Dan Fullerton

Dan Fullerton

AP Practice Exam: Multiple Choice, Part 2

Slide Duration:

Table of Contents

Section 1: Introduction
What is Physics?

7m 38s

Intro
0:00
Objectives
0:12
What is Physics?
0:31
What is Matter, Energy, and How to They Interact
0:55
Why?
0:58
Physics Answers the 'Why' Questions.
1:05
Matter
1:23
Matter
1:29
Mass
1:33
Inertial Mass
1:53
Gravitational Mass
2:12
A Spacecraft's Mass
2:58
Energy
3:37
Energy: The Ability or Capacity to Do Work
3:39
Work: The Process of Moving an Object
3:45
The Ability or Capacity to Move an Object
3:54
Mass-Energy Equivalence
4:51
Relationship Between Mass and Energy E=mc2
5:01
The Mass of An Object is Really a Measure of Its Energy
5:05
The Study of Everything
5:42
Introductory Course
6:19
Next Steps
7:15
Math Review

24m 12s

Intro
0:00
Outline
0:10
Objectives
0:28
Why Do We Need Units?
0:52
Need to Set Specific Standards for Our Measurements
1:01
Physicists Have Agreed to Use the Systeme International
1:24
The Systeme International
1:50
Based on Powers of 10
1:52
7 Fundamental Units: Meter, Kilogram, Second, Ampere, Candela, Kelvin, Mole
2:02
The Meter
2:18
Meter is a Measure of Length
2:20
Measurements Smaller than a Meter, Use: Centimeter, Millimeter, Micrometer, Nanometer
2:25
Measurements Larger Than a Meter, Use Kilometer
2:38
The Kilogram
2:46
Roughly Equivalent to 2.2 English Pounds
2:49
Grams, Milligrams
2:53
Megagram
2:59
Seconds
3:10
Base Unit of Time
3:12
Minute, Hour, Day
3:20
Milliseconds, Microseconds
3:33
Derived Units
3:41
Velocity
3:45
Acceleration
3:57
Force
4:04
Prefixes for Powers of 10
4:21
Converting Fundamental Units, Example 1
4:53
Converting Fundamental Units, Example 2
7:18
Two-Step Conversions, Example 1
8:24
Two-Step Conversions, Example 2
10:06
Derived Unit Conversions
11:29
Multi-Step Conversions
13:25
Metric Estimations
15:04
What are Significant Figures?
16:01
Represent a Manner of Showing Which Digits In a Number Are Known to Some Level of Certainty
16:03
Example
16:09
Measuring with Sig Figs
16:36
Rule 1
16:40
Rule 2
16:44
Rule 3
16:52
Reading Significant Figures
16:57
All Non-Zero Digits Are Significant
17:04
All Digits Between Non-Zero Digits Are Significant
17:07
Zeros to the Left of the Significant Digits
17:11
Zeros to the Right of the Significant Digits
17:16
Non-Zero Digits
17:21
Digits Between Non-Zeros Are Significant
17:45
Zeroes to the Right of the Sig Figs Are Significant
18:17
Why Scientific Notation?
18:36
Physical Measurements Vary Tremendously in Magnitude
18:38
Example
18:47
Scientific Notation in Practice
19:23
Example 1
19:28
Example 2
19:44
Using Scientific Notation
20:02
Show Your Value Using Correct Number of Significant Figures
20:05
Move the Decimal Point
20:09
Show Your Number Being Multiplied by 10 Raised to the Appropriate Power
20:14
Accuracy and Precision
20:23
Accuracy
20:36
Precision
20:41
Example 1: Scientific Notation w/ Sig Figs
21:48
Example 2: Scientific Notation - Compress
22:25
Example 3: Scientific Notation - Compress
23:07
Example 4: Scientific Notation - Expand
23:31
Vectors & Scalars

25m 5s

Intro
0:00
Objectives
0:05
Scalars
0:29
Definition of Scalar
0:39
Temperature, Mass, Time
0:45
Vectors
1:12
Vectors are Quantities That Have Magnitude and Direction
1:13
Represented by Arrows
1:31
Vector Representations
1:47
Graphical Vector Addition
2:42
Graphical Vector Subtraction
4:58
Vector Components
6:08
Angle of a Vector
8:22
Vector Notation
9:52
Example 1: Vector Components
14:30
Example 2: Vector Components
16:05
Example 3: Vector Magnitude
17:26
Example 4: Vector Addition
19:38
Example 5: Angle of a Vector
24:06
Section 2: Mechanics
Defining & Graphing Motion

30m 11s

Intro
0:00
Objectives
0:07
Position
0:40
An Object's Position Cab Be Assigned to a Variable on a Number Scale
0:43
Symbol for Position
1:07
Distance
1:13
When Position Changes, An Object Has Traveled Some Distance
1:14
Distance is Scalar and Measured in Meters
1:21
Example 1: Distance
1:34
Displacement
2:17
Displacement is a Vector Which Describes the Straight Line From Start to End Point
2:18
Measured in Meters
2:27
Example 2: Displacement
2:39
Average Speed
3:32
The Distance Traveled Divided by the Time Interval
3:33
Speed is a Scalar
3:47
Example 3: Average Speed
3:57
Average Velocity
4:37
The Displacement Divided by the Time Interval
4:38
Velocity is a Vector
4:53
Example 4: Average Velocity
5:06
Example 5: Chuck the Hungry Squirrel
5:55
Acceleration
8:02
Rate At Which Velocity Changes
8:13
Acceleration is a Vector
8:26
Example 6: Acceleration Problem
8:52
Average vs. Instantaneous
9:44
Average Values Take Into Account an Entire Time Interval
9:50
Instantaneous Value Tells the Rate of Change of a Quantity at a Specific Instant in Time
9:54
Example 7: Average Velocity
10:06
Particle Diagrams
11:57
Similar to the Effect of Oil Leak from a Car on the Pavement
11:59
Accelerating
13:03
Position-Time Graphs
14:17
Shows Position as a Function of Time
14:24
Slope of x-t Graph
15:08
Slope Gives You the Velocity
15:09
Negative Indicates Direction
16:27
Velocity-Time Graphs
16:45
Shows Velocity as a Function of Time
16:49
Area Under v-t Graphs
17:47
Area Under the V-T Graph Gives You Change in Displacement
17:48
Example 8: Slope of a v-t Graph
19:45
Acceleration-Time Graphs
21:44
Slope of the v-t Graph Gives You Acceleration
21:45
Area Under the a-t Graph Gives You an Object's Change in Velocity
22:24
Example 10: Motion Graphing
24:03
Example 11: v-t Graph
27:14
Example 12: Displacement From v-t Graph
28:14
Kinematic Equations

36m 13s

Intro
0:00
Objectives
0:07
Problem-Solving Toolbox
0:42
Graphs Are Not Always the Most Effective
0:47
Kinematic Equations Helps us Solve for Five Key Variables
0:56
Deriving the Kinematic Equations
1:29
Kinematic Equations
7:40
Problem Solving Steps
8:13
Label Your Horizontal or Vertical Motion
8:20
Choose a Direction as Positive
8:24
Create a Motion Analysis Table
8:33
Fill in Your Givens
8:42
Solve for Unknowns
8:45
Example 1: Horizontal Kinematics
8:51
Example 2: Vertical Kinematics
11:13
Example 3: 2 Step Problem
13:25
Example 4: Acceleration Problem
16:44
Example 5: Particle Diagrams
17:56
Example 6: Quadratic Solution
20:13
Free Fall
24:24
When the Only Force Acting on an Object is the Force of Gravity, the Motion is Free Fall
24:27
Air Resistance
24:51
Drop a Ball
24:56
Remove the Air from the Room
25:02
Analyze the Motion of Objects by Neglecting Air Resistance
25:06
Acceleration Due to Gravity
25:22
g = 9.8 m/s2
25:25
Approximate g as 10 m/s2 on the AP Exam
25:37
G is Referred to as the Gravitational Field Strength
25:48
Objects Falling From Rest
26:15
Objects Starting from Rest Have an Initial velocity of 0
26:19
Acceleration is +g
26:34
Example 7: Falling Objects
26:47
Objects Launched Upward
27:59
Acceleration is -g
28:04
At Highest Point, the Object has a Velocity of 0
28:19
Symmetry of Motion
28:27
Example 8: Ball Thrown Upward
28:47
Example 9: Height of a Jump
29:23
Example 10: Ball Thrown Downward
33:08
Example 11: Maximum Height
34:16
Projectiles

20m 32s

Intro
0:00
Objectives
0:06
What is a Projectile?
0:26
An Object That is Acted Upon Only By Gravity
0:29
Typically Launched at an Angle
0:43
Path of a Projectile
1:03
Projectiles Launched at an Angle Move in Parabolic Arcs
1:06
Symmetric and Parabolic
1:32
Horizontal Range and Max Height
1:49
Independence of Motion
2:17
Vertical
2:49
Horizontal
2:52
Example 1: Horizontal Launch
3:49
Example 2: Parabolic Path
7:41
Angled Projectiles
8:30
Must First Break Up the Object's Initial Velocity Into x- and y- Components of Initial Velocity
8:32
An Object Will Travel the Maximum Horizontal Distance with a Launch Angle of 45 Degrees
8:43
Example 3: Human Cannonball
8:55
Example 4: Motion Graphs
12:55
Example 5: Launch From a Height
15:33
Example 6: Acceleration of a Projectile
19:56
Relative Motion

10m 52s

Intro
0:00
Objectives
0:06
Reference Frames
0:18
Motion of an Observer
0:21
No Way to Distinguish Between Motion at Rest and Motion at a Constant Velocity
0:44
Motion is Relative
1:35
Example 1
1:39
Example 2
2:09
Calculating Relative Velocities
2:31
Example 1
2:43
Example 2
2:48
Example 3
2:52
Example 1
4:58
Example 2: Airspeed
6:19
Example 3: 2-D Relative Motion
7:39
Example 4: Relative Velocity with Direction
9:40
Newton's 1st Law of Motion

10m 16s

Intro
0:00
Objective
0:05
Newton's 1st Law of Motion
0:16
An Object At Rest Will Remain At Rest
0:21
An Object In Motion Will Remain in Motion
0:26
Net Force
0:39
Also Known As the Law of Inertia
0:46
Force
1:02
Push or Pull
1:04
Newtons
1:08
Contact and Field Forces
1:31
Contact Forces
1:50
Field Forces
2:11
What is a Net Force?
2:30
Vector Sum of All the Forces Acting on an Object
2:33
Translational Equilibrium
2:37
Unbalanced Force Is a Net Force
2:46
What Does It Mean?
3:49
An Object Will Continue in Its Current State of Motion Unless an Unbalanced Force Acts Upon It
3:50
Example of Newton's First Law
4:20
Objects in Motion
5:05
Will Remain in Motion At Constant Velocity
5:06
Hard to Find a Frictionless Environment on Earth
5:10
Static Equilibrium
5:40
Net Force on an Object is 0
5:44
Inertia
6:21
Tendency of an Object to Resist a Change in Velocity
6:23
Inertial Mass
6:35
Gravitational Mass
6:40
Example 1: Inertia
7:10
Example 2: Inertia
7:37
Example 3: Translational Equilibrium
8:03
Example 4: Net Force
8:40
Newton's 2nd Law of Motion

34m 55s

Intro
0:00
Objective
0:07
Free Body Diagrams
0:37
Tools Used to Analyze Physical Situations
0:40
Show All the Forces Acting on a Single Object
0:45
Drawing FBDs
0:58
Draw Object of Interest as a Dot
1:00
Sketch a Coordinate System
1:10
Example 1: Falling Elephant
1:18
Example 2: Falling Elephant with Air Resistance
2:07
Example 3: Soda on Table
3:00
Example 4: Box in Equilibrium
4:25
Example 5: Block on a Ramp
5:01
Pseudo-FBDs
5:53
Draw When Forces Don't Line Up with Axes
5:56
Break Forces That Don’t Line Up with Axes into Components That Do
6:00
Example 6: Objects on a Ramp
6:32
Example 7: Car on a Banked Turn
10:23
Newton's 2nd Law of Motion
12:56
The Acceleration of an Object is in the Direction of the Directly Proportional to the Net Force Applied
13:06
Newton's 1st Two Laws Compared
13:45
Newton's 1st Law
13:51
Newton's 2nd Law
14:10
Applying Newton's 2nd Law
14:50
Example 8: Applying Newton's 2nd Law
15:23
Example 9: Stopping a Baseball
16:52
Example 10: Block on a Surface
19:51
Example 11: Concurrent Forces
21:16
Mass vs. Weight
22:28
Mass
22:29
Weight
22:47
Example 12: Mass vs. Weight
23:16
Translational Equilibrium
24:47
Occurs When There Is No Net Force on an Object
24:49
Equilibrant
24:57
Example 13: Translational Equilibrium
25:29
Example 14: Translational Equilibrium
26:56
Example 15: Determining Acceleration
28:05
Example 16: Suspended Mass
31:03
Newton's 3rd Law of Motion

5m 58s

Intro
0:00
Objectives
0:06
Newton's 3rd Law of Motion
0:20
All Forces Come in Pairs
0:24
Examples
1:22
Action-Reaction Pairs
2:07
Girl Kicking Soccer Ball
2:11
Rocket Ship in Space
2:29
Gravity on You
2:53
Example 1: Force of Gravity
3:34
Example 2: Sailboat
4:00
Example 3: Hammer and Nail
4:49
Example 4: Net Force
5:06
Friction

