Enter your Sign on user name and password.

Forgot password?
Sign In | Subscribe
Start learning today, and be successful in your academic & professional career. Start Today!

Use Chrome browser to play professor video
Dan Fullerton

Dan Fullerton

Dynamics Applications

Slide Duration:

Table of Contents

I. Introduction
What is Physics?

7m 38s

Intro
0:00
Objectives
0:12
What is Physics?
0:31
What is Matter, Energy, and How to They Interact
0:55
Why?
0:58
Physics Answers the 'Why' Questions.
1:05
Matter
1:23
Matter
1:29
Mass
1:33
Inertial Mass
1:53
Gravitational Mass
2:12
A Spacecraft's Mass
2:58
Energy
3:37
Energy: The Ability or Capacity to Do Work
3:39
Work: The Process of Moving an Object
3:45
The Ability or Capacity to Move an Object
3:54
Mass-Energy Equivalence
4:51
Relationship Between Mass and Energy E=mc2
5:01
The Mass of An Object is Really a Measure of Its Energy
5:05
The Study of Everything
5:42
Introductory Course
6:19
Next Steps
7:15
Math Review

24m 12s

Intro
0:00
Outline
0:10
Objectives
0:28
Why Do We Need Units?
0:52
Need to Set Specific Standards for Our Measurements
1:01
Physicists Have Agreed to Use the Systeme International
1:24
The Systeme International
1:50
Based on Powers of 10
1:52
7 Fundamental Units: Meter, Kilogram, Second, Ampere, Candela, Kelvin, Mole
2:02
The Meter
2:18
Meter is a Measure of Length
2:20
Measurements Smaller than a Meter, Use: Centimeter, Millimeter, Micrometer, Nanometer
2:25
Measurements Larger Than a Meter, Use Kilometer
2:38
The Kilogram
2:46
Roughly Equivalent to 2.2 English Pounds
2:49
Grams, Milligrams
2:53
Megagram
2:59
Seconds
3:10
Base Unit of Time
3:12
Minute, Hour, Day
3:20
Milliseconds, Microseconds
3:33
Derived Units
3:41
Velocity
3:45
Acceleration
3:57
Force
4:04
Prefixes for Powers of 10
4:21
Converting Fundamental Units, Example 1
4:53
Converting Fundamental Units, Example 2
7:18
Two-Step Conversions, Example 1
8:24
Two-Step Conversions, Example 2
10:06
Derived Unit Conversions
11:29
Multi-Step Conversions
13:25
Metric Estimations
15:04
What are Significant Figures?
16:01
Represent a Manner of Showing Which Digits In a Number Are Known to Some Level of Certainty
16:03
Example
16:09
Measuring with Sig Figs
16:36
Rule 1
16:40
Rule 2
16:44
Rule 3
16:52
Reading Significant Figures
16:57
All Non-Zero Digits Are Significant
17:04
All Digits Between Non-Zero Digits Are Significant
17:07
Zeros to the Left of the Significant Digits
17:11
Zeros to the Right of the Significant Digits
17:16
Non-Zero Digits
17:21
Digits Between Non-Zeros Are Significant
17:45
Zeroes to the Right of the Sig Figs Are Significant
18:17
Why Scientific Notation?
18:36
Physical Measurements Vary Tremendously in Magnitude
18:38
Example
18:47
Scientific Notation in Practice
19:23
Example 1
19:28
Example 2
19:44
Using Scientific Notation
20:02
Show Your Value Using Correct Number of Significant Figures
20:05
Move the Decimal Point
20:09
Show Your Number Being Multiplied by 10 Raised to the Appropriate Power
20:14
Accuracy and Precision
20:23
Accuracy
20:36
Precision
20:41
Example 1: Scientific Notation w/ Sig Figs
21:48
Example 2: Scientific Notation - Compress
22:25
Example 3: Scientific Notation - Compress
23:07
Example 4: Scientific Notation - Expand
23:31
Vectors & Scalars

25m 5s

Intro
0:00
Objectives
0:05
Scalars
0:29
Definition of Scalar
0:39
Temperature, Mass, Time
0:45
Vectors
1:12
Vectors are Quantities That Have Magnitude and Direction
1:13
Represented by Arrows
1:31
Vector Representations
1:47
Graphical Vector Addition
2:42
Graphical Vector Subtraction
4:58
Vector Components
6:08
Angle of a Vector
8:22
Vector Notation
9:52
Example 1: Vector Components
14:30
Example 2: Vector Components
16:05
Example 3: Vector Magnitude
17:26
Example 4: Vector Addition
19:38
Example 5: Angle of a Vector
24:06
II. Mechanics
Defining & Graphing Motion

30m 11s

Intro
0:00
Objectives
0:07
Position
0:40
An Object's Position Cab Be Assigned to a Variable on a Number Scale
0:43
Symbol for Position
1:07
Distance
1:13
When Position Changes, An Object Has Traveled Some Distance
1:14
Distance is Scalar and Measured in Meters
1:21
Example 1: Distance
1:34
Displacement
2:17
Displacement is a Vector Which Describes the Straight Line From Start to End Point
2:18
Measured in Meters
2:27
Example 2: Displacement
2:39
Average Speed
3:32
The Distance Traveled Divided by the Time Interval
3:33
Speed is a Scalar
3:47
Example 3: Average Speed
3:57
Average Velocity
4:37
The Displacement Divided by the Time Interval
4:38
Velocity is a Vector
4:53
Example 4: Average Velocity
5:06
Example 5: Chuck the Hungry Squirrel
5:55
Acceleration
8:02
Rate At Which Velocity Changes
8:13
Acceleration is a Vector
8:26
Example 6: Acceleration Problem
8:52
Average vs. Instantaneous
9:44
Average Values Take Into Account an Entire Time Interval
9:50
Instantaneous Value Tells the Rate of Change of a Quantity at a Specific Instant in Time
9:54
Example 7: Average Velocity
10:06
Particle Diagrams
11:57
Similar to the Effect of Oil Leak from a Car on the Pavement
11:59
Accelerating
13:03
Position-Time Graphs
14:17
Shows Position as a Function of Time
14:24
Slope of x-t Graph
15:08
Slope Gives You the Velocity
15:09
Negative Indicates Direction
16:27
Velocity-Time Graphs
16:45
Shows Velocity as a Function of Time
16:49
Area Under v-t Graphs
17:47
Area Under the V-T Graph Gives You Change in Displacement
17:48
Example 8: Slope of a v-t Graph
19:45
Acceleration-Time Graphs
21:44
Slope of the v-t Graph Gives You Acceleration
21:45
Area Under the a-t Graph Gives You an Object's Change in Velocity
22:24
Example 10: Motion Graphing
24:03
Example 11: v-t Graph
27:14
Example 12: Displacement From v-t Graph
28:14
Kinematic Equations

36m 13s

Intro
0:00
Objectives
0:07
Problem-Solving Toolbox
0:42
Graphs Are Not Always the Most Effective
0:47
Kinematic Equations Helps us Solve for Five Key Variables
0:56
Deriving the Kinematic Equations
1:29
Kinematic Equations
7:40
Problem Solving Steps
8:13
Label Your Horizontal or Vertical Motion
8:20
Choose a Direction as Positive
8:24
Create a Motion Analysis Table
8:33
Fill in Your Givens
8:42
Solve for Unknowns
8:45
Example 1: Horizontal Kinematics
8:51
Example 2: Vertical Kinematics
11:13
Example 3: 2 Step Problem
13:25
Example 4: Acceleration Problem
16:44
Example 5: Particle Diagrams
17:56
Example 6: Quadratic Solution
20:13
Free Fall
24:24
When the Only Force Acting on an Object is the Force of Gravity, the Motion is Free Fall
24:27
Air Resistance
24:51
Drop a Ball
24:56
Remove the Air from the Room
25:02
Analyze the Motion of Objects by Neglecting Air Resistance
25:06
Acceleration Due to Gravity
25:22
g = 9.8 m/s2
25:25
Approximate g as 10 m/s2 on the AP Exam
25:37
G is Referred to as the Gravitational Field Strength
25:48
Objects Falling From Rest
26:15
Objects Starting from Rest Have an Initial velocity of 0
26:19
Acceleration is +g
26:34
Example 7: Falling Objects
26:47
Objects Launched Upward
27:59
Acceleration is -g
28:04
At Highest Point, the Object has a Velocity of 0
28:19
Symmetry of Motion
28:27
Example 8: Ball Thrown Upward
28:47
Example 9: Height of a Jump
29:23
Example 10: Ball Thrown Downward
33:08
Example 11: Maximum Height
34:16
Projectiles

20m 32s

Intro
0:00
Objectives
0:06
What is a Projectile?
0:26
An Object That is Acted Upon Only By Gravity
0:29
Typically Launched at an Angle
0:43
Path of a Projectile
1:03
Projectiles Launched at an Angle Move in Parabolic Arcs
1:06
Symmetric and Parabolic
1:32
Horizontal Range and Max Height
1:49
Independence of Motion
2:17
Vertical
2:49
Horizontal
2:52
Example 1: Horizontal Launch
3:49
Example 2: Parabolic Path
7:41
Angled Projectiles
8:30
Must First Break Up the Object's Initial Velocity Into x- and y- Components of Initial Velocity
8:32
An Object Will Travel the Maximum Horizontal Distance with a Launch Angle of 45 Degrees
8:43
Example 3: Human Cannonball
8:55
Example 4: Motion Graphs
12:55
Example 5: Launch From a Height
15:33
Example 6: Acceleration of a Projectile
19:56
Relative Motion

10m 52s

Intro
0:00
Objectives
0:06
Reference Frames
0:18
Motion of an Observer
0:21
No Way to Distinguish Between Motion at Rest and Motion at a Constant Velocity
0:44
Motion is Relative
1:35
Example 1
1:39
Example 2
2:09
Calculating Relative Velocities
2:31
Example 1
2:43
Example 2
2:48
Example 3
2:52
Example 1
4:58
Example 2: Airspeed
6:19
Example 3: 2-D Relative Motion
7:39
Example 4: Relative Velocity with Direction
9:40
Newton's 1st Law of Motion

10m 16s

Intro
0:00
Objective
0:05
Newton's 1st Law of Motion
0:16
An Object At Rest Will Remain At Rest
0:21
An Object In Motion Will Remain in Motion
0:26
Net Force
0:39
Also Known As the Law of Inertia
0:46
Force
1:02
Push or Pull
1:04
Newtons
1:08
Contact and Field Forces
1:31
Contact Forces
1:50
Field Forces
2:11
What is a Net Force?
2:30
Vector Sum of All the Forces Acting on an Object
2:33
Translational Equilibrium
2:37
Unbalanced Force Is a Net Force
2:46
What Does It Mean?
3:49
An Object Will Continue in Its Current State of Motion Unless an Unbalanced Force Acts Upon It
3:50
Example of Newton's First Law
4:20
Objects in Motion
5:05
Will Remain in Motion At Constant Velocity
5:06
Hard to Find a Frictionless Environment on Earth
5:10
Static Equilibrium
5:40
Net Force on an Object is 0
5:44
Inertia
6:21
Tendency of an Object to Resist a Change in Velocity
6:23
Inertial Mass
6:35
Gravitational Mass
6:40
Example 1: Inertia
7:10
Example 2: Inertia
7:37
Example 3: Translational Equilibrium
8:03
Example 4: Net Force
8:40
Newton's 2nd Law of Motion

34m 55s

Intro
0:00
Objective
0:07
Free Body Diagrams
0:37
Tools Used to Analyze Physical Situations
0:40
Show All the Forces Acting on a Single Object
0:45
Drawing FBDs
0:58
Draw Object of Interest as a Dot
1:00
Sketch a Coordinate System
1:10
Example 1: Falling Elephant
1:18
Example 2: Falling Elephant with Air Resistance
2:07
Example 3: Soda on Table
3:00
Example 4: Box in Equilibrium
4:25
Example 5: Block on a Ramp
5:01
Pseudo-FBDs
5:53
Draw When Forces Don't Line Up with Axes
5:56
Break Forces That Don’t Line Up with Axes into Components That Do
6:00
Example 6: Objects on a Ramp
6:32
Example 7: Car on a Banked Turn
10:23
Newton's 2nd Law of Motion
12:56
The Acceleration of an Object is in the Direction of the Directly Proportional to the Net Force Applied
13:06
Newton's 1st Two Laws Compared
13:45
Newton's 1st Law
13:51
Newton's 2nd Law
14:10
Applying Newton's 2nd Law
14:50
Example 8: Applying Newton's 2nd Law
15:23
Example 9: Stopping a Baseball
16:52
Example 10: Block on a Surface
19:51
Example 11: Concurrent Forces
21:16
Mass vs. Weight
22:28
Mass
22:29
Weight
22:47
Example 12: Mass vs. Weight
23:16
Translational Equilibrium
24:47
Occurs When There Is No Net Force on an Object
24:49
Equilibrant
24:57
Example 13: Translational Equilibrium
25:29
Example 14: Translational Equilibrium
26:56
Example 15: Determining Acceleration
28:05
Example 16: Suspended Mass
31:03
Newton's 3rd Law of Motion

