Forces
1:50
Field Forces
2:11
What is a Net Force?
2:30
Vector Sum of All the Forces Acting on an Object
2:33
Translational Equilibrium
2:37
Unbalanced Force Is a Net Force
2:46
What Does It Mean?
3:49
An Object Will Continue in Its Current State of Motion Unless an Unbalanced Force Acts Upon It
3:50
Example of Newton's First Law
4:20
Objects in Motion
5:05
Will Remain in Motion At Constant Velocity
5:06
Hard to Find a Frictionless Environment on Earth
5:10
Static Equilibrium
5:40
Net Force on an Object is 0
5:44
Inertia
6:21
Tendency of an Object to Resist a Change in Velocity
6:23
Inertial Mass
6:35
Gravitational Mass
6:40
Example 1: Inertia
7:10
Example 2: Inertia
7:37
Example 3: Translational Equilibrium
8:03
Example 4: Net Force
8:40
Newton's 2nd Law of Motion

34m 55s

Intro
0:00
Objective
0:07
Free Body Diagrams
0:37
Tools Used to Analyze Physical Situations
0:40
Show All the Forces Acting on a Single Object
0:45
Drawing FBDs
0:58
Draw Object of Interest as a Dot
1:00
Sketch a Coordinate System
1:10
Example 1: Falling Elephant
1:18
Example 2: Falling Elephant with Air Resistance
2:07
Example 3: Soda on Table
3:00
Example 4: Box in Equilibrium
4:25
Example 5: Block on a Ramp
5:01
Pseudo-FBDs
5:53
Draw When Forces Don't Line Up with Axes
5:56
Break Forces That Don’t Line Up with Axes into Components That Do
6:00
Example 6: Objects on a Ramp
6:32
Example 7: Car on a Banked Turn
10:23
Newton's 2nd Law of Motion
12:56
The Acceleration of an Object is in the Direction of the Directly Proportional to the Net Force Applied
13:06
Newton's 1st Two Laws Compared
13:45
Newton's 1st Law
13:51
Newton's 2nd Law
14:10
Applying Newton's 2nd Law
14:50
Example 8: Applying Newton's 2nd Law
15:23
Example 9: Stopping a Baseball
16:52
Example 10: Block on a Surface
19:51
Example 11: Concurrent Forces
21:16
Mass vs. Weight
22:28
Mass
22:29
Weight
22:47
Example 12: Mass vs. Weight
23:16
Translational Equilibrium
24:47
Occurs When There Is No Net Force on an Object
24:49
Equilibrant
24:57
Example 13: Translational Equilibrium
25:29
Example 14: Translational Equilibrium
26:56
Example 15: Determining Acceleration
28:05
Example 16: Suspended Mass
31:03
Newton's 3rd Law of Motion

5m 58s

Intro
0:00
Objectives
0:06
Newton's 3rd Law of Motion
0:20
All Forces Come in Pairs
0:24
Examples
1:22
Action-Reaction Pairs
2:07
Girl Kicking Soccer Ball
2:11
Rocket Ship in Space
2:29
Gravity on You
2:53
Example 1: Force of Gravity
3:34
Example 2: Sailboat
4:00
Example 3: Hammer and Nail
4:49
Example 4: Net Force
5:06
Friction

17m 49s

Intro
0:00
Objectives
0:06
Examples
0:23
Friction Opposes Motion
0:24
Kinetic Friction
0:27
Static Friction
0:36
Magnitude of Frictional Force Is Determined By Two Things
0:41
Coefficient Friction
2:27
Ratio of the Frictional Force and the Normal Force
2:28
Chart of Different Values of Friction
2:48
Kinetic or Static?
3:31
Example 1: Car Sliding
4:18
Example 2: Block on Incline
5:03
Calculating the Force of Friction
5:48
Depends Only Upon the Nature of the Surfaces in Contact and the Magnitude of the Force
5:50
Terminal Velocity
6:14
Air Resistance
6:18
Terminal Velocity of the Falling Object
6:33
Example 3: Finding the Frictional Force
7:36
Example 4: Box on Wood Surface
9:13
Example 5: Static vs. Kinetic Friction
11:49
Example 6: Drag Force on Airplane
12:15
Example 7: Pulling a Sled
13:21
Dynamics Applications

35m 27s

Intro
0:00
Objectives
0:08
Free Body Diagrams
0:49
Drawing FBDs
1:09
Draw Object of Interest as a Dot
1:12
Sketch a Coordinate System
1:18
Example 1: FBD of Block on Ramp
1:39
Pseudo-FBDs
1:59
Draw Object of Interest as a Dot
2:00
Break Up the Forces
2:07
Box on a Ramp
2:12
Example 2: Box at Rest
4:28
Example 3: Box Held by Force
5:00
What is an Atwood Machine?
6:46
Two Objects are Connected by a Light String Over a Mass-less Pulley
6:49
Properties of Atwood Machines
7:13
Ideal Pulleys are Frictionless and Mass-less
7:16
Tension is Constant in a Light String Passing Over an Ideal Pulley
7:23
Solving Atwood Machine Problems
8:02
Alternate Solution
12:07
Analyze the System as a Whole
12:12
Elevators
14:24
Scales Read the Force They Exert on an Object Placed Upon Them
14:42
Can be Used to Analyze Using Newton's 2nd Law and Free body Diagrams
15:23
Example 4: Elevator Accelerates Upward
15:36
Example 5: Truck on a Hill
18:30
Example 6: Force Up a Ramp
19:28
Example 7: Acceleration Down a Ramp
21:56
Example 8: Basic Atwood Machine
24:05
Example 9: Masses and Pulley on a Table
26:47
Example 10: Mass and Pulley on a Ramp
29:15
Example 11: Elevator Accelerating Downward
33:00
Impulse & Momentum

26m 6s

Intro
0:00
Objectives
0:06
Momentum
0:31
Example
0:35
Momentum measures How Hard It Is to Stop a Moving Object
0:47
Vector Quantity
0:58
Example 1: Comparing Momenta
1:48
Example 2: Calculating Momentum
3:08
Example 3: Changing Momentum
3:50
Impulse
5:02
Change In Momentum
5:05
Example 4: Impulse
5:26
Example 5: Impulse-Momentum
6:41
Deriving the Impulse-Momentum Theorem
9:04
Impulse-Momentum Theorem
12:02
Example 6: Impulse-Momentum Theorem
12:15
Non-Constant Forces
13:55
Impulse or Change in Momentum
13:56
Determine the Impulse by Calculating the Area of the Triangle Under the Curve
14:07
Center of Mass
14:56
Real Objects Are More Complex Than Theoretical Particles
14:59
Treat Entire Object as if Its Entire Mass Were Contained at the Object's Center of Mass
15:09
To Calculate the Center of Mass
15:17
Example 7: Force on a Moving Object
15:49
Example 8: Motorcycle Accident
17:49
Example 9: Auto Collision
19:32
Example 10: Center of Mass (1D)
21:29
Example 11: Center of Mass (2D)
23:28
Collisions

21m 59s

Intro
0:00
Objectives
0:09
Conservation of Momentum
0:18
Linear Momentum is Conserved in an Isolated System
0:21
Useful for Analyzing Collisions and Explosions
0:27
Momentum Tables
0:58
Identify Objects in the System
1:05
Determine the Momenta of the Objects Before and After the Event
1:10
Add All the Momenta From Before the Event and Set Them Equal to Momenta After the Event
1:15
Solve Your Resulting Equation for Unknowns
1:20
Types of Collisions
1:31
Elastic Collision
1:36
Inelastic Collision
1:56
Example 1: Conservation of Momentum (1D)
2:02
Example 2: Inelastic Collision
5:12
Example 3: Recoil Velocity
7:16
Example 4: Conservation of Momentum (2D)
9:29
Example 5: Atomic Collision
16:02
Describing Circular Motion

7m 18s

Intro
0:00
Objectives
0:07
Uniform Circular Motion
0:20
Circumference
0:32
Average Speed Formula Still Applies
0:46
Frequency
1:03
Number of Revolutions or Cycles Which Occur Each Second
1:04
Hertz
1:24
Formula for Frequency
1:28
Period
1:36
Time It Takes for One Complete Revolution or Cycle
1:37
Frequency and Period
1:54
Example 1: Car on a Track
2:08
Example 2: Race Car
3:55
Example 3: Toy Train
4:45
Example 4: Round-A-Bout
5:39
Centripetal Acceleration & Force

26m 37s

Intro
0:00
Objectives
0:08
Uniform Circular Motion
0:38
Direction of ac
1:41
Magnitude of ac
3:50
Centripetal Force
4:08
For an Object to Accelerate, There Must Be a Net Force
4:18
Centripetal Force
4:26
Calculating Centripetal Force
6:14
Example 1: Acceleration
7:31
Example 2: Direction of ac
8:53
Example 3: Loss of Centripetal Force
9:19
Example 4: Velocity and Centripetal Force
10:08
Example 5: Demon Drop
10:55
Example 6: Centripetal Acceleration vs. Speed
14:11
Example 7: Calculating ac
15:03
Example 8: Running Back
15:45
Example 9: Car at an Intersection
17:15
Example 10: Bucket in Horizontal Circle
18:40
Example 11: Bucket in Vertical Circle
19:20
Example 12: Frictionless Banked Curve
21:55
Gravitation

32m 56s

Intro
0:00
Objectives
0:08
Universal Gravitation
0:29
The Bigger the Mass the Closer the Attraction
0:48
Formula for Gravitational Force
1:16
Calculating g
2:43
Mass of Earth
2:51
Radius of Earth
2:55
Inverse Square Relationship
4:32
Problem Solving Hints
7:21
Substitute Values in For Variables at the End of the Problem Only
7:26
Estimate the Order of Magnitude of the Answer Before Using Your Calculator
7:38
Make Sure Your Answer Makes Sense
7:55
Example 1: Asteroids
8:20
Example 2: Meteor and the Earth
10:17
Example 3: Satellite
13:13
Gravitational Fields
13:50
Gravity is a Non-Contact Force
13:54
Closer Objects
14:14
Denser Force Vectors
14:19
Gravitational Field Strength
15:09
Example 4: Astronaut
16:19
Gravitational Potential Energy
18:07
Two Masses Separated by Distance Exhibit an Attractive Force
18:11
Formula for Gravitational Field
19:21
How Do Orbits Work?
19:36
Example5: Gravitational Field Strength for Space Shuttle in Orbit
21:35
Example 6: Earth's Orbit
25:13
Example 7: Bowling Balls
27:25
Example 8: Freely Falling Object
28:07
Example 9: Finding g
28:40
Example 10: Space Vehicle on Mars
29:10
Example 11: Fg vs. Mass Graph
30:24
Example 12: Mass on Mars
31:14
Example 13: Two Satellites
31:51
Rotational Kinematics

15m 33s

Intro
0:00
Objectives
0:07
Radians and Degrees
0:26
In Degrees, Once Around a Circle is 360 Degrees
0:29
In Radians, Once Around a Circle is 2π
0:34
Example 1: Degrees to Radians
0:57
Example 2: Radians to Degrees
1:31
Linear vs. Angular Displacement
2:00
Linear Position
2:05
Angular Position
2:10
Linear vs. Angular Velocity
2:35
Linear Speed
2:39
Angular Speed
2:42
Direction of Angular Velocity
3:05
Converting Linear to Angular Velocity
4:22
Example 3: Angular Velocity Example
4:41
Linear vs. Angular Acceleration
5:36
Example 4: Angular Acceleration
6:15
Kinematic Variable Parallels
7:47
Displacement
7:52
Velocity
8:10
Acceleration
8:16
Time
8:22
Kinematic Variable Translations
8:30
Displacement
8:34
Velocity
8:42
Acceleration
8:50
Time
8:58
Kinematic Equation Parallels
9:09
Kinematic Equations
9:12
Delta
9:33
Final Velocity Squared and Angular Velocity Squared
9:54
Example 5: Medieval Flail
10:24
Example 6: CD Player
10:57
Example 7: Carousel
12:13
Example 8: Circular Saw
13:35
Torque

11m 21s

Intro
0:00
Objectives
0:05
Torque
0:18
Force That Causes an Object to Turn
0:22
Must be Perpendicular to the Displacement to Cause a Rotation
0:27
Lever Arm: The Stronger the Force, The More Torque
0:45
Direction of the Torque Vector
1:53
Perpendicular to the Position Vector and the Force Vector
1:54
Right-Hand Rule
2:08
Newton's 2nd Law: Translational vs. Rotational
2:46
Equilibrium
3:58
Static Equilibrium
4:01
Dynamic Equilibrium
4:09
Rotational Equilibrium
4:22
Example 1: Pirate Captain
4:32
Example 2: Auto Mechanic
5:25
Example 3: Sign Post
6:44
Example 4: See-Saw
9:01
Rotational Dynamics