17m 49s

Intro
0:00
Objectives
0:06
Examples
0:23
Friction Opposes Motion
0:24
Kinetic Friction
0:27
Static Friction
0:36
Magnitude of Frictional Force Is Determined By Two Things
0:41
Coefficient Friction
2:27
Ratio of the Frictional Force and the Normal Force
2:28
Chart of Different Values of Friction
2:48
Kinetic or Static?
3:31
Example 1: Car Sliding
4:18
Example 2: Block on Incline
5:03
Calculating the Force of Friction
5:48
Depends Only Upon the Nature of the Surfaces in Contact and the Magnitude of the Force
5:50
Terminal Velocity
6:14
Air Resistance
6:18
Terminal Velocity of the Falling Object
6:33
Example 3: Finding the Frictional Force
7:36
Example 4: Box on Wood Surface
9:13
Example 5: Static vs. Kinetic Friction
11:49
Example 6: Drag Force on Airplane
12:15
Example 7: Pulling a Sled
13:21
Dynamics Applications

35m 27s

Intro
0:00
Objectives
0:08
Free Body Diagrams
0:49
Drawing FBDs
1:09
Draw Object of Interest as a Dot
1:12
Sketch a Coordinate System
1:18
Example 1: FBD of Block on Ramp
1:39
Pseudo-FBDs
1:59
Draw Object of Interest as a Dot
2:00
Break Up the Forces
2:07
Box on a Ramp
2:12
Example 2: Box at Rest
4:28
Example 3: Box Held by Force
5:00
What is an Atwood Machine?
6:46
Two Objects are Connected by a Light String Over a Mass-less Pulley
6:49
Properties of Atwood Machines
7:13
Ideal Pulleys are Frictionless and Mass-less
7:16
Tension is Constant in a Light String Passing Over an Ideal Pulley
7:23
Solving Atwood Machine Problems
8:02
Alternate Solution
12:07
Analyze the System as a Whole
12:12
Elevators
14:24
Scales Read the Force They Exert on an Object Placed Upon Them
14:42
Can be Used to Analyze Using Newton's 2nd Law and Free body Diagrams
15:23
Example 4: Elevator Accelerates Upward
15:36
Example 5: Truck on a Hill
18:30
Example 6: Force Up a Ramp
19:28
Example 7: Acceleration Down a Ramp
21:56
Example 8: Basic Atwood Machine
24:05
Example 9: Masses and Pulley on a Table
26:47
Example 10: Mass and Pulley on a Ramp
29:15
Example 11: Elevator Accelerating Downward
33:00
Impulse & Momentum

26m 6s

Intro
0:00
Objectives
0:06
Momentum
0:31
Example
0:35
Momentum measures How Hard It Is to Stop a Moving Object
0:47
Vector Quantity
0:58
Example 1: Comparing Momenta
1:48
Example 2: Calculating Momentum
3:08
Example 3: Changing Momentum
3:50
Impulse
5:02
Change In Momentum
5:05
Example 4: Impulse
5:26
Example 5: Impulse-Momentum
6:41
Deriving the Impulse-Momentum Theorem
9:04
Impulse-Momentum Theorem
12:02
Example 6: Impulse-Momentum Theorem
12:15
Non-Constant Forces
13:55
Impulse or Change in Momentum
13:56
Determine the Impulse by Calculating the Area of the Triangle Under the Curve
14:07
Center of Mass
14:56
Real Objects Are More Complex Than Theoretical Particles
14:59
Treat Entire Object as if Its Entire Mass Were Contained at the Object's Center of Mass
15:09
To Calculate the Center of Mass
15:17
Example 7: Force on a Moving Object
15:49
Example 8: Motorcycle Accident
17:49
Example 9: Auto Collision
19:32
Example 10: Center of Mass (1D)
21:29
Example 11: Center of Mass (2D)
23:28
Collisions

21m 59s

Intro
0:00
Objectives
0:09
Conservation of Momentum
0:18
Linear Momentum is Conserved in an Isolated System
0:21
Useful for Analyzing Collisions and Explosions
0:27
Momentum Tables
0:58
Identify Objects in the System
1:05
Determine the Momenta of the Objects Before and After the Event
1:10
Add All the Momenta From Before the Event and Set Them Equal to Momenta After the Event
1:15
Solve Your Resulting Equation for Unknowns
1:20
Types of Collisions
1:31
Elastic Collision
1:36
Inelastic Collision
1:56
Example 1: Conservation of Momentum (1D)
2:02
Example 2: Inelastic Collision
5:12
Example 3: Recoil Velocity
7:16
Example 4: Conservation of Momentum (2D)
9:29
Example 5: Atomic Collision
16:02
Describing Circular Motion

7m 18s

Intro
0:00
Objectives
0:07
Uniform Circular Motion
0:20
Circumference
0:32
Average Speed Formula Still Applies
0:46
Frequency
1:03
Number of Revolutions or Cycles Which Occur Each Second
1:04
Hertz
1:24
Formula for Frequency
1:28
Period
1:36
Time It Takes for One Complete Revolution or Cycle
1:37
Frequency and Period
1:54
Example 1: Car on a Track
2:08
Example 2: Race Car
3:55
Example 3: Toy Train
4:45
Example 4: Round-A-Bout
5:39
Centripetal Acceleration & Force

26m 37s

Intro
0:00
Objectives
0:08
Uniform Circular Motion
0:38
Direction of ac
1:41
Magnitude of ac
3:50
Centripetal Force
4:08
For an Object to Accelerate, There Must Be a Net Force
4:18
Centripetal Force
4:26
Calculating Centripetal Force
6:14
Example 1: Acceleration
7:31
Example 2: Direction of ac
8:53
Example 3: Loss of Centripetal Force
9:19
Example 4: Velocity and Centripetal Force
10:08
Example 5: Demon Drop
10:55
Example 6: Centripetal Acceleration vs. Speed
14:11
Example 7: Calculating ac
15:03
Example 8: Running Back
15:45
Example 9: Car at an Intersection
17:15
Example 10: Bucket in Horizontal Circle
18:40
Example 11: Bucket in Vertical Circle
19:20
Example 12: Frictionless Banked Curve
21:55
Gravitation

32m 56s

Intro
0:00
Objectives
0:08
Universal Gravitation
0:29
The Bigger the Mass the Closer the Attraction
0:48
Formula for Gravitational Force
1:16
Calculating g
2:43
Mass of Earth
2:51
Radius of Earth
2:55
Inverse Square Relationship
4:32
Problem Solving Hints
7:21
Substitute Values in For Variables at the End of the Problem Only
7:26
Estimate the Order of Magnitude of the Answer Before Using Your Calculator
7:38
Make Sure Your Answer Makes Sense
7:55
Example 1: Asteroids
8:20
Example 2: Meteor and the Earth
10:17
Example 3: Satellite
13:13
Gravitational Fields
13:50
Gravity is a Non-Contact Force
13:54
Closer Objects
14:14
Denser Force Vectors
14:19
Gravitational Field Strength
15:09
Example 4: Astronaut
16:19
Gravitational Potential Energy
18:07
Two Masses Separated by Distance Exhibit an Attractive Force
18:11
Formula for Gravitational Field
19:21
How Do Orbits Work?
19:36
Example5: Gravitational Field Strength for Space Shuttle in Orbit
21:35
Example 6: Earth's Orbit
25:13
Example 7: Bowling Balls
27:25
Example 8: Freely Falling Object
28:07
Example 9: Finding g
28:40
Example 10: Space Vehicle on Mars
29:10
Example 11: Fg vs. Mass Graph
30:24
Example 12: Mass on Mars
31:14
Example 13: Two Satellites
31:51
Rotational Kinematics

15m 33s

Intro
0:00
Objectives
0:07
Radians and Degrees
0:26
In Degrees, Once Around a Circle is 360 Degrees
0:29
In Radians, Once Around a Circle is 2π
0:34
Example 1: Degrees to Radians
0:57
Example 2: Radians to Degrees
1:31
Linear vs. Angular Displacement
2:00
Linear Position
2:05
Angular Position
2:10
Linear vs. Angular Velocity
2:35
Linear Speed
2:39
Angular Speed
2:42
Direction of Angular Velocity
3:05
Converting Linear to Angular Velocity
4:22
Example 3: Angular Velocity Example
4:41
Linear vs. Angular Acceleration
5:36
Example 4: Angular Acceleration
6:15
Kinematic Variable Parallels
7:47
Displacement
7:52
Velocity
8:10
Acceleration
8:16
Time
8:22
Kinematic Variable Translations
8:30
Displacement
8:34
Velocity
8:42
Acceleration
8:50
Time
8:58
Kinematic Equation Parallels
9:09
Kinematic Equations
9:12
Delta
9:33
Final Velocity Squared and Angular Velocity Squared
9:54
Example 5: Medieval Flail
10:24
Example 6: CD Player
10:57
Example 7: Carousel
12:13
Example 8: Circular Saw
13:35
Torque

11m 21s

Intro
0:00
Objectives
0:05
Torque
0:18
Force That Causes an Object to Turn
0:22
Must be Perpendicular to the Displacement to Cause a Rotation
0:27
Lever Arm: The Stronger the Force, The More Torque
0:45
Direction of the Torque Vector
1:53
Perpendicular to the Position Vector and the Force Vector
1:54
Right-Hand Rule
2:08
Newton's 2nd Law: Translational vs. Rotational
2:46
Equilibrium
3:58
Static Equilibrium
4:01
Dynamic Equilibrium
4:09
Rotational Equilibrium
4:22
Example 1: Pirate Captain
4:32
Example 2: Auto Mechanic
5:25
Example 3: Sign Post
6:44
Example 4: See-Saw
9:01
Rotational Dynamics

36m 6s

Intro
0:00
Objectives
0:08
Types of Inertia
0:39
Inertial Mass (Translational Inertia)
0:42
Moment of Inertia (Rotational Inertia)
0:53
Moment of Inertia for Common Objects
1:48
Example 1: Calculating Moment of Inertia
2:53
Newton's 2nd Law - Revisited
5:09
Acceleration of an Object
5:15
Angular Acceleration of an Object
5:24
Example 2: Rotating Top
5:47
Example 3: Spinning Disc
7:54
Angular Momentum
9:41
Linear Momentum
9:43
Angular Momentum
10:00
Calculating Angular Momentum
10:51
Direction of the Angular Momentum Vector
11:26
Total Angular Momentum
12:29
Example 4: Angular Momentum of Particles
14:15
Example 5: Rotating Pedestal
16:51
Example 6: Rotating Discs
18:39
Angular Momentum and Heavenly Bodies
20:13
Types of Kinetic Energy
23:41
Objects Traveling with a Translational Velocity
23:45
Objects Traveling with Angular Velocity
24:00
Translational vs. Rotational Variables
24:33
Example 7: Kinetic Energy of a Basketball
25:45
Example 8: Playground Round-A-Bout
28:17
Example 9: The Ice Skater
30:54
Example 10: The Bowler
33:15
Work & Power

31m 20s

Intro
0:00
Objectives
0:09
What Is Work?
0:31
Power Output
0:35
Transfer Energy
0:39
Work is the Process of Moving an Object by Applying a Force
0:46
Examples of Work
0:56
Calculating Work
2:16
Only the Force in the Direction of the Displacement Counts
2:33
Formula for Work
2:48
Example 1: Moving a Refrigerator
3:16
Example 2: Liberating a Car
3:59
Example 3: Crate on a Ramp
5:20
Example 4: Lifting a Box
7:11
Example 5: Pulling a Wagon
8:38
Force vs. Displacement Graphs
9:33
The Area Under a Force vs. Displacement Graph is the Work Done by the Force
9:37
Find the Work Done
9:49
Example 6: Work From a Varying Force
11:00
Hooke's Law
12:42
The More You Stretch or Compress a Spring, The Greater the Force of the Spring
12:46
The Spring's Force is Opposite the Direction of Its Displacement from Equilibrium
13:00
Determining the Spring Constant
14:21
Work Done in Compressing the Spring
15:27
Example 7: Finding Spring Constant
16:21
Example 8: Calculating Spring Constant
17:58
Power
18:43
Work
18:46
Power
18:50
Example 9: Moving a Sofa
19:26
Calculating Power
20:41
Example 10: Motors Delivering Power
21:27
Example 11: Force on a Cyclist
22:40
Example 12: Work on a Spinning Mass
23:52
Example 13: Work Done by Friction
25:05
Example 14: Units of Power
28:38
Example 15: Frictional Force on a Sled
29:43
Energy

20m 15s

Intro
0:00
Objectives
0:07
What is Energy?
0:24
The Ability or Capacity to do Work
0:26
The Ability or Capacity to Move an Object
0:34
Types of Energy
0:39
Energy Transformations
2:07
Transfer Energy by Doing Work
2:12
Work-Energy Theorem
2:20
Units of Energy
2:51
Kinetic Energy
3:08
Energy of Motion
3:13
Ability or Capacity of a Moving Object to Move Another Object
3:17
A Single Object Can Only Have Kinetic Energy
3:46
Example 1: Kinetic Energy of a Motorcycle
5:08
Potential Energy
5:59
Energy An Object Possesses
6:10
Gravitational Potential Energy
7:21
Elastic Potential Energy
9:58
Internal Energy
10:16
Includes the Kinetic Energy of the Objects That Make Up the System and the Potential Energy of the Configuration
10:20
Calculating Gravitational Potential Energy in a Constant Gravitational Field
10:57
Sources of Energy on Earth
12:41
Example 2: Potential Energy
13:41
Example 3: Energy of a System
14:40
Example 4: Kinetic and Potential Energy
15:36
Example 5: Pendulum
16:55
Conservation of Energy

23m 20s

Intro
0:00
Objectives
0:08
Law of Conservation of Energy
0:22
Energy Cannot Be Created or Destroyed.. It Can Only Be Changed
0:27
Mechanical Energy
0:34
Conservation Laws
0:40
Examples
0:49
Kinematics vs. Energy
4:34
Energy Approach
4:56
Kinematics Approach
6:04
The Pendulum
8:07
Example 1: Cart Compressing a Spring
13:09
Example 2
14:23
Example 3: Car Skidding to a Stop
16:15
Example 4: Accelerating an Object
17:27
Example 5: Block on Ramp
18:06
Example 6: Energy Transfers
19:21
Simple Harmonic Motion