5m 58s

Intro
0:00
Objectives
0:06
Newton's 3rd Law of Motion
0:20
All Forces Come in Pairs
0:24
Examples
1:22
Action-Reaction Pairs
2:07
Girl Kicking Soccer Ball
2:11
Rocket Ship in Space
2:29
Gravity on You
2:53
Example 1: Force of Gravity
3:34
Example 2: Sailboat
4:00
Example 3: Hammer and Nail
4:49
Example 4: Net Force
5:06
Friction

17m 49s

Intro
0:00
Objectives
0:06
Examples
0:23
Friction Opposes Motion
0:24
Kinetic Friction
0:27
Static Friction
0:36
Magnitude of Frictional Force Is Determined By Two Things
0:41
Coefficient Friction
2:27
Ratio of the Frictional Force and the Normal Force
2:28
Chart of Different Values of Friction
2:48
Kinetic or Static?
3:31
Example 1: Car Sliding
4:18
Example 2: Block on Incline
5:03
Calculating the Force of Friction
5:48
Depends Only Upon the Nature of the Surfaces in Contact and the Magnitude of the Force
5:50
Terminal Velocity
6:14
Air Resistance
6:18
Terminal Velocity of the Falling Object
6:33
Example 3: Finding the Frictional Force
7:36
Example 4: Box on Wood Surface
9:13
Example 5: Static vs. Kinetic Friction
11:49
Example 6: Drag Force on Airplane
12:15
Example 7: Pulling a Sled
13:21
Dynamics Applications

35m 27s

Intro
0:00
Objectives
0:08
Free Body Diagrams
0:49
Drawing FBDs
1:09
Draw Object of Interest as a Dot
1:12
Sketch a Coordinate System
1:18
Example 1: FBD of Block on Ramp
1:39
Pseudo-FBDs
1:59
Draw Object of Interest as a Dot
2:00
Break Up the Forces
2:07
Box on a Ramp
2:12
Example 2: Box at Rest
4:28
Example 3: Box Held by Force
5:00
What is an Atwood Machine?
6:46
Two Objects are Connected by a Light String Over a Mass-less Pulley
6:49
Properties of Atwood Machines
7:13
Ideal Pulleys are Frictionless and Mass-less
7:16
Tension is Constant in a Light String Passing Over an Ideal Pulley
7:23
Solving Atwood Machine Problems
8:02
Alternate Solution
12:07
Analyze the System as a Whole
12:12
Elevators
14:24
Scales Read the Force They Exert on an Object Placed Upon Them
14:42
Can be Used to Analyze Using Newton's 2nd Law and Free body Diagrams
15:23
Example 4: Elevator Accelerates Upward
15:36
Example 5: Truck on a Hill
18:30
Example 6: Force Up a Ramp
19:28
Example 7: Acceleration Down a Ramp
21:56
Example 8: Basic Atwood Machine
24:05
Example 9: Masses and Pulley on a Table
26:47
Example 10: Mass and Pulley on a Ramp
29:15
Example 11: Elevator Accelerating Downward
33:00
Impulse & Momentum

26m 6s

Intro
0:00
Objectives
0:06
Momentum
0:31
Example
0:35
Momentum measures How Hard It Is to Stop a Moving Object
0:47
Vector Quantity
0:58
Example 1: Comparing Momenta
1:48
Example 2: Calculating Momentum
3:08
Example 3: Changing Momentum
3:50
Impulse
5:02
Change In Momentum
5:05
Example 4: Impulse
5:26
Example 5: Impulse-Momentum
6:41
Deriving the Impulse-Momentum Theorem
9:04
Impulse-Momentum Theorem
12:02
Example 6: Impulse-Momentum Theorem
12:15
Non-Constant Forces
13:55
Impulse or Change in Momentum
13:56
Determine the Impulse by Calculating the Area of the Triangle Under the Curve
14:07
Center of Mass
14:56
Real Objects Are More Complex Than Theoretical Particles
14:59
Treat Entire Object as if Its Entire Mass Were Contained at the Object's Center of Mass
15:09
To Calculate the Center of Mass
15:17
Example 7: Force on a Moving Object
15:49
Example 8: Motorcycle Accident
17:49
Example 9: Auto Collision
19:32
Example 10: Center of Mass (1D)
21:29
Example 11: Center of Mass (2D)
23:28
Collisions

21m 59s

Intro
0:00
Objectives
0:09
Conservation of Momentum
0:18
Linear Momentum is Conserved in an Isolated System
0:21
Useful for Analyzing Collisions and Explosions
0:27
Momentum Tables
0:58
Identify Objects in the System
1:05
Determine the Momenta of the Objects Before and After the Event
1:10
Add All the Momenta From Before the Event and Set Them Equal to Momenta After the Event
1:15
Solve Your Resulting Equation for Unknowns
1:20
Types of Collisions
1:31
Elastic Collision
1:36
Inelastic Collision
1:56
Example 1: Conservation of Momentum (1D)
2:02
Example 2: Inelastic Collision
5:12
Example 3: Recoil Velocity
7:16
Example 4: Conservation of Momentum (2D)
9:29
Example 5: Atomic Collision
16:02
Describing Circular Motion

7m 18s

Intro
0:00
Objectives
0:07
Uniform Circular Motion
0:20
Circumference
0:32
Average Speed Formula Still Applies
0:46
Frequency
1:03
Number of Revolutions or Cycles Which Occur Each Second
1:04
Hertz
1:24
Formula for Frequency
1:28
Period
1:36
Time It Takes for One Complete Revolution or Cycle
1:37
Frequency and Period
1:54
Example 1: Car on a Track
2:08
Example 2: Race Car
3:55
Example 3: Toy Train
4:45
Example 4: Round-A-Bout
5:39
Centripetal Acceleration & Force

26m 37s

Intro
0:00
Objectives
0:08
Uniform Circular Motion
0:38
Direction of ac
1:41
Magnitude of ac
3:50
Centripetal Force
4:08
For an Object to Accelerate, There Must Be a Net Force
4:18
Centripetal Force
4:26
Calculating Centripetal Force
6:14
Example 1: Acceleration
7:31
Example 2: Direction of ac
8:53
Example 3: Loss of Centripetal Force
9:19
Example 4: Velocity and Centripetal Force
10:08
Example 5: Demon Drop
10:55
Example 6: Centripetal Acceleration vs. Speed
14:11
Example 7: Calculating ac
15:03
Example 8: Running Back
15:45
Example 9: Car at an Intersection
17:15
Example 10: Bucket in Horizontal Circle
18:40
Example 11: Bucket in Vertical Circle
19:20
Example 12: Frictionless Banked Curve
21:55
Gravitation

32m 56s

Intro
0:00
Objectives
0:08
Universal Gravitation
0:29
The Bigger the Mass the Closer the Attraction
0:48
Formula for Gravitational Force
1:16
Calculating g
2:43
Mass of Earth
2:51
Radius of Earth
2:55
Inverse Square Relationship
4:32
Problem Solving Hints
7:21
Substitute Values in For Variables at the End of the Problem Only
7:26
Estimate the Order of Magnitude of the Answer Before Using Your Calculator
7:38
Make Sure Your Answer Makes Sense
7:55
Example 1: Asteroids
8:20
Example 2: Meteor and the Earth
10:17
Example 3: Satellite
13:13
Gravitational Fields
13:50
Gravity is a Non-Contact Force
13:54
Closer Objects
14:14
Denser Force Vectors
14:19
Gravitational Field Strength
15:09
Example 4: Astronaut
16:19
Gravitational Potential Energy
18:07
Two Masses Separated by Distance Exhibit an Attractive Force
18:11
Formula for Gravitational Field
19:21
How Do Orbits Work?
19:36
Example5: Gravitational Field Strength for Space Shuttle in Orbit
21:35
Example 6: Earth's Orbit
25:13
Example 7: Bowling Balls
27:25
Example 8: Freely Falling Object
28:07
Example 9: Finding g
28:40
Example 10: Space Vehicle on Mars
29:10
Example 11: Fg vs. Mass Graph
30:24
Example 12: Mass on Mars
31:14
Example 13: Two Satellites
31:51
Rotational Kinematics

15m 33s

Intro
0:00
Objectives
0:07
Radians and Degrees
0:26
In Degrees, Once Around a Circle is 360 Degrees
0:29
In Radians, Once Around a Circle is 2π
0:34
Example 1: Degrees to Radians
0:57
Example 2: Radians to Degrees
1:31
Linear vs. Angular Displacement
2:00
Linear Position
2:05
Angular Position
2:10
Linear vs. Angular Velocity
2:35
Linear Speed
2:39
Angular Speed
2:42
Direction of Angular Velocity
3:05
Converting Linear to Angular Velocity
4:22
Example 3: Angular Velocity Example
4:41
Linear vs. Angular Acceleration
5:36
Example 4: Angular Acceleration
6:15
Kinematic Variable Parallels
7:47
Displacement
7:52
Velocity
8:10
Acceleration
8:16
Time
8:22
Kinematic Variable Translations
8:30
Displacement
8:34
Velocity
8:42
Acceleration
8:50
Time
0:00
Kinematic Equation Parallels
9:09
Kinematic Equations
9:12
Delta
9:33
Final Velocity Squared and Angular Velocity Squared
9:54
Example 5: Medieval Flail
10:24
Example 6: CD Player
10:57
Example 7: Carousel
12:13
Example 8: Circular Saw
13:35
Torque

11m 21s

Intro
0:00
Objectives
0:05
Torque
0:18
Force That Causes an Object to Turn
0:22
Must be Perpendicular to the Displacement to Cause a Rotation
0:27
Lever Arm: The Stronger the Force, The More Torque
0:45
Direction of the Torque Vector
1:53
Perpendicular to the Position Vector and the Force Vector
1:54
Right-Hand Rule
2:08
Newton's 2nd Law: Translational vs. Rotational
2:46
Equilibrium
3:58
Static Equilibrium
4:01
Dynamic Equilibrium
4:09
Rotational Equilibrium
4:22
Example 1: Pirate Captain
4:32
Example 2: Auto Mechanic
5:25
Example 3: Sign Post
6:44
Example 4: See-Saw
9:01
Rotational Dynamics

36m 6s

Intro
0:00
Objectives
0:08
Types of Inertia
0:39
Inertial Mass (Translational Inertia)
0:42
Moment of Inertia (Rotational Inertia)
0:53
Moment of Inertia for Common Objects
1:48
Example 1: Calculating Moment of Inertia
2:53
Newton's 2nd Law - Revisited
5:09
Acceleration of an Object
5:15
Angular Acceleration of an Object
5:24
Example 2: Rotating Top
5:47
Example 3: Spinning Disc
7:54
Angular Momentum
9:41
Linear Momentum
9:43
Angular Momentum
10:00
Calculating Angular Momentum
10:51
Direction of the Angular Momentum Vector
11:26
Total Angular Momentum
12:29
Example 4: Angular Momentum of Particles
14:15
Example 5: Rotating Pedestal
16:51
Example 6: Rotating Discs
18:39
Angular Momentum and Heavenly Bodies
20:13
Types of Kinetic Energy
23:41
Objects Traveling with a Translational Velocity
23:45
Objects Traveling with Angular Velocity
24:00
Translational vs. Rotational Variables
24:33
Example 7: Kinetic Energy of a Basketball
25:45
Example 8: Playground Round-A-Bout
28:17
Example 9: The Ice Skater
30:54
Example 10: The Bowler
33:15
Work & Power

31m 20s

Intro
0:00
Objectives
0:09
What Is Work?
0:31
Power Output
0:35
Transfer Energy
0:39
Work is the Process of Moving an Object by Applying a Force
0:46
Examples of Work
0:56
Calculating Work
2:16
Only the Force in the Direction of the Displacement Counts
2:33
Formula for Work
2:48
Example 1: Moving a Refrigerator
3:16
Example 2: Liberating a Car
3:59
Example 3: Crate on a Ramp
5:20
Example 4: Lifting a Box
7:11
Example 5: Pulling a Wagon
8:38
Force vs. Displacement Graphs
9:33
The Area Under a Force vs. Displacement Graph is the Work Done by the Force
9:37
Find the Work Done
9:49
Example 6: Work From a Varying Force
11:00
Hooke's Law
12:42
The More You Stretch or Compress a Spring, The Greater the Force of the Spring
12:46
The Spring's Force is Opposite the Direction of Its Displacement from Equilibrium
13:00
Determining the Spring Constant
14:21
Work Done in Compressing the Spring
15:27
Example 7: Finding Spring Constant
16:21
Example 8: Calculating Spring Constant
17:58
Power
18:43
Work
18:46
Power
18:50
Example 9: Moving a Sofa
19:26
Calculating Power
20:41
Example 10: Motors Delivering Power
21:27
Example 11: Force on a Cyclist
22:40
Example 12: Work on a Spinning Mass
23:52
Example 13: Work Done by Friction
25:05
Example 14: Units of Power
28:38
Example 15: Frictional Force on a Sled
29:43
Energy