36m 6s

Intro
0:00
Objectives
0:08
Types of Inertia
0:39
Inertial Mass (Translational Inertia)
0:42
Moment of Inertia (Rotational Inertia)
0:53
Moment of Inertia for Common Objects
1:48
Example 1: Calculating Moment of Inertia
2:53
Newton's 2nd Law - Revisited
5:09
Acceleration of an Object
5:15
Angular Acceleration of an Object
5:24
Example 2: Rotating Top
5:47
Example 3: Spinning Disc
7:54
Angular Momentum
9:41
Linear Momentum
9:43
Angular Momentum
10:00
Calculating Angular Momentum
10:51
Direction of the Angular Momentum Vector
11:26
Total Angular Momentum
12:29
Example 4: Angular Momentum of Particles
14:15
Example 5: Rotating Pedestal
16:51
Example 6: Rotating Discs
18:39
Angular Momentum and Heavenly Bodies
20:13
Types of Kinetic Energy
23:41
Objects Traveling with a Translational Velocity
23:45
Objects Traveling with Angular Velocity
24:00
Translational vs. Rotational Variables
24:33
Example 7: Kinetic Energy of a Basketball
25:45
Example 8: Playground Round-A-Bout
28:17
Example 9: The Ice Skater
30:54
Example 10: The Bowler
33:15
Work & Power

31m 20s

Intro
0:00
Objectives
0:09
What Is Work?
0:31
Power Output
0:35
Transfer Energy
0:39
Work is the Process of Moving an Object by Applying a Force
0:46
Examples of Work
0:56
Calculating Work
2:16
Only the Force in the Direction of the Displacement Counts
2:33
Formula for Work
2:48
Example 1: Moving a Refrigerator
3:16
Example 2: Liberating a Car
3:59
Example 3: Crate on a Ramp
5:20
Example 4: Lifting a Box
7:11
Example 5: Pulling a Wagon
8:38
Force vs. Displacement Graphs
9:33
The Area Under a Force vs. Displacement Graph is the Work Done by the Force
9:37
Find the Work Done
9:49
Example 6: Work From a Varying Force
11:00
Hooke's Law
12:42
The More You Stretch or Compress a Spring, The Greater the Force of the Spring
12:46
The Spring's Force is Opposite the Direction of Its Displacement from Equilibrium
13:00
Determining the Spring Constant
14:21
Work Done in Compressing the Spring
15:27
Example 7: Finding Spring Constant
16:21
Example 8: Calculating Spring Constant
17:58
Power
18:43
Work
18:46
Power
18:50
Example 9: Moving a Sofa
19:26
Calculating Power
20:41
Example 10: Motors Delivering Power
21:27
Example 11: Force on a Cyclist
22:40
Example 12: Work on a Spinning Mass
23:52
Example 13: Work Done by Friction
25:05
Example 14: Units of Power
28:38
Example 15: Frictional Force on a Sled
29:43
Energy

20m 15s

Intro
0:00
Objectives
0:07
What is Energy?
0:24
The Ability or Capacity to do Work
0:26
The Ability or Capacity to Move an Object
0:34
Types of Energy
0:39
Energy Transformations
2:07
Transfer Energy by Doing Work
2:12
Work-Energy Theorem
2:20
Units of Energy
2:51
Kinetic Energy
3:08
Energy of Motion
3:13
Ability or Capacity of a Moving Object to Move Another Object
3:17
A Single Object Can Only Have Kinetic Energy
3:46
Example 1: Kinetic Energy of a Motorcycle
5:08
Potential Energy
5:59
Energy An Object Possesses
6:10
Gravitational Potential Energy
7:21
Elastic Potential Energy
9:58
Internal Energy
10:16
Includes the Kinetic Energy of the Objects That Make Up the System and the Potential Energy of the Configuration
10:20
Calculating Gravitational Potential Energy in a Constant Gravitational Field
10:57
Sources of Energy on Earth
12:41
Example 2: Potential Energy
13:41
Example 3: Energy of a System
14:40
Example 4: Kinetic and Potential Energy
15:36
Example 5: Pendulum
16:55
Conservation of Energy

23m 20s

Intro
0:00
Objectives
0:08
Law of Conservation of Energy
0:22
Energy Cannot Be Created or Destroyed.. It Can Only Be Changed
0:27
Mechanical Energy
0:34
Conservation Laws
0:40
Examples
0:49
Kinematics vs. Energy
4:34
Energy Approach
4:56
Kinematics Approach
6:04
The Pendulum
8:07
Example 1: Cart Compressing a Spring
13:09
Example 2
14:23
Example 3: Car Skidding to a Stop
16:15
Example 4: Accelerating an Object
17:27
Example 5: Block on Ramp
18:06
Example 6: Energy Transfers
19:21
Simple Harmonic Motion

58m 30s

Intro
0:00
Objectives
0:08
What Is Simple Harmonic Motion?
0:57
Nature's Typical Reaction to a Disturbance
1:00
A Displacement Which Results in a Linear Restoring Force Results in SHM
1:25
Review of Springs
1:43
When a Force is Applied to a Spring, the Spring Applies a Restoring Force
1:46
When the Spring is in Equilibrium, It Is 'Unstrained'
1:54
Factors Affecting the Force of A Spring
2:00
Oscillations
3:42
Repeated Motions
3:45
Cycle 1
3:52
Period
3:58
Frequency
4:07
Spring-Block Oscillator
4:47
Mass of the Block
4:59
Spring Constant
5:05
Example 1: Spring-Block Oscillator
6:30
Diagrams
8:07
Displacement
8:42
Velocity
8:57
Force
9:36
Acceleration
10:09
U
10:24
K
10:47
Example 2: Harmonic Oscillator Analysis
16:22
Circular Motion vs. SHM
23:26
Graphing SHM
25:52
Example 3: Position of an Oscillator
28:31
Vertical Spring-Block Oscillator
31:13
Example 4: Vertical Spring-Block Oscillator
34:26
Example 5: Bungee
36:39
The Pendulum
43:55
Mass Is Attached to a Light String That Swings Without Friction About the Vertical Equilibrium
44:04
Energy and the Simple Pendulum
44:58
Frequency and Period of a Pendulum
48:25
Period of an Ideal Pendulum
48:31
Assume Theta is Small
48:54
Example 6: The Pendulum
50:15
Example 7: Pendulum Clock
53:38
Example 8: Pendulum on the Moon
55:14
Example 9: Mass on a Spring
56:01
Section 3: Fluids
Density & Buoyancy

19m 48s

Intro
0:00
Objectives
0:09
Fluids
0:27
Fluid is Matter That Flows Under Pressure
0:31
Fluid Mechanics is the Study of Fluids
0:44
Density
0:57
Density is the Ratio of an Object's Mass to the Volume It Occupies
0:58
Less Dense Fluids
1:06
Less Dense Solids
1:09
Example 1: Density of Water
1:27
Example 2: Volume of Gold
2:19
Example 3: Floating
3:06
Buoyancy
3:54
Force Exerted by a Fluid on an Object, Opposing the Object's Weight
3:56
Buoyant Force Determined Using Archimedes Principle
4:03
Example 4: Buoyant Force
5:12
Example 5: Shark Tank
5:56
Example 6: Concrete Boat
7:47
Example 7: Apparent Mass
10:08
Example 8: Volume of a Submerged Cube
13:21
Example 9: Determining Density
15:37
Pressure & Pascal's Principle

18m 7s

Intro
0:00
Objectives
0:09
Pressure
0:25
Pressure is the Effect of a Force Acting Upon a Surface
0:27
Formula for Pressure
0:41
Force is Always Perpendicular to the Surface
0:50
Exerting Pressure
1:03
Fluids Exert Outward Pressure in All Directions on the Sides of Any Container Holding the Fluid
1:36
Earth's Atmosphere Exerts Pressure
1:42
Example 1: Pressure on Keyboard
2:17
Example 2: Sleepy Fisherman
3:03
Example 3: Scale on Planet Physica
4:12
Example 4: Ranking Pressures
5:00
Pressure on a Submerged Object
6:45
Pressure a Fluid Exerts on an Object Submerged in That Fluid
6:46
If There Is Atmosphere Above the Fluid
7:03
Example 5: Gauge Pressure Scuba Diving
7:27
Example 6: Absolute Pressure Scuba Diving
8:13
Pascal's Principle
8:51
Force Multiplication Using Pascal's Principle
9:24
Example 7: Barber's Chair
11:38
Example 8: Hydraulic Auto Lift
13:26
Example 9: Pressure on a Penny
14:41
Example 10: Depth in Fresh Water
16:39
Example 11: Absolute vs. Gauge Pressure
17:23
Continuity Equation for Fluids

7m

Intro
0:00
Objectives
0:08
Conservation of Mass for Fluid Flow
0:18
Law of Conservation of Mass for Fluids
0:21
Volume Flow Rate Remains Constant Throughout the Pipe
0:35
Volume Flow Rate
0:59
Quantified In Terms Of Volume Flow Rate
1:01
Area of Pipe x Velocity of Fluid
1:05
Must Be Constant Throughout Pipe
1:10
Example 1: Tapered Pipe
1:44
Example 2: Garden Hose
2:37
Example 3: Oil Pipeline
4:49
Example 4: Roots of Continuity Equation
6:16
Bernoulli's Principle

20m

Intro
0:00
Objectives
0:08
Bernoulli's Principle
0:21
Airplane Wings
0:35
Venturi Pump
1:56
Bernoulli's Equation
3:32
Example 1: Torricelli's Theorem
4:38
Example 2: Gauge Pressure
7:26
Example 3: Shower Pressure
8:16
Example 4: Water Fountain
12:29
Example 5: Elevated Cistern
15:26
Section 4: Thermal Physics
Temperature, Heat, & Thermal Expansion

24m 17s

Intro
0:00
Objectives
0:12
Thermal Physics
0:42
Explores the Internal Energy of Objects Due to the Motion of the Atoms and Molecules Comprising the Objects
0:46
Explores the Transfer of This Energy From Object to Object
0:53
Temperature
1:00
Thermal Energy Is Related to the Kinetic Energy of All the Particles Comprising the Object
1:03
The More Kinetic Energy of the Constituent Particles Have, The Greater the Object's Thermal Energy
1:12
Temperature and Phases of Matter
1:44
Solids
1:48
Liquids
1:56
Gases
2:02
Average Kinetic Energy and Temperature
2:16
Average Kinetic Energy
2:24
Boltzmann's Constant
2:29
Temperature Scales
3:06
Converting Temperatures
4:37
Heat
5:03
Transfer of Thermal Energy
5:06
Accomplished Through Collisions Which is Conduction
5:13
Methods of Heat Transfer
5:52
Conduction
5:59
Convection
6:19
Radiation
6:31
Quantifying Heat Transfer in Conduction
6:37
Rate of Heat Transfer is Measured in Watts
6:42
Thermal Conductivity
7:12
Example 1: Average Kinetic Energy
7:35
Example 2: Body Temperature
8:22
Example 3: Temperature of Space
9:30
Example 4: Temperature of the Sun
10:44
Example 5: Heat Transfer Through Window
11:38
Example 6: Heat Transfer Across a Rod
12:40
Thermal Expansion
14:18
When Objects Are Heated, They Tend to Expand
14:19
At Higher Temperatures, Objects Have Higher Average Kinetic Energies
14:24
At Higher Levels of Vibration, The Particles Are Not Bound As Tightly to Each Other
14:30
Linear Expansion
15:11
Amount a Material Expands is Characterized by the Material's Coefficient of Expansion
15:14
One-Dimensional Expansion -> Linear Coefficient of Expansion
15:20
Volumetric Expansion
15:38
Three-Dimensional Expansion -> Volumetric Coefficient of Expansion
15:45
Volumetric Coefficient of Expansion is Roughly Three Times the Linear Coefficient of Expansion
16:03
Coefficients of Thermal Expansion
16:24
Example 7: Contracting Railroad Tie
16:59
Example 8: Expansion of an Aluminum Rod
18:37
Example 9: Water Spilling Out of a Glass
20:18
Example 10: Average Kinetic Energy vs. Temperature
22:18
Example 11: Expansion of a Ring
23:07
Ideal Gases

24m 15s

Intro
0:00
Objectives
0:10
Ideal Gases
0:25
Gas Is Comprised of Many Particles Moving Randomly in a Container
0:34
Particles Are Far Apart From One Another
0:46
Particles Do Not Exert Forces Upon One Another Unless They Come In Contact in an Elastic Collision
0:53
Ideal Gas Law
1:18
Atoms, Molecules, and Moles
2:56
Protons
2:59
Neutrons
3:15
Electrons
3:18
Examples
3:25
Example 1: Counting Moles
4:58
Example 2: Moles of CO2 in a Bottle
6:00
Example 3: Pressurized CO2
6:54
Example 4: Helium Balloon
8:53
Internal Energy of an Ideal Gas
10:17
The Average Kinetic Energy of the Particles of an Ideal Gas
10:21
Total Internal Energy of the Ideal Gas Can Be Found by Multiplying the Average Kinetic Energy of the Gas's Particles by the Numbers of Particles in the Gas
10:32
Example 5: Internal Energy of Oxygen
12:00
Example 6: Temperature of Argon
12:41
Root-Mean-Square Velocity
13:40
This is the Square Root of the Average Velocity Squared For All the Molecules in the System
13:43
Derived from the Maxwell-Boltzmann Distribution Function
13:56
Calculating vrms
14:56
Example 7: Average Velocity of a Gas
18:32
Example 8: Average Velocity of a Gas
19:44
Example 9: vrms of Molecules in Equilibrium
20:59
Example 10: Moles to Molecules
22:25
Example 11: Relating Temperature and Internal Energy
23:22
Thermodynamics