58m 30s

Intro
0:00
Objectives
0:08
What Is Simple Harmonic Motion?
0:57
Nature's Typical Reaction to a Disturbance
1:00
A Displacement Which Results in a Linear Restoring Force Results in SHM
1:25
Review of Springs
1:43
When a Force is Applied to a Spring, the Spring Applies a Restoring Force
1:46
When the Spring is in Equilibrium, It Is 'Unstrained'
1:54
Factors Affecting the Force of A Spring
2:00
Oscillations
3:42
Repeated Motions
3:45
Cycle 1
3:52
Period
3:58
Frequency
4:07
Spring-Block Oscillator
4:47
Mass of the Block
4:59
Spring Constant
5:05
Example 1: Spring-Block Oscillator
6:30
Diagrams
8:07
Displacement
8:42
Velocity
8:57
Force
9:36
Acceleration
10:09
U
10:24
K
10:47
Example 2: Harmonic Oscillator Analysis
16:22
Circular Motion vs. SHM
23:26
Graphing SHM
25:52
Example 3: Position of an Oscillator
28:31
Vertical Spring-Block Oscillator
31:13
Example 4: Vertical Spring-Block Oscillator
34:26
Example 5: Bungee
36:39
The Pendulum
43:55
Mass Is Attached to a Light String That Swings Without Friction About the Vertical Equilibrium
44:04
Energy and the Simple Pendulum
44:58
Frequency and Period of a Pendulum
48:25
Period of an Ideal Pendulum
48:31
Assume Theta is Small
48:54
Example 6: The Pendulum
50:15
Example 7: Pendulum Clock
53:38
Example 8: Pendulum on the Moon
55:14
Example 9: Mass on a Spring
56:01
Section 3: Fluids
Density & Buoyancy

19m 48s

Intro
0:00
Objectives
0:09
Fluids
0:27
Fluid is Matter That Flows Under Pressure
0:31
Fluid Mechanics is the Study of Fluids
0:44
Density
0:57
Density is the Ratio of an Object's Mass to the Volume It Occupies
0:58
Less Dense Fluids
1:06
Less Dense Solids
1:09
Example 1: Density of Water
1:27
Example 2: Volume of Gold
2:19
Example 3: Floating
3:06
Buoyancy
3:54
Force Exerted by a Fluid on an Object, Opposing the Object's Weight
3:56
Buoyant Force Determined Using Archimedes Principle
4:03
Example 4: Buoyant Force
5:12
Example 5: Shark Tank
5:56
Example 6: Concrete Boat
7:47
Example 7: Apparent Mass
10:08
Example 8: Volume of a Submerged Cube
13:21
Example 9: Determining Density
15:37
Pressure & Pascal's Principle

18m 7s

Intro
0:00
Objectives
0:09
Pressure
0:25
Pressure is the Effect of a Force Acting Upon a Surface
0:27
Formula for Pressure
0:41
Force is Always Perpendicular to the Surface
0:50
Exerting Pressure
1:03
Fluids Exert Outward Pressure in All Directions on the Sides of Any Container Holding the Fluid
1:36
Earth's Atmosphere Exerts Pressure
1:42
Example 1: Pressure on Keyboard
2:17
Example 2: Sleepy Fisherman
3:03
Example 3: Scale on Planet Physica
4:12
Example 4: Ranking Pressures
5:00
Pressure on a Submerged Object
6:45
Pressure a Fluid Exerts on an Object Submerged in That Fluid
6:46
If There Is Atmosphere Above the Fluid
7:03
Example 5: Gauge Pressure Scuba Diving
7:27
Example 6: Absolute Pressure Scuba Diving
8:13
Pascal's Principle
8:51
Force Multiplication Using Pascal's Principle
9:24
Example 7: Barber's Chair
11:38
Example 8: Hydraulic Auto Lift
13:26
Example 9: Pressure on a Penny
14:41
Example 10: Depth in Fresh Water
16:39
Example 11: Absolute vs. Gauge Pressure
17:23
Continuity Equation for Fluids

7m

Intro
0:00
Objectives
0:08
Conservation of Mass for Fluid Flow
0:18
Law of Conservation of Mass for Fluids
0:21
Volume Flow Rate Remains Constant Throughout the Pipe
0:35
Volume Flow Rate
0:59
Quantified In Terms Of Volume Flow Rate
1:01
Area of Pipe x Velocity of Fluid
1:05
Must Be Constant Throughout Pipe
1:10
Example 1: Tapered Pipe
1:44
Example 2: Garden Hose
2:37
Example 3: Oil Pipeline
4:49
Example 4: Roots of Continuity Equation
6:16
Bernoulli's Principle

20m

Intro
0:00
Objectives
0:08
Bernoulli's Principle
0:21
Airplane Wings
0:35
Venturi Pump
1:56
Bernoulli's Equation
3:32
Example 1: Torricelli's Theorem
4:38
Example 2: Gauge Pressure
7:26
Example 3: Shower Pressure
8:16
Example 4: Water Fountain
12:29
Example 5: Elevated Cistern
15:26
Section 4: Thermal Physics
Temperature, Heat, & Thermal Expansion

24m 17s

Intro
0:00
Objectives
0:12
Thermal Physics
0:42
Explores the Internal Energy of Objects Due to the Motion of the Atoms and Molecules Comprising the Objects
0:46
Explores the Transfer of This Energy From Object to Object
0:53
Temperature
1:00
Thermal Energy Is Related to the Kinetic Energy of All the Particles Comprising the Object
1:03
The More Kinetic Energy of the Constituent Particles Have, The Greater the Object's Thermal Energy
1:12
Temperature and Phases of Matter
1:44
Solids
1:48
Liquids
1:56
Gases
2:02
Average Kinetic Energy and Temperature
2:16
Average Kinetic Energy
2:24
Boltzmann's Constant
2:29
Temperature Scales
3:06
Converting Temperatures
4:37
Heat
5:03
Transfer of Thermal Energy
5:06
Accomplished Through Collisions Which is Conduction
5:13
Methods of Heat Transfer
5:52
Conduction
5:59
Convection
6:19
Radiation
6:31
Quantifying Heat Transfer in Conduction
6:37
Rate of Heat Transfer is Measured in Watts
6:42
Thermal Conductivity
7:12
Example 1: Average Kinetic Energy
7:35
Example 2: Body Temperature
8:22
Example 3: Temperature of Space
9:30
Example 4: Temperature of the Sun
10:44
Example 5: Heat Transfer Through Window
11:38
Example 6: Heat Transfer Across a Rod
12:40
Thermal Expansion
14:18
When Objects Are Heated, They Tend to Expand
14:19
At Higher Temperatures, Objects Have Higher Average Kinetic Energies
14:24
At Higher Levels of Vibration, The Particles Are Not Bound As Tightly to Each Other
14:30
Linear Expansion
15:11
Amount a Material Expands is Characterized by the Material's Coefficient of Expansion
15:14
One-Dimensional Expansion -> Linear Coefficient of Expansion
15:20
Volumetric Expansion
15:38
Three-Dimensional Expansion -> Volumetric Coefficient of Expansion
15:45
Volumetric Coefficient of Expansion is Roughly Three Times the Linear Coefficient of Expansion
16:03
Coefficients of Thermal Expansion
16:24
Example 7: Contracting Railroad Tie
16:59
Example 8: Expansion of an Aluminum Rod
18:37
Example 9: Water Spilling Out of a Glass
20:18
Example 10: Average Kinetic Energy vs. Temperature
22:18
Example 11: Expansion of a Ring
23:07
Ideal Gases

24m 15s

Intro
0:00
Objectives
0:10
Ideal Gases
0:25
Gas Is Comprised of Many Particles Moving Randomly in a Container
0:34
Particles Are Far Apart From One Another
0:46
Particles Do Not Exert Forces Upon One Another Unless They Come In Contact in an Elastic Collision
0:53
Ideal Gas Law
1:18
Atoms, Molecules, and Moles
2:56
Protons
2:59
Neutrons
3:15
Electrons
3:18
Examples
3:25
Example 1: Counting Moles
4:58
Example 2: Moles of CO2 in a Bottle
6:00
Example 3: Pressurized CO2
6:54
Example 4: Helium Balloon
8:53
Internal Energy of an Ideal Gas
10:17
The Average Kinetic Energy of the Particles of an Ideal Gas
10:21
Total Internal Energy of the Ideal Gas Can Be Found by Multiplying the Average Kinetic Energy of the Gas's Particles by the Numbers of Particles in the Gas
10:32
Example 5: Internal Energy of Oxygen
12:00
Example 6: Temperature of Argon
12:41
Root-Mean-Square Velocity
13:40
This is the Square Root of the Average Velocity Squared For All the Molecules in the System
13:43
Derived from the Maxwell-Boltzmann Distribution Function
13:56
Calculating vrms
14:56
Example 7: Average Velocity of a Gas
18:32
Example 8: Average Velocity of a Gas
19:44
Example 9: vrms of Molecules in Equilibrium
20:59
Example 10: Moles to Molecules
22:25
Example 11: Relating Temperature and Internal Energy
23:22
Thermodynamics

22m 29s

Intro
0:00
Objectives
0:06
Zeroth Law of Thermodynamics
0:26
First Law of Thermodynamics
1:00
The Change in the Internal Energy of a Closed System is Equal to the Heat Added to the System Plus the Work Done on the System
1:04
It is a Restatement of the Law of Conservation of Energy
1:19
Sign Conventions Are Important
1:25
Work Done on a Gas
1:44
Example 1: Adding Heat to a System
3:25
Example 2: Expanding a Gas
4:07
P-V Diagrams
5:11
Pressure-Volume Diagrams are Useful Tools for Visualizing Thermodynamic Processes of Gases
5:13
Use Ideal Gas Law to Determine Temperature of Gas
5:25
P-V Diagrams II
5:55
Volume Increases, Pressure Decreases
6:00
As Volume Expands, Gas Does Work
6:19
Temperature Rises as You Travel Up and Right on a PV Diagram
6:29
Example 3: PV Diagram Analysis
6:40
Types of PV Processes
7:52
Adiabatic
8:03
Isobaric
8:19
Isochoric
8:28
Isothermal
8:35
Adiabatic Processes
8:47
Heat Is not Transferred Into or Out of The System
8:50
Heat = 0
8:55
Isobaric Processes
9:19
Pressure Remains Constant
9:21
PV Diagram Shows a Horizontal Line
9:27
Isochoric Processes
9:51
Volume Remains Constant
9:52
PV Diagram Shows a Vertical Line
9:58
Work Done on the Gas is Zero
10:01
Isothermal Processes
10:27
Temperature Remains Constant
10:29
Lines on a PV Diagram Are Isotherms
10:31
PV Remains Constant
10:38
Internal Energy of Gas Remains Constant
10:40
Example 4: Adiabatic Expansion
10:46
Example 5: Removing Heat
11:25
Example 6: Ranking Processes
13:08
Second Law of Thermodynamics
13:59
Heat Flows Naturally From a Warmer Object to a Colder Object
14:02
Heat Energy Cannot be Completely Transformed Into Mechanical Work
14:11
All Natural Systems Tend Toward a Higher Level of Disorder
14:19
Heat Engines
14:52
Heat Engines Convert Heat Into Mechanical Work
14:56
Efficiency of a Heat Engine is the Ratio of the Engine You Get Out to the Energy You Put In
14:59
Power in Heat Engines
16:09
Heat Engines and PV Diagrams
17:38
Carnot Engine
17:54
It Is a Theoretical Heat Engine That Operates at Maximum Possible Efficiency
18:02
It Uses Only Isothermal and Adiabatic Processes
18:08
Carnot's Theorem
18:11
Example 7: Carnot Engine
18:49
Example 8: Maximum Efficiency
21:02
Example 9: PV Processes
21:51
Section 5: Electricity & Magnetism
Electric Fields & Forces

38m 24s

Intro
0:00
Objectives
0:10
Electric Charges
0:34
Matter is Made Up of Atoms
0:37
Protons Have a Charge of +1
0:45
Electrons Have a Charge of -1
1:00
Most Atoms Are Neutral
1:04
Ions
1:15
Fundamental Unit of Charge is the Coulomb
1:29
Like Charges Repel, While Opposites Attract
1:50
Example 1: Charge on an Object
2:22
Example 2: Charge of an Alpha Particle
3:36
Conductors and Insulators
4:27
Conductors Allow Electric Charges to Move Freely
4:30
Insulators Do Not Allow Electric Charges to Move Freely
4:39
Resistivity is a Material Property
4:45
Charging by Conduction
5:05
Materials May Be Charged by Contact, Known as Conduction
5:07
Conductors May Be Charged by Contact
5:24
Example 3: Charging by Conduction
5:38
The Electroscope
6:44
Charging by Induction
8:00
Example 4: Electrostatic Attraction
9:23
Coulomb's Law
11:46
Charged Objects Apply a Force Upon Each Other = Coulombic Force
11:52
Force of Attraction or Repulsion is Determined by the Amount of Charge and the Distance Between the Charges
12:04
Example 5: Determine Electrostatic Force
13:09
Example 6: Deflecting an Electron Beam
15:35
Electric Fields
16:28
The Property of Space That Allows a Charged Object to Feel a Force
16:44
Electric Field Strength Vector is the Amount of Electrostatic Force Observed by a Charge Per Unit of Charge
17:01
The Direction of the Electric Field Vector is the Direction a Positive Charge Would Feel a Force
17:24
Example 7: Field Between Metal Plates
17:58
Visualizing the Electric Field
19:27
Electric Field Lines Point Away from Positive Charges and Toward Negative Charges
19:40
Electric Field Lines Intersect Conductors at Right Angles to the Surface
19:50
Field Strength and Line Density Decreases as You Move Away From the Charges
19:58
Electric Field Lines
20:09
E Field Due to a Point Charge
22:32
Electric Fields Are Caused by Charges
22:35
Electric Field Due to a Point Charge Can Be Derived From the Definition of the Electric Field and Coulomb's Law
22:38
To Find the Electric Field Due to Multiple Charges
23:09
Comparing Electricity to Gravity
23:56
Force
24:02
Field Strength
24:16
Constant
24:37
Charge/ Mass Units
25:01
Example 8: E Field From 3 Point Charges
25:07
Example 9: Where is the E Field Zero?
31:43
Example 10: Gravity and Electricity
36:38
Example 11: Field Due to Point Charge
37:34
Electric Potential Difference