20m 15s

Intro
0:00
Objectives
0:07
What is Energy?
0:24
The Ability or Capacity to do Work
0:26
The Ability or Capacity to Move an Object
0:34
Types of Energy
0:39
Energy Transformations
2:07
Transfer Energy by Doing Work
2:12
Work-Energy Theorem
2:20
Units of Energy
2:51
Kinetic Energy
3:08
Energy of Motion
3:13
Ability or Capacity of a Moving Object to Move Another Object
3:17
A Single Object Can Only Have Kinetic Energy
3:46
Example 1: Kinetic Energy of a Motorcycle
5:08
Potential Energy
5:59
Energy An Object Possesses
6:10
Gravitational Potential Energy
7:21
Elastic Potential Energy
9:58
Internal Energy
10:16
Includes the Kinetic Energy of the Objects That Make Up the System and the Potential Energy of the Configuration
10:20
Calculating Gravitational Potential Energy in a Constant Gravitational Field
10:57
Sources of Energy on Earth
12:41
Example 2: Potential Energy
13:41
Example 3: Energy of a System
14:40
Example 4: Kinetic and Potential Energy
15:36
Example 5: Pendulum
16:55
Conservation of Energy

23m 20s

Intro
0:00
Objectives
0:08
Law of Conservation of Energy
0:22
Energy Cannot Be Created or Destroyed.. It Can Only Be Changed
0:27
Mechanical Energy
0:34
Conservation Laws
0:40
Examples
0:49
Kinematics vs. Energy
4:34
Energy Approach
4:56
Kinematics Approach
6:04
The Pendulum
8:07
Example 1: Cart Compressing a Spring
13:09
Example 2
14:23
Example 3: Car Skidding to a Stop
16:15
Example 4: Accelerating an Object
17:27
Example 5: Block on Ramp
18:06
Example 6: Energy Transfers
19:21
Simple Harmonic Motion

58m 30s

Intro
0:00
Objectives
0:08
What Is Simple Harmonic Motion?
0:57
Nature's Typical Reaction to a Disturbance
1:00
A Displacement Which Results in a Linear Restoring Force Results in SHM
1:25
Review of Springs
1:43
When a Force is Applied to a Spring, the Spring Applies a Restoring Force
1:46
When the Spring is in Equilibrium, It Is 'Unstrained'
1:54
Factors Affecting the Force of A Spring
2:00
Oscillations
3:42
Repeated Motions
3:45
Cycle 1
3:52
Period
3:58
Frequency
4:07
Spring-Block Oscillator
4:47
Mass of the Block
4:59
Spring Constant
5:05
Example 1: Spring-Block Oscillator
6:30
Diagrams
8:07
Displacement
8:42
Velocity
8:57
Force
9:36
Acceleration
10:09
U
10:24
K
10:47
Example 2: Harmonic Oscillator Analysis
16:22
Circular Motion vs. SHM
23:26
Graphing SHM
25:52
Example 3: Position of an Oscillator
28:31
Vertical Spring-Block Oscillator
31:13
Example 4: Vertical Spring-Block Oscillator
34:26
Example 5: Bungee
36:39
The Pendulum
43:55
Mass Is Attached to a Light String That Swings Without Friction About the Vertical Equilibrium
44:04
Energy and the Simple Pendulum
44:58
Frequency and Period of a Pendulum
48:25
Period of an Ideal Pendulum
48:31
Assume Theta is Small
48:54
Example 6: The Pendulum
50:15
Example 7: Pendulum Clock
53:38
Example 8: Pendulum on the Moon
55:14
Example 9: Mass on a Spring
56:01
III. Fluids
Density & Buoyancy

19m 48s

Intro
0:00
Objectives
0:09
Fluids
0:27
Fluid is Matter That Flows Under Pressure
0:31
Fluid Mechanics is the Study of Fluids
0:44
Density
0:57
Density is the Ratio of an Object's Mass to the Volume It Occupies
0:58
Less Dense Fluids
1:06
Less Dense Solids
1:09
Example 1: Density of Water
1:27
Example 2: Volume of Gold
2:19
Example 3: Floating
3:06
Buoyancy
3:54
Force Exerted by a Fluid on an Object, Opposing the Object's Weight
3:56
Buoyant Force Determined Using Archimedes Principle
4:03
Example 4: Buoyant Force
5:12
Example 5: Shark Tank
5:56
Example 6: Concrete Boat
7:47
Example 7: Apparent Mass
10:08
Example 8: Volume of a Submerged Cube
13:21
Example 9: Determining Density
15:37
Pressure & Pascal's Principle

18m 7s

Intro
0:00
Objectives
0:09
Pressure
0:25
Pressure is the Effect of a Force Acting Upon a Surface
0:27
Formula for Pressure
0:41
Force is Always Perpendicular to the Surface
0:50
Exerting Pressure
1:03
Fluids Exert Outward Pressure in All Directions on the Sides of Any Container Holding the Fluid
1:36
Earth's Atmosphere Exerts Pressure
1:42
Example 1: Pressure on Keyboard
2:17
Example 2: Sleepy Fisherman
3:03
Example 3: Scale on Planet Physica
4:12
Example 4: Ranking Pressures
5:00
Pressure on a Submerged Object
6:45
Pressure a Fluid Exerts on an Object Submerged in That Fluid
6:46
If There Is Atmosphere Above the Fluid
7:03
Example 5: Gauge Pressure Scuba Diving
7:27
Example 6: Absolute Pressure Scuba Diving
8:13
Pascal's Principle
8:51
Force Multiplication Using Pascal's Principle
9:24
Example 7: Barber's Chair
11:38
Example 8: Hydraulic Auto Lift
13:26
Example 9: Pressure on a Penny
14:41
Example 10: Depth in Fresh Water
16:39
Example 11: Absolute vs. Gauge Pressure
17:23
Continuity Equation for Fluids

7m

Intro
0:00
Objectives
0:08
Conservation of Mass for Fluid Flow
0:18
Law of Conservation of Mass for Fluids
0:21
Volume Flow Rate Remains Constant Throughout the Pipe
0:35
Volume Flow Rate
0:59
Quantified In Terms Of Volume Flow Rate
1:01
Area of Pipe x Velocity of Fluid
1:05
Must Be Constant Throughout Pipe
1:10
Example 1: Tapered Pipe
1:44
Example 2: Garden Hose
2:37
Example 3: Oil Pipeline
4:49
Example 4: Roots of Continuity Equation
6:16
Bernoulli's Principle

20m

Intro
0:00
Objectives
0:08
Bernoulli's Principle
0:21
Airplane Wings
0:35
Venturi Pump
1:56
Bernoulli's Equation
3:32
Example 1: Torricelli's Theorem
4:38
Example 2: Gauge Pressure
7:26
Example 3: Shower Pressure
8:16
Example 4: Water Fountain
12:29
Example 5: Elevated Cistern
15:26
IV. Thermal Physics
Temperature, Heat, & Thermal Expansion

24m 17s

Intro
0:00
Objectives
0:12
Thermal Physics
0:42
Explores the Internal Energy of Objects Due to the Motion of the Atoms and Molecules Comprising the Objects
0:46
Explores the Transfer of This Energy From Object to Object
0:53
Temperature
1:00
Thermal Energy Is Related to the Kinetic Energy of All the Particles Comprising the Object
1:03
The More Kinetic Energy of the Constituent Particles Have, The Greater the Object's Thermal Energy
1:12
Temperature and Phases of Matter
1:44
Solids
1:48
Liquids
1:56
Gases
2:02
Average Kinetic Energy and Temperature
2:16
Average Kinetic Energy
2:24
Boltzmann's Constant
2:29
Temperature Scales
3:06
Converting Temperatures
4:37
Heat
5:03
Transfer of Thermal Energy
5:06
Accomplished Through Collisions Which is Conduction
5:13
Methods of Heat Transfer
5:52
Conduction
5:59
Convection
6:19
Radiation
6:31
Quantifying Heat Transfer in Conduction
6:37
Rate of Heat Transfer is Measured in Watts
6:42
Thermal Conductivity
7:12
Example 1: Average Kinetic Energy
7:35
Example 2: Body Temperature
8:22
Example 3: Temperature of Space
9:30
Example 4: Temperature of the Sun
10:44
Example 5: Heat Transfer Through Window
11:38
Example 6: Heat Transfer Across a Rod
12:40
Thermal Expansion
14:18
When Objects Are Heated, They Tend to Expand
14:19
At Higher Temperatures, Objects Have Higher Average Kinetic Energies
14:24
At Higher Levels of Vibration, The Particles Are Not Bound As Tightly to Each Other
14:30
Linear Expansion
15:11
Amount a Material Expands is Characterized by the Material's Coefficient of Expansion
15:14
One-Dimensional Expansion -> Linear Coefficient of Expansion
15:20
Volumetric Expansion
15:38
Three-Dimensional Expansion -> Volumetric Coefficient of Expansion
15:45
Volumetric Coefficient of Expansion is Roughly Three Times the Linear Coefficient of Expansion
16:03
Coefficients of Thermal Expansion
16:24
Example 7: Contracting Railroad Tie
16:59
Example 8: Expansion of an Aluminum Rod
18:37
Example 9: Water Spilling Out of a Glass
20:18
Example 10: Average Kinetic Energy vs. Temperature
22:18
Example 11: Expansion of a Ring
23:07
Ideal Gases

24m 15s

Intro
0:00
Objectives
0:10
Ideal Gases
0:25
Gas Is Comprised of Many Particles Moving Randomly in a Container
0:34
Particles Are Far Apart From One Another
0:46
Particles Do Not Exert Forces Upon One Another Unless They Come In Contact in an Elastic Collision
0:53
Ideal Gas Law
1:18
Atoms, Molecules, and Moles
2:56
Protons
2:59
Neutrons
3:15
Electrons
3:18
Examples
3:25
Example 1: Counting Moles
4:58
Example 2: Moles of CO2 in a Bottle
6:00
Example 3: Pressurized CO2
6:54
Example 4: Helium Balloon
8:53
Internal Energy of an Ideal Gas
10:17
The Average Kinetic Energy of the Particles of an Ideal Gas
10:21
Total Internal Energy of the Ideal Gas Can Be Found by Multiplying the Average Kinetic Energy of the Gas's Particles by the Numbers of Particles in the Gas
10:32
Example 5: Internal Energy of Oxygen
12:00
Example 6: Temperature of Argon
12:41
Root-Mean-Square Velocity
13:40
This is the Square Root of the Average Velocity Squared For All the Molecules in the System
13:43
Derived from the Maxwell-Boltzmann Distribution Function
13:56
Calculating vrms
14:56
Example 7: Average Velocity of a Gas
18:32
Example 8: Average Velocity of a Gas
19:44
Example 9: vrms of Molecules in Equilibrium
20:59
Example 10: Moles to Molecules
22:25
Example 11: Relating Temperature and Internal Energy
23:22
Thermodynamics

22m 29s

Intro
0:00
Objectives
0:06
Zeroth Law of Thermodynamics
0:26
First Law of Thermodynamics
1:00
The Change in the Internal Energy of a Closed System is Equal to the Heat Added to the System Plus the Work Done on the System
1:04
It is a Restatement of the Law of Conservation of Energy
1:19
Sign Conventions Are Important
1:25
Work Done on a Gas
1:44
Example 1: Adding Heat to a System
3:25
Example 2: Expanding a Gas
4:07
P-V Diagrams
5:11
Pressure-Volume Diagrams are Useful Tools for Visualizing Thermodynamic Processes of Gases
5:13
Use Ideal Gas Law to Determine Temperature of Gas
5:25
P-V Diagrams II
5:55
Volume Increases, Pressure Decreases
6:00
As Volume Expands, Gas Does Work
6:19
Temperature Rises as You Travel Up and Right on a PV Diagram
6:29
Example 3: PV Diagram Analysis
6:40
Types of PV Processes
7:52
Adiabatic
8:03
Isobaric
8:19
Isochoric
8:28
Isothermal
8:35
Adiabatic Processes
8:47
Heat Is not Transferred Into or Out of The System
8:50
Heat = 0
8:55
Isobaric Processes
9:19
Pressure Remains Constant
9:21
PV Diagram Shows a Horizontal Line
9:27
Isochoric Processes
9:51
Volume Remains Constant
9:52
PV Diagram Shows a Vertical Line
9:58
Work Done on the Gas is Zero
10:01
Isothermal Processes
10:27
Temperature Remains Constant
10:29
Lines on a PV Diagram Are Isotherms
10:31
PV Remains Constant
10:38
Internal Energy of Gas Remains Constant
10:40
Example 4: Adiabatic Expansion
10:46
Example 5: Removing Heat
11:25
Example 6: Ranking Processes
13:08
Second Law of Thermodynamics
13:59
Heat Flows Naturally From a Warmer Object to a Colder Object
14:02
Heat Energy Cannot be Completely Transformed Into Mechanical Work
14:11
All Natural Systems Tend Toward a Higher Level of Disorder
14:19
Heat Engines
14:52
Heat Engines Convert Heat Into Mechanical Work
14:56
Efficiency of a Heat Engine is the Ratio of the Engine You Get Out to the Energy You Put In
14:59
Power in Heat Engines
16:09
Heat Engines and PV Diagrams
17:38
Carnot Engine
17:54
It Is a Theoretical Heat Engine That Operates at Maximum Possible Efficiency
18:02
It Uses Only Isothermal and Adiabatic Processes
18:08
Carnot's Theorem
18:11
Example 7: Carnot Engine
18:49
Example 8: Maximum Efficiency
21:02
Example 9: PV Processes
21:51
V. Electricity & Magnetism
Electric Fields & Forces