22m 29s

Intro
0:00
Objectives
0:06
Zeroth Law of Thermodynamics
0:26
First Law of Thermodynamics
1:00
The Change in the Internal Energy of a Closed System is Equal to the Heat Added to the System Plus the Work Done on the System
1:04
It is a Restatement of the Law of Conservation of Energy
1:19
Sign Conventions Are Important
1:25
Work Done on a Gas
1:44
Example 1: Adding Heat to a System
3:25
Example 2: Expanding a Gas
4:07
P-V Diagrams
5:11
Pressure-Volume Diagrams are Useful Tools for Visualizing Thermodynamic Processes of Gases
5:13
Use Ideal Gas Law to Determine Temperature of Gas
5:25
P-V Diagrams II
5:55
Volume Increases, Pressure Decreases
6:00
As Volume Expands, Gas Does Work
6:19
Temperature Rises as You Travel Up and Right on a PV Diagram
6:29
Example 3: PV Diagram Analysis
6:40
Types of PV Processes
7:52
Adiabatic
8:03
Isobaric
8:19
Isochoric
8:28
Isothermal
8:35
Adiabatic Processes
8:47
Heat Is not Transferred Into or Out of The System
8:50
Heat = 0
8:55
Isobaric Processes
9:19
Pressure Remains Constant
9:21
PV Diagram Shows a Horizontal Line
9:27
Isochoric Processes
9:51
Volume Remains Constant
9:52
PV Diagram Shows a Vertical Line
9:58
Work Done on the Gas is Zero
10:01
Isothermal Processes
10:27
Temperature Remains Constant
10:29
Lines on a PV Diagram Are Isotherms
10:31
PV Remains Constant
10:38
Internal Energy of Gas Remains Constant
10:40
Example 4: Adiabatic Expansion
10:46
Example 5: Removing Heat
11:25
Example 6: Ranking Processes
13:08
Second Law of Thermodynamics
13:59
Heat Flows Naturally From a Warmer Object to a Colder Object
14:02
Heat Energy Cannot be Completely Transformed Into Mechanical Work
14:11
All Natural Systems Tend Toward a Higher Level of Disorder
14:19
Heat Engines
14:52
Heat Engines Convert Heat Into Mechanical Work
14:56
Efficiency of a Heat Engine is the Ratio of the Engine You Get Out to the Energy You Put In
14:59
Power in Heat Engines
16:09
Heat Engines and PV Diagrams
17:38
Carnot Engine
17:54
It Is a Theoretical Heat Engine That Operates at Maximum Possible Efficiency
18:02
It Uses Only Isothermal and Adiabatic Processes
18:08
Carnot's Theorem
18:11
Example 7: Carnot Engine
18:49
Example 8: Maximum Efficiency
21:02
Example 9: PV Processes
21:51
Section 5: Electricity & Magnetism
Electric Fields & Forces

38m 24s

Intro
0:00
Objectives
0:10
Electric Charges
0:34
Matter is Made Up of Atoms
0:37
Protons Have a Charge of +1
0:45
Electrons Have a Charge of -1
1:00
Most Atoms Are Neutral
1:04
Ions
1:15
Fundamental Unit of Charge is the Coulomb
1:29
Like Charges Repel, While Opposites Attract
1:50
Example 1: Charge on an Object
2:22
Example 2: Charge of an Alpha Particle
3:36
Conductors and Insulators
4:27
Conductors Allow Electric Charges to Move Freely
4:30
Insulators Do Not Allow Electric Charges to Move Freely
4:39
Resistivity is a Material Property
4:45
Charging by Conduction
5:05
Materials May Be Charged by Contact, Known as Conduction
5:07
Conductors May Be Charged by Contact
5:24
Example 3: Charging by Conduction
5:38
The Electroscope
6:44
Charging by Induction
8:00
Example 4: Electrostatic Attraction
9:23
Coulomb's Law
11:46
Charged Objects Apply a Force Upon Each Other = Coulombic Force
11:52
Force of Attraction or Repulsion is Determined by the Amount of Charge and the Distance Between the Charges
12:04
Example 5: Determine Electrostatic Force
13:09
Example 6: Deflecting an Electron Beam
15:35
Electric Fields
16:28
The Property of Space That Allows a Charged Object to Feel a Force
16:44
Electric Field Strength Vector is the Amount of Electrostatic Force Observed by a Charge Per Unit of Charge
17:01
The Direction of the Electric Field Vector is the Direction a Positive Charge Would Feel a Force
17:24
Example 7: Field Between Metal Plates
17:58
Visualizing the Electric Field
19:27
Electric Field Lines Point Away from Positive Charges and Toward Negative Charges
19:40
Electric Field Lines Intersect Conductors at Right Angles to the Surface
19:50
Field Strength and Line Density Decreases as You Move Away From the Charges
19:58
Electric Field Lines
20:09
E Field Due to a Point Charge
22:32
Electric Fields Are Caused by Charges
22:35
Electric Field Due to a Point Charge Can Be Derived From the Definition of the Electric Field and Coulomb's Law
22:38
To Find the Electric Field Due to Multiple Charges
23:09
Comparing Electricity to Gravity
23:56
Force
24:02
Field Strength
24:16
Constant
24:37
Charge/ Mass Units
25:01
Example 8: E Field From 3 Point Charges
25:07
Example 9: Where is the E Field Zero?
31:43
Example 10: Gravity and Electricity
36:38
Example 11: Field Due to Point Charge
37:34
Electric Potential Difference

35m 58s

Intro
0:00
Objectives
0:09
Electric Potential Energy
0:32
When an Object Was Lifted Against Gravity By Applying a Force for Some Distance, Work Was Done
0:35
When a Charged Object is Moved Against an Electric Field by Applying a Force for Some Distance, Work is Done
0:43
Electric Potential Difference
1:30
Example 1: Charge From Work
2:06
Example 2: Electric Energy
3:09
The Electron-Volt
4:02
Electronvolt (eV)
4:15
1eV is the Amount of Work Done in Moving an Elementary Charge Through a Potential Difference of 1 Volt
4:28
Example 3: Energy in eV
5:33
Equipotential Lines
6:32
Topographic Maps Show Lines of Equal Altitude, or Equal Gravitational Potential
6:36
Lines Connecting Points of Equal Electrical Potential are Known as Equipotential Lines
6:57
Drawing Equipotential Lines
8:15
Potential Due to a Point Charge
10:46
Calculate the Electric Field Vector Due to a Point Charge
10:52
Calculate the Potential Difference Due to a Point Charge
11:05
To Find the Potential Difference Due to Multiple Point Charges
11:16
Example 4: Potential Due to a Point Charge
11:52
Example 5: Potential Due to Point Charges
13:04
Parallel Plates
16:34
Configurations in Which Parallel Plates of Opposite Charge are Situated a Fixed Distance From Each Other
16:37
These Can Create a Capacitor
16:45
E Field Due to Parallel Plates
17:14
Electric Field Away From the Edges of Two Oppositely Charged Parallel Plates is Constant
17:15
Magnitude of the Electric Field Strength is Give By the Potential Difference Between the Plates Divided by the Plate Separation
17:47
Capacitors
18:09
Electric Device Used to Store Charge
18:11
Once the Plates Are Charged, They Are Disconnected
18:30
Device's Capacitance
18:46
Capacitors Store Energy
19:28
Charges Located on the Opposite Plates of a Capacitor Exert Forces on Each Other
19:31
Example 6: Capacitance
20:28
Example 7: Charge on a Capacitor
22:03
Designing Capacitors
24:00
Area of the Plates
24:05
Separation of the Plates
24:09
Insulating Material
24:13
Example 8: Designing a Capacitor
25:35
Example 9: Calculating Capacitance
27:39
Example 10: Electron in Space
29:47
Example 11: Proton Energy Transfer
30:35
Example 12: Two Conducting Spheres
32:50
Example 13: Equipotential Lines for a Capacitor
34:48
Current & Resistance

21m 14s

Intro
0:00
Objectives
0:06
Electric Current
0:19
Path Through Current Flows
0:21
Current is the Amount of Charge Passing a Point Per Unit Time
0:25
Conventional Current is the Direction of Positive Charge Flow
0:43
Example 1: Current Through a Resistor
1:19
Example 2: Current Due to Elementary Charges
1:47
Example 3: Charge in a Light Bulb
2:35
Example 4: Flashlights
3:03
Conductivity and Resistivity
4:41
Conductivity is a Material's Ability to Conduct Electric Charge
4:53
Resistivity is a Material's Ability to Resist the Movement of Electric Charge
5:11
Resistance vs. Resistivity vs. Resistors
5:35
Resistivity Is a Material Property
5:40
Resistance Is a Functional Property of an Element in an Electric Circuit
5:57
A Resistor is a Circuit Element
7:23
Resistors
7:45
Example 5: Calculating Resistance
8:17
Example 6: Resistance Dependencies
10:09
Configuration of Resistors
10:50
When Placed in a Circuit, Resistors Can be Organized in Both Serial and Parallel Arrangements
10:53
May Be Useful to Determine an Equivalent Resistance Which Could Be Used to Replace a System or Resistors with a Single Equivalent Resistor
10:58
Resistors in Series
11:15
Resistors in Parallel
12:35
Example 7: Finding Equivalent Resistance
15:01
Example 8: Length and Resistance
17:43
Example 9: Comparing Resistors
18:21
Example 10: Comparing Wires
19:12
Ohm's Law & Power

10m 35s

Intro
0:00
Objectives
0:06
Ohm's Law
0:21
Relates Resistance, Potential Difference, and Current Flow
0:23
Example 1: Resistance of a Wire
1:22
Example 2: Circuit Current
1:58
Example 3: Variable Resistor
2:30
Ohm's 'Law'?
3:22
Very Useful Empirical Relationship
3:31
Test if a Material is 'Ohmic'
3:40
Example 4: Ohmic Material
3:58
Electrical Power
4:24
Current Flowing Through a Circuit Causes a Transfer of Energy Into Different Types
4:26
Example: Light Bulb
4:36
Example: Television
4:58
Calculating Power
5:09
Electrical Energy
5:14
Charge Per Unit Time Is Current
5:29
Expand Using Ohm's Law
5:48
Example 5: Toaster
7:43
Example 6: Electric Iron
8:19
Example 7: Power of a Resistor
9:19
Example 8: Information Required to Determine Power in a Resistor
9:55
Circuits & Electrical Meters

8m 44s

Intro
0:00
Objectives
0:08
Electrical Circuits
0:21
A Closed-Loop Path Through Which Current Can Flow
0:22
Can Be Made Up of Most Any Materials, But Typically Comprised of Electrical Devices
0:27
Circuit Schematics
1:09
Symbols Represent Circuit Elements
1:30
Lines Represent Wires
1:33
Sources for Potential Difference: Voltaic Cells, Batteries, Power Supplies
1:36
Complete Conducting Paths
2:43
Voltmeters
3:20
Measure the Potential Difference Between Two Points in a Circuit
3:21
Connected in Parallel with the Element to be Measured
3:25
Have Very High Resistance
3:59
Ammeters
4:19
Measure the Current Flowing Through an Element of a Circuit
4:20
Connected in Series with the Circuit
4:25
Have Very Low Resistance
4:45
Example 1: Ammeter and Voltmeter Placement
4:56
Example 2: Analyzing R
6:27
Example 3: Voltmeter Placement
7:12
Example 4: Behavior or Electrical Meters
7:31
Circuit Analysis

48m 58s

Intro
0:00
Objectives
0:07
Series Circuits
0:27
Series Circuits Have Only a Single Current Path
0:29
Removal of any Circuit Element Causes an Open Circuit
0:31
Kirchhoff's Laws
1:36
Tools Utilized in Analyzing Circuits
1:42
Kirchhoff's Current Law States
1:47
Junction Rule
2:00
Kirchhoff's Voltage Law States
2:05
Loop Rule
2:18
Example 1: Voltage Across a Resistor
2:23
Example 2: Current at a Node
3:45
Basic Series Circuit Analysis
4:53
Example 3: Current in a Series Circuit
9:21
Example 4: Energy Expenditure in a Series Circuit
10:14
Example 5: Analysis of a Series Circuit
12:07
Example 6: Voltmeter In a Series Circuit
14:57
Parallel Circuits
17:11
Parallel Circuits Have Multiple Current Paths
17:13
Removal of a Circuit Element May Allow Other Branches of the Circuit to Continue Operating
17:15
Basic Parallel Circuit Analysis
18:19
Example 7: Parallel Circuit Analysis
21:05
Example 8: Equivalent Resistance
22:39
Example 9: Four Parallel Resistors
23:16
Example 10: Ammeter in a Parallel Circuit
26:27
Combination Series-Parallel Circuits
28:50
Look For Portions of the Circuit With Parallel Elements
28:56
Work Back to Original Circuit
29:09
Analysis of a Combination Circuit
29:20
Internal Resistance
34:11
In Reality, Voltage Sources Have Some Amount of 'Internal Resistance'
34:16
Terminal Voltage of the Voltage Source is Reduced Slightly
34:25
Example 11: Two Voltage Sources
35:16
Example 12: Internal Resistance
42:46
Example 13: Complex Circuit with Meters
45:22
Example 14: Parallel Equivalent Resistance
48:24
RC Circuits