35m 58s

Intro
0:00
Objectives
0:09
Electric Potential Energy
0:32
When an Object Was Lifted Against Gravity By Applying a Force for Some Distance, Work Was Done
0:35
When a Charged Object is Moved Against an Electric Field by Applying a Force for Some Distance, Work is Done
0:43
Electric Potential Difference
1:30
Example 1: Charge From Work
2:06
Example 2: Electric Energy
3:09
The Electron-Volt
4:02
Electronvolt (eV)
4:15
1eV is the Amount of Work Done in Moving an Elementary Charge Through a Potential Difference of 1 Volt
4:28
Example 3: Energy in eV
5:33
Equipotential Lines
6:32
Topographic Maps Show Lines of Equal Altitude, or Equal Gravitational Potential
6:36
Lines Connecting Points of Equal Electrical Potential are Known as Equipotential Lines
6:57
Drawing Equipotential Lines
8:15
Potential Due to a Point Charge
10:46
Calculate the Electric Field Vector Due to a Point Charge
10:52
Calculate the Potential Difference Due to a Point Charge
11:05
To Find the Potential Difference Due to Multiple Point Charges
11:16
Example 4: Potential Due to a Point Charge
11:52
Example 5: Potential Due to Point Charges
13:04
Parallel Plates
16:34
Configurations in Which Parallel Plates of Opposite Charge are Situated a Fixed Distance From Each Other
16:37
These Can Create a Capacitor
16:45
E Field Due to Parallel Plates
17:14
Electric Field Away From the Edges of Two Oppositely Charged Parallel Plates is Constant
17:15
Magnitude of the Electric Field Strength is Give By the Potential Difference Between the Plates Divided by the Plate Separation
17:47
Capacitors
18:09
Electric Device Used to Store Charge
18:11
Once the Plates Are Charged, They Are Disconnected
18:30
Device's Capacitance
18:46
Capacitors Store Energy
19:28
Charges Located on the Opposite Plates of a Capacitor Exert Forces on Each Other
19:31
Example 6: Capacitance
20:28
Example 7: Charge on a Capacitor
22:03
Designing Capacitors
24:00
Area of the Plates
24:05
Separation of the Plates
24:09
Insulating Material
24:13
Example 8: Designing a Capacitor
25:35
Example 9: Calculating Capacitance
27:39
Example 10: Electron in Space
29:47
Example 11: Proton Energy Transfer
30:35
Example 12: Two Conducting Spheres
32:50
Example 13: Equipotential Lines for a Capacitor
34:48
Current & Resistance

21m 14s

Intro
0:00
Objectives
0:06
Electric Current
0:19
Path Through Current Flows
0:21
Current is the Amount of Charge Passing a Point Per Unit Time
0:25
Conventional Current is the Direction of Positive Charge Flow
0:43
Example 1: Current Through a Resistor
1:19
Example 2: Current Due to Elementary Charges
1:47
Example 3: Charge in a Light Bulb
2:35
Example 4: Flashlights
3:03
Conductivity and Resistivity
4:41
Conductivity is a Material's Ability to Conduct Electric Charge
4:53
Resistivity is a Material's Ability to Resist the Movement of Electric Charge
5:11
Resistance vs. Resistivity vs. Resistors
5:35
Resistivity Is a Material Property
5:40
Resistance Is a Functional Property of an Element in an Electric Circuit
5:57
A Resistor is a Circuit Element
7:23
Resistors
7:45
Example 5: Calculating Resistance
8:17
Example 6: Resistance Dependencies
10:09
Configuration of Resistors
10:50
When Placed in a Circuit, Resistors Can be Organized in Both Serial and Parallel Arrangements
10:53
May Be Useful to Determine an Equivalent Resistance Which Could Be Used to Replace a System or Resistors with a Single Equivalent Resistor
10:58
Resistors in Series
11:15
Resistors in Parallel
12:35
Example 7: Finding Equivalent Resistance
15:01
Example 8: Length and Resistance
17:43
Example 9: Comparing Resistors
18:21
Example 10: Comparing Wires
19:12
Ohm's Law & Power

10m 35s

Intro
0:00
Objectives
0:06
Ohm's Law
0:21
Relates Resistance, Potential Difference, and Current Flow
0:23
Example 1: Resistance of a Wire
1:22
Example 2: Circuit Current
1:58
Example 3: Variable Resistor
2:30
Ohm's 'Law'?
3:22
Very Useful Empirical Relationship
3:31
Test if a Material is 'Ohmic'
3:40
Example 4: Ohmic Material
3:58
Electrical Power
4:24
Current Flowing Through a Circuit Causes a Transfer of Energy Into Different Types
4:26
Example: Light Bulb
4:36
Example: Television
4:58
Calculating Power
5:09
Electrical Energy
5:14
Charge Per Unit Time Is Current
5:29
Expand Using Ohm's Law
5:48
Example 5: Toaster
7:43
Example 6: Electric Iron
8:19
Example 7: Power of a Resistor
9:19
Example 8: Information Required to Determine Power in a Resistor
9:55
Circuits & Electrical Meters

8m 44s

Intro
0:00
Objectives
0:08
Electrical Circuits
0:21
A Closed-Loop Path Through Which Current Can Flow
0:22
Can Be Made Up of Most Any Materials, But Typically Comprised of Electrical Devices
0:27
Circuit Schematics
1:09
Symbols Represent Circuit Elements
1:30
Lines Represent Wires
1:33
Sources for Potential Difference: Voltaic Cells, Batteries, Power Supplies
1:36
Complete Conducting Paths
2:43
Voltmeters
3:20
Measure the Potential Difference Between Two Points in a Circuit
3:21
Connected in Parallel with the Element to be Measured
3:25
Have Very High Resistance
3:59
Ammeters
4:19
Measure the Current Flowing Through an Element of a Circuit
4:20
Connected in Series with the Circuit
4:25
Have Very Low Resistance
4:45
Example 1: Ammeter and Voltmeter Placement
4:56
Example 2: Analyzing R
6:27
Example 3: Voltmeter Placement
7:12
Example 4: Behavior or Electrical Meters
7:31
Circuit Analysis

48m 58s

Intro
0:00
Objectives
0:07
Series Circuits
0:27
Series Circuits Have Only a Single Current Path
0:29
Removal of any Circuit Element Causes an Open Circuit
0:31
Kirchhoff's Laws
1:36
Tools Utilized in Analyzing Circuits
1:42
Kirchhoff's Current Law States
1:47
Junction Rule
2:00
Kirchhoff's Voltage Law States
2:05
Loop Rule
2:18
Example 1: Voltage Across a Resistor
2:23
Example 2: Current at a Node
3:45
Basic Series Circuit Analysis
4:53
Example 3: Current in a Series Circuit
9:21
Example 4: Energy Expenditure in a Series Circuit
10:14
Example 5: Analysis of a Series Circuit
12:07
Example 6: Voltmeter In a Series Circuit
14:57
Parallel Circuits
17:11
Parallel Circuits Have Multiple Current Paths
17:13
Removal of a Circuit Element May Allow Other Branches of the Circuit to Continue Operating
17:15
Basic Parallel Circuit Analysis
18:19
Example 7: Parallel Circuit Analysis
21:05
Example 8: Equivalent Resistance
22:39
Example 9: Four Parallel Resistors
23:16
Example 10: Ammeter in a Parallel Circuit
26:27
Combination Series-Parallel Circuits
28:50
Look For Portions of the Circuit With Parallel Elements
28:56
Work Back to Original Circuit
29:09
Analysis of a Combination Circuit
29:20
Internal Resistance
34:11
In Reality, Voltage Sources Have Some Amount of 'Internal Resistance'
34:16
Terminal Voltage of the Voltage Source is Reduced Slightly
34:25
Example 11: Two Voltage Sources
35:16
Example 12: Internal Resistance
42:46
Example 13: Complex Circuit with Meters
45:22
Example 14: Parallel Equivalent Resistance
48:24
RC Circuits

24m 47s

Intro
0:00
Objectives
0:08
Capacitors in Parallel
0:34
Capacitors Store Charge on Their Plates
0:37
Capacitors In Parallel Can Be Replaced with an Equivalent Capacitor
0:46
Capacitors in Series
2:42
Charge on Capacitors Must Be the Same
2:44
Capacitor In Series Can Be Replaced With an Equivalent Capacitor
2:47
RC Circuits
5:40
Comprised of a Source of Potential Difference, a Resistor Network, and One or More Capacitors
5:42
Uncharged Capacitors Act Like Wires
6:04
Charged Capacitors Act Like Opens
6:12
Charging an RC Circuit
6:23
Discharging an RC Circuit
11:36
Example 1: RC Analysis
14:50
Example 2: More RC Analysis
18:26
Example 3: Equivalent Capacitance
21:19
Example 4: More Equivalent Capacitance
22:48
Magnetic Fields & Properties

19m 48s

Intro
0:00
Objectives
0:07
Magnetism
0:32
A Force Caused by Moving Charges
0:34
Magnetic Domains Are Clusters of Atoms with Electrons Spinning in the Same Direction
0:51
Example 1: Types of Fields
1:23
Magnetic Field Lines
2:25
Make Closed Loops and Run From North to South Outside the Magnet
2:26
Magnetic Flux
2:42
Show the Direction the North Pole of a Magnet Would Tend to Point If Placed in the Field
2:54
Example 2: Lines of Magnetic Force
3:49
Example 3: Forces Between Bar Magnets
4:39
The Compass
5:28
The Earth is a Giant Magnet
5:31
The Earth's Magnetic North pole is Located Near the Geographic South Pole, and Vice Versa
5:33
A Compass Lines Up with the Net Magnetic Field
6:07
Example 3: Compass in Magnetic Field
6:41
Example 4: Compass Near a Bar Magnet
7:14
Magnetic Permeability
7:59
The Ratio of the Magnetic Field Strength Induced in a Material to the Magnetic Field Strength of the Inducing Field
8:02
Free Space
8:13
Highly Magnetic Materials Have Higher Values of Magnetic Permeability
8:34
Magnetic Dipole Moment
8:41
The Force That a Magnet Can Exert on Moving Charges
8:46
Relative Strength of a Magnet
8:54
Forces on Moving Charges
9:10
Moving Charges Create Magnetic Fields
9:11
Magnetic Fields Exert Forces on Moving Charges
9:17
Direction of the Magnetic Force
9:57
Direction is Given by the Right-Hand Rule
10:05
Right-Hand Rule
10:09
Mass Spectrometer
10:52
Magnetic Fields Accelerate Moving Charges So That They Travel in a Circle
10:58
Used to Determine the Mass of an Unknown Particle
11:04
Velocity Selector
12:44
Mass Spectrometer with an Electric Field Added
12:47
Example 5: Force on an Electron
14:13
Example 6: Velocity of a Charged Particle
15:25
Example 7: Direction of the Magnetic Force
16:52
Example 8: Direction of Magnetic Force on Moving Charges
17:43
Example 9: Electron Released From Rest in Magnetic Field
18:53
Current-Carrying Wires

21m 29s

Intro
0:00
Objectives
0:09
Force on a Current-Carrying Wire
0:30
A Current-Carrying Wire in a Magnetic Field May Experience a Magnetic Force
0:33
Direction Given by the Right-Hand Rule
1:11
Example 1: Force on a Current-Carrying Wire
1:38
Example 2: Equilibrium on a Submerged Wire
2:33
Example 3: Torque on a Loop of Wire
5:55
Magnetic Field Due to a Current-Carrying Wire
8:49
Moving Charges Create Magnetic Fields
8:53
Wires Carry Moving Charges
8:56
Direction Given by the Right-Hand Rule
9:21
Example 4: Magnetic Field Due to a Wire
10:56
Magnetic Field Due to a Solenoid
12:12
Solenoid is a Coil of Wire
12:19
Direction Given by the Right-Hand Rule
12:47
Forces on 2 Parallel Wires
13:34
Current Flowing in the Same Direction
14:52
Current Flowing in Opposite Directions
14:57
Example 5: Magnetic Field Due to Wires
15:19
Example 6: Strength of an Electromagnet
18:35
Example 7: Force on a Wire
19:30
Example 8: Force Between Parallel Wires
20:47
Intro to Electromagnetic Induction

17m 26s

Intro
0:00
Objectives
0:09
Induced EMF
0:42
Charges Flowing Through a Wire Create Magnetic Fields
0:45
Changing Magnetic Fields Cause Charges to Flow or 'Induce' a Current in a Process Known As Electromagnetic Induction
0:49
Electro-Motive Force is the Potential Difference Created by a Changing Magnetic Field
0:57
Magnetic Flux is the Amount of Magnetic Fields Passing Through an Area
1:17
Finding the Magnetic Flux
1:36
Magnetic Field Strength
1:39
Angle Between the Magnetic Field Strength and the Normal to the Area
1:51
Calculating Induced EMF
3:01
The Magnitude of the Induced EMF is Equal to the Rate of Change of the Magnetic Flux
3:04
Induced EMF in a Rectangular Loop of Wire
4:03
Lenz's Law
5:17
Electric Generators and Motors
9:28
Generate an Induced EMF By Turning a Coil of Wire in a magnetic Field
9:31
Generators Use Mechanical Energy to Turn the Coil of Wire
9:39
Electric Motor Operates Using Same Principle
10:30
Example 1: Finding Magnetic Flux
10:43
Example 2: Finding Induced EMF
11:54
Example 3: Changing Magnetic Field
13:52
Example 4: Current Induced in a Rectangular Loop of Wire
15:23
Section 6: Waves & Optics
Wave Characteristics