38m 24s

Intro
0:00
Objectives
0:10
Electric Charges
0:34
Matter is Made Up of Atoms
0:37
Protons Have a Charge of +1
0:45
Electrons Have a Charge of -1
1:00
Most Atoms Are Neutral
1:04
Ions
1:15
Fundamental Unit of Charge is the Coulomb
1:29
Like Charges Repel, While Opposites Attract
1:50
Example 1: Charge on an Object
2:22
Example 2: Charge of an Alpha Particle
3:36
Conductors and Insulators
4:27
Conductors Allow Electric Charges to Move Freely
4:30
Insulators Do Not Allow Electric Charges to Move Freely
4:39
Resistivity is a Material Property
4:45
Charging by Conduction
5:05
Materials May Be Charged by Contact, Known as Conduction
5:07
Conductors May Be Charged by Contact
5:24
Example 3: Charging by Conduction
5:38
The Electroscope
6:44
Charging by Induction
8:00
Example 4: Electrostatic Attraction
9:23
Coulomb's Law
11:46
Charged Objects Apply a Force Upon Each Other = Coulombic Force
11:52
Force of Attraction or Repulsion is Determined by the Amount of Charge and the Distance Between the Charges
12:04
Example 5: Determine Electrostatic Force
13:09
Example 6: Deflecting an Electron Beam
15:35
Electric Fields
16:28
The Property of Space That Allows a Charged Object to Feel a Force
16:44
Electric Field Strength Vector is the Amount of Electrostatic Force Observed by a Charge Per Unit of Charge
17:01
The Direction of the Electric Field Vector is the Direction a Positive Charge Would Feel a Force
17:24
Example 7: Field Between Metal Plates
17:58
Visualizing the Electric Field
19:27
Electric Field Lines Point Away from Positive Charges and Toward Negative Charges
19:40
Electric Field Lines Intersect Conductors at Right Angles to the Surface
19:50
Field Strength and Line Density Decreases as You Move Away From the Charges
19:58
Electric Field Lines
20:09
E Field Due to a Point Charge
22:32
Electric Fields Are Caused by Charges
22:35
Electric Field Due to a Point Charge Can Be Derived From the Definition of the Electric Field and Coulomb's Law
22:38
To Find the Electric Field Due to Multiple Charges
23:09
Comparing Electricity to Gravity
23:56
Force
24:02
Field Strength
24:16
Constant
24:37
Charge/ Mass Units
25:01
Example 8: E Field From 3 Point Charges
25:07
Example 9: Where is the E Field Zero?
31:43
Example 10: Gravity and Electricity
36:38
Example 11: Field Due to Point Charge
37:34
Electric Potential Difference

35m 58s

Intro
0:00
Objectives
0:09
Electric Potential Energy
0:32
When an Object Was Lifted Against Gravity By Applying a Force for Some Distance, Work Was Done
0:35
When a Charged Object is Moved Against an Electric Field by Applying a Force for Some Distance, Work is Done
0:43
Electric Potential Difference
1:30
Example 1: Charge From Work
2:06
Example 2: Electric Energy
3:09
The Electron-Volt
4:02
Electronvolt (eV)
4:15
1eV is the Amount of Work Done in Moving an Elementary Charge Through a Potential Difference of 1 Volt
4:28
Example 3: Energy in eV
5:33
Equipotential Lines
6:32
Topographic Maps Show Lines of Equal Altitude, or Equal Gravitational Potential
6:36
Lines Connecting Points of Equal Electrical Potential are Known as Equipotential Lines
6:57
Drawing Equipotential Lines
8:15
Potential Due to a Point Charge
10:46
Calculate the Electric Field Vector Due to a Point Charge
10:52
Calculate the Potential Difference Due to a Point Charge
11:05
To Find the Potential Difference Due to Multiple Point Charges
11:16
Example 4: Potential Due to a Point Charge
11:52
Example 5: Potential Due to Point Charges
13:04
Parallel Plates
16:34
Configurations in Which Parallel Plates of Opposite Charge are Situated a Fixed Distance From Each Other
16:37
These Can Create a Capacitor
16:45
E Field Due to Parallel Plates
17:14
Electric Field Away From the Edges of Two Oppositely Charged Parallel Plates is Constant
17:15
Magnitude of the Electric Field Strength is Give By the Potential Difference Between the Plates Divided by the Plate Separation
17:47
Capacitors
18:09
Electric Device Used to Store Charge
18:11
Once the Plates Are Charged, They Are Disconnected
18:30
Device's Capacitance
18:46
Capacitors Store Energy
19:28
Charges Located on the Opposite Plates of a Capacitor Exert Forces on Each Other
19:31
Example 6: Capacitance
20:28
Example 7: Charge on a Capacitor
22:03
Designing Capacitors
24:00
Area of the Plates
24:05
Separation of the Plates
24:09
Insulating Material
24:13
Example 8: Designing a Capacitor
25:35
Example 9: Calculating Capacitance
27:39
Example 10: Electron in Space
29:47
Example 11: Proton Energy Transfer
30:35
Example 12: Two Conducting Spheres
32:50
Example 13: Equipotential Lines for a Capacitor
34:48
Current & Resistance

21m 14s

Intro
0:00
Objectives
0:06
Electric Current
0:19
Path Through Current Flows
0:21
Current is the Amount of Charge Passing a Point Per Unit Time
0:25
Conventional Current is the Direction of Positive Charge Flow
0:43
Example 1: Current Through a Resistor
1:19
Example 2: Current Due to Elementary Charges
1:47
Example 3: Charge in a Light Bulb
2:35
Example 4: Flashlights
3:03
Conductivity and Resistivity
4:41
Conductivity is a Material's Ability to Conduct Electric Charge
4:53
Resistivity is a Material's Ability to Resist the Movement of Electric Charge
5:11
Resistance vs. Resistivity vs. Resistors
5:35
Resistivity Is a Material Property
5:40
Resistance Is a Functional Property of an Element in an Electric Circuit
5:57
A Resistor is a Circuit Element
7:23
Resistors
7:45
Example 5: Calculating Resistance
8:17
Example 6: Resistance Dependencies
10:09
Configuration of Resistors
10:50
When Placed in a Circuit, Resistors Can be Organized in Both Serial and Parallel Arrangements
10:53
May Be Useful to Determine an Equivalent Resistance Which Could Be Used to Replace a System or Resistors with a Single Equivalent Resistor
10:58
Resistors in Series
11:15
Resistors in Parallel
12:35
Example 7: Finding Equivalent Resistance
15:01
Example 8: Length and Resistance
17:43
Example 9: Comparing Resistors
18:21
Example 10: Comparing Wires
19:12
Ohm's Law & Power

10m 35s

Intro
0:00
Objectives
0:06
Ohm's Law
0:21
Relates Resistance, Potential Difference, and Current Flow
0:23
Example 1: Resistance of a Wire
1:22
Example 2: Circuit Current
1:58
Example 3: Variable Resistor
2:30
Ohm's 'Law'?
3:22
Very Useful Empirical Relationship
3:31
Test if a Material is 'Ohmic'
3:40
Example 4: Ohmic Material
3:58
Electrical Power
4:24
Current Flowing Through a Circuit Causes a Transfer of Energy Into Different Types
4:26
Example: Light Bulb
4:36
Example: Television
4:58
Calculating Power
5:09
Electrical Energy
5:14
Charge Per Unit Time Is Current
5:29
Expand Using Ohm's Law
5:48
Example 5: Toaster
7:43
Example 6: Electric Iron
8:19
Example 7: Power of a Resistor
9:19
Example 8: Information Required to Determine Power in a Resistor
9:55
Circuits & Electrical Meters

8m 44s

Intro
0:00
Objectives
0:08
Electrical Circuits
0:21
A Closed-Loop Path Through Which Current Can Flow
0:22
Can Be Made Up of Most Any Materials, But Typically Comprised of Electrical Devices
0:27
Circuit Schematics
1:09
Symbols Represent Circuit Elements
1:30
Lines Represent Wires
1:33
Sources for Potential Difference: Voltaic Cells, Batteries, Power Supplies
1:36
Complete Conducting Paths
2:43
Voltmeters
3:20
Measure the Potential Difference Between Two Points in a Circuit
3:21
Connected in Parallel with the Element to be Measured
3:25
Have Very High Resistance
3:59
Ammeters
4:19
Measure the Current Flowing Through an Element of a Circuit
4:20
Connected in Series with the Circuit
4:25
Have Very Low Resistance
4:45
Example 1: Ammeter and Voltmeter Placement
4:56
Example 2: Analyzing R
6:27
Example 3: Voltmeter Placement
7:12
Example 4: Behavior or Electrical Meters
7:31
Circuit Analysis

48m 58s

Intro
0:00
Objectives
0:07
Series Circuits
0:27
Series Circuits Have Only a Single Current Path
0:29
Removal of any Circuit Element Causes an Open Circuit
0:31
Kirchhoff's Laws
1:36
Tools Utilized in Analyzing Circuits
1:42
Kirchhoff's Current Law States
1:47
Junction Rule
2:00
Kirchhoff's Voltage Law States
2:05
Loop Rule
2:18
Example 1: Voltage Across a Resistor
2:23
Example 2: Current at a Node
3:45
Basic Series Circuit Analysis
4:53
Example 3: Current in a Series Circuit
9:21
Example 4: Energy Expenditure in a Series Circuit
10:14
Example 5: Analysis of a Series Circuit
12:07
Example 6: Voltmeter In a Series Circuit
14:57
Parallel Circuits
17:11
Parallel Circuits Have Multiple Current Paths
17:13
Removal of a Circuit Element May Allow Other Branches of the Circuit to Continue Operating
17:15
Basic Parallel Circuit Analysis
18:19
Example 7: Parallel Circuit Analysis
21:05
Example 8: Equivalent Resistance
22:39
Example 9: Four Parallel Resistors
23:16
Example 10: Ammeter in a Parallel Circuit
26:27
Combination Series-Parallel Circuits
28:50
Look For Portions of the Circuit With Parallel Elements
28:56
Work Back to Original Circuit
29:09
Analysis of a Combination Circuit
29:20
Internal Resistance
34:11
In Reality, Voltage Sources Have Some Amount of 'Internal Resistance'
34:16
Terminal Voltage of the Voltage Source is Reduced Slightly
34:25
Example 11: Two Voltage Sources
35:16
Example 12: Internal Resistance
42:46
Example 13: Complex Circuit with Meters
45:22
Example 14: Parallel Equivalent Resistance
48:24
RC Circuits

24m 47s

Intro
0:00
Objectives
0:08
Capacitors in Parallel
0:34
Capacitors Store Charge on Their Plates
0:37
Capacitors In Parallel Can Be Replaced with an Equivalent Capacitor
0:46
Capacitors in Series
2:42
Charge on Capacitors Must Be the Same
2:44
Capacitor In Series Can Be Replaced With an Equivalent Capacitor
2:47
RC Circuits
5:40
Comprised of a Source of Potential Difference, a Resistor Network, and One or More Capacitors
5:42
Uncharged Capacitors Act Like Wires
6:04
Charged Capacitors Act Like Opens
6:12
Charging an RC Circuit
6:23
Discharging an RC Circuit
11:36
Example 1: RC Analysis
14:50
Example 2: More RC Analysis
18:26
Example 3: Equivalent Capacitance
21:19
Example 4: More Equivalent Capacitance
22:48
Magnetic Fields & Properties