24m 47s

Intro
0:00
Objectives
0:08
Capacitors in Parallel
0:34
Capacitors Store Charge on Their Plates
0:37
Capacitors In Parallel Can Be Replaced with an Equivalent Capacitor
0:46
Capacitors in Series
2:42
Charge on Capacitors Must Be the Same
2:44
Capacitor In Series Can Be Replaced With an Equivalent Capacitor
2:47
RC Circuits
5:40
Comprised of a Source of Potential Difference, a Resistor Network, and One or More Capacitors
5:42
Uncharged Capacitors Act Like Wires
6:04
Charged Capacitors Act Like Opens
6:12
Charging an RC Circuit
6:23
Discharging an RC Circuit
11:36
Example 1: RC Analysis
14:50
Example 2: More RC Analysis
18:26
Example 3: Equivalent Capacitance
21:19
Example 4: More Equivalent Capacitance
22:48
Magnetic Fields & Properties

19m 48s

Intro
0:00
Objectives
0:07
Magnetism
0:32
A Force Caused by Moving Charges
0:34
Magnetic Domains Are Clusters of Atoms with Electrons Spinning in the Same Direction
0:51
Example 1: Types of Fields
1:23
Magnetic Field Lines
2:25
Make Closed Loops and Run From North to South Outside the Magnet
2:26
Magnetic Flux
2:42
Show the Direction the North Pole of a Magnet Would Tend to Point If Placed in the Field
2:54
Example 2: Lines of Magnetic Force
3:49
Example 3: Forces Between Bar Magnets
4:39
The Compass
5:28
The Earth is a Giant Magnet
5:31
The Earth's Magnetic North pole is Located Near the Geographic South Pole, and Vice Versa
5:33
A Compass Lines Up with the Net Magnetic Field
6:07
Example 3: Compass in Magnetic Field
6:41
Example 4: Compass Near a Bar Magnet
7:14
Magnetic Permeability
7:59
The Ratio of the Magnetic Field Strength Induced in a Material to the Magnetic Field Strength of the Inducing Field
8:02
Free Space
8:13
Highly Magnetic Materials Have Higher Values of Magnetic Permeability
8:34
Magnetic Dipole Moment
8:41
The Force That a Magnet Can Exert on Moving Charges
8:46
Relative Strength of a Magnet
8:54
Forces on Moving Charges
9:10
Moving Charges Create Magnetic Fields
9:11
Magnetic Fields Exert Forces on Moving Charges
9:17
Direction of the Magnetic Force
9:57
Direction is Given by the Right-Hand Rule
10:05
Right-Hand Rule
10:09
Mass Spectrometer
10:52
Magnetic Fields Accelerate Moving Charges So That They Travel in a Circle
10:58
Used to Determine the Mass of an Unknown Particle
11:04
Velocity Selector
12:44
Mass Spectrometer with an Electric Field Added
12:47
Example 5: Force on an Electron
14:13
Example 6: Velocity of a Charged Particle
15:25
Example 7: Direction of the Magnetic Force
16:52
Example 8: Direction of Magnetic Force on Moving Charges
17:43
Example 9: Electron Released From Rest in Magnetic Field
18:53
Current-Carrying Wires

21m 29s

Intro
0:00
Objectives
0:09
Force on a Current-Carrying Wire
0:30
A Current-Carrying Wire in a Magnetic Field May Experience a Magnetic Force
0:33
Direction Given by the Right-Hand Rule
1:11
Example 1: Force on a Current-Carrying Wire
1:38
Example 2: Equilibrium on a Submerged Wire
2:33
Example 3: Torque on a Loop of Wire
5:55
Magnetic Field Due to a Current-Carrying Wire
8:49
Moving Charges Create Magnetic Fields
8:53
Wires Carry Moving Charges
8:56
Direction Given by the Right-Hand Rule
9:21
Example 4: Magnetic Field Due to a Wire
10:56
Magnetic Field Due to a Solenoid
12:12
Solenoid is a Coil of Wire
12:19
Direction Given by the Right-Hand Rule
12:47
Forces on 2 Parallel Wires
13:34
Current Flowing in the Same Direction
14:52
Current Flowing in Opposite Directions
14:57
Example 5: Magnetic Field Due to Wires
15:19
Example 6: Strength of an Electromagnet
18:35
Example 7: Force on a Wire
19:30
Example 8: Force Between Parallel Wires
20:47
Intro to Electromagnetic Induction

17m 26s

Intro
0:00
Objectives
0:09
Induced EMF
0:42
Charges Flowing Through a Wire Create Magnetic Fields
0:45
Changing Magnetic Fields Cause Charges to Flow or 'Induce' a Current in a Process Known As Electromagnetic Induction
0:49
Electro-Motive Force is the Potential Difference Created by a Changing Magnetic Field
0:57
Magnetic Flux is the Amount of Magnetic Fields Passing Through an Area
1:17
Finding the Magnetic Flux
1:36
Magnetic Field Strength
1:39
Angle Between the Magnetic Field Strength and the Normal to the Area
1:51
Calculating Induced EMF
3:01
The Magnitude of the Induced EMF is Equal to the Rate of Change of the Magnetic Flux
3:04
Induced EMF in a Rectangular Loop of Wire
4:03
Lenz's Law
5:17
Electric Generators and Motors
9:28
Generate an Induced EMF By Turning a Coil of Wire in a magnetic Field
9:31
Generators Use Mechanical Energy to Turn the Coil of Wire
9:39
Electric Motor Operates Using Same Principle
10:30
Example 1: Finding Magnetic Flux
10:43
Example 2: Finding Induced EMF
11:54
Example 3: Changing Magnetic Field
13:52
Example 4: Current Induced in a Rectangular Loop of Wire
15:23
Section 6: Waves & Optics
Wave Characteristics

26m 41s

Intro
0:00
Objectives
0:09
Waves
0:32
Pulse
1:00
A Pulse is a Single Disturbance Which Carries Energy Through a Medium or Space
1:05
A Wave is a Series of Pulses
1:18
When a Pulse Reaches a Hard Boundary
1:37
When a Pulse Reaches a Soft or Flexible Boundary
2:04
Types of Waves
2:44
Mechanical Waves
2:56
Electromagnetic Waves
3:14
Types of Wave Motion
3:38
Longitudinal Waves
3:39
Transverse Waves
4:18
Anatomy of a Transverse Wave
5:18
Example 1: Waves Requiring a Medium
6:59
Example 2: Direction of Displacement
7:36
Example 3: Bell in a Vacuum Jar
8:47
Anatomy of a Longitudinal Wave
9:22
Example 4: Tuning Fork
9:57
Example 5: Amplitude of a Sound Wave
10:24
Frequency and Period
10:47
Example 6: Period of an EM Wave
11:23
Example 7: Frequency and Period
12:01
The Wave Equation
12:32
Velocity of a Wave is a Function of the Type of Wave and the Medium It Travels Through
12:36
Speed of a Wave is Related to Its Frequency and Wavelength
12:41
Example 8: Wavelength Using the Wave Equation
13:54
Example 9: Period of an EM Wave
14:35
Example 10: Blue Whale Waves
16:03
Sound Waves
17:29
Sound is a Mechanical Wave Observed by Detecting Vibrations in the Inner Ear
17:33
Particles of Sound Wave Vibrate Parallel With the Direction of the Wave's Velocity
17:56
Example 11: Distance from Speakers
18:24
Resonance
19:45
An Object with the Same 'Natural Frequency' May Begin to Vibrate at This Frequency
19:55
Classic Example
20:01
Example 12: Vibrating Car
20:32
Example 13: Sonar Signal
21:28
Example 14: Waves Across Media
24:06
Example 15: Wavelength of Middle C
25:24
Wave Interference

20m 45s

Intro
0:00
Objectives
0:09
Superposition
0:30
When More Than One Wave Travels Through the Same Location in the Same Medium
0:32
The Total Displacement is the Sum of All the Individual Displacements of the Waves
0:46
Example 1: Superposition of Pulses
1:01
Types of Interference
2:02
Constructive Interference
2:05
Destructive Interference
2:18
Example 2: Interference
2:47
Example 3: Shallow Water Waves
3:27
Standing Waves
4:23
When Waves of the Same Frequency and Amplitude Traveling in Opposite Directions Meet in the Same Medium
4:26
A Wave in Which Nodes Appear to be Standing Still and Antinodes Vibrate with Maximum Amplitude Above and Below the Axis
4:35
Standing Waves in String Instruments
5:36
Standing Waves in Open Tubes
8:49
Standing Waves in Closed Tubes
9:57
Interference From Multiple Sources
11:43
Constructive
11:55
Destructive
12:14
Beats
12:49
Two Sound Waves with Almost the Same Frequency Interfere to Create a Beat Pattern
12:52
A Frequency Difference of 1 to 4 Hz is Best for Human Detection of Beat Phenomena
13:05
Example 4
14:13
Example 5
18:03
Example 6
19:14
Example 7: Superposition
20:08
Wave Phenomena

19m 2s

Intro
0:00
Objective
0:08
Doppler Effect
0:36
The Shift In A Wave's Observed Frequency Due to Relative Motion Between the Source of the Wave and Observer
0:39
When Source and/or Observer Move Toward Each Other
0:45
When Source and/or Observer Move Away From Each Other
0:52
Practical Doppler Effect
1:01
Vehicle Traveling Past You
1:05
Applications Are Numerous and Widespread
1:56
Doppler Effect - Astronomy
2:43
Observed Frequencies Are Slightly Lower Than Scientists Would Predict
2:50
More Distant Celestial Objects Are Moving Away from the Earth Faster Than Nearer Objects
3:22
Example 1: Car Horn
3:36
Example 2: Moving Speaker
4:13
Diffraction
5:35
The Bending of Waves Around Obstacles
5:37
Most Apparent When Wavelength Is Same Order of Magnitude as the Obstacle/ Opening
6:10
Single-Slit Diffraction
6:16
Double-Slit Diffraction
8:13
Diffraction Grating
11:07
Sharper and Brighter Maxima
11:46
Useful for Determining Wavelengths Accurately
12:07
Example 3: Double Slit Pattern
12:30
Example 4: Determining Wavelength
16:05
Example 5: Radar Gun
18:04
Example 6: Red Shift
18:29
Light As a Wave

11m 35s

Intro
0:00
Objectives
0:14
Electromagnetic (EM) Waves
0:31
Light is an EM Wave
0:43
EM Waves Are Transverse Due to the Modulation of the Electric and Magnetic Fields Perpendicular to the Wave Velocity
1:00
Electromagnetic Wave Characteristics
1:37
The Product of an EM Wave's Frequency and Wavelength Must be Constant in a Vacuum
1:43
Polarization
3:36
Unpoloarized EM Waves Exhibit Modulation in All Directions
3:47
Polarized Light Consists of Light Vibrating in a Single Direction
4:07
Polarizers
4:29
Materials Which Act Like Filters to Only Allow Specific Polarizations of Light to Pass
4:33
Polarizers Typically Are Sheets of Material in Which Long Molecules Are Lined Up Like a Picket Fence
5:10
Polarizing Sunglasses
5:22
Reduce Reflections
5:26
Polarizing Sunglasses Have Vertical Polarizing Filters
5:48
Liquid Crystal Displays
6:08
LCDs Use Liquid Crystals in a Suspension That Align Themselves in a Specific Orientation When a Voltage is Applied
6:13
Cross-Orienting a Polarizer and a Matrix of Liquid Crystals so Light Can Be Modulated Pixel-by-Pixel
6:26
Example 1: Color of Light
7:30
Example 2: Analyzing an EM Wave
8:49
Example 3: Remote Control
9:45
Example 4: Comparing EM Waves
10:32
Reflection & Mirrors

24m 32s

Intro
0:00
Objectives
0:10
Waves at Boundaries
0:37
Reflected
0:43
Transmitted
0:45
Absorbed
0:48
Law of Reflection
0:58
The Angle of Incidence is Equal to the Angle of Reflection
1:00
They Are Both Measured From a Line Perpendicular, or Normal, to the Reflecting Surface
1:22
Types of Reflection
1:54
Diffuse Reflection
1:57
Specular Reflection
2:08
Example 1: Specular Reflection
2:24
Mirrors
3:20
Light Rays From the Object Reach the Plane Mirror and Are Reflected to the Observer
3:27
Virtual Image
3:33
Magnitude of Image Distance
4:05
Plane Mirror Ray Tracing
4:15
Object Distance
4:26
Image Distance
4:43
Magnification of Image
7:03
Example 2: Plane Mirror Images
7:28
Example 3: Image in a Plane Mirror
7:51
Spherical Mirrors
8:10
Inner Surface of a Spherical Mirror
8:19
Outer Surface of a Spherical Mirror
8:30
Focal Point of a Spherical Mirror
8:40
Converging
8:51
Diverging
9:00
Concave (Converging) Spherical Mirrors
9:09
Light Rays Coming Into a Mirror Parallel to the Principal Axis
9:14
Light Rays Passing Through the Center of Curvature
10:17
Light Rays From the Object Passing Directly Through the Focal Point
10:52
Mirror Equation (Lens Equation)
12:06
Object and Image Distances Are Positive on the Reflecting Side of the Mirror
12:13
Formula
12:19
Concave Mirror with Object Inside f
12:39
Example 4: Concave Spherical Mirror
14:21
Example 5: Image From a Concave Mirror
14:51
Convex (Diverging) Spherical Mirrors
16:29
Light Rays Coming Into a Mirror Parallel to the Principal Axis
16:37
Light Rays Striking the Center of the Mirror
16:50
Light Rays Never Converge on the Reflective Side of a Convex Mirror
16:54
Convex Mirror Ray Tracing
17:07
Example 6: Diverging Rays
19:12
Example 7: Focal Length
19:28
Example 8: Reflected Sonar Wave
19:53
Example 9: Plane Mirror Image Distance
20:20
Example 10: Image From a Concave Mirror
21:23
Example 11: Converging Mirror Image Distance
23:09
Refraction & Lenses