26m 41s

Intro
0:00
Objectives
0:09
Waves
0:32
Pulse
1:00
A Pulse is a Single Disturbance Which Carries Energy Through a Medium or Space
1:05
A Wave is a Series of Pulses
1:18
When a Pulse Reaches a Hard Boundary
1:37
When a Pulse Reaches a Soft or Flexible Boundary
2:04
Types of Waves
2:44
Mechanical Waves
2:56
Electromagnetic Waves
3:14
Types of Wave Motion
3:38
Longitudinal Waves
3:39
Transverse Waves
4:18
Anatomy of a Transverse Wave
5:18
Example 1: Waves Requiring a Medium
6:59
Example 2: Direction of Displacement
7:36
Example 3: Bell in a Vacuum Jar
8:47
Anatomy of a Longitudinal Wave
9:22
Example 4: Tuning Fork
9:57
Example 5: Amplitude of a Sound Wave
10:24
Frequency and Period
10:47
Example 6: Period of an EM Wave
11:23
Example 7: Frequency and Period
12:01
The Wave Equation
12:32
Velocity of a Wave is a Function of the Type of Wave and the Medium It Travels Through
12:36
Speed of a Wave is Related to Its Frequency and Wavelength
12:41
Example 8: Wavelength Using the Wave Equation
13:54
Example 9: Period of an EM Wave
14:35
Example 10: Blue Whale Waves
16:03
Sound Waves
17:29
Sound is a Mechanical Wave Observed by Detecting Vibrations in the Inner Ear
17:33
Particles of Sound Wave Vibrate Parallel With the Direction of the Wave's Velocity
17:56
Example 11: Distance from Speakers
18:24
Resonance
19:45
An Object with the Same 'Natural Frequency' May Begin to Vibrate at This Frequency
19:55
Classic Example
20:01
Example 12: Vibrating Car
20:32
Example 13: Sonar Signal
21:28
Example 14: Waves Across Media
24:06
Example 15: Wavelength of Middle C
25:24
Wave Interference

20m 45s

Intro
0:00
Objectives
0:09
Superposition
0:30
When More Than One Wave Travels Through the Same Location in the Same Medium
0:32
The Total Displacement is the Sum of All the Individual Displacements of the Waves
0:46
Example 1: Superposition of Pulses
1:01
Types of Interference
2:02
Constructive Interference
2:05
Destructive Interference
2:18
Example 2: Interference
2:47
Example 3: Shallow Water Waves
3:27
Standing Waves
4:23
When Waves of the Same Frequency and Amplitude Traveling in Opposite Directions Meet in the Same Medium
4:26
A Wave in Which Nodes Appear to be Standing Still and Antinodes Vibrate with Maximum Amplitude Above and Below the Axis
4:35
Standing Waves in String Instruments
5:36
Standing Waves in Open Tubes
8:49
Standing Waves in Closed Tubes
9:57
Interference From Multiple Sources
11:43
Constructive
11:55
Destructive
12:14
Beats
12:49
Two Sound Waves with Almost the Same Frequency Interfere to Create a Beat Pattern
12:52
A Frequency Difference of 1 to 4 Hz is Best for Human Detection of Beat Phenomena
13:05
Example 4
14:13
Example 5
18:03
Example 6
19:14
Example 7: Superposition
20:08
Wave Phenomena

19m 2s

Intro
0:00
Objective
0:08
Doppler Effect
0:36
The Shift In A Wave's Observed Frequency Due to Relative Motion Between the Source of the Wave and Observer
0:39
When Source and/or Observer Move Toward Each Other
0:45
When Source and/or Observer Move Away From Each Other
0:52
Practical Doppler Effect
1:01
Vehicle Traveling Past You
1:05
Applications Are Numerous and Widespread
1:56
Doppler Effect - Astronomy
2:43
Observed Frequencies Are Slightly Lower Than Scientists Would Predict
2:50
More Distant Celestial Objects Are Moving Away from the Earth Faster Than Nearer Objects
3:22
Example 1: Car Horn
3:36
Example 2: Moving Speaker
4:13
Diffraction
5:35
The Bending of Waves Around Obstacles
5:37
Most Apparent When Wavelength Is Same Order of Magnitude as the Obstacle/ Opening
6:10
Single-Slit Diffraction
6:16
Double-Slit Diffraction
8:13
Diffraction Grating
11:07
Sharper and Brighter Maxima
11:46
Useful for Determining Wavelengths Accurately
12:07
Example 3: Double Slit Pattern
12:30
Example 4: Determining Wavelength
16:05
Example 5: Radar Gun
18:04
Example 6: Red Shift
18:29
Light As a Wave

11m 35s

Intro
0:00
Objectives
0:14
Electromagnetic (EM) Waves
0:31
Light is an EM Wave
0:43
EM Waves Are Transverse Due to the Modulation of the Electric and Magnetic Fields Perpendicular to the Wave Velocity
1:00
Electromagnetic Wave Characteristics
1:37
The Product of an EM Wave's Frequency and Wavelength Must be Constant in a Vacuum
1:43
Polarization
3:36
Unpoloarized EM Waves Exhibit Modulation in All Directions
3:47
Polarized Light Consists of Light Vibrating in a Single Direction
4:07
Polarizers
4:29
Materials Which Act Like Filters to Only Allow Specific Polarizations of Light to Pass
4:33
Polarizers Typically Are Sheets of Material in Which Long Molecules Are Lined Up Like a Picket Fence
5:10
Polarizing Sunglasses
5:22
Reduce Reflections
5:26
Polarizing Sunglasses Have Vertical Polarizing Filters
5:48
Liquid Crystal Displays
6:08
LCDs Use Liquid Crystals in a Suspension That Align Themselves in a Specific Orientation When a Voltage is Applied
6:13
Cross-Orienting a Polarizer and a Matrix of Liquid Crystals so Light Can Be Modulated Pixel-by-Pixel
6:26
Example 1: Color of Light
7:30
Example 2: Analyzing an EM Wave
8:49
Example 3: Remote Control
9:45
Example 4: Comparing EM Waves
10:32
Reflection & Mirrors

24m 32s

Intro
0:00
Objectives
0:10
Waves at Boundaries
0:37
Reflected
0:43
Transmitted
0:45
Absorbed
0:48
Law of Reflection
0:58
The Angle of Incidence is Equal to the Angle of Reflection
1:00
They Are Both Measured From a Line Perpendicular, or Normal, to the Reflecting Surface
1:22
Types of Reflection
1:54
Diffuse Reflection
1:57
Specular Reflection
2:08
Example 1: Specular Reflection
2:24
Mirrors
3:20
Light Rays From the Object Reach the Plane Mirror and Are Reflected to the Observer
3:27
Virtual Image
3:33
Magnitude of Image Distance
4:05
Plane Mirror Ray Tracing
4:15
Object Distance
4:26
Image Distance
4:43
Magnification of Image
7:03
Example 2: Plane Mirror Images
7:28
Example 3: Image in a Plane Mirror
7:51
Spherical Mirrors
8:10
Inner Surface of a Spherical Mirror
8:19
Outer Surface of a Spherical Mirror
8:30
Focal Point of a Spherical Mirror
8:40
Converging
8:51
Diverging
9:00
Concave (Converging) Spherical Mirrors
9:09
Light Rays Coming Into a Mirror Parallel to the Principal Axis
9:14
Light Rays Passing Through the Center of Curvature
10:17
Light Rays From the Object Passing Directly Through the Focal Point
10:52
Mirror Equation (Lens Equation)
12:06
Object and Image Distances Are Positive on the Reflecting Side of the Mirror
12:13
Formula
12:19
Concave Mirror with Object Inside f
12:39
Example 4: Concave Spherical Mirror
14:21
Example 5: Image From a Concave Mirror
14:51
Convex (Diverging) Spherical Mirrors
16:29
Light Rays Coming Into a Mirror Parallel to the Principal Axis
16:37
Light Rays Striking the Center of the Mirror
16:50
Light Rays Never Converge on the Reflective Side of a Convex Mirror
16:54
Convex Mirror Ray Tracing
17:07
Example 6: Diverging Rays
19:12
Example 7: Focal Length
19:28
Example 8: Reflected Sonar Wave
19:53
Example 9: Plane Mirror Image Distance
20:20
Example 10: Image From a Concave Mirror
21:23
Example 11: Converging Mirror Image Distance
23:09
Refraction & Lenses

39m 42s

Intro
0:00
Objectives
0:09
Refraction
0:42
When a Wave Reaches a Boundary Between Media, Part of the Wave is Reflected and Part of the Wave Enters the New Medium
0:43
Wavelength Must Change If the Wave's Speed Changes
0:57
Refraction is When This Causes The Wave to Bend as It Enters the New Medium
1:12
Marching Band Analogy
1:22
Index of Refraction
2:37
Measure of How Much Light Slows Down in a Material
2:40
Ratio of the Speed of an EM Wave in a Vacuum to the Speed of an EM Wave in Another Material is Known as Index of Refraction
3:03
Indices of Refraction
3:21
Dispersion
4:01
White Light is Refracted Twice in Prism
4:23
Index of Refraction of the Prism Material Varies Slightly with Respect to Frequency
4:41
Example 1: Determining n
5:14
Example 2: Light in Diamond and Crown Glass
5:55
Snell's Law
6:24
The Amount of a Light Wave Bends As It Enters a New Medium is Given by the Law of Refraction
6:32
Light Bends Toward the Normal as it Enters a Material With a Higher n
7:08
Light Bends Toward the Normal as it Enters a Material With a Lower n
7:14
Example 3: Angle of Refraction
7:42
Example 4: Changes with Refraction
9:31
Total Internal Reflection
10:10
When the Angle of Refraction Reaches 90 Degrees
10:23
Critical Angle
10:34
Total Internal Reflection
10:51
Applications of TIR
12:13
Example 5: Critical Angle of Water
13:17
Thin Lenses
14:15
Convex Lenses
14:22
Concave Lenses
14:31
Convex Lenses
15:24
Rays Parallel to the Principal Axis are Refracted Through the Far Focal Point of the Lens
15:28
A Ray Drawn From the Object Through the Center of the Lens Passes Through the Center of the Lens Unbent
15:53
Example 6: Converging Lens Image
16:46
Example 7: Image Distance of Convex Lens
17:18
Concave Lenses
18:21
Rays From the Object Parallel to the Principal Axis Are Refracted Away from the Principal Axis on a Line from the Near Focal Point Through the Point Where the Ray Intercepts the Center of the Lens
18:25
Concave Lenses Produce Upright, Virtual, Reduced Images
20:30
Example 8: Light Ray Thought a Lens
20:36
Systems of Optical Elements
21:05
Find the Image of the First Optical Elements and Utilize It as the Object of the Second Optical Element
21:16
Example 9: Lens and Mirrors
21:35
Thin Film Interference
27:22
When Light is Incident Upon a Thin Film, Some Light is Reflected and Some is Transmitted Into the Film
27:25
If the Transmitted Light is Again Reflected, It Travels Back Out of the Film and Can Interfere
27:31
Phase Change for Every Reflection from Low-Index to High-Index
28:09
Example 10: Thin Film Interference
28:41
Example 11: Wavelength in Diamond
32:07
Example 12: Light Incident on Crown Glass
33:57
Example 13: Real Image from Convex Lens
34:44
Example 14: Diverging Lens
35:45
Example 15: Creating Enlarged, Real Images
36:22
Example 16: Image from a Converging Lens
36:48
Example 17: Converging Lens System
37:50
Wave-Particle Duality

23m 47s

Intro
0:00
Objectives
0:11
Duality of Light
0:37
Photons
0:47
Dual Nature
0:53
Wave Evidence
1:00
Particle Evidence
1:10
Blackbody Radiation & the UV Catastrophe
1:20
Very Hot Objects Emitted Radiation in a Specific Spectrum of Frequencies and Intensities
1:25
Color Objects Emitted More Intensity at Higher Wavelengths
1:45
Quantization of Emitted Radiation
1:56
Photoelectric Effect
2:38
EM Radiation Striking a Piece of Metal May Emit Electrons
2:41
Not All EM Radiation Created Photoelectrons
2:49
Photons of Light
3:23
Photon Has Zero Mass, Zero Charge
3:32
Energy of a Photon is Quantized
3:36
Energy of a Photon is Related to its Frequency
3:41
Creation of Photoelectrons
4:17
Electrons in Metals Were Held in 'Energy Walls'
4:20
Work Function
4:32
Cutoff Frequency
4:54
Kinetic Energy of Photoelectrons
5:14
Electron in a Metal Absorbs a Photon with Energy Greater Than the Metal's Work Function
5:16
Electron is Emitted as a Photoelectron
5:24
Any Absorbed Energy Beyond That Required to Free the Electron is the KE of the Photoelectron
5:28
Photoelectric Effect in a Circuit
6:37
Compton Effect
8:28
Less of Energy and Momentum
8:49
Lost by X-Ray Equals Energy and Gained by Photoelectron
8:52
Compton Wavelength
9:09
Major Conclusions
9:36
De Broglie Wavelength
10:44
Smaller the Particle, the More Apparent the Wave Properties
11:03
Wavelength of a Moving Particle is Known as Its de Broglie Wavelength
11:07
Davisson-Germer Experiment
11:29
Verifies Wave Nature of Moving Particles
11:30
Shoot Electrons at Double Slit
11:34
Example 1
11:46
Example 2
13:07
Example 3
13:48
Example 4A
15:33
Example 4B
18:47
Example 5: Wave Nature of Light
19:54
Example 6: Moving Electrons
20:43
Example 7: Wavelength of an Electron
21:11
Example 8: Wrecking Ball
22:50
Section 7: Modern Physics
Atomic Energy Levels