19m 48s

Intro
0:00
Objectives
0:07
Magnetism
0:32
A Force Caused by Moving Charges
0:34
Magnetic Domains Are Clusters of Atoms with Electrons Spinning in the Same Direction
0:51
Example 1: Types of Fields
1:23
Magnetic Field Lines
2:25
Make Closed Loops and Run From North to South Outside the Magnet
2:26
Magnetic Flux
2:42
Show the Direction the North Pole of a Magnet Would Tend to Point If Placed in the Field
2:54
Example 2: Lines of Magnetic Force
3:49
Example 3: Forces Between Bar Magnets
4:39
The Compass
5:28
The Earth is a Giant Magnet
5:31
The Earth's Magnetic North pole is Located Near the Geographic South Pole, and Vice Versa
5:33
A Compass Lines Up with the Net Magnetic Field
6:07
Example 3: Compass in Magnetic Field
6:41
Example 4: Compass Near a Bar Magnet
7:14
Magnetic Permeability
7:59
The Ratio of the Magnetic Field Strength Induced in a Material to the Magnetic Field Strength of the Inducing Field
8:02
Free Space
8:13
Highly Magnetic Materials Have Higher Values of Magnetic Permeability
8:34
Magnetic Dipole Moment
8:41
The Force That a Magnet Can Exert on Moving Charges
8:46
Relative Strength of a Magnet
8:54
Forces on Moving Charges
9:10
Moving Charges Create Magnetic Fields
9:11
Magnetic Fields Exert Forces on Moving Charges
9:17
Direction of the Magnetic Force
9:57
Direction is Given by the Right-Hand Rule
10:05
Right-Hand Rule
10:09
Mass Spectrometer
10:52
Magnetic Fields Accelerate Moving Charges So That They Travel in a Circle
10:58
Used to Determine the Mass of an Unknown Particle
11:04
Velocity Selector
12:44
Mass Spectrometer with an Electric Field Added
12:47
Example 5: Force on an Electron
14:13
Example 6: Velocity of a Charged Particle
15:25
Example 7: Direction of the Magnetic Force
16:52
Example 8: Direction of Magnetic Force on Moving Charges
17:43
Example 9: Electron Released From Rest in Magnetic Field
18:53
Current-Carrying Wires

21m 29s

Intro
0:00
Objectives
0:09
Force on a Current-Carrying Wire
0:30
A Current-Carrying Wire in a Magnetic Field May Experience a Magnetic Force
0:33
Direction Given by the Right-Hand Rule
1:11
Example 1: Force on a Current-Carrying Wire
1:38
Example 2: Equilibrium on a Submerged Wire
2:33
Example 3: Torque on a Loop of Wire
5:55
Magnetic Field Due to a Current-Carrying Wire
8:49
Moving Charges Create Magnetic Fields
8:53
Wires Carry Moving Charges
8:56
Direction Given by the Right-Hand Rule
9:21
Example 4: Magnetic Field Due to a Wire
10:56
Magnetic Field Due to a Solenoid
12:12
Solenoid is a Coil of Wire
12:19
Direction Given by the Right-Hand Rule
12:47
Forces on 2 Parallel Wires
13:34
Current Flowing in the Same Direction
14:52
Current Flowing in Opposite Directions
14:57
Example 5: Magnetic Field Due to Wires
15:19
Example 6: Strength of an Electromagnet
18:35
Example 7: Force on a Wire
19:30
Example 8: Force Between Parallel Wires
20:47
Intro to Electromagnetic Induction

17m 26s

Intro
0:00
Objectives
0:09
Induced EMF
0:42
Charges Flowing Through a Wire Create Magnetic Fields
0:45
Changing Magnetic Fields Cause Charges to Flow or 'Induce' a Current in a Process Known As Electromagnetic Induction
0:49
Electro-Motive Force is the Potential Difference Created by a Changing Magnetic Field
0:57
Magnetic Flux is the Amount of Magnetic Fields Passing Through an Area
1:17
Finding the Magnetic Flux
1:36
Magnetic Field Strength
1:39
Angle Between the Magnetic Field Strength and the Normal to the Area
1:51
Calculating Induced EMF
3:01
The Magnitude of the Induced EMF is Equal to the Rate of Change of the Magnetic Flux
3:04
Induced EMF in a Rectangular Loop of Wire
4:03
Lenz's Law
5:17
Electric Generators and Motors
9:28
Generate an Induced EMF By Turning a Coil of Wire in a magnetic Field
9:31
Generators Use Mechanical Energy to Turn the Coil of Wire
9:39
Electric Motor Operates Using Same Principle
10:30
Example 1: Finding Magnetic Flux
10:43
Example 2: Finding Induced EMF
11:54
Example 3: Changing Magnetic Field
13:52
Example 4: Current Induced in a Rectangular Loop of Wire
15:23
VI. Waves & Optics
Wave Characteristics

26m 41s

Intro
0:00
Objectives
0:09
Waves
0:32
Pulse
1:00
A Pulse is a Single Disturbance Which Carries Energy Through a Medium or Space
1:05
A Wave is a Series of Pulses
1:18
When a Pulse Reaches a Hard Boundary
1:37
When a Pulse Reaches a Soft or Flexible Boundary
2:04
Types of Waves
2:44
Mechanical Waves
2:56
Electromagnetic Waves
3:14
Types of Wave Motion
3:38
Longitudinal Waves
3:39
Transverse Waves
4:18
Anatomy of a Transverse Wave
5:18
Example 1: Waves Requiring a Medium
6:59
Example 2: Direction of Displacement
7:36
Example 3: Bell in a Vacuum Jar
8:47
Anatomy of a Longitudinal Wave
9:22
Example 4: Tuning Fork
9:57
Example 5: Amplitude of a Sound Wave
10:24
Frequency and Period
10:47
Example 6: Period of an EM Wave
11:23
Example 7: Frequency and Period
12:01
The Wave Equation
12:32
Velocity of a Wave is a Function of the Type of Wave and the Medium It Travels Through
12:36
Speed of a Wave is Related to Its Frequency and Wavelength
12:41
Example 8: Wavelength Using the Wave Equation
13:54
Example 9: Period of an EM Wave
14:35
Example 10: Blue Whale Waves
16:03
Sound Waves
17:29
Sound is a Mechanical Wave Observed by Detecting Vibrations in the Inner Ear
17:33
Particles of Sound Wave Vibrate Parallel With the Direction of the Wave's Velocity
17:56
Example 11: Distance from Speakers
18:24
Resonance
19:45
An Object with the Same 'Natural Frequency' May Begin to Vibrate at This Frequency
19:55
Classic Example
20:01
Example 12: Vibrating Car
20:32
Example 13: Sonar Signal
21:28
Example 14: Waves Across Media
24:06
Example 15: Wavelength of Middle C
25:24
Wave Interference

20m 45s

Intro
0:00
Objectives
0:09
Superposition
0:30
When More Than One Wave Travels Through the Same Location in the Same Medium
0:32
The Total Displacement is the Sum of All the Individual Displacements of the Waves
0:46
Example 1: Superposition of Pulses
1:01
Types of Interference
2:02
Constructive Interference
2:05
Destructive Interference
2:18
Example 2: Interference
2:47
Example 3: Shallow Water Waves
3:27
Standing Waves
4:23
When Waves of the Same Frequency and Amplitude Traveling in Opposite Directions Meet in the Same Medium
4:26
A Wave in Which Nodes Appear to be Standing Still and Antinodes Vibrate with Maximum Amplitude Above and Below the Axis
4:35
Standing Waves in String Instruments
5:36
Standing Waves in Open Tubes
8:49
Standing Waves in Closed Tubes
9:57
Interference From Multiple Sources
11:43
Constructive
11:55
Destructive
12:14
Beats
12:49
Two Sound Waves with Almost the Same Frequency Interfere to Create a Beat Pattern
12:52
A Frequency Difference of 1 to 4 Hz is Best for Human Detection of Beat Phenomena
13:05
Example 4
14:13
Example 5
18:03
Example 6
19:14
Example 7: Superposition
20:08
Wave Phenomena

19m 2s

Intro
0:00
Objective
0:08
Doppler Effect
0:36
The Shift In A Wave's Observed Frequency Due to Relative Motion Between the Source of the Wave and Observer
0:39
When Source and/or Observer Move Toward Each Other
0:45
When Source and/or Observer Move Away From Each Other
0:52
Practical Doppler Effect
1:01
Vehicle Traveling Past You
1:05
Applications Are Numerous and Widespread
1:56
Doppler Effect - Astronomy
2:43
Observed Frequencies Are Slightly Lower Than Scientists Would Predict
2:50
More Distant Celestial Objects Are Moving Away from the Earth Faster Than Nearer Objects
3:22
Example 1: Car Horn
3:36
Example 2: Moving Speaker
4:13
Diffraction
5:35
The Bending of Waves Around Obstacles
5:37
Most Apparent When Wavelength Is Same Order of Magnitude as the Obstacle/ Opening
6:10
Single-Slit Diffraction
6:16
Double-Slit Diffraction
8:13
Diffraction Grating
11:07
Sharper and Brighter Maxima
11:46
Useful for Determining Wavelengths Accurately
12:07
Example 3: Double Slit Pattern
12:30
Example 4: Determining Wavelength
16:05
Example 5: Radar Gun
18:04
Example 6: Red Shift
18:29
Light As a Wave

11m 35s

Intro
0:00
Objectives
0:14
Electromagnetic (EM) Waves
0:31
Light is an EM Wave
0:43
EM Waves Are Transverse Due to the Modulation of the Electric and Magnetic Fields Perpendicular to the Wave Velocity
1:00
Electromagnetic Wave Characteristics
1:37
The Product of an EM Wave's Frequency and Wavelength Must be Constant in a Vacuum
1:43
Polarization
3:36
Unpoloarized EM Waves Exhibit Modulation in All Directions
3:47
Polarized Light Consists of Light Vibrating in a Single Direction
4:07
Polarizers
4:29
Materials Which Act Like Filters to Only Allow Specific Polarizations of Light to Pass
4:33
Polarizers Typically Are Sheets of Material in Which Long Molecules Are Lined Up Like a Picket Fence
5:10
Polarizing Sunglasses
5:22
Reduce Reflections
5:26
Polarizing Sunglasses Have Vertical Polarizing Filters
5:48
Liquid Crystal Displays
6:08
LCDs Use Liquid Crystals in a Suspension That Align Themselves in a Specific Orientation When a Voltage is Applied
6:13
Cross-Orienting a Polarizer and a Matrix of Liquid Crystals so Light Can Be Modulated Pixel-by-Pixel
6:26
Example 1: Color of Light
7:30
Example 2: Analyzing an EM Wave
8:49
Example 3: Remote Control
9:45
Example 4: Comparing EM Waves
10:32
Reflection & Mirrors

24m 32s

Intro
0:00
Objectives
0:10
Waves at Boundaries
0:37
Reflected
0:43
Transmitted
0:45
Absorbed
0:48
Law of Reflection
0:58
The Angle of Incidence is Equal to the Angle of Reflection
1:00
They Are Both Measured From a Line Perpendicular, or Normal, to the Reflecting Surface
1:22
Types of Reflection
1:54
Diffuse Reflection
1:57
Specular Reflection
2:08
Example 1: Specular Reflection
2:24
Mirrors
3:20
Light Rays From the Object Reach the Plane Mirror and Are Reflected to the Observer
3:27
Virtual Image
3:33
Magnitude of Image Distance
4:05
Plane Mirror Ray Tracing
4:15
Object Distance
4:26
Image Distance
4:43
Magnification of Image
7:03
Example 2: Plane Mirror Images
7:28
Example 3: Image in a Plane Mirror
7:51
Spherical Mirrors
8:10
Inner Surface of a Spherical Mirror
8:19
Outer Surface of a Spherical Mirror
8:30
Focal Point of a Spherical Mirror
8:40
Converging
8:51
Diverging
9:00
Concave (Converging) Spherical Mirrors
9:09
Light Rays Coming Into a Mirror Parallel to the Principal Axis
9:14
Light Rays Passing Through the Center of Curvature
10:17
Light Rays From the Object Passing Directly Through the Focal Point
10:52
Mirror Equation (Lens Equation)
12:06
Object and Image Distances Are Positive on the Reflecting Side of the Mirror
12:13
Formula
12:19
Concave Mirror with Object Inside f
12:39
Example 4: Concave Spherical Mirror
14:21
Example 5: Image From a Concave Mirror
14:51
Convex (Diverging) Spherical Mirrors
16:29
Light Rays Coming Into a Mirror Parallel to the Principal Axis
16:37
Light Rays Striking the Center of the Mirror
16:50
Light Rays Never Converge on the Reflective Side of a Convex Mirror
16:54
Convex Mirror Ray Tracing
17:07
Example 6: Diverging Rays
19:12
Example 7: Focal Length
19:28
Example 8: Reflected Sonar Wave
19:53
Example 9: Plane Mirror Image Distance
20:20
Example 10: Image From a Concave Mirror
21:23
Example 11: Converging Mirror Image Distance
23:09
Refraction & Lenses