39m 42s

Intro
0:00
Objectives
0:09
Refraction
0:42
When a Wave Reaches a Boundary Between Media, Part of the Wave is Reflected and Part of the Wave Enters the New Medium
0:43
Wavelength Must Change If the Wave's Speed Changes
0:57
Refraction is When This Causes The Wave to Bend as It Enters the New Medium
1:12
Marching Band Analogy
1:22
Index of Refraction
2:37
Measure of How Much Light Slows Down in a Material
2:40
Ratio of the Speed of an EM Wave in a Vacuum to the Speed of an EM Wave in Another Material is Known as Index of Refraction
3:03
Indices of Refraction
3:21
Dispersion
4:01
White Light is Refracted Twice in Prism
4:23
Index of Refraction of the Prism Material Varies Slightly with Respect to Frequency
4:41
Example 1: Determining n
5:14
Example 2: Light in Diamond and Crown Glass
5:55
Snell's Law
6:24
The Amount of a Light Wave Bends As It Enters a New Medium is Given by the Law of Refraction
6:32
Light Bends Toward the Normal as it Enters a Material With a Higher n
7:08
Light Bends Toward the Normal as it Enters a Material With a Lower n
7:14
Example 3: Angle of Refraction
7:42
Example 4: Changes with Refraction
9:31
Total Internal Reflection
10:10
When the Angle of Refraction Reaches 90 Degrees
10:23
Critical Angle
10:34
Total Internal Reflection
10:51
Applications of TIR
12:13
Example 5: Critical Angle of Water
13:17
Thin Lenses
14:15
Convex Lenses
14:22
Concave Lenses
14:31
Convex Lenses
15:24
Rays Parallel to the Principal Axis are Refracted Through the Far Focal Point of the Lens
15:28
A Ray Drawn From the Object Through the Center of the Lens Passes Through the Center of the Lens Unbent
15:53
Example 6: Converging Lens Image
16:46
Example 7: Image Distance of Convex Lens
17:18
Concave Lenses
18:21
Rays From the Object Parallel to the Principal Axis Are Refracted Away from the Principal Axis on a Line from the Near Focal Point Through the Point Where the Ray Intercepts the Center of the Lens
18:25
Concave Lenses Produce Upright, Virtual, Reduced Images
20:30
Example 8: Light Ray Thought a Lens
20:36
Systems of Optical Elements
21:05
Find the Image of the First Optical Elements and Utilize It as the Object of the Second Optical Element
21:16
Example 9: Lens and Mirrors
21:35
Thin Film Interference
27:22
When Light is Incident Upon a Thin Film, Some Light is Reflected and Some is Transmitted Into the Film
27:25
If the Transmitted Light is Again Reflected, It Travels Back Out of the Film and Can Interfere
27:31
Phase Change for Every Reflection from Low-Index to High-Index
28:09
Example 10: Thin Film Interference
28:41
Example 11: Wavelength in Diamond
32:07
Example 12: Light Incident on Crown Glass
33:57
Example 13: Real Image from Convex Lens
34:44
Example 14: Diverging Lens
35:45
Example 15: Creating Enlarged, Real Images
36:22
Example 16: Image from a Converging Lens
36:48
Example 17: Converging Lens System
37:50
Wave-Particle Duality

23m 47s

Intro
0:00
Objectives
0:11
Duality of Light
0:37
Photons
0:47
Dual Nature
0:53
Wave Evidence
1:00
Particle Evidence
1:10
Blackbody Radiation & the UV Catastrophe
1:20
Very Hot Objects Emitted Radiation in a Specific Spectrum of Frequencies and Intensities
1:25
Color Objects Emitted More Intensity at Higher Wavelengths
1:45
Quantization of Emitted Radiation
1:56
Photoelectric Effect
2:38
EM Radiation Striking a Piece of Metal May Emit Electrons
2:41
Not All EM Radiation Created Photoelectrons
2:49
Photons of Light
3:23
Photon Has Zero Mass, Zero Charge
3:32
Energy of a Photon is Quantized
3:36
Energy of a Photon is Related to its Frequency
3:41
Creation of Photoelectrons
4:17
Electrons in Metals Were Held in 'Energy Walls'
4:20
Work Function
4:32
Cutoff Frequency
4:54
Kinetic Energy of Photoelectrons
5:14
Electron in a Metal Absorbs a Photon with Energy Greater Than the Metal's Work Function
5:16
Electron is Emitted as a Photoelectron
5:24
Any Absorbed Energy Beyond That Required to Free the Electron is the KE of the Photoelectron
5:28
Photoelectric Effect in a Circuit
6:37
Compton Effect
8:28
Less of Energy and Momentum
8:49
Lost by X-Ray Equals Energy and Gained by Photoelectron
8:52
Compton Wavelength
9:09
Major Conclusions
9:36
De Broglie Wavelength
10:44
Smaller the Particle, the More Apparent the Wave Properties
11:03
Wavelength of a Moving Particle is Known as Its de Broglie Wavelength
11:07
Davisson-Germer Experiment
11:29
Verifies Wave Nature of Moving Particles
11:30
Shoot Electrons at Double Slit
11:34
Example 1
11:46
Example 2
13:07
Example 3
13:48
Example 4A
15:33
Example 4B
18:47
Example 5: Wave Nature of Light
19:54
Example 6: Moving Electrons
20:43
Example 7: Wavelength of an Electron
21:11
Example 8: Wrecking Ball
22:50
Section 7: Modern Physics
Atomic Energy Levels

14m 21s

Intro
0:00
Objectives
0:09
Rutherford's Gold Foil Experiment
0:35
Most of the Particles Go Through Undeflected
1:12
Some Alpha Particles Are Deflected Large Amounts
1:15
Atoms Have a Small, Massive, Positive Nucleus
1:20
Electrons Orbit the Nucleus
1:23
Most of the Atom is Empty Space
1:26
Problems with Rutherford's Model
1:31
Charges Moving in a Circle Accelerate, Therefore Classical Physics Predicts They Should Release Photons
1:39
Lose Energy When They Release Photons
1:46
Orbits Should Decay and They Should Be Unstable
1:50
Bohr Model of the Atom
2:09
Electrons Don't Lose Energy as They Accelerate
2:20
Each Atom Allows Only a Limited Number of Specific Orbits at Each Energy Level
2:35
Electrons Must Absorb or Emit a Photon of Energy to Change Energy Levels
2:40
Energy Level Diagrams
3:29
n=1 is the Lowest Energy State
3:34
Negative Energy Levels Indicate Electron is Bound to Nucleus of the Atom
4:03
When Electron Reaches 0 eV It Is No Longer Bound
4:20
Electron Cloud Model (Probability Model)
4:46
Electron Only Has A Probability of Being Located in Certain Regions Surrounding the Nucleus
4:53
Electron Orbitals Are Probability Regions
4:58
Atomic Spectra
5:16
Atoms Can Only Emit Certain Frequencies of Photons
5:19
Electrons Can Only Absorb Photons With Energy Equal to the Difference in Energy Levels
5:34
This Leads to Unique Atomic Spectra of Emitted and Absorbed Radiation for Each Element
5:37
Incandescence Emits a Continuous Energy
5:43
If All Colors of Light Are Incident Upon a Cold Gas, The Gas Only Absorbs Frequencies Corresponding to Photon Energies Equal to the Difference Between the Gas's Atomic Energy Levels
6:16
Continuous Spectrum
6:42
Absorption Spectrum
6:50
Emission Spectrum
7:08
X-Rays
7:36
The Photoelectric Effect in Reverse
7:38
Electrons Are Accelerated Through a Large Potential Difference and Collide with a Molybdenum or Platinum Plate
7:53
Example 1: Electron in Hydrogen Atom
8:24
Example 2: EM Emission in Hydrogen
10:05
Example 3: Photon Frequencies
11:30
Example 4: Bright-Line Spectrum
12:24
Example 5: Gas Analysis
13:08
Nuclear Physics

15m 47s

Intro
0:00
Objectives
0:08
The Nucleus
0:33
Protons Have a Charge or +1 e
0:39
Neutrons Are Neutral (0 Charge)
0:42
Held Together by the Strong Nuclear Force
0:43
Example 1: Deconstructing an Atom
1:20
Mass-Energy Equivalence
2:06
Mass is a Measure of How Much Energy an Object Contains
2:16
Universal Conservation of Laws
2:31
Nuclear Binding Energy
2:53
A Strong Nuclear Force Holds Nucleons Together
3:04
Mass of the Individual Constituents is Greater Than the Mass of the Combined Nucleus
3:19
Binding Energy of the Nucleus
3:32
Mass Defect
3:37
Nuclear Decay
4:30
Alpha Decay
4:42
Beta Decay
5:09
Gamma Decay
5:46
Fission
6:40
The Splitting of a Nucleus Into Two or More Nuclei
6:42
For Larger Nuclei, the Mass of Original Nucleus is Greater Than the Sum of the Mass of the Products When Split
6:47
Fusion
8:14
The Process of Combining Two Or More Smaller Nuclei Into a Larger Nucleus
8:15
This Fuels Our Sun and Stars
8:28
Basis of Hydrogen Bomb
8:31
Forces in the Universe
9:00
Strong Nuclear Force
9:06
Electromagnetic Force
9:13
Weak Nuclear Force
9:22
Gravitational Force
9:27
Example 2: Deuterium Nucleus
9:39
Example 3: Particle Accelerator
10:24
Example 4: Tritium Formation
12:03
Example 5: Beta Decay
13:02
Example 6: Gamma Decay
14:15
Example 7: Annihilation
14:39
Section 8: Sample AP Exams
AP Practice Exam: Multiple Choice, Part 1

38m 1s

Intro
0:00
Problem 1
1:33
Problem 2
1:57
Problem 3
2:50
Problem 4
3:46
Problem 5
4:13
Problem 6
4:41
Problem 7
6:12
Problem 8
6:49
Problem 9
7:49
Problem 10
9:31
Problem 11
10:08
Problem 12
11:03
Problem 13
11:30
Problem 14
12:28
Problem 15
14:04
Problem 16
15:05
Problem 17
15:55
Problem 18
17:06
Problem 19
18:43
Problem 20
19:58
Problem 21
22:03
Problem 22
22:49
Problem 23
23:28
Problem 24
24:04
Problem 25
25:07
Problem 26
26:46
Problem 27
28:03
Problem 28
28:49
Problem 29
30:20
Problem 30
31:10
Problem 31
33:03
Problem 32
33:46
Problem 33
34:47
Problem 34
36:07
Problem 35
36:44
AP Practice Exam: Multiple Choice, Part 2

37m 49s

Intro
0:00
Problem 36
0:18
Problem 37
0:42
Problem 38
2:13
Problem 39
4:10
Problem 40
4:47
Problem 41
5:52
Problem 42
7:22
Problem 43
8:16
Problem 44
9:11
Problem 45
9:42
Problem 46
10:56
Problem 47
12:03
Problem 48
13:58
Problem 49
14:49
Problem 50
15:36
Problem 51
15:51
Problem 52
17:18
Problem 53
17:59
Problem 54
19:10
Problem 55
21:27
Problem 56
22:40
Problem 57
23:19
Problem 58
23:50
Problem 59
25:35
Problem 60
26:45
Problem 61
27:57
Problem 62
28:32
Problem 63
29:52
Problem 64
30:27
Problem 65
31:27
Problem 66
32:22
Problem 67
33:18
Problem 68
35:21
Problem 69
36:27
Problem 70
36:46
AP Practice Exam: Free Response, Part 1

16m 53s

Intro
0:00
Question 1
0:23
Question 2
8:55
AP Practice Exam: Free Response, Part 2

9m 20s

Intro
0:00
Question 3
0:14
Question 4
4:34
AP Practice Exam: Free Response, Part 3

18m 12s

Intro
0:00
Question 5
0:15
Question 6
3:29
Question 7
6:18
Question 8
12:53
Section 9: Additional Examples
Metric Estimation

3m 53s

Intro
0:00
Question 1
0:38
Question 2
0:51
Question 3
1:09
Question 4
1:24
Question 5
1:49
Question 6
2:11
Question 7
2:27
Question 8
2:49
Question 9
3:03
Question 10
3:23
Defining Motion

7m 6s

Intro
0:00
Question 1
0:13
Question 2
0:50
Question 3
1:56
Question 4
2:24
Question 5
3:32
Question 6
4:01
Question 7
5:36
Question 8
6:36
Motion Graphs

6m 48s

Intro
0:00
Question 1
0:13
Question 2
2:01
Question 3
3:06
Question 4
3:41
Question 5
4:30
Question 6
5:52
Horizontal Kinematics

8m 16s

Intro
0:00
Question 1
0:19
Question 2
2:19
Question 3
3:16
Question 4
4:36
Question 5
6:43
Free Fall

7m 56s

Intro
0:00
Question 1-4
0:12
Question 5
2:36
Question 6
3:11
Question 7
4:44
Question 8
6:16
Projectile Motion