14m 21s

Intro
0:00
Objectives
0:09
Rutherford's Gold Foil Experiment
0:35
Most of the Particles Go Through Undeflected
1:12
Some Alpha Particles Are Deflected Large Amounts
1:15
Atoms Have a Small, Massive, Positive Nucleus
1:20
Electrons Orbit the Nucleus
1:23
Most of the Atom is Empty Space
1:26
Problems with Rutherford's Model
1:31
Charges Moving in a Circle Accelerate, Therefore Classical Physics Predicts They Should Release Photons
1:39
Lose Energy When They Release Photons
1:46
Orbits Should Decay and They Should Be Unstable
1:50
Bohr Model of the Atom
2:09
Electrons Don't Lose Energy as They Accelerate
2:20
Each Atom Allows Only a Limited Number of Specific Orbits at Each Energy Level
2:35
Electrons Must Absorb or Emit a Photon of Energy to Change Energy Levels
2:40
Energy Level Diagrams
3:29
n=1 is the Lowest Energy State
3:34
Negative Energy Levels Indicate Electron is Bound to Nucleus of the Atom
4:03
When Electron Reaches 0 eV It Is No Longer Bound
4:20
Electron Cloud Model (Probability Model)
4:46
Electron Only Has A Probability of Being Located in Certain Regions Surrounding the Nucleus
4:53
Electron Orbitals Are Probability Regions
4:58
Atomic Spectra
5:16
Atoms Can Only Emit Certain Frequencies of Photons
5:19
Electrons Can Only Absorb Photons With Energy Equal to the Difference in Energy Levels
5:34
This Leads to Unique Atomic Spectra of Emitted and Absorbed Radiation for Each Element
5:37
Incandescence Emits a Continuous Energy
5:43
If All Colors of Light Are Incident Upon a Cold Gas, The Gas Only Absorbs Frequencies Corresponding to Photon Energies Equal to the Difference Between the Gas's Atomic Energy Levels
6:16
Continuous Spectrum
6:42
Absorption Spectrum
6:50
Emission Spectrum
7:08
X-Rays
7:36
The Photoelectric Effect in Reverse
7:38
Electrons Are Accelerated Through a Large Potential Difference and Collide with a Molybdenum or Platinum Plate
7:53
Example 1: Electron in Hydrogen Atom
8:24
Example 2: EM Emission in Hydrogen
10:05
Example 3: Photon Frequencies
11:30
Example 4: Bright-Line Spectrum
12:24
Example 5: Gas Analysis
13:08
Nuclear Physics

15m 47s

Intro
0:00
Objectives
0:08
The Nucleus
0:33
Protons Have a Charge or +1 e
0:39
Neutrons Are Neutral (0 Charge)
0:42
Held Together by the Strong Nuclear Force
0:43
Example 1: Deconstructing an Atom
1:20
Mass-Energy Equivalence
2:06
Mass is a Measure of How Much Energy an Object Contains
2:16
Universal Conservation of Laws
2:31
Nuclear Binding Energy
2:53
A Strong Nuclear Force Holds Nucleons Together
3:04
Mass of the Individual Constituents is Greater Than the Mass of the Combined Nucleus
3:19
Binding Energy of the Nucleus
3:32
Mass Defect
3:37
Nuclear Decay
4:30
Alpha Decay
4:42
Beta Decay
5:09
Gamma Decay
5:46
Fission
6:40
The Splitting of a Nucleus Into Two or More Nuclei
6:42
For Larger Nuclei, the Mass of Original Nucleus is Greater Than the Sum of the Mass of the Products When Split
6:47
Fusion
8:14
The Process of Combining Two Or More Smaller Nuclei Into a Larger Nucleus
8:15
This Fuels Our Sun and Stars
8:28
Basis of Hydrogen Bomb
8:31
Forces in the Universe
9:00
Strong Nuclear Force
9:06
Electromagnetic Force
9:13
Weak Nuclear Force
9:22
Gravitational Force
9:27
Example 2: Deuterium Nucleus
9:39
Example 3: Particle Accelerator
10:24
Example 4: Tritium Formation
12:03
Example 5: Beta Decay
13:02
Example 6: Gamma Decay
14:15
Example 7: Annihilation
14:39
Section 8: Sample AP Exams
AP Practice Exam: Multiple Choice, Part 1

38m 1s

Intro
0:00
Problem 1
1:33
Problem 2
1:57
Problem 3
2:50
Problem 4
3:46
Problem 5
4:13
Problem 6
4:41
Problem 7
6:12
Problem 8
6:49
Problem 9
7:49
Problem 10
9:31
Problem 11
10:08
Problem 12
11:03
Problem 13
11:30
Problem 14
12:28
Problem 15
14:04
Problem 16
15:05
Problem 17
15:55
Problem 18
17:06
Problem 19
18:43
Problem 20
19:58
Problem 21
22:03
Problem 22
22:49
Problem 23
23:28
Problem 24
24:04
Problem 25
25:07
Problem 26
26:46
Problem 27
28:03
Problem 28
28:49
Problem 29
30:20
Problem 30
31:10
Problem 31
33:03
Problem 32
33:46
Problem 33
34:47
Problem 34
36:07
Problem 35
36:44
AP Practice Exam: Multiple Choice, Part 2

37m 49s

Intro
0:00
Problem 36
0:18
Problem 37
0:42
Problem 38
2:13
Problem 39
4:10
Problem 40
4:47
Problem 41
5:52
Problem 42
7:22
Problem 43
8:16
Problem 44
9:11
Problem 45
9:42
Problem 46
10:56
Problem 47
12:03
Problem 48
13:58
Problem 49
14:49
Problem 50
15:36
Problem 51
15:51
Problem 52
17:18
Problem 53
17:59
Problem 54
19:10
Problem 55
21:27
Problem 56
22:40
Problem 57
23:19
Problem 58
23:50
Problem 59
25:35
Problem 60
26:45
Problem 61
27:57
Problem 62
28:32
Problem 63
29:52
Problem 64
30:27
Problem 65
31:27
Problem 66
32:22
Problem 67
33:18
Problem 68
35:21
Problem 69
36:27
Problem 70
36:46
AP Practice Exam: Free Response, Part 1

16m 53s

Intro
0:00
Question 1
0:23
Question 2
8:55
AP Practice Exam: Free Response, Part 2

9m 20s

Intro
0:00
Question 3
0:14
Question 4
4:34
AP Practice Exam: Free Response, Part 3

18m 12s

Intro
0:00
Question 5
0:15
Question 6
3:29
Question 7
6:18
Question 8
12:53
Section 9: Additional Examples
Metric Estimation

3m 53s

Intro
0:00
Question 1
0:38
Question 2
0:51
Question 3
1:09
Question 4
1:24
Question 5
1:49
Question 6
2:11
Question 7
2:27
Question 8
2:49
Question 9
3:03
Question 10
3:23
Defining Motion

7m 6s

Intro
0:00
Question 1
0:13
Question 2
0:50
Question 3
1:56
Question 4
2:24
Question 5
3:32
Question 6
4:01
Question 7
5:36
Question 8
6:36
Motion Graphs

6m 48s

Intro
0:00
Question 1
0:13
Question 2
2:01
Question 3
3:06
Question 4
3:41
Question 5
4:30
Question 6
5:52
Horizontal Kinematics

8m 16s

Intro
0:00
Question 1
0:19
Question 2
2:19
Question 3
3:16
Question 4
4:36
Question 5
6:43
Free Fall

7m 56s

Intro
0:00
Question 1-4
0:12
Question 5
2:36
Question 6
3:11
Question 7
4:44
Question 8
6:16
Projectile Motion

4m 17s

Intro
0:00
Question 1
0:13
Question 2
0:45
Question 3
1:25
Question 4
2:00
Question 5
2:32
Question 6
3:38
Newton's 1st Law

4m 34s

Intro
0:00
Question 1
0:15
Question 2
1:02
Question 3
1:50
Question 4
2:04
Question 5
2:26
Question 6
2:54
Question 7
3:11
Question 8
3:29
Question 9
3:47
Question 10
4:02
Newton's 2nd Law

5m 40s

Intro
0:00
Question 1
0:16
Question 2
0:55
Question 3
1:50
Question 4
2:40
Question 5
3:33
Question 6
3:56
Question 7
4:29
Newton's 3rd Law

3m 44s

Intro
0:00
Question 1
0:17
Question 2
0:44
Question 3
1:14
Question 4
1:51
Question 5
2:11
Question 6
2:29
Question 7
2:53
Friction

6m 37s

Intro
0:00
Question 1
0:13
Question 2
0:47
Question 3
1:25
Question 4
2:26
Question 5
3:43
Question 6
4:41
Question 7
5:13
Question 8
5:50
Ramps and Inclines

6m 13s

Intro
0:00
Question 1
0:18
Question 2
1:01
Question 3
2:50
Question 4
3:11
Question 5
5:08
Circular Motion

5m 17s

Intro
0:00
Question 1
0:21
Question 2
1:01
Question 3
1:50
Question 4
2:33
Question 5
3:10
Question 6
3:31
Question 7
3:56
Question 8
4:33
Gravity

6m 33s

Intro
0:00
Question 1
0:19
Question 2
1:05
Question 3
2:09
Question 4
2:53
Question 5
3:17
Question 6
4:00
Question 7
4:41
Question 8
5:20
Momentum & Impulse

9m 29s

Intro
0:00
Question 1
0:19
Question 2
2:17
Question 3
3:25
Question 4
3:56
Question 5
4:28
Question 6
5:04
Question 7
6:18
Question 8
6:57
Question 9
7:47
Conservation of Momentum

9m 33s

Intro
0:00
Question 1
0:15
Question 2
2:08
Question 3
4:03
Question 4
4:10
Question 5
6:08
Question 6
6:55
Question 7
8:26
Work & Power

6m 2s

Intro
0:00
Question 1
0:13
Question 2
0:29
Question 3
0:55
Question 4
1:36
Question 5
2:18
Question 6
3:22
Question 7
4:01
Question 8
4:18
Question 9
4:49
Springs

7m 59s

Intro
0:00
Question 1
0:13
Question 4
2:26
Question 5
3:37
Question 6
4:39
Question 7
5:28
Question 8
5:51
Energy & Energy Conservation

8m 47s

Intro
0:00
Question 1
0:18
Question 2
1:27
Question 3
1:44
Question 4
2:33
Question 5
2:44
Question 6
3:33
Question 7
4:41
Question 8
5:19
Question 9
5:37
Question 10
7:12
Question 11
7:40
Electric Charge

7m 6s

Intro
0:00
Question 1
0:10
Question 2
1:03
Question 3
1:32
Question 4
2:12
Question 5
3:01
Question 6
3:49
Question 7
4:24
Question 8
4:50
Question 9
5:32
Question 10
5:55
Question 11
6:26
Coulomb's Law

4m 13s

Intro
0:00
Question 1
0:14
Question 2
0:47
Question 3
1:25
Question 4
2:25
Question 5
3:01
Electric Fields & Forces

4m 11s

Intro
0:00
Question 1
0:19
Question 2
0:51
Question 3
1:30
Question 4
2:19
Question 5
3:12
Electric Potential

5m 12s

Intro
0:00
Question 1
0:14
Question 2
0:42
Question 3
1:08
Question 4
1:43
Question 5
2:22
Question 6
2:49
Question 7
3:14
Question 8
4:02
Electrical Current

6m 54s

Intro
0:00
Question 1
0:13
Question 2
0:42
Question 3
2:01
Question 4
3:02
Question 5
3:52
Question 6
4:15
Question 7
4:37
Question 8
4:59
Question 9
5:50
Resistance

5m 15s

Intro
0:00
Question 1
0:12
Question 2
0:53
Question 3
1:44
Question 4
2:31
Question 5
3:21
Question 6
4:06
Ohm's Law

4m 27s

Intro
0:00
Question 1
0:12
Question 2
0:33
Question 3
0:59
Question 4
1:32
Question 5
1:56
Question 6
2:50
Question 7
3:19
Question 8
3:50
Circuit Analysis

6m 36s

Intro
0:00
Question 1
0:12
Question 2
2:16
Question 3
2:33
Question 4
2:42
Question 5
3:18
Question 6
5:51
Question 7
6:00
Magnetism

3m 43s

Intro
0:00
Question 1
0:16
Question 2
0:31
Question 3
0:56
Question 4
1:19
Question 5
1:35
Question 6
2:36
Question 7
3:03
Wave Basics

4m 21s

Intro
0:00
Question 1
0:13
Question 2
0:36
Question 3
0:47
Question 4
1:13
Question 5
1:27
Question 6
1:39
Question 7
1:54
Question 8
2:22
Question 9
2:51
Question 10
3:32
Wave Characteristics

5m 33s

Intro
0:00
Question 1
0:23
Question 2
1:04
Question 3
2:01
Question 4
2:50
Question 5
3:12
Question 6
3:57
Question 7
4:16
Question 8
4:42
Question 9
4:56
Wave Behaviors

3m 52s

Intro
0:00
Question 1
0:13
Question 2
0:40
Question 3
1:04
Question 4
1:17
Question 5
1:39
Question 6
2:07
Question 7
2:41
Question 8
3:09
Reflection

3m 48s

Intro
0:00
Question 1
0:12
Question 2
0:50
Question 3
1:29
Question 4
1:46
Question 5
3:08
Refraction

2m 49s

Intro
0:00
Question 1
0:29
Question 5
1:03
Question 6
1:24
Question 7
2:01
Diffraction

2m 34s

Intro
0:00
Question 1
0:16
Question 2
0:31
Question 3
0:50
Question 4
1:05
Question 5
1:37
Question 6
2:04
Electromagnetic Spectrum

7m 6s

Intro
0:00
Question 1
0:24
Question 2
0:39
Question 3
1:05
Question 4
1:51
Question 5
2:03
Question 6
2:58
Question 7
3:14
Question 8
3:52
Question 9
4:30
Question 10
5:04
Question 11
6:01
Question 12
6:16
Wave-Particle Duality

5m 30s

Intro
0:00
Question 1
0:15
Question 2
0:34
Question 3
0:53
Question 4
1:54
Question 5
2:16
Question 6
2:27
Question 7
2:42
Question 8
2:59
Question 9
3:45
Question 10
4:13
Question 11
4:33
Energy Levels

8m 13s

Intro
0:00
Question 1
0:25
Question 2
1:18
Question 3
1:43
Question 4
2:08
Question 5
3:17
Question 6
3:54
Question 7
4:40
Question 8
5:15
Question 9
5:54
Question 10
6:41
Question 11
7:14
Mass-Energy Equivalence

8m 15s

Intro
0:00
Question 1
0:19
Question 2
1:02
Question 3
1:37
Question 4
2:17
Question 5
2:55
Question 6
3:32
Question 7
4:13
Question 8
5:04
Question 9
5:29
Question 10
5:58
Question 11
6:48
Question 12
7:39
Loading...
This is a quick preview of the lesson. For full access, please Log In or Sign up.
For more information, please see full course syllabus of AP Physics 1 & 2
Bookmark & Share Embed

Share this knowledge with your friends!