39m 42s

Intro
0:00
Objectives
0:09
Refraction
0:42
When a Wave Reaches a Boundary Between Media, Part of the Wave is Reflected and Part of the Wave Enters the New Medium
0:43
Wavelength Must Change If the Wave's Speed Changes
0:57
Refraction is When This Causes The Wave to Bend as It Enters the New Medium
1:12
Marching Band Analogy
1:22
Index of Refraction
2:37
Measure of How Much Light Slows Down in a Material
2:40
Ratio of the Speed of an EM Wave in a Vacuum to the Speed of an EM Wave in Another Material is Known as Index of Refraction
3:03
Indices of Refraction
3:21
Dispersion
4:01
White Light is Refracted Twice in Prism
4:23
Index of Refraction of the Prism Material Varies Slightly with Respect to Frequency
4:41
Example 1: Determining n
5:14
Example 2: Light in Diamond and Crown Glass
5:55
Snell's Law
6:24
The Amount of a Light Wave Bends As It Enters a New Medium is Given by the Law of Refraction
6:32
Light Bends Toward the Normal as it Enters a Material With a Higher n
7:08
Light Bends Toward the Normal as it Enters a Material With a Lower n
7:14
Example 3: Angle of Refraction
7:42
Example 4: Changes with Refraction
9:31
Total Internal Reflection
10:10
When the Angle of Refraction Reaches 90 Degrees
10:23
Critical Angle
10:34
Total Internal Reflection
10:51
Applications of TIR
12:13
Example 5: Critical Angle of Water
13:17
Thin Lenses
14:15
Convex Lenses
14:22
Concave Lenses
14:31
Convex Lenses
15:24
Rays Parallel to the Principal Axis are Refracted Through the Far Focal Point of the Lens
15:28
A Ray Drawn From the Object Through the Center of the Lens Passes Through the Center of the Lens Unbent
15:53
Example 6: Converging Lens Image
16:46
Example 7: Image Distance of Convex Lens
17:18
Concave Lenses
18:21
Rays From the Object Parallel to the Principal Axis Are Refracted Away from the Principal Axis on a Line from the Near Focal Point Through the Point Where the Ray Intercepts the Center of the Lens
18:25
Concave Lenses Produce Upright, Virtual, Reduced Images
20:30
Example 8: Light Ray Thought a Lens
20:36
Systems of Optical Elements
21:05
Find the Image of the First Optical Elements and Utilize It as the Object of the Second Optical Element
21:16
Example 9: Lens and Mirrors
21:35
Thin Film Interference
27:22
When Light is Incident Upon a Thin Film, Some Light is Reflected and Some is Transmitted Into the Film
27:25
If the Transmitted Light is Again Reflected, It Travels Back Out of the Film and Can Interfere
27:31
Phase Change for Every Reflection from Low-Index to High-Index
28:09
Example 10: Thin Film Interference
28:41
Example 11: Wavelength in Diamond
32:07
Example 12: Light Incident on Crown Glass
33:57
Example 13: Real Image from Convex Lens
34:44
Example 14: Diverging Lens
35:45
Example 15: Creating Enlarged, Real Images
36:22
Example 16: Image from a Converging Lens
36:48
Example 17: Converging Lens System
37:50
Wave-Particle Duality

23m 47s

Intro
0:00
Objectives
0:11
Duality of Light
0:37
Photons
0:47
Dual Nature
0:53
Wave Evidence
1:00
Particle Evidence
1:10
Blackbody Radiation & the UV Catastrophe
1:20
Very Hot Objects Emitted Radiation in a Specific Spectrum of Frequencies and Intensities
1:25
Color Objects Emitted More Intensity at Higher Wavelengths
1:45
Quantization of Emitted Radiation
1:56
Photoelectric Effect
2:38
EM Radiation Striking a Piece of Metal May Emit Electrons
2:41
Not All EM Radiation Created Photoelectrons
2:49
Photons of Light
3:23
Photon Has Zero Mass, Zero Charge
3:32
Energy of a Photon is Quantized
3:36
Energy of a Photon is Related to its Frequency
3:41
Creation of Photoelectrons
4:17
Electrons in Metals Were Held in 'Energy Walls'
4:20
Work Function
4:32
Cutoff Frequency
4:54
Kinetic Energy of Photoelectrons
5:14
Electron in a Metal Absorbs a Photon with Energy Greater Than the Metal's Work Function
5:16
Electron is Emitted as a Photoelectron
5:24
Any Absorbed Energy Beyond That Required to Free the Electron is the KE of the Photoelectron
5:28
Photoelectric Effect in a Circuit
6:37
Compton Effect
8:28
Less of Energy and Momentum
8:49
Lost by X-Ray Equals Energy and Gained by Photoelectron
8:52
Compton Wavelength
9:09
Major Conclusions
9:36
De Broglie Wavelength
10:44
Smaller the Particle, the More Apparent the Wave Properties
11:03
Wavelength of a Moving Particle is Known as Its de Broglie Wavelength
11:07
Davisson-Germer Experiment
11:29
Verifies Wave Nature of Moving Particles
11:30
Shoot Electrons at Double Slit
11:34
Example 1
11:46
Example 2
13:07
Example 3
13:48
Example 4A
15:33
Example 4B
18:47
Example 5: Wave Nature of Light
19:54
Example 6: Moving Electrons
20:43
Example 7: Wavelength of an Electron
21:11
Example 8: Wrecking Ball
22:50
VII. Modern Physics
Atomic Energy Levels

14m 21s

Intro
0:00
Objectives
0:09
Rutherford's Gold Foil Experiment
0:35
Most of the Particles Go Through Undeflected
1:12
Some Alpha Particles Are Deflected Large Amounts
1:15
Atoms Have a Small, Massive, Positive Nucleus
1:20
Electrons Orbit the Nucleus
1:23
Most of the Atom is Empty Space
1:26
Problems with Rutherford's Model
1:31
Charges Moving in a Circle Accelerate, Therefore Classical Physics Predicts They Should Release Photons
1:39
Lose Energy When They Release Photons
1:46
Orbits Should Decay and They Should Be Unstable
1:50
Bohr Model of the Atom
2:09
Electrons Don't Lose Energy as They Accelerate
2:20
Each Atom Allows Only a Limited Number of Specific Orbits at Each Energy Level
2:35
Electrons Must Absorb or Emit a Photon of Energy to Change Energy Levels
2:40
Energy Level Diagrams
3:29
n=1 is the Lowest Energy State
3:34
Negative Energy Levels Indicate Electron is Bound to Nucleus of the Atom
4:03
When Electron Reaches 0 eV It Is No Longer Bound
4:20
Electron Cloud Model (Probability Model)
4:46
Electron Only Has A Probability of Being Located in Certain Regions Surrounding the Nucleus
4:53
Electron Orbitals Are Probability Regions
4:58
Atomic Spectra
5:16
Atoms Can Only Emit Certain Frequencies of Photons
5:19
Electrons Can Only Absorb Photons With Energy Equal to the Difference in Energy Levels
5:34
This Leads to Unique Atomic Spectra of Emitted and Absorbed Radiation for Each Element
5:37
Incandescence Emits a Continuous Energy
5:43
If All Colors of Light Are Incident Upon a Cold Gas, The Gas Only Absorbs Frequencies Corresponding to Photon Energies Equal to the Difference Between the Gas's Atomic Energy Levels
6:16
Continuous Spectrum
6:42
Absorption Spectrum
6:50
Emission Spectrum
7:08
X-Rays
7:36
The Photoelectric Effect in Reverse
7:38
Electrons Are Accelerated Through a Large Potential Difference and Collide with a Molybdenum or Platinum Plate
7:53
Example 1: Electron in Hydrogen Atom
8:24
Example 2: EM Emission in Hydrogen
10:05
Example 3: Photon Frequencies
11:30
Example 4: Bright-Line Spectrum
12:24
Example 5: Gas Analysis
13:08
Nuclear Physics

15m 47s

Intro
0:00
Objectives
0:08
The Nucleus
0:33
Protons Have a Charge or +1 e
0:39
Neutrons Are Neutral (0 Charge)
0:42
Held Together by the Strong Nuclear Force
0:43
Example 1: Deconstructing an Atom
1:20
Mass-Energy Equivalence
2:06
Mass is a Measure of How Much Energy an Object Contains
2:16
Universal Conservation of Laws
2:31
Nuclear Binding Energy
2:53
A Strong Nuclear Force Holds Nucleons Together
3:04
Mass of the Individual Constituents is Greater Than the Mass of the Combined Nucleus
3:19
Binding Energy of the Nucleus
3:32
Mass Defect
3:37
Nuclear Decay
4:30
Alpha Decay
4:42
Beta Decay
5:09
Gamma Decay
5:46
Fission
6:40
The Splitting of a Nucleus Into Two or More Nuclei
6:42
For Larger Nuclei, the Mass of Original Nucleus is Greater Than the Sum of the Mass of the Products When Split
6:47
Fusion
8:14
The Process of Combining Two Or More Smaller Nuclei Into a Larger Nucleus
8:15
This Fuels Our Sun and Stars
8:28
Basis of Hydrogen Bomb
8:31
Forces in the Universe
9:00
Strong Nuclear Force
9:06
Electromagnetic Force
9:13
Weak Nuclear Force
9:22
Gravitational Force
9:27
Example 2: Deuterium Nucleus
9:39
Example 3: Particle Accelerator
10:24
Example 4: Tritium Formation
12:03
Example 5: Beta Decay
13:02
Example 6: Gamma Decay
14:15
Example 7: Annihilation
14:39
VIII. Sample AP Exams
AP Practice Exam: Multiple Choice, Part 1

38m 1s

Intro
0:00
Problem 1
1:33
Problem 2
1:57
Problem 3
2:50
Problem 4
3:46
Problem 5
4:13
Problem 6
4:41
Problem 7
6:12
Problem 8
6:49
Problem 9
7:49
Problem 10
9:31
Problem 11
10:08
Problem 12
11:03
Problem 13
11:30
Problem 14
12:28
Problem 15
14:04
Problem 16
15:05
Problem 17
15:55
Problem 18
17:06
Problem 19
18:43
Problem 20
19:58
Problem 21
22:03
Problem 22
22:49
Problem 23
23:28
Problem 24
24:04
Problem 25
25:07
Problem 26
26:46
Problem 27
28:03
Problem 28
28:49
Problem 29
30:20
Problem 30
31:10
Problem 31
33:03
Problem 32
33:46
Problem 33
34:47
Problem 34
36:07
Problem 35
36:44
AP Practice Exam: Multiple Choice, Part 2

37m 49s

Intro
0:00
Problem 36
0:18
Problem 37
0:42
Problem 38
2:13
Problem 39
4:10
Problem 40
4:47
Problem 41
5:52
Problem 42
7:22
Problem 43
8:16
Problem 44
9:11
Problem 45
9:42
Problem 46
10:56
Problem 47
12:03
Problem 48
13:58
Problem 49
14:49
Problem 50
15:36
Problem 51
15:51
Problem 52
17:18
Problem 53
17:59
Problem 54
19:10
Problem 55
21:27
Problem 56
22:40
Problem 57
23:19
Problem 58
23:50
Problem 59
25:35
Problem 60
26:45
Problem 61
27:57
Problem 62
28:32
Problem 63
29:52
Problem 64
30:27
Problem 65
31:27
Problem 66
32:22
Problem 67
33:18
Problem 68
35:21
Problem 69
36:27
Problem 70
36:46
AP Practice Exam: Free Response, Part 1

16m 53s

Intro
0:00
Question 1
0:23
Question 2
8:55
AP Practice Exam: Free Response, Part 2

9m 20s

Intro
0:00
Question 3
0:14
Question 4
4:34
AP Practice Exam: Free Response, Part 3

18m 12s

Intro
0:00
Question 5
0:15
Question 6
3:29
Question 7
6:18
Question 8
12:53
IX. Additional Examples
Metric Estimation

3m 53s

Intro
0:00
Question 1
0:38
Question 2
0:51
Question 3
1:09
Question 4
1:24
Question 5
1:49
Question 6
2:11
Question 7
2:27
Question 8
2:49
Question 9
3:03
Question 10
3:23
Defining Motion

7m 6s

Intro
0:00
Question 1
0:13
Question 2
0:50
Question 3
1:56
Question 4
2:24
Question 5
3:32
Question 6
4:01
Question 7
5:36
Question 8
6:36
Motion Graphs

6m 48s

Intro
0:00
Question 1
0:13
Question 2
2:01
Question 3
3:06
Question 4
3:41
Question 5
4:30
Question 6
5:52
Horizontal Kinematics

8m 16s

Intro
0:00
Question 1
0:19
Question 2
2:19
Question 3
3:16
Question 4
4:36
Question 5
6:43
Free Fall

7m 56s

Intro
0:00
Question 1-4
0:12
Question 5
2:36
Question 6
3:11
Question 7
4:44
Question 8
6:16
Projectile Motion

4m 17s

Intro
0:00
Question 1
0:13
Question 2
0:45
Question 3
1:25
Question 4
2:00
Question 5
2:32
Question 6
3:38
Newton's 1st Law

4m 34s

Intro
0:00
Question 1
0:15
Question 2
1:02
Question 3
1:50
Question 4
2:04
Question 5
2:26
Question 6
2:54
Question 7
3:11
Question 8
3:29
Question 9
3:47
Question 10
4:02
Newton's 2nd Law

5m 40s

Intro
0:00
Question 1
0:16
Question 2
0:55
Question 3
1:50
Question 4
2:40
Question 5
3:33
Question 6
3:56
Question 7
4:29
Newton's 3rd Law

3m 44s

Intro
0:00
Question 1
0:17
Question 2
0:44
Question 3
1:14
Question 4
1:51
Question 5
2:11
Question 6
2:29
Question 7
2:53
Friction

6m 37s

Intro
0:00
Question 1
0:13
Question 2
0:47
Question 3
1:25
Question 4
2:26
Question 5
3:43
Question 6
4:41
Question 7
5:13
Question 8
5:50
Ramps and Inclines