4m 17s

Intro
0:00
Question 1
0:13
Question 2
0:45
Question 3
1:25
Question 4
2:00
Question 5
2:32
Question 6
3:38
Newton's 1st Law

4m 34s

Intro
0:00
Question 1
0:15
Question 2
1:02
Question 3
1:50
Question 4
2:04
Question 5
2:26
Question 6
2:54
Question 7
3:11
Question 8
3:29
Question 9
3:47
Question 10
4:02
Newton's 2nd Law

5m 40s

Intro
0:00
Question 1
0:16
Question 2
0:55
Question 3
1:50
Question 4
2:40
Question 5
3:33
Question 6
3:56
Question 7
4:29
Newton's 3rd Law

3m 44s

Intro
0:00
Question 1
0:17
Question 2
0:44
Question 3
1:14
Question 4
1:51
Question 5
2:11
Question 6
2:29
Question 7
2:53
Friction

6m 37s

Intro
0:00
Question 1
0:13
Question 2
0:47
Question 3
1:25
Question 4
2:26
Question 5
3:43
Question 6
4:41
Question 7
5:13
Question 8
5:50
Ramps and Inclines

6m 13s

Intro
0:00
Question 1
0:18
Question 2
1:01
Question 3
2:50
Question 4
3:11
Question 5
5:08
Circular Motion

5m 17s

Intro
0:00
Question 1
0:21
Question 2
1:01
Question 3
1:50
Question 4
2:33
Question 5
3:10
Question 6
3:31
Question 7
3:56
Question 8
4:33
Gravity

6m 33s

Intro
0:00
Question 1
0:19
Question 2
1:05
Question 3
2:09
Question 4
2:53
Question 5
3:17
Question 6
4:00
Question 7
4:41
Question 8
5:20
Momentum & Impulse

9m 29s

Intro
0:00
Question 1
0:19
Question 2
2:17
Question 3
3:25
Question 4
3:56
Question 5
4:28
Question 6
5:04
Question 7
6:18
Question 8
6:57
Question 9
7:47
Conservation of Momentum

9m 33s

Intro
0:00
Question 1
0:15
Question 2
2:08
Question 3
4:03
Question 4
4:10
Question 5
6:08
Question 6
6:55
Question 7
8:26
Work & Power

6m 2s

Intro
0:00
Question 1
0:13
Question 2
0:29
Question 3
0:55
Question 4
1:36
Question 5
2:18
Question 6
3:22
Question 7
4:01
Question 8
4:18
Question 9
4:49
Springs

7m 59s

Intro
0:00
Question 1
0:13
Question 4
2:26
Question 5
3:37
Question 6
4:39
Question 7
5:28
Question 8
5:51
Energy & Energy Conservation

8m 47s

Intro
0:00
Question 1
0:18
Question 2
1:27
Question 3
1:44
Question 4
2:33
Question 5
2:44
Question 6
3:33
Question 7
4:41
Question 8
5:19
Question 9
5:37
Question 10
7:12
Question 11
7:40
Electric Charge

7m 6s

Intro
0:00
Question 1
0:10
Question 2
1:03
Question 3
1:32
Question 4
2:12
Question 5
3:01
Question 6
3:49
Question 7
4:24
Question 8
4:50
Question 9
5:32
Question 10
5:55
Question 11
6:26
Coulomb's Law

4m 13s

Intro
0:00
Question 1
0:14
Question 2
0:47
Question 3
1:25
Question 4
2:25
Question 5
3:01
Electric Fields & Forces

4m 11s

Intro
0:00
Question 1
0:19
Question 2
0:51
Question 3
1:30
Question 4
2:19
Question 5
3:12
Electric Potential

5m 12s

Intro
0:00
Question 1
0:14
Question 2
0:42
Question 3
1:08
Question 4
1:43
Question 5
2:22
Question 6
2:49
Question 7
3:14
Question 8
4:02
Electrical Current

6m 54s

Intro
0:00
Question 1
0:13
Question 2
0:42
Question 3
2:01
Question 4
3:02
Question 5
3:52
Question 6
4:15
Question 7
4:37
Question 8
4:59
Question 9
5:50
Resistance

5m 15s

Intro
0:00
Question 1
0:12
Question 2
0:53
Question 3
1:44
Question 4
2:31
Question 5
3:21
Question 6
4:06
Ohm's Law

4m 27s

Intro
0:00
Question 1
0:12
Question 2
0:33
Question 3
0:59
Question 4
1:32
Question 5
1:56
Question 6
2:50
Question 7
3:19
Question 8
3:50
Circuit Analysis

6m 36s

Intro
0:00
Question 1
0:12
Question 2
2:16
Question 3
2:33
Question 4
2:42
Question 5
3:18
Question 6
5:51
Question 7
6:00
Magnetism

3m 43s

Intro
0:00
Question 1
0:16
Question 2
0:31
Question 3
0:56
Question 4
1:19
Question 5
1:35
Question 6
2:36
Question 7
3:03
Wave Basics

4m 21s

Intro
0:00
Question 1
0:13
Question 2
0:36
Question 3
0:47
Question 4
1:13
Question 5
1:27
Question 6
1:39
Question 7
1:54
Question 8
2:22
Question 9
2:51
Question 10
3:32
Wave Characteristics

5m 33s

Intro
0:00
Question 1
0:23
Question 2
1:04
Question 3
2:01
Question 4
2:50
Question 5
3:12
Question 6
3:57
Question 7
4:16
Question 8
4:42
Question 9
4:56
Wave Behaviors

3m 52s

Intro
0:00
Question 1
0:13
Question 2
0:40
Question 3
1:04
Question 4
1:17
Question 5
1:39
Question 6
2:07
Question 7
2:41
Question 8
3:09
Reflection

3m 48s

Intro
0:00
Question 1
0:12
Question 2
0:50
Question 3
1:29
Question 4
1:46
Question 5
3:08
Refraction

2m 49s

Intro
0:00
Question 1
0:29
Question 5
1:03
Question 6
1:24
Question 7
2:01
Diffraction

2m 34s

Intro
0:00
Question 1
0:16
Question 2
0:31
Question 3
0:50
Question 4
1:05
Question 5
1:37
Question 6
2:04
Electromagnetic Spectrum

7m 6s

Intro
0:00
Question 1
0:24
Question 2
0:39
Question 3
1:05
Question 4
1:51
Question 5
2:03
Question 6
2:58
Question 7
3:14
Question 8
3:52
Question 9
4:30
Question 10
5:04
Question 11
6:01
Question 12
6:16
Wave-Particle Duality

5m 30s

Intro
0:00
Question 1
0:15
Question 2
0:34
Question 3
0:53
Question 4
1:54
Question 5
2:16
Question 6
2:27
Question 7
2:42
Question 8
2:59
Question 9
3:45
Question 10
4:13
Question 11
4:33
Energy Levels

8m 13s

Intro
0:00
Question 1
0:25
Question 2
1:18
Question 3
1:43
Question 4
2:08
Question 5
3:17
Question 6
3:54
Question 7
4:40
Question 8
5:15
Question 9
5:54
Question 10
6:41
Question 11
7:14
Mass-Energy Equivalence

8m 15s

Intro
0:00
Question 1
0:19
Question 2
1:02
Question 3
1:37
Question 4
2:17
Question 5
2:55
Question 6
3:32
Question 7
4:13
Question 8
5:04
Question 9
5:29
Question 10
5:58
Question 11
6:48
Question 12
7:39
Loading...
This is a quick preview of the lesson. For full access, please Log In or Sign up.
For more information, please see full course syllabus of AP Physics 1 & 2
Bookmark & Share Embed

Share this knowledge with your friends!

Copy & Paste this embed code into your website’s HTML

Please ensure that your website editor is in text mode when you paste the code.
(In Wordpress, the mode button is on the top right corner.)
  ×
  • - Allow users to view the embedded video in full-size.
Since this lesson is not free, only the preview will appear on your website.
  • Discussion

  • Answer Engine

  • Study Guides

  • Download Lecture Slides

  • Table of Contents

  • Transcription

  • Related Books

Lecture Comments (63)

1 answer

Last reply by: Professor Dan Fullerton
Wed Mar 18, 2020 4:35 PM

Post by Katherine Bai on March 18, 2020

Can a suspended object ever have a normal force?

1 answer

Last reply by: Professor Dan Fullerton
Fri Nov 16, 2018 7:39 PM

Post by Abdihakim Ibrahim on November 16, 2018

In example 7 why isn't your X lined up with the bank & does that matter because of mg equaling FN?

1 answer

Last reply by: Professor Dan Fullerton
Sun Dec 17, 2017 6:24 PM

Post by Sahitya Senapathy on December 17, 2017

For example 15, why do we only take into account the horizontal acceleration? Wouldn't the net force be 100cos30 + 100sin30 -- and then we plug this into F=MA? Why did you only use 100cos30 to find the acceleration?

1 answer

Last reply by: Professor Dan Fullerton
Tue Oct 24, 2017 9:18 AM

Post by Ratnasiri Gunawardena on October 24, 2017

is there something wrong with the vedio that freeze and go back to beginning ?

1 answer

Last reply by: Professor Dan Fullerton
Thu Jun 23, 2016 10:20 AM

Post by Peter Ke on June 22, 2016

I really don't understand example #14. Would you mind explaining in detail why choice 1,2, and 4 are not the answer. I do however understand why choice 3 is the correct answer.

0 answers

Post by Saadman Elman on June 19, 2016

Your lecture is very effective. It helped me a lot. Thanks.

1 answer

Last reply by: Professor Dan Fullerton
Sun Sep 27, 2015 3:56 PM

Post by Bilbo Baggins on September 27, 2015

I looked up net force vs average force and they were different. Why is the answer to example nine the net force?

2 answers

Last reply by: Jim Tang
Fri Jul 24, 2015 7:35 PM

Post by Jim Tang on July 24, 2015

In Example #14, how does 4N produce equilibrium with 3N and 4N?

1 answer

Last reply by: Professor Dan Fullerton
Tue May 26, 2015 6:09 AM

Post by Ryan Rad on May 25, 2015

Hi quick question, at 12:00 how did u figure out which is your angle theta?? Im so confused, you mentioned by geometry we know, but could you elaborate please?? T

Thank you, oh and btw ur lectures are awesome! :)

1 answer

Last reply by: Professor Dan Fullerton
Tue May 5, 2015 7:23 PM

Post by Mutong Zhou on May 5, 2015

For example 4, why the answer choice D is not one of the answer?

1 answer

Last reply by: Professor Dan Fullerton
Fri Nov 7, 2014 6:20 PM

Post by mohammad mostafa on November 7, 2014

hi i have a question about example 10, is not the direction to the left so it should be negative,as the force of  f1=12n > than f2

3 answers

Last reply by: Professor Dan Fullerton
Wed Feb 3, 2016 6:27 AM

Post by Caleb Martin on October 2, 2014

Hi,
  I'm trying to firgure out what part of Newtons Second law applies to in this problem: "A force F with arrow applied to an object of mass m1 produces an acceleration of 3.60 m/s2. The same force applied to a second object of mass m2 produces an acceleration of 2.00 m/s2.
(a) What is the value of the ratio m1/m2?
ANS.:      

(b) If m1 and m2 are combined into one object, find its acceleration under the action of the force F with arrow.
ANS.:  m/s2

2 answers

Last reply by: Him Tam
Sun Jul 20, 2014 11:58 AM

Post by Him Tam on July 19, 2014

In the examples with the boxes on an incline, why is there still a normal force? Does air resistance still matter even if the object is not in the air?

1 answer

Last reply by: Professor Dan Fullerton
Mon Mar 24, 2014 3:37 PM

Post by sara bacellar on March 24, 2014

Hi, great lecture.However, I still need you help, I can't explain to myself how you did cancel out  a 4 N and a 3 N and another 4N. How did you work this out? Thank you so much :)

1 answer

Last reply by: Professor Dan Fullerton
Sun Mar 16, 2014 5:17 PM

Post by John Parker on March 16, 2014

Thank you so much for these extremely helpful videos! One question: In example 11, does the object accelerate downward through the surface? I was surprised that the acceleration wasn't zero; I expected the normal force to increase along with the added 10 newtons South.

1 answer

Last reply by: Professor Dan Fullerton
Sat Mar 15, 2014 10:10 AM

Post by UMAIR TARIQ on March 14, 2014

Thank you, you are awesome. I had a quick question why were the x component in the banked car example Normal sin theta and in example 15 it is cos.
thank you again!!!

1 answer

Last reply by: Professor Dan Fullerton
Thu Jan 9, 2014 5:53 AM

Post by Hyun Cho on January 9, 2014

Hey i have another question about the last example.  Sin30x49+sin60x85=mg.  but since the tensions of the rope are facing up, they are positive (if up is positive and down is negative). Well then since the gravitational acceleration is going downward, shouldnt the g in mg be negative and therefore the m is negative as well?? I know its impossible to have negative mass, but its what i get

1 answer

Last reply by: Professor Dan Fullerton
Thu Jan 9, 2014 5:52 AM

Post by Hyun Cho on January 9, 2014

hi that was a great lecture but i dont get one thing.  in example14, im fully aware why 9n cannot be equaled.  but at the same time, i cant see how 4 is equaled either.  could you show me how 4n can result?