Copy & Paste this embed code into your website’s HTML

Please ensure that your website editor is in text mode when you paste the code.
(In Wordpress, the mode button is on the top right corner.)
  ×
  • - Allow users to view the embedded video in full-size.
Since this lesson is not free, only the preview will appear on your website.
  • Discussion

  • Answer Engine

  • Study Guides

  • Download Lecture Slides

  • Table of Contents

  • Transcription

  • Related Books

Lecture Comments (6)

3 answers

Last reply by: Professor Dan Fullerton
Sat Jul 9, 2016 6:15 AM

Post by Peter Ke on July 7, 2016

For problem 45, how does rotating the spring about a diameter causes a change in flux?

1 answer

Last reply by: Professor Dan Fullerton
Sun May 5, 2013 5:40 AM

Post by Saki Amagai on May 4, 2013

For #65, shouldn't the area of the wire also increase, if the radius increases? cuz a=pi r^2

AP Practice Exam: Multiple Choice, Part 2

Lecture Slides are screen-captured images of important points in the lecture. Students can download and print out these lecture slide images to do practice problems as well as take notes while watching the lecture.

  • Intro 0:00
  • Problem 36 0:18
  • Problem 37 0:42
  • Problem 38 2:13
  • Problem 39 4:10
  • Problem 40 4:47
  • Problem 41 5:52
  • Problem 42 7:22
  • Problem 43 8:16
  • Problem 44 9:11
  • Problem 45 9:42
  • Problem 46 10:56
  • Problem 47 12:03
  • Problem 48 13:58
  • Problem 49 14:49
  • Problem 50 15:36
  • Problem 51 15:51
  • Problem 52 17:18
  • Problem 53 17:59
  • Problem 54 19:10
  • Problem 55 21:27
  • Problem 56 22:40
  • Problem 57 23:19
  • Problem 58 23:50
  • Problem 59 25:35
  • Problem 60 26:45
  • Problem 61 27:57
  • Problem 62 28:32
  • Problem 63 29:52
  • Problem 64 30:27
  • Problem 65 31:27
  • Problem 66 32:22
  • Problem 67 33:18
  • Problem 68 35:21
  • Problem 69 36:27
  • Problem 70 36:46

Transcription: AP Practice Exam: Multiple Choice, Part 2

Hi everyone! I am Dan Fullerton and I would like to welcome you back to Educator.com.0000

In this lesson we are going to continue our work through the 1998 AP Physics B examination for practice.0004

Starting at multiple choice question Number 36, we will continue through the end of the multiple choice section.0011

Let us dive right in.0017

As I look at Number 36 here, we are talking about number of un-decayed atoms as a function of time, and what we can see here is if we are looking for the half-life -- well that is the point where the number of un-decayed atoms has cut in half...0019

...so on the graph, that should be pretty obvious to see that that happens right at point A, which is choice A.0033

Moving on to 37, we are talking about photons of light that have a frequency and momentum, but what about the momentum if they have a frequency of 2 times their initial frequency?0042

Well to do that, let us start by looking at some of the relationships involved.0055

We will start with our wave equation, V = F(λ), but we also know that wavelength = H/momentum.0058

I could write this as V = FH/P, and now what I am going to do is I am going to try and get all the constants on one side.0068

Since it is a photon, (V) is going to be constant, and that is a speed and we also have this H constant, so I am going to write that V/H = F/P.0077

Knowing that this is constant, we know that F/P must remain the same, so if V/H = F/P -- well let us take a look here -- V/H which is C/H (the speed of light) must equal F/P.0090

You can ignore this part now, C/H = F/P.0109

What happens then if we have a frequency of 2F?0112

Well if we put a frequency of 2 here and we want this to remain constant, we must have 2 down there.0117

So what do we do? We doubled the momentum -- answer choice A.0123

All right. Number 38 -- This problem is a little more involved, there is a little more to it than it looks like at first glance.0133

So we have the block that has a 3 kg mass and we know what its stretch is when it is at equilibrium.0139

First thing, let us use that to find its spring constant.0145

For the 3 kg mass that is on there, we know that the spring constant is the force divided by the displacement, so that is going to be mg/displacement, or 3 kg × 10 m/s2 over its displacement which is...0149

...let us leave it in centimeters to make life easy -- 12 cm, so that will be 30/12 N/cm.0166

Now we are going to replace that by a 4 kg block and when we do that, we release it from its highest position, and it is going to fall and they want to know how far it will fall before it reverses, so it is going to fall to the equilibrium position and then another same distance past that until it stops.0175

To figure that out, let us first figure out that equilibrium position -- X = F/K, so that is going to be our force (4 kg) × 10 m/s2/K (30/12), so I could re-write that as 4 × 10 = 40/30...0195

...and I will put the 12 in the numerator and with just a little bit of math here, we have 4 × 12 = 48/3, and that is going to be 16 cm, so that is the new equilibrium position.0216

If it starts at the highest point, it falls 16 cm to the equilibrium position and then another 16 cm before it stops and will pass back up, its total must be...0228

...How far does it fall? 32 cm and that answer would be choice D.0239

Number 39 -- We know an object has a weight (W) when it is on the surface of the planet at a radius (r), so it starts with weight (W).0250

What happens to the gravitational force when you quadruple that distance, when it goes from r to 4r?0258

Well remember, gravity is an inverse square law.0265

If you increase the distance, the force must be going down, and if you quadruple the distance, multiply it by 4 -- well it has squared the effect so that is 16, so you will get 1/16 the initial weight -- Answer E.0268

Number 40 -- We are trying to find the kinetic energy of a satellite that orbits the earth in a circular orbit of radius (r).0286

Well if it is moving in a circular orbit, that must be caused by a centripetal force which is mv2/R and what is causing that centripetal force?0296

Well the force of gravity, which is G times the mass of our satellite and the mass of our planet divided by r2.0307

I am going to solve to get mv2 by itself, multiply both sides by R and I get that mv2 is going to be equal to GmM/R.0316

Why did I solve for mv2? Well I know kinetic energy is just 1/2 mv2.0328

So it is going to be 1/2 × mv2 (GmM/R), so our correct answer there must be choice B.0336

Number 41 -- We have a couple of objects that are moving parallel to the x-axis and then they are going to collide and we are trying to find out the y-component of the velocity of one of these objects.0354

Well first thing I think of when I hear collision is conservation of momentum, and in this case we only have to worry about the conservation of momentum in the y-direction.0366

We do not have to worry about the (x) at all because all we are asked about is the y-component of the velocity.0375

We know that the initial momentum in the y-direction must equal the final momentum in the y-direction, and since they are both traveling purely horizontally to start the problem, the initial momentum in the y-direction must be 0.0380

Therefore 0 must be equal to -- well the final momentum in the y-direction, we have the mass of the .2 kg object and it is traveling with a velocity of 1 up, so that must be added to the momentum of the second object, which has a mass of 0.1 kg and some unknown velocity.0393

That is a pretty easy equation to solve: 0 = .2 + .1 V, which implies then that .1 V = -.2 or therefore V = -2 m/s, where all that negative means is it is downward, so the correct answer must be A, 2 m/s downward.0416

Number 42 -- We have a beam of white light incident on a prism and it talks about what is going on here, producing a spectrum and as that is filled with air, you get one effect.0442

Then what happens -- if you fill it in with water, which has an index of refraction of 1.3 -- well you are still going to get a spectrum.0454

You are still going from a lower index to a higher index into the prism and a higher to a lower index as you leave the prism.0462

But as you have that smaller change in the index of refraction, you are going to get less refraction; you are going to get less dispersion, and therefore you are going to get a compressed spectrum.0469

It is going to take a lot less space than it did before in order to show all of those colors.0478

You are going to get less separation between the red end of the spectrum and the violet end of the spectrum, so our correct answer must be E.0484

Numbers 43 and 44 have to do with these distance-time graphs and as I look at these distance-time graphs, the first thing I notice is the first graph has a constant slope.0496

That means it must have a constant velocity, so constant velocity for graph 1.0507

Graph 2 has 0 slope, therefore that must have a 0 velocity.0514

Graph 3 has an increasing slope, therefore it must have an increasing velocity.0520

In this case you have some acceleration and acceleration does not equal 0.0526

Now let us look at the questions.0531

Talking about the magnitude of the momentum is increasing in which case?0533

Well the mass is not increasing so the only way momentum could increase is if velocity is increasing, so that rules out 1 and 2 and the answer must be 3 only, so for answer 43, the correct answer is B.0537

If we go to 44, the sum of the forces is 0, well when the sum of the forces is 0, that means the acceleration must be 0 by Newton's Second Law.0551

The only place where the acceleration is 0, is 1, constant velocity, and 2, no velocity, so the answer there must be 1 and 2, or answer C.0561

Number 45 -- You have a metal spring inside a uniform magnetic field, and we are looking for a condition that will not cause a current to be induced and if you do not want a current, we cannot have any induced EMF.0581

So which of those is going to have some effect where you are not going to have a change in flux because remember the EMF is equal to the opposite of the change in magnetic flux divided by the time interval.0594

If you were to change the magnitude of the magnetic field, you are going to change the flux -- it cannot be A.0606

Increase the diameter of the circle? -- Well if you do that, you are changing the flux, you have more area.0611

Rotate the spring about the diameter? -- You are going to change the flux as you rotate that.0616

Moving the spring parallel to the magnetic field? -- Just moving the whole thing parallel to the magnetic field is not going to do anything to the flux.0622

I am thinking D must be our best answer, but let us check.0629

E, Moving the spring in and out of the magnetic field? -- No, as you do that you are going to change the flux, so if you want to have no current induced, you cannot have any change in flux, therefore that must be 45 (D).0633

All right. Let us take a look at Number 46 here.0653

We are looking again for 46 and 47 at a magnetic field on a proton beam.0660

It says "Of the following, what is the best estimate of the work done?"0667

Well let us draw a diagram quickly.0671

If there is our magnetic field and we are going to have protons moving in a circle -- let us just draw our circle there and as they do that, the force required for it to move in a circle must be toward the center of the circle.0673

But its velocity is at a right angle to that, and if you recall work is F(δ)R cos(θ), but in this case, θ equals 90 degrees so cos(θ) equals 0, therefore the work done must be 0 -- answer A.0695

A magnetic field cannot do any work on a moving charge.0714

It can change its direction; it can accelerate it but it cannot do work on it.0718

Number 47 -- What is the best estimate of the speed of the proton as it is moving in that circle?0723

Well the centripetal force must be caused by the magnetic force which is QVB sin(θ) and that must be equal to (M) times the acceleration (mv2/R), because it is moving in a circle.0730

Therefore, we know θ = 90 degrees, so sin(θ) = 1, so we could say that QVB = mv2/R.0746

A little simplification here -- we can divide velocity out of both sides -- solving for V then, I could say that V = QBr/M and substituting in my values, Q (1.6 × 10-19), B (0.1 tesla), radius here (0.1 m) and the mass of our proton (1.67 × 10-27 kg).0760

That looks awfully tough given that you do not have a calculator for the multiple choice part of the question.0794

Let us just estimate the order of magnitude.0799

Right away let us say 1.6/1.67 and that is pretty close to 1.0801

Now we have 10-19 × 10-2, and that is going to be 10-21/10-27, so I would say that that is going to be around 106m/s then which will give us answer C.0807

You do not really have anything else that is really close to that value, so you could figure that one out without having to go to the calculator.0826

Checking out number 48 here -- We have a loop of wire in the plane of a page perpendicular to a magnetic field (B) out of the page.0838

And it looks like this is a Lenz's Law problem -- trying to figure out the direction of the induced current in the wire.0847

If the magnitude of the magnetic field is decreasing and it is coming out, the induced current wants to create a magnetic field to oppose that, so it is also going out, because that is decreasing; it wants to keep it the same.0855

The right-hand rule, as I then wrap the fingers of my right hand around to the direction of that induced magnetic field, I am going to find that this is counterclockwise around the loop or choice D -- a Lenz's Law right-handed rule problem.0869

Taking a look at Number 49 -- We have an object making ripples or waves of frequency 20 Hz and it tells us the speed and if the source is moving to the right with some speed, at which of those labeled points will you get a highest possible frequency?0889

Well a shift in frequency -- we are talking about the Doppler Effect -- and you get the highest shift in frequency when the source and observer are moving toward each other.0907

That must be point C, which you could also see as you look at the diagram -- you can see that C is going to pick up those wave fronts at a higher frequency than the place behind the point.0914

(A) would be a lower frequency, for example, but C must be our best answer for the highest frequency.0926