6m 13s

Intro
0:00
Question 1
0:18
Question 2
1:01
Question 3
2:50
Question 4
3:11
Question 5
5:08
Circular Motion

5m 17s

Intro
0:00
Question 1
0:21
Question 2
1:01
Question 3
1:50
Question 4
2:33
Question 5
3:10
Question 6
3:31
Question 7
3:56
Question 8
4:33
Gravity

6m 33s

Intro
0:00
Question 1
0:19
Question 2
1:05
Question 3
2:09
Question 4
2:53
Question 5
3:17
Question 6
4:00
Question 7
4:41
Question 8
5:20
Momentum & Impulse

9m 29s

Intro
0:00
Question 1
0:19
Question 2
2:17
Question 3
3:25
Question 4
3:56
Question 5
4:28
Question 6
5:04
Question 7
6:18
Question 8
6:57
Question 9
7:47
Conservation of Momentum

9m 33s

Intro
0:00
Question 1
0:15
Question 2
2:08
Question 3
4:03
Question 4
4:10
Question 5
6:08
Question 6
6:55
Question 7
8:26
Work & Power

6m 2s

Intro
0:00
Question 1
0:13
Question 2
0:29
Question 3
0:55
Question 4
1:36
Question 5
2:18
Question 6
3:22
Question 7
4:01
Question 8
4:18
Question 9
4:49
Springs

7m 59s

Intro
0:00
Question 1
0:13
Question 4
2:26
Question 5
3:37
Question 6
4:39
Question 7
5:28
Question 8
5:51
Energy & Energy Conservation

8m 47s

Intro
0:00
Question 1
0:18
Question 2
1:27
Question 3
1:44
Question 4
2:33
Question 5
2:44
Question 6
3:33
Question 7
4:41
Question 8
5:19
Question 9
5:37
Question 10
7:12
Question 11
7:40
Electric Charge

7m 6s

Intro
0:00
Question 1
0:10
Question 2
1:03
Question 3
1:32
Question 4
2:12
Question 5
3:01
Question 6
3:49
Question 7
4:24
Question 8
4:50
Question 9
5:32
Question 10
5:55
Question 11
6:26
Coulomb's Law

4m 13s

Intro
0:00
Question 1
0:14
Question 2
0:47
Question 3
1:25
Question 4
2:25
Question 5
3:01
Electric Fields & Forces

4m 11s

Intro
0:00
Question 1
0:19
Question 2
0:51
Question 3
1:30
Question 4
2:19
Question 5
3:12
Electric Potential

5m 12s

Intro
0:00
Question 1
0:14
Question 2
0:42
Question 3
1:08
Question 4
1:43
Question 5
2:22
Question 6
2:49
Question 7
3:14
Question 8
4:02
Electrical Current

6m 54s

Intro
0:00
Question 1
0:13
Question 2
0:42
Question 3
2:01
Question 4
3:02
Question 5
3:52
Question 6
4:15
Question 7
4:37
Question 8
4:59
Question 9
5:50
Resistance

5m 15s

Intro
0:00
Question 1
0:12
Question 2
0:53
Question 3
1:44
Question 4
2:31
Question 5
3:21
Question 6
4:06
Ohm's Law

4m 27s

Intro
0:00
Question 1
0:12
Question 2
0:33
Question 3
0:59
Question 4
1:32
Question 5
1:56
Question 6
2:50
Question 7
3:19
Question 8
3:50
Circuit Analysis

6m 36s

Intro
0:00
Question 1
0:12
Question 2
2:16
Question 3
2:33
Question 4
2:42
Question 5
3:18
Question 6
5:51
Question 7
6:00
Magnetism

3m 43s

Intro
0:00
Question 1
0:16
Question 2
0:31
Question 3
0:56
Question 4
1:19
Question 5
1:35
Question 6
2:36
Question 7
3:03
Wave Basics

4m 21s

Intro
0:00
Question 1
0:13
Question 2
0:36
Question 3
0:47
Question 4
1:13
Question 5
1:27
Question 6
1:39
Question 7
1:54
Question 8
2:22
Question 9
2:51
Question 10
3:32
Wave Characteristics

5m 33s

Intro
0:00
Question 1
0:23
Question 2
1:04
Question 3
2:01
Question 4
2:50
Question 5
3:12
Question 6
3:57
Question 7
4:16
Question 8
4:42
Question 9
4:56
Wave Behaviors

3m 52s

Intro
0:00
Question 1
0:13
Question 2
0:40
Question 3
1:04
Question 4
1:17
Question 5
1:39
Question 6
2:07
Question 7
2:41
Question 8
3:09
Reflection

3m 48s

Intro
0:00
Question 1
0:12
Question 2
0:50
Question 3
1:29
Question 4
1:46
Question 5
3:08
Refraction

2m 49s

Intro
0:00
Question 1
0:29
Question 5
1:03
Question 6
1:24
Question 7
2:01
Diffraction

2m 34s

Intro
0:00
Question 1
0:16
Question 2
0:31
Question 3
0:50
Question 4
1:05
Question 5
1:37
Question 6
2:04
Electromagnetic Spectrum

7m 6s

Intro
0:00
Question 1
0:24
Question 2
0:39
Question 3
1:05
Question 4
1:51
Question 5
2:03
Question 6
2:58
Question 7
3:14
Question 8
3:52
Question 9
4:30
Question 10
5:04
Question 11
6:01
Question 12
6:16
Wave-Particle Duality

5m 30s

Intro
0:00
Question 1
0:15
Question 2
0:34
Question 3
0:53
Question 4
1:54
Question 5
2:16
Question 6
2:27
Question 7
2:42
Question 8
2:59
Question 9
3:45
Question 10
4:13
Question 11
4:33
Energy Levels

8m 13s

Intro
0:00
Question 1
0:25
Question 2
1:18
Question 3
1:43
Question 4
2:08
Question 5
3:17
Question 6
3:54
Question 7
4:40
Question 8
5:15
Question 9
5:54
Question 10
6:41
Question 11
7:14
Mass-Energy Equivalence

8m 15s

Intro
0:00
Question 1
0:19
Question 2
1:02
Question 3
1:37
Question 4
2:17
Question 5
2:55
Question 6
3:32
Question 7
4:13
Question 8
5:04
Question 9
5:29
Question 10
5:58
Question 11
6:48
Question 12
7:39
Loading...
This is a quick preview of the lesson. For full access, please Log In or Sign up.
For more information, please see full course syllabus of AP Physics 1 & 2
  • Discussion

  • Study Guides

  • Download Lecture Slides

  • Table of Contents

  • Transcription

  • Related Books

Lecture Comments (55)

1 answer

Last reply by: Professor Dan Fullerton
Mon Nov 12, 2018 1:10 PM

Post by Dian Jin on October 29 at 07:15:09 PM

Hi Professor Dan,
I got no idea about the example 4. I feel like the lifting is caused by elevator while...Hmm, I can't tell, but I couldn't connect elevator with  scale. They seem like two separated system.

3 answers

Last reply by: Professor Dan Fullerton
Sun Jan 29, 2017 7:05 PM

Post by Nicole Mcenerney on January 25, 2017

In Example Number 10, you have that the T=m1gsin30 + m1a but then when you plugged it in the Fnet equation for mass2 you used m1gsin30-m1a.  Why when you plugged it in did it change from adding to subtracting?

0 answers

Post by Elman Ahmed on July 7, 2016

Thanks for the sample no. 9 and 10. I got something very similar regarding pulley in the final exam. It was a great review! Glad that i listened to it!

1 answer

Last reply by: Professor Dan Fullerton
Mon Nov 23, 2015 7:35 AM

Post by Jimmy Jones on November 3, 2015

Hey Professor Fullerton,

I got confused on example 3, box held by force.

Wouldn't you do 50cos30 rather than 50sin30, because the question asks for the magnitude of friction which is usually horizontal, not vertical?

Thanks.

2 answers

Last reply by: Jim Tang
Fri Jul 24, 2015 7:33 PM

Post by Jim Tang on July 24, 2015

Hi Dan!

I feel like I know how to do it, but I don't know what I'm doing. Can you elaborate a little further about how massless (ideal) pulley equates to equal tension everywhere in the string and constant acceleration. I can't seem to intuitively understand this. Thanks!

3 answers

Last reply by: Professor Dan Fullerton
Mon Jun 15, 2015 6:03 PM

Post by David Saver on May 8, 2015

in example 8 why is m1 formula T - m1g
and formula for net force for m2 is m2g -T
Why are they the opposite?

1 answer

Last reply by: Professor Dan Fullerton
Sat Nov 29, 2014 7:18 AM

Post by MOGIN Daniloff on November 28, 2014

Hi, I don't understand why in the Atwood machine system the Ts are equal. If this is so then why are the masses different? Is it possible to have different masses yet at the same time have them both pull on one another with equal force?
Thank you.

1 answer

Last reply by: Professor Dan Fullerton
Thu Oct 16, 2014 1:41 PM

Post by luis laosfarfan on October 16, 2014

hello professor, why is it that the downward direction you call it positive would it be negative. and how come when we were dealing with kinematics in 1 2 & 3 dimensions we were using for the x component of the net vector cos and for the y component of the vector sin and now with forces we happen to change it now we use cos for the why components and sin for the x components you in the pseudo diagram  

1 answer

Last reply by: Professor Dan Fullerton
Fri Oct 10, 2014 5:04 AM

Post by Jinwei Wang on October 9, 2014

Hi Professor, I have a problem that I have no ideas how to solve it...
Can you explain it specifically, so I can understand the processes?
A champion archer hits a bullseye in a target mounted on a wall a distance L away and situated at a height h above his bow.  Deduce the equation between the speed (at which the arrow left his bow), the arrow’s initial angle θ with the horizontal, the height, and the distance of the target (whose solution the archer evidently knew.  Neglect air resistance).

1 answer

Last reply by: Professor Dan Fullerton
Thu Jul 24, 2014 5:27 AM

Post by Him Tam on July 23, 2014

In example 5, how does the component parallel to the hill involve sine? Shouldn't it be cosine so it's parallel to the ground?

1 answer

Last reply by: Professor Dan Fullerton
Thu Jul 24, 2014 5:27 AM

Post by Him Tam on July 23, 2014

For the atwood machines, how do you know that m1g-T1 = m1a or that T2 - m2g = m2a?

1 answer

Last reply by: Professor Dan Fullerton
Thu Jul 10, 2014 8:40 AM

Post by Jamal Tischler on July 10, 2014

At example 10. If we had friction, we didnt know what direction it had because we didnt know the masses. How we solve this ?

2 answers

Last reply by: Tom Glow
Mon Jun 30, 2014 10:11 AM

Post by Tom Glow on June 29, 2014

Hey Professor Dan, I have a question about the Atwood Machine.

Say that one of the masses is on the ground and the other is in the air, would it be possible to calculate how much force the mass on the ground exerts as the mass that is in the air changes?  Or would that require complex mathematics?

I would assume that the tension would play into the force exerted by the object on the ground, where the greater the tension the less force applied.

2 answers

Last reply by: Thivikka Sachithananthan
Mon Jun 2, 2014 10:47 AM

Post by Thivikka Sachithananthan on June 2, 2014

for example 4, why does g is not equal to -10? we denoted plus to be in the upward direction. so why is g not negative? thanks.  

1 answer

Last reply by: Professor Dan Fullerton
Fri Jan 10, 2014 7:02 AM

Post by Hyun Cho on January 9, 2014

hey could you help me with ex4? when you said normal force=mg+may, why isnt the acceleration in the y direction -7m/s2? i thought that thr gravity acceleration is -10 and the elevator is accelerating 3 so overall acceleration in the y is -7

1 answer

Last reply by: Professor Dan Fullerton
Wed Sep 18, 2013 9:25 AM

Post by Gaurav Kumar on September 18, 2013

I understand all the math, but I have one conceptual question. In atwood machines, how can we assume the tensions are equal when different masses hang from them?

3 answers

Last reply by: Professor Dan Fullerton
Tue Jul 23, 2013 2:13 PM

Post by Gaurav Kumar on July 23, 2013

In example 10, why are we assuming that the acceleration of m1 is equal to the acceleration of m2?

1 answer

Last reply by: Professor Dan Fullerton
Thu Jun 6, 2013 9:10 AM

Post by Jay Gill on June 5, 2013

GREAT LECTURE!

1 answer

Last reply by: Professor Dan Fullerton
Tue May 14, 2013 5:35 PM

Post by Jamie Ward on May 14, 2013

These lectures are great! I was wondering where I could find out more about the "math trick" you mentioned where you add the two equations together as in the Atwood machine example. What are the conditions that allow for these equations to be added together like this? Thanks!

2 answers

Last reply by: Nawaphan Jedjomnongkit
Fri May 10, 2013 2:17 PM

Post by Nawaphan Jedjomnongkit on May 10, 2013

From Ex9 why a = g(m2/m1+m2) not a = m2g/ (m1+m2) ??? Thank you

1 answer

Last reply by: Professor Dan Fullerton
Sat Apr 27, 2013 5:46 PM

Post by Edward Xavier on April 27, 2013

concepts were clearly explained with great examples :D

3 answers

Last reply by: Professor Dan Fullerton
Sat May 4, 2013 5:07 PM

Post by Nikki CONSTANT on April 10, 2013

Your lectures are AWESOME!!! Very organized and you hit all the main concepts. Thank you!!!