1 answer

Last reply by: Professor Dan Fullerton
Thu Jan 9, 2014 5:50 AM

Post by Hyun Cho on January 8, 2014

hi i have a question.  in example 6, you used the slanted plane as the x axis so that the normal force in perpendicular to the x axis, but in example, you just randomly made a x and y axis and drew the normal force and mg as they are.. how do i know what will be the x and y axis?

1 answer

Last reply by: Professor Dan Fullerton
Sat Nov 16, 2013 9:17 PM

Post by Constantin Ficiu on November 16, 2013

Great Lecture. I grasp the concepts of Forces and Newton's Laws in here, on the lectures taught by you, professor than the one's taught in my university.
Thank you.

1 answer

Last reply by: Professor Dan Fullerton
Fri Aug 23, 2013 12:17 PM

Post by Larry wang on August 23, 2013

Great lecture. Now I am going over this topic, and on example 14, however, I can't explain to myself on how you have derived 1N force could cancel out two concurrent forces (3N and 4N). Are those two concurrent forces somehow acting at an angle. If so what's the example. How do you work this out? Thank you very much

1 answer

Last reply by: Professor Dan Fullerton
Thu Jul 18, 2013 2:32 PM

Post by KyungYeop Kim on July 18, 2013

I have a question. If something is moving at a constant speed(no acceleration), then does it mean it doesn't have Force? but surely some force must be acting on it to move. I'm confused; when calculating force, what do the velocity and acceleration have to do with force(F)? (I know F=mxa, but it doesn't help)

1 answer

Last reply by: Professor Dan Fullerton
Sat Jun 1, 2013 3:18 PM

Post by Jude Nawlo on June 1, 2013

In example 7, how do you determine where angle theta should be with reference to the initial diagram? I can't tell where to put the angle?

1 answer

Last reply by: Professor Dan Fullerton
Wed May 22, 2013 6:01 AM

Post by kevin vaughn on May 21, 2013

for example 7 t= 12:17, why is the opposite of theta Fnsintheta. shouldn't that be the y component?

7 answers

Last reply by: Arshin Jain
Tue Apr 22, 2014 4:37 AM

Post by Nawaphan Jedjomnongkit on May 10, 2013

in ex14 how about choice 4N? How it can produce equilibrium with 3 and 4N ? Thank you

1 answer

Last reply by: Professor Dan Fullerton
Sat Apr 27, 2013 5:46 PM

Post by Edward Xavier on April 27, 2013

great lecture :D

1 answer

Last reply by: Professor Dan Fullerton
Mon Mar 25, 2013 5:42 AM

Post by John Smith on March 24, 2013

If Newton's first law really is a special case of the second then why are we taught the "three laws of motion" in school? Is it for historical reasons?

Related Articles:

Newton's 2nd Law of Motion

  • FBDs are tools for visualizing forces on a single object and writing equations to represent a physical situation.
  • The acceleration of an object is directly proportional to the net force experienced and inversely proportional to its inertial mass.
  • The net force on an object is the vector sum of the individual forces.

Newton's 2nd Law of Motion

Lecture Slides are screen-captured images of important points in the lecture. Students can download and print out these lecture slide images to do practice problems as well as take notes while watching the lecture.

  • Intro 0:00
  • Objective 0:07
  • Free Body Diagrams 0:37
    • Tools Used to Analyze Physical Situations
    • Show All the Forces Acting on a Single Object
  • Drawing FBDs 0:58
    • Draw Object of Interest as a Dot
    • Sketch a Coordinate System
  • Example 1: Falling Elephant 1:18
  • Example 2: Falling Elephant with Air Resistance 2:07
  • Example 3: Soda on Table 3:00
  • Example 4: Box in Equilibrium 4:25
  • Example 5: Block on a Ramp 5:01
  • Pseudo-FBDs 5:53
    • Draw When Forces Don't Line Up with Axes
    • Break Forces That Don’t Line Up with Axes into Components That Do
  • Example 6: Objects on a Ramp 6:32
  • Example 7: Car on a Banked Turn 10:23
  • Newton's 2nd Law of Motion 12:56
    • The Acceleration of an Object is in the Direction of the Directly Proportional to the Net Force Applied
  • Newton's 1st Two Laws Compared 13:45
    • Newton's 1st Law
    • Newton's 2nd Law
  • Applying Newton's 2nd Law 14:50
  • Example 8: Applying Newton's 2nd Law 15:23
  • Example 9: Stopping a Baseball 16:52
  • Example 10: Block on a Surface 19:51
  • Example 11: Concurrent Forces 21:16
  • Mass vs. Weight 22:28
    • Mass
    • Weight
  • Example 12: Mass vs. Weight 23:16
  • Translational Equilibrium 24:47
    • Occurs When There Is No Net Force on an Object
    • Equilibrant
  • Example 13: Translational Equilibrium 25:29
  • Example 14: Translational Equilibrium 26:56
  • Example 15: Determining Acceleration 28:05
  • Example 16: Suspended Mass 31:03

Transcription: Newton's 2nd Law of Motion

Hi, I am Dan Fullerton. Welcome back to Educator.com.0000

Let us talk about Newton's Second Law of Motion.0004

Now our objectives are going to be to draw and label a free-body diagram showing all the forces acting on an object and also draw a pseudo-free body diagram showing all components of forces acting on an object.0006

We will explain the relationship between acceleration, net force, and mass of an object, and use Newton's Second Law to solve a variety of problems.0020

Finally, we want to make sure we understand the difference between mass and weight, and the conditions required for equilibrium.0028

Free-body diagrams or FBD's -- these are tools that we use to analyze physical situations.0037

What they do is they show all the forces acting on a single object.0044

The object itself may be drawn as a dot.0049

Some folks like to draw it as a box. It does not matter, either one.0052

Now when you draw a FBD, choose the object of interest and draw it as either a dot or a box.0058

Then you are going to label all the external forces acting on the object and only forces go on that diagram.0064

Finally, sketch a coordinate system showing the direction of the object's motion as one of the positive axis.0070

For example, let us take a look at a circus elephant falling off a tight rope -- sad story -- it is just pretend, do not worry.0077

Neglecting air resistance -- draw a free-body diagram for the falling elephant.0085

I am going to use my amazing physics artistic skills to draw an elephant.0089

There it is in FBD terms and I am going to label all the forces acting on it.0094

The weight of the elephant -- the force of gravity -- which I typically write on FBD as mg -- the force of gravity on an object on a FBD can save yourself a little bit of work if you write weight as mg.0100

Or, we could draw it as a box -- there is our elephant and the one force acting on it is the weight of the elephant pulling it down.0115

How about if we had the falling elephant with air resistance?0127

Well, there is my elephant again.0131

We still have the elephant's weight -- the force of gravity on it -- mg, and we have some force of air resistance.0134

The force of air resistance is going to oppose the force of gravity.0145

The faster something falls, the force of air resistance resists that motion -- pushes up.0149

When eventually the force of air resistance and the object's weight balance out -- they are equal -- the object does not accelerate anymore.0153

It is in equilibrium, like we learned with Newton's First Law. It maintains a constant velocity.0160

We would call that terminal velocity -- when the force of air resistance equals the force of gravity on an object.0166

It maintains a constant velocity; it does not speed up; it does not fall any further.0175

Let's draw a FBD for a glass of soda sitting on a table.0180

Here is our glass of soda.0186

We have the weight pulling it down, but the glass of soda is not moving, it is at rest and it is remaining at rest; it is not accelerating.0189

There must be another force on that glass. What is that force?0197

It is the force of the table on the soda and it must oppose -- absolutely balance that weight.0202

We are going to call this force, the normal force.0209

When we say normal, we are not talking about the opposite of weird, we are talking about the geometric interpretation of normal.0214

It means perpendicular. In this case, the force is perpendicular to the surface of the table.0220

There is our table. If we have our glass sitting on it -- perpendicular to the surface of the table -- the normal force comes out of that surface.0230

Perpendicular to this tablet, a normal force would be coming out this direction.0246

Normal perpendicular -- we will label that fn.0250

Now, in this case it is pretty easy to see that the net force again, must be zero -- the object remains at rest.0256

Example problem: Which diagram here represents a box in equilibrium?0267

Again, the key here is to recognize that equilibrium means that the net force equals 0 -- all the forces are balanced.0272

Well, these are not balanced; it cannot be one.0281

Those are not balanced; it cannot be that one.0284

So, 2 up, 2 down, 5 right, 5 left -- that has to be equilibrium -- Net force = 0.0287

All the forces balance. It will continue in it's current state of motion.0295

All right, example five: Now we have a block sitting on a ramp. Which diagram below best represents the forces acting on the block?0300

If we think about it, let's draw them here first.0310

We have the normal force, which must be perpendicular to the surface -- so there is our normal force this time.0313

The weight -- the force of gravity on all objects -- is down toward the center of the Earth: mg.0320

Or, in this case it is labeled as weight, as fw in these diagrams.0328

Which way does the block want to go?0333

It wants to slide down the incline right?0336

So the force of friction must be up the ramp. Which one of these four choices nears what forces we see on that?0338

Has to be number four here.0347

All right. When forces do not line up with axis, you can draw a pseudo free-body diagram (P-FBD)0353

We are going to break up the forces that do not line up with the axis into components that do.0359

When you do this on an AP exam, your FBD only shows the forces, not components -- then draw a separate P-FBD.0364

If you show components on a FBD, often times they will take off points.0373

You need to have two separate diagrams -- one showing just the forces and then a separate P-FBD where you have broken forces that are not lined up with an axis into their components.0378

Let us draw the FBD for a box sitting on a ramp.0392

We have the applied force -- some force pulling it up the ramp.0397

Of course, we are going to have a normal force perpendicular to our ramp.0401

We have the weight of the box -- straight the force down, the force of gravity.0407

And in this case, if we have a force wanting to pull it up, we can draw this as having a force of friction down that way to balance it -- depending on what all our forces are.0411

If we were to draw a FBD -- let me draw it over here on the right, our FBD.0421

There is one axis -- I am just going to tilt my x and my y.0427

Now when I draw this, I have f pointing up the ramp. I have a normal force that is perpendicular.0433

If we are pulling it up the ramp, we could have a force of friction -- the opposite direction and weight is straight down.0444

That is our FBD. That we do not touch now.0453

We have drawn our diagram showing all the forces.0459

To do the P-FBD, though, we are going to make a separate diagram.0461

We are going to keep our axis y -- x. F already lines up with an axis, so that is fine.0466

Normal force lines are up already. Friction lines up with an axis, but the force of gravity -- the weight of the object -- does not.0475

What are we going to do with that?0480

That one we are going to have to break up into components.0488

If that is weight, we are going to have to do a little bit of Geometry here to see what is going on.0491

If I were to extend the ramp back here -- this is our angle θ -- that is 90 - θ.0497

That angle must be θ again.0506

I am going to break up the weight into an x component -- a component that is parallel with the x axis.0507

Let's call that mg.0515

It is parallel because it is in the same direction as the object's motion, or the direction it wants to move -- mg parallel and we have a component perpendicular to that axis -- mg perpendicular.0518

Now notice mg parallel -- this side is opposite our angle θ, so mg parallel is going to be equal to mg sin θ -- mg perpendicular is the adjacent side -- mg cos θ.0532

My P-FBD, when I go to draw it -- let me label it here -- is going to show the components of the object's weight instead of the weight itself.0548

Now all my forces with line up with the axis. There is my x. There is my y.0551

We have f. We have our normal force -- force of friction.0569

Now this mg parallel and mg cos, or mg cosine θ -- easy enough. Draw it right there, mg cosine θ.0577

Mg parallel right here -- I am just going to shift so it is on the axis; it is already lined up with an axis, but I am going to redraw it over here - mg sine θ.0587

You will see in some cases where teachers prefer to see that all at the same point in force of friction, mg sine θ are right beside each other, almost in the same direction.0597

I prefer to draw mine end-to-end so it is easy to see that they add up.0607

Here is our FBD and here is our P-FBD.0612

You have to show those separately on the AP questions in order to get the full credit for a problem.0617

Let us take the example of a car on a bank turn.0623

Roadways are often angled around steep turns to assist the cars in making the turn.0627

Let us draw the free-body diagram and the pseudo free-body diagram for a car on a banked roadway.0630

I will start off by drawing my curve and we will put our car on it -- pretend we are looking at the car from the back.0638

There are the wheels and there is the license plate.0647

This is at some angle θ. So, the forces acting on it -- we can draw on our FBD.0650

I will draw my x axis and I will draw my y axis -- (y,x).0657

In this case we have a normal force that is coming up out of the ramp -- so our normal force fn -- or capital N if you prefer points that way.0670

We have the weight -- the force of gravity, down.There is our FBD.0680

And we can throw friction in here if we needed to, depending on the situation, but let's keep this one simple for now.0690

If we wanted then to draw the P-FBD for this -- I am first going to redraw this -- y, x, mg -- pointing down -- and just to illustrate this, I am going to draw the normal force up here again.0696

Now as we look at the geometry of the problem, our angle θ is going to be -- Let's draw our components-- there is the x component of the normal force. There is the y.0719

That is going to be our angle θ by geometry, therefore, this side is going to be fN sine θ, the opposite, and this one is going to be fN cos θ.0728

When I do my nice, pretty P-FBD, there is x, there is y, my object -- of course, mg down -- I have this way, fN sine θ and I have fN cos θ.0741