And Number 50 -- We have an object in front of a plane mirror.0936

Well what do you see when you have a plane mirror? You see the exact inverse image, so what are you going to have there by the Law of Reflection? -- D.0940

All right. Number 51 -- I have sound waves of some wavelength incident on two slits in a box with non-reflecting walls and we are going to try and find -- well it tells us the first order maximum, where it is from the central maximum, and we want to find the distance between the slits.0952

It is a double slit diffraction problem, therefore, D sin(θ) = M(λ), and what we are really looking for here is D.0971

So let us solve that for D = M(λ)/sin(θ), but as you look at your diagram there, sin(θ) is opposite/hypotenuse.0981

The opposite side is 3 m, the hypotenuse is 5 m, so sin(θ) is 3/5, so as I plug in my values here I would say that D is equal to -- well, M = 1, our wavelength = .12 and sin(θ) 3/5...0996

...so 3/5 down here or I can put that 5 up there -- 5 × .12 = .6/3 or .2 m -- Choice D.1018

Number 52 is another PV diagram where we have an ideal gas that corresponds to .1 on the graph and what we are looking for is which of the following relationships are true?1037

Is T1 less than T3? -- Well that cannot be the case because it is isothermal, constant temperature, so it is not choice A.1049

B -- T1 is less than T2 -- absolutely, as you go up and to the right, you see higher temperatures.1057

T2 is greater than T1, so that must be our answer, answer B because T2 is up and to the right, the furthest most up and to the right point on our graph.1063

Number 53 is another ideal gas problem. The absolute temperature of a sample of an ideal gas is doubled, but the volume is held constant.1080

We know that PV = NRT and we want to know what effect that it is going to have on the pressure and density.1089

So I am going to get pressure on a side by itself and pressure = NRT/V, and in this problem itself -- well N is constant, R is constant and V is constant, and what we are going to do is we are going to double the temperature.1096

If I double the temperature, multiply the right side by 2, I have to double the left side.1112

We must have twice the pressure, which means P doubles.1117

How about density? Well density remember is mass divided by volume.1123

Mass is not changing and the volume in this problem is constant, that is a given, therefore, density must be constant in this problem, so the choice where we have double the pressure and density remains the same is choice C.1129

Number 54 -- This is just a nasty question.1150

I am really not sure why they would include something like this on an AP exam, but now that it is here let us just take a quick look at how you would solve something like this without having any background in it.1154

We are trying to find the number of atoms that you could stick on the top of a pinhead, which is really an order of magnitude estimation problem.1166

Well the radius of an atom is about 1 angstrom or 10-10 m, just as a very, very, very rough estimate.1174

Therefore the area of the atom -- we will call πr2, which is going to be π × (10-10)2 or π × 10-20 square meters -- rough, rough, rough.1185

Let us do the same thing for the pinhead.1201

If we want the area of the pinhead, then that is going to be πr2 and if the diameter is 1 mm, half a millimeter is its radius...1204

...so 0.5 × 10-3 m2, is going to give us 25 π × 10-8 square meters.1217

If we want the number of atoms, I will take the area of the pinhead, which is 25 π × 10-8 m2 divided by one single atom's area (π times 10-20)...1231

...and π's will cancel out and we have 10-8 up here, so that will be 10-12 down here, so I get something like 25/10-12, which will be 25 × 1012...1253

...or about 2.5 × 1013, which the closest answer or the only thing even remotely close to that is choice B -- 1014.1267

That is how you could estimate something like this, but if this is the problem that gave you trouble, you are doing just fine.1279

Let us take a look here at Number 55 -- In an experiment we have light of a particular wavelength incident on a metal surface and we have electrons being emitted.1289

This sounds like the photoelectric effect.1298

If we want more electrons per unit time, but we want less kinetic energy with each electron, what should we do?1301

Well if we want more electrons, that means we need more light waves, more intensity.1309

But we also want them to have less kinetic energy, so if we want less kinetic energy that means that the light waves that hit them have to have less energy; those photons have to have less energy, they have to have a lower frequency and if they have to have a lower frequency that means they must have a longer wavelength.1319

The correct answer here would be B, increase the intensity and the wavelength of the light.1339

Now notice if you increase the wavelengths too much, those photons will not have enough energy to free any photoelectrons, so at a certain point, you keep reducing that wavelength, and you are not going to get any emitted photoelectrons.1346

Number 56 -- All right, we have an object moving up and down with an acceleration given as a function of time by A = A sin(ω)T, where A and ω are constants, so what is the period?1361

Well, period -- just right back from simple harmonic motion -- is just 2 π/ω -- one of our formulas, so there is our choice right there.1381

All we have to really do is know the formula for 56.1391

Number 57 -- we have a ball at rest and is then kicked.1397

It is given some speed and a direction and we want to find the impulse imparted to the ball by the foot.1401

Well, impulse is change in momentum, and change in momentum is going to be mass × change in velocity.1406

Our mass (0.4 kg) and our change in velocity from 0 to 5 m/s is just going to be 5 m/s or 2 N-s, so the answer is C.1414

Number 58 -- We have a wheel with a couple masses on it and we want to know what the masses are so it remains in static equilibrium, so that it is not rotating about that center point.1430

That sounds like a net torque equals zero problem, a rotational equilibrium problem.1440

If our net torque = 0 -- well our net torque we have from the left-hand side, that (m) -- we have a torque of mgR, from the (M) on the upper left...1445

...that torque is going to be MgR × cos(60 degrees) and causing the clockwise rotation -- so a negative torque -- on the right-hand side we have 2MgR.1461

And again all of that must be equal to 0, so really what we are doing here is we are solving for (m).1477

This implies then that -- let us say -- we can do some cancellations here.1482

We have (g) and (R) in all of these so gR, gR, gR -- so this implies then that m + M cos(60 degrees) - 2M = 0 or m = 2M - M cos(60 degrees).1489

But we know the cos(60 degrees) is 1/2, so m = 2M - M/2 or 3/2(M) -- answer C.1514

Number 59 -- We have a rock thrown horizontally off a building from some height (H).1535

The speed of the rock as it leaves the hand horizontally is V0.1542

How much time does it take to travel to the ground?1546

To travel to the ground -- we do not care how fast it is going horizontally, that is a vertical kinematics sort of problem.1550

Vertically we know that the initial velocity in the y-direction is 0, we know the change in displacement, the change in distance, or the distance traveled is (H), and its acceleration is going to be G, assuming we are calling down the positive y-direction.1556

In order to find the time, I would use the equation δy = V0t +1/2at2, and since V0 is 0, that term goes away...1573

...and I can rearrange this to say that T = 2H/G square root where H was my δy and (a) was my G, so the answer there must be E.1586

Now Number 60 -- a connected problem, says what is its kinetic energy just before it hits the ground?1605

All right, well the kinetic energy -- we are going to have kinetic energy from its horizontal velocity and its vertical velocity.1612

We could do this by conservation of energy if we wanted to make it really easy, because its horizontal velocity is not changing, so the contribution horizontally is going to be 1/2 mv02.1619

Now vertically, it initially starts with potential energy mgh, right?1632

Well when it gets down to the ground, what is its kinetic energy going to be?1637

All that potential has become kinetic, so vertically that has become (mgh), so kinetic energy is the horizontal contribution plus the vertical contribution.1641

And of course you could go through and solve for the velocity vertically, plug it into 1/2 mv2 and work through it that way, but the easy way -- we have kinetic energy horizontally and you have this contribution from the vertical component.1653

By conservation of energy, you are all set right there, answer D.1667

Number 61 -- We are looking for which of the statements is not the correct assumption about ideal gases.1676

Well molecules are in random motion -- Yes, that is one of our assumptions.1682

The volume of the molecules is negligible compared to the volume occupied by the gas, or you have a lot of free space in there -- Yes.1685

The molecules obey Newton's Laws of Motion -- I certainly hope so. Yes.1694

The collision between molecules are inelastic -- Absolutely not.1698

We have to assume that all the collisions are elastic, so the correct answer here, the one that is not an assumption that we need to be in ideal gas is D.1702

Number 62 is another ideal gas problem.1715

Here we have an ideal gas in a tank at constant volume; it is going to absorb heat energy so that its temperature doubles and we know V1 is its initial average gas molecule speed and V2 is the speed after it absorbs that heat.1717

Let us find the ratio of V2/V1.1733

First thing is let us figure out what happens to the kinetic energy when we double the temperature.1736

We know that the average kinetic energy is 3/2 times Boltzmann's constant times the temperature.1740

If we double the temperature, we have to double the kinetic energy, so K average is doubling.1748

Now we also know kinetic energy is 1/2 mv2 and if we are looking for velocity, we could rearrange that to say that velocity is 2K/m square root.1757

So what do you actually do if you want to put a 2 in here if you double the kinetic energy?1770

Well you have multiplied the right side by square root of 2, so you have to multiply the left side by square root of 2, so really what do we do?1775

We have square root of 2V, so the correct answer must be C.1783

All right, moving on to Number 63 -- We have two people, unequal mass, they are still on ice, they push each other and they go off in their separate directions.1791

What is true after they pushed each other?1805

The kinetic energies are equal? -- No, it does not have to be.1808

The speeds of the people are equal? -- Not necessarily.1811

The momenta of the two people are of equal magnitude? -- Yes, that is the Law of Conservation of Momentum, so C must be correct.1815

Let us take a look at Number 64 -- We have two parallel conducting plates separated by a distance (d) and they are connected to a battery of some electromotive force.1826

What is correct if the plate separation is double while the battery remains constant?1837

We are looking for what happens to the electric charge or potential difference or capacitance.1843

Well let us start -- if they are parallel plates, the capacitance is ε0 A/d, and if we are doubling the distance, we have to cut the capacitance in half, so we know that C is halved.1848

Now if that is the case, we also know C = Q/V, therefore the charge equals CV.1863

If we cut C in half, what happens to Q if we are holding voltage constant?1870

We must have cut Q in half or we halved the charge, so the correct answer for 64 would be B, the electric charge on the plates is halved.1877

Number 65 -- We have some concentric loops that have different radii, B and 2B, so one has twice the radius of the other.1891

What is the resistance of the wire loop with the bigger radius if the resistance of the one with the initial radius is R?1901

Well if you double R and circumference = 2 π × R -- if you double R, you double the circumference, therefore what you are doing is you are doubling the length of your wire.1909

Now resistance, if you recall, is resistivity times length divided by area.1924

If we have doubled the length, we must have doubled the resistance, therefore our answer is D.1931

Number 66 -- We have a uniform magnetic field perpendicular to a plane that is passing through a loop and we have two different radii of wires and the induced EMF in the wire loop of radius B is given.1942

What is the induced EMF if we have twice the radius?1956

Well remember, EMF is the opposite of the change in magnetic flux divided by time, but as I look at this problem, the changing flux is the same in both loops.1969

As you go from the loop of radius B to the radius of 2B, there is no difference in the amount of flux or in the change of magnetic flux, therefore, it is going to be the same.1973

The correct answer is going to be C.1980

There is your induced EMF in the wire loop of radius 2B, the same as you have in the wire of loop radius B.1988

Number 67 -- We have a stationary object exploding into three pieces of different masses, and we know when they explode that we have a couple pieces moving off at right angles to each other and it gives us their momentum.1998

We want to find the magnitude and direction of the piece that has the bigger mass.2011

Well if they started at rest and you had one piece that went that way, one piece that went that way, by conservation of momentum, your other piece must have gone that way so that their momentum all tally up.2015

So our direction is figured out.2029

Now to get its magnitude, let us use conservation of momentum.2031

In the x-direction, we know that the initial momentum 0 must equal the momentum of the pieces which is (mv) to the right plus 3m times our VX prime...2034

...the x-component of the velocity of our larger piece, so therefore VX prime must be equal to -V/3.2051

And if we did this in the y-direction, we are going to get the same math, only to find out that V prime Y equals -V/3 and we could do that by symmetry as well.2064

So what is the total V prime?2072

Well to do that, we have to realize that our x-component is -V/3 and our y-component is -V/3 so we can use the Pythagorean Theorem to figure out the total.2075

That is going to be the square root of -V/32 + -V/32, which will give us the square root of V2/9 + V2/9...2088

...which is going to be the square root of 2V2/9 or square root of 2/3V.2102

The correct answer must be D.2113

Number 68 -- We have a rod on a table top pivoted at one end and it is free to rotate without friction.2121

We are applying a force at the end at some angle and what we want to do is see where would we have to apply that force if it were perpendicular?2129

That means that what we really want is we want the same torque.2137

All right, well, our torque is FR sin(θ), which implies -- well the initial torque when we apply (F) at the end of the rod, and that is our force (F), our arm is (L) times the sine of that angle θ.2140

And that is going to be equal to the torque if we move that force in, so if we apply the same force perpendicularly, but at some distance (x), (x) is going to tell us at what position we have to apply that.2161

If I solve for (x) and if I divide both sides by (F), I find that (x) is going to be equal to L sin(θ), so the correct answer is A.2172

Number 69 -- Which of the following imposes a limit on the number of electron in an energy state of an atom?2187

Well this one you just pretty much have to know. That is going to be B, the Pauli exclusion principle.2193

It says you can only have a certain number of electrons at each energy level.2200

And Number 70 -- It gives us a capacitor and its charged to a set potential difference.2205

Find the energy stored in a capacitor.2212

This looks pretty straightforward. The energy in a capacitor is 1/2 CV2.2214

That will be 1/2 × 4 × 10-6 (our capacitance in farads) × 100 volts2 or 1/2 × 4 = 2 × 10-6 × 1002 = 104...2221

...so I am going to get 2 × 10-2 and the units of energy are joules, so the correct answer there is E.2242

All right, so we have gone through the multiple choice portion of the test.2253

Check your answers, see how you did and if there is anything you need to review, go back, take some time, check it out and then in our next session, we will start on the free response portion of the test.2258

Thanks so much for your time everyone and make it a great day.2267