There is my P-FBD. All the forces shown as components.0769

So now, Newton's Second Law of Motion, perhaps the most important formula or relationship in all of physics.0777

We will use this again, and again, and again.0783

The acceleration of the object is in the direction of and directly proportional to the net force applied.0786

It is inversely proportional to the object's mass.0795

If we want to write this in formula form -- acceleration of vector is equal to the net force applied on an object divided by the object's mass -- it's inertial mass.0798

The way that it is more commonly written: Fnet equals ma -- Force = mass x acceleration.0811

You can apply this in many, many different ways.0822

As we look at these two laws, there are some interesting observations to take from them.0826

Newton's First Law says an object at rest will remain at rest and an object in motion will remain in motion at constant velocity in a straight line unless acted upon by a net force.0831

Basically what it is saying is, if Fnet = 0, then acceleration equals 0.0844

Newton's Second Law says the acceleration of the object is in the direction of and directly proportional to the net force applied and inversely proportional to the object's mass.0851

Notice how if Fnet over here is 0, A has to be 0.0863

Newton's First Law is redundant. It is actually a special case of Newton's Second Law where the net force on an object is 0.0869

If you understand Newton's Second Law, through and through, Newton's First Law you do not really need to know.0874

It is already embedded in Newton's Second Law. The First Law is redundant.0883

Let us look at how we apply Newton's Second Law.0890

General strategy -- Draw a FBD -- tremendously helpful tools.0893

For any forces that do not line up with the x or y axis, break those up into components that do and then we are going to draw that P-FBD.0898

Next, write expressions for the net force in the x and y directions.0908

Since the net force equals ma, we can use Newton's Second Law to solve the resulting equations and determine whatever the unknown quantities are that we are after.0912

Let us see how this works.0922

We have a force of 25N East and a force of 25N West acting concurrently on a 5 kg cart.0924

Find the acceleration of the cart.0930

You can probably do this in your head, but it is worth walking through the steps to see how this could applied with a simple situation before we complicate matters.0932

A FBD -- there is our cart.0942

We have a force of 25N to the East and we have a force of 25N to the West.0946

Next, I am going to write my Newton's Second Law equation: Fnet = ma.0956

Since this is in the x direction, I am going to specify this and say net force in the x direction is = to mass times acceleration in the x direction.0962

Now, Fnet(x) -- all this means is that is says looks at your FBD.0971

Look for all the forces acting in this x direction and write them down.0975

In this case, I have Fnet(x) that I am going to replace with 25 to the left, so that is -25.0980

I have 25 to the right, so that is +25.0987

That must be equal to ma(x)-25 + 25 = 0, therefore 0 = ma(x), therefore a(x) must be equal to 0.0990

No acceleration, which you probably knew before we started the problem, but the steps are what is important.0995

Let's take another look here.1013

We have a .15 kg baseball moving 20 m/s stopped by a player in .010 s. What is the average force stopping the ball?1015

The way I would start these sorts of problems -- it is usually a good idea to write down what kind of information you are given.1027

Here I know the mass is equal to .15 kg.1032

It is initially moving at 20 m/s -- 0 = 20 m/s.1037

I am just going to draw in that that is to the right +x.1043

Final velocity is 0. It comes to rest and the time it takes is .01 s.1050

As I look at that -- trying to find the average force stopping the ball -- I know the mass -- it sure would be useful to have acceleration.1058

I do not know acceleration, but I can use my kinematics -- my kinematic equations to find it.1066

Acceleration is change in velocity over time -- δ anything is it's final value minus it's initial divided by time, or 0 - 20 m/s/.01 s is going to be negative 2,000 m/s 2.1073

Now that I know acceleration, I can use Newton's Second Law to continue the problem.1096

If the net force equals mass times acceleration, that implies then -- since we know acceleration is -2,000 m/s2.1103

I also know that mass is .15 kg, then the net force must be equal to our mass .15 kg x -2,000 m/s2.1126

Calculator time -- this implies then that the net force equals -300N.1139

Why the negative? What does the negative mean here?1152

If you think about it, we called to the right the positive direction -- the initial direction the baseball was moving.1157

The negative just implies that this force has to be in the opposite direction in order to stop it.1163

That is the opposite direction of the ball's initial velocity.1168

Moving on -- let us take a look at a block on a surface.1190

Two forces, F1 and F2, are applied to a block on a frictionless, horizontal surface as shown in the diagram.1194

If the magnitude of the block's acceleration is 2 m/s2, what is the mass of the block?1200

We know it is accelerating. F1 is bigger than F2, so it must be in that direction at 2 m/s2.1207

Well, FBD -- always a great place to start.1218

We have 2N to the right, F2, and we have a lot more -- we have 12N to the left.1220

I am going to write Newton's Second Law, Fnet = ma.1230

Since I am interested in just the x direction, the net force in the x direction equals mass times acceleration in the X direction.1234

I am after mass, so net force in the x direction -- 12 to the left, 2 to the right -- let us make this easy and define to the left as positive.1242

That means we have 10N in the positive direction, to the left -- must equal our mass times our acceleration, 2 m/s to the left.1251

So that is positive, therefore mass is going to equal 10/2 or 5 kg.1260

Tremendous. Let us go a little bit further.1272

We have a 25N horizontal force northward and a 35N horizontal force southward acting concurrently -- that means at the same place and at the same time -- on a 15 kg object on a frictionless surface.1277

What is the magnitude of the object's acceleration? Again, let us start with the FBD.1290

There are horizontal forces both North and South, but I am going to draw an overhead view.1296

We have a force of 25N North and we have 35N South.1302

The net force should be pretty easy to see. It is going to be 10N South.1311

The acceleration is going to be the net force divided by the objects mass, which is going to be 10N South, divided by 15 kg, or 0.67 m/s 2 South.1320

Let us talk about mass versus weight.1346

Mass is the amount of stuff that something is made up of. It remains constant.1349

Yes, you can change the mass of an object by taking pieces off of it, or adding pieces.1355

For the most part, wherever you go for the same object, it has the same mass -- it is made out of the same stuff.1360

Weight, however, which we are writing as mg is the force of gravity on the object.1366

Weight varies depending on the gravitational field strength, g.1370

Here on the surface of the Earth, g is 9.8 m/s2.1375

On the surface of the moon, g is about 1.6 m/s2.1380

You would have a different weight if you went to the moon -- 1/6 the weight you would have on Earth.1384

However, regardless of how that works, you have the same mass.1389

Let us look at an example here.1397

An astronaut weighs 1,000N on Earth.1399

What is the weight of the astronaut on Planet X, where the gravitational field strength is 6 m/s 2.1402

On Earth, mg, the object's weight, is 1,000N, therefore, we could say that the mass of the object -- what does not change, is going to be 1,000N/g on Earth -- 10, or about 100 kg.1409

If we go over here to Planet X, mg on Planet X must equal the mass, 100 kg -- that does not change, times g on Planet X, 6 m/s2 -- 100 x 6 = 600N.1427

An alien on Planet X weighs 400N. What is the mass of the alien?1448

On Planet X, mg(x) for the alien must be 400N, therefore, the mass of the alien on X is 400N/g on x, 6 m/s 2, or about 66.7 kg.1454

Take the alien to Earth, it is going to have a different weight.1475

It will not be 400N, but the mass will be the same, 66.7 kg.1478

Coming back to equilibrium. Translational equilibrium occurs when there is no net force on an object, therefore, acceleration is 0.1487

The equilibrant is a name for a single force vector that you add to any unbalanced forces you have on an object in order to bring the object into translational equilibrium.1497

For example, if I have a force that is 25N that direction -- if I want its equilibrant, I need a force that is 25N in that direction so that you add them together -- you get 0.1506

You get no unbalanced forces. You have 0 acceleration.1520

In the diagram here we have a 20N force due North, and a 20N force due East acting concurrently, again at the same place and same time on an object.1530

What additional force is required to bring the object into equilibrium? Or we are looking for the equilibrant.1540

Now the way I do this is, is if I look here we have 20N and 20N.1549

Let us add them together to get the net force.1554

I am just going to slide this vector over so that they are lined up tip to tail so I can add them -- 20N -- and my resultant, the sum of the two vectors is going to be a vector with the length square root of 20 squared plus 20 squared.1556

That is going to be square root of 20 20 + 20 2 = 28.3N.1572

I could replace that 20N North and 20N East with one vector, 28.3N to the northeast.1583

It's equilibrant, the vector I would have to add to that system to bring it back into equilibrium, must be the exact opposite of that.1589

The equilibrant must be that red vector, which would be 28.3N to the southwest.1596

That is what an equilibrant is.1611

A little bit on translation equilibrium.1615

We have a 3N force and a 4N force, so they are acting concurrently on a point.1618

Which force could not produce equilibrium with those two forces?1621

A 1N force could, because if we have this lined up correctly we could have a 3N, maybe a 4N force and a 1N force that would somehow sum to zero.1626

You would get back to where you started.1638

A 7N force -- if we had 3N this way and 4N this way, an equilibrant that was 7N in the exact opposite direction would bring that into equilibrium.1640

But, we cannot do 9. If we have 3N to the right and 4N to the right, there is no where I can place a 9N force where we end up with no net force when we are all done.1652

No matter what I do, I am going to have a remaining force, an unbalanced force of at least 2N1667

A 9N force cannot combine with the 3N force and a 4N force to give you 0 net force, or to bring you into equilibrium.1673

Determining acceleration.1684

We have a 15 kg wagon that is pulled to the right across a surface by a tension of 100N, an angle of 30 degrees above the horizontal.1687

A frictional force of 20N to the left act simultaneously. What is the acceleration of the wagon?1695

I like to draw a picture first.1703

We will make a little red wagon, because those are the cutest kind really.1704

We have a force of 100N at an angle of 30 degrees, and we know we have a frictional force over here.1718

For my FBD, I am going to have my little red wagon.1720

I have the weight of the wagon, mg. I have some amount of normal force.1728

I also have this applied force that is going to be 100N in an angle of 30 degrees, and a frictional force.1735

There is my FBD, but now I am going to do the P-FBD, where I am going to break up that 100N force that does not line up with the axis into its components: y, x.1748

We will start up with the forces that do line up: mg, force of friction, and normal force.1763

The x component here is just going to be 100N cosine 30 degrees and its y component is going to be 100N sine 30 degrees.1773

If we want the acceleration of the wagon, we are really talking about the acceleration of the wagon in the x direction.1791

I am going to write Newton's Second Law: Fnet = ma, and focus on it in the x direction.1796

For Fnet, all I do is I go back to my P-FBD diagram and I look for all the forces acting in the x direction.1805

I have the 100N cosine 30 degrees -- that is 86.6N -- and in the opposite direction, I have minus the force of friction, 20N and that must be equal to ma(x) -- 86.6 - 20 = 66.6N = ma(x).1812

Therefore acceleration in the x must be 66.6N over the mass of our cart, 15 kg -- mass of our wagon, which implies that the acceleration must be 66.6/15, or about 4.44 m/s2.1836

Let us take a look at one more example problem.1859

We will talk about a suspended mass.1863

In this case we have a traffic light suspended by two cables as shown and we will label them T1 and T2.1866

We have measured the tension and the cables using a spring scale and we found that T1 is 49N and T2 is 85N.1872

Can we find the mass of the traffic light? Of course, the answer is going to be yes.1880

Let us start by drawing our FBD -- x and y.1885

Now, there is our object and of course we have its weight: mg down.1894

We have tension one (T1) and if I do just a little bit of geometry over here -- if that is 30 degrees, that must be 30 degrees and over here, if that is 60 degrees, then that is 60 degrees.1903

So I am going to draw a T1 in that direction at an angle of 30 degrees, and T2 over here --it is a bigger angle at 60 degrees.1914

So my P-FBD, I have to break up T1 and T2 into their components.1926

Take our FBD again -- y, x -- mg of course still points down.1935

Let us start with T2 here. Its x component is going to be T2 cosine 60, so I will have here T2 cosine 60 degrees and its y component will be T2 sine 60 degrees.1945

Now let us deal with T1.1960

Its x component will be to the left and that is going to be T1 cosine 30 degrees, and its y component -- T1 sine 30 degrees.1962

If we are trying to find the mass, I am going to start with Newton's Second Law in the direction that has the mass in it.1977

I am going to write Fnet = ma, but I am going to look in the y direction.1986

I am going to replace Fnet(y) with all the forces I see over here acting in the y direction.1992

Fnet(y) = T1 sine 30 degrees, pointing up + T2 sine 60 degrees and I have mg down - mg.1999

We know that all of that -- since this is just sitting there and the traffic light is not accelerating -- a, it must be 0, so that is all equal to 0.2020

When I do that, I can then say since T1 is 49, then 49 sine 30 degrees + T2 is 85N -- 85 sine 60 degrees must be equal to mg.2030

Or 49 sine 30 = 24.5 + 85 sine 60 = 73.6 must be equal to mg -- 9.8(m).2052

Divide both sides by 9.8 and I come up with a mass of about 10 kg.2069

Newton's Second Law: f = ma and free-body diagrams and pseudo free-body diagrams to help us apply those concepts.2078

Terrific tool that we are going to use all the time here in Physics.2086

Hope you have had a great time here at Educator.com.2090

Make it a great day. We will talk to you soon.2093