Dynamics Applications

  • FBDs are tools for visualizing forces on a single object and writing equations to represent a physical situation.
  • The x- and y-axes may be set in such a manner that the object's motion lines up with one of the axes, and is perpendicular to the second axis.
  • Pseudo-FBDs show all vectors or components of vectors parallel to one of the designated axes.
  • The tension is constant in a light string passing over a massless pulley.
  • A scale doesn't read an object's weight, it reads the normal force it exerts back on an object.

Dynamics Applications

Lecture Slides are screen-captured images of important points in the lecture. Students can download and print out these lecture slide images to do practice problems as well as take notes while watching the lecture.

  • Intro 0:00
  • Objectives 0:08
  • Free Body Diagrams 0:49
  • Drawing FBDs 1:09
    • Draw Object of Interest as a Dot
    • Sketch a Coordinate System
  • Example 1: FBD of Block on Ramp 1:39
  • Pseudo-FBDs 1:59
    • Draw Object of Interest as a Dot
    • Break Up the Forces
  • Box on a Ramp 2:12
  • Example 2: Box at Rest 4:28
  • Example 3: Box Held by Force 5:00
  • What is an Atwood Machine? 6:46
    • Two Objects are Connected by a Light String Over a Mass-less Pulley
  • Properties of Atwood Machines 7:13
    • Ideal Pulleys are Frictionless and Mass-less
    • Tension is Constant in a Light String Passing Over an Ideal Pulley
  • Solving Atwood Machine Problems 8:02
  • Alternate Solution 12:07
    • Analyze the System as a Whole
  • Elevators 14:24
    • Scales Read the Force They Exert on an Object Placed Upon Them
    • Can be Used to Analyze Using Newton's 2nd Law and Free body Diagrams
  • Example 4: Elevator Accelerates Upward 15:36
  • Example 5: Truck on a Hill 18:30
  • Example 6: Force Up a Ramp 19:28
  • Example 7: Acceleration Down a Ramp 21:56
  • Example 8: Basic Atwood Machine 24:05
  • Example 9: Masses and Pulley on a Table 26:47
  • Example 10: Mass and Pulley on a Ramp 29:15
  • Example 11: Elevator Accelerating Downward 33:00

Transcription: Dynamics Applications

Hi everyone and welcome back to Educator.com.0000

We are going to take a look at dynamics applications and problem solving in this lesson.0003

Our objectives are going to be to draw and label a free-body diagram (FBD), showing all the forces acting on an object on a ramp.0008

We will also draw a pseudo free-body diagram (P-FBD)showing all components of forces acting on the object -- some overlap with what we have done previously in reinforcement.0016

We will utilize Newton's Laws of Motion to solve problems of objects on ramps.0025

Gain an understanding that tension is constant in a light string passing over a massless, or ideal pulley.0030

We will analyze systems of two objects connected by a light string over a massless pulley, and finally, we will determine the reading on a scale in an accelerating elevator.0036

So, with that, let us go back to FBDs again -- a quick review.0047

FBDs are tools used to analyze physical situations and they show all the forces acting on a single object.0052

Then, we draw all the forces on that object and we draw the object as either a box or as a dot.0060

When we are drawing FBDs -- what we are going to do is we are going to choose the object of interest and draw it.0069

Then label all the external forces and draw them.0075

And then sketch the coordinate system choosing the direction of the objects motion as one of the positive axis.0078

When we do this for the case of an object on a ramp, that is going to be up or down the ramp, which means typically we are going to have an off-set or a tilted set of axis.0084

Quick review -- we have a block sitting on a ramp -- What do we do about the forces acting on it?0100

We already said we have the normal force, we have the weight, and the force of friction and we draw them just like they are on the ramp so the answer here would be 4.0105

Once we have that down, we are going to complicate matters a little bit.0116

With the P-FBDs -- when the forces do not line up with the axis, we draw a new separate FBD and break up those forces into their components that do line up on the axis.0120

So here is our box on a ramp. Let us draw the forces -- the FBD, and the P-FBD -- for it sitting on the ramp.0132

Then we are going to write Newton's Second Law equations for the x and the y directions.0141

So for this box we have its weight down, normal force, and the force of friction, since it wants to slide down the ramp.0146

Our FBD -- we will draw our axis -- We have mg down. We have the force of friction and the normal force.0157

And as we said -- this weight does not line up with an axis.0172

So P-FBD (y,x) -- we have mg perpendicular to the ramp, mg parallel to the ramp, and of course normal force and frictional force do not need to be adjusted.0178

A couple of formulas that went with this -- mg parallel -- the component of weight down the ramp or parallel to the objects motion is mg sin θ, mg perpendicular -- the component of weight into the ramp, was mg cos θ.0199

With that we could write Newton's Second Law equations.0216

In the x direction, the net force in the x direction just means look at the x axis and draw all the forces acting in that direction.0220

In this case if I call to the right up the ramp positive, that is going to be the force of friction minus mg parallel or mg sin θ and that is equal to ma.0228

In this case since it is just sitting there, there is no acceleration -- that is equal to 0.0242

Or in the y direction -- net force in the y direction is the normal force minus mg perpendicular or mg cos θ and in the y direction it is not accelerating either.0247

So that is all equal to 0. There is our setup.0261

For the box at rest here we have three forces acting on our box on an inclined plane, as shown in the diagram and the vectors are not drawn to scale.0268

If the box is at rest, the net force acting on it is equal to...0277

Well before you get too involved in a problem like this -- it is at rest.0281

At rest means acceleration, 0. It is going to stay at rest. No net force, therefore, answer 4 must be correct.0287

Now we have our box held by a force. 5 kg mass is held at rest on a frictionless 30 degree incline by force F.0300

What is the magnitude of F?0309

Well let us start with our FBD. We have F acting up the ramp; we have the normal force perpendicular to our surface, and we have mg.0312

So now I am going to do my P-FBD over here.0329

We still have F up the ramp, and we still have our normal force, but now we have mg sin θ or mg parallel down the ramp and mg cos θ.0334

So now I can go write my Newton's Second Law equation for the x direction.0351

Net force in the x direction is going to be equal to -- if I call this direction positive, that is going to be F minus mg sin θ -- that has to be equal to 0 because it is held at rest.0359

Therefore, F must be equal to mg sin θ, which is 5 kg × g to approximate 10 m/s2 × the sin of the angle θ sin 30 degrees.0376

We know that sin 30 degrees is half, so that is 50 × 0.5 or 25N.0392

Great. Let us take a look at what we call Atwood machines.0404

Two objects masses m1 and m2 are connected by a light string over a massless pulley.0409

M1, m2 -- pulley of sum radius r and a string -- all connected.0416

That is a basic Atwood machine, an experimental or theoretical device designed to help students understand how forces interact, especially when we are talking about Newton's Laws of Motion.0420

So, properties of Atwood machines -- they have ideal pulleys.0433

If the ideal pulleys are frictionless and massless -- meaning they do not add any inertia to the system -- then you can say that the tension on either side has to be the same.0437

That only works because this is a massless pulley but it is constant in the light string since it is an ideal pulley -- it has no mass.0448

So tension 1 here must equal tension 2.0455

Now as we set these up -- first we are going to adopt the sin convention for positive and negative motion because as one goes up and one goes down it could be a little confusing which way is positive.0461

So I like to go draw a direction around the pulley and call that the positive direction.0471

Then what we are going to do is analyze each mass separately using Newton's Second Law.0476

Here we have our system m1 and m2 -- we have called this way around the pulley, positive y and now we want to know what its acceleration is.0483

So the first thing I am going to do is I am going to come in here and I am going to label this tension 1 and that tension 2, just so I do not mix these up later.0493

And as I look at mass 1 to draw its FBD -- there is mass 1 and going down we have m1 g, its weight, and we have t1 tension -- a rope can only pull, so that must be up -- there is t1.0503

And for this mass, because of our axis over here -- down is the positive y direction.0521

Lets do the same thing for the second mass over here for mass 2, we have m2 g down and we have t2 up.0529

In this case though, up is going to be the positive direction because of our arrow, the direction that we indicated here.0540

So over here positive y is that direction.0546

Now what I am going to do is start writing Newton's Second Law equations to see if I cannot solve for the acceleration of the system.0551

If I start with mass 1, the net force in the y direction, well m1g in the positive direction minus t1 in the negative y direction must equal m1a.0557

Let us write a Newton's Second Law equation for m2.0577

We have t2 in the positive direction minus m2g and since m2g is in the negative direction over here, then that must equal m2a.0581

Finally, we know because it is an ideal pulley, that t1 must equal t2.0593

So what I am going to do now is I am going to see if I cannot combine these equations because I have a couple of unknowns.0601

I do not know t1, I do not know (a), and I do not know t2.0606

So with three equations and three unknowns I should be able to solve this.0610

I will start with m1g - t1 = m1a. Then I am going to add to it our second equation t2 - m2g = m2a.0615

Now if the left and right sides are equal and the left and right sides are equal, if I add both left sides and both right sides I should still be equal.0628

A little math trick we can pull.0637

So if I add the left hand sides here I end up with m1g - t1 + t2 - m2g all equal to...0640

And the right hand sides if I add them up m1a + m2a, but I also know that t1 = t2.0652

So I am going to replace t1 with t2 in the equation minus t1 + t2, and if those are equal those add up to 0.0666

So my new equation m1g - m2g = m1a + m2a.0675

And I am trying to solve for a, so I am going to write this as gm1 - m2 on the left hand side equals am1 + m2.0687

And if I divide both sides be m1 + m2 I get that (a) is equal to g × m1- m2/m1 + m2.0700

I solve for the acceleration of the system by using two separate FBDs.0715

As an alternate solution we could look at this as an entire single system.0727

I am going to define my system now as m1, the rope, and m2.0732

So everything inside that dotted line is part of my single system, my single more complex object.0741

And I am defining this direction to be positive y again, so if I re-draw this a little bit I could re-draw this as m1 over here attached to a string, m2 and I am just taking those pieces of the Atwood machine and flattening them out for the purposes of looking at this as a system.0750

On m2 I am going to have a force of m2g that passes through that barrier. So we have m2g this way.0774

Over here I have m1g passing in that direction.0783

So over here I have m1g, again because positive y is pointing this way, that is my definition of the positive y direction.0790

Well, if I write Newton's Second Law now for this system, where again I have defined the system as basically what is inside that dotted container, what I get is to the left in the positive direction I have the force m1g, to the right I have the force m2g...0801

...so minus m2g because it is in the opposite direction of the positive y.0823

And that must equal the mass of my system. The mass of my system is m1 + m2 times the acceleration of the system.0828

Now look how slick this is. All I have to do now is divide both sides by m1 + m2 and I end up then with a = gm1 - m2/m1 + m2.0837

The same thing I had before, but just an alternate approach -- analyzing the solution as a whole.0855

Lets talk a little bit about elevators.0865

For some reason physicists seem to love the concept of putting a scale that measures an objects weight in an elevator.0868

I do not really know why, they just seem to love it.0875

So let us talk about it because you may see a problem or two come up like this.0878

To begin with, we need to talk about scales.0882

Scales do not really tell you the weight of an object and you should know that because you can go jump on your scale and for a minute it gets a really, really big reading and then it is a light reading and it levels out a little bit.0884

So it is not reading your weight the entire time, it is reading something else.0895

What it is really reading is the normal force that exerts on you.0899

If you put a scale down, you stand on it and once it comes to an equilibrium position as you are standing on the scale, what the scale actually reads on the reading is the normal force that it is exerting, the force it is exerting back on you.0904

Scales read the normal force and if we put scales in things like accelerating elevators, we can get some interesting results.0922

But we can analyze all of them with the stuff we already know using Newton's Second Law and FBDs.0929

So let us take a look here.0935

Buddy the dog with the mass of 25 kg is standing on a scale in an elevator when the elevator accelerates upward at 3 m/s 2.0938

Probably scared Buddy the dog -- there might have been a little barking there.0947

What does the scale read while it is accelerating and what does it read once the elevator has come to a complete stop?0950

Well lets draw a FBD of our situation.0955

Here we go -- There is Buddy. We have Buddy's weight down mg and the force of the scale, the normal force back on Buddy.0960

And let us call up the positive y direction.0973

Now Newton's Second Law in the y direction -- Fnety = MAy.0977

So in this case net force in the y direction is just going to be the normal force minus mg and that must be equal to MAy.0986

And if we want to know what does the scale read -- what we are really looking for is the normal force.0996

Therefore the normal force, the scale reading is going to be equal to mg plus (m) times(a) acceleration in the y direction.1004

Therefore, the scale reading Fn is equal to Buddy's mass, 25 kg times the acceleration due to gravity g (10) plus Buddy's mass again, still 25 kg times the acceleration of the elevator, 3 m/s 2 up, so that is positive.1017

So we have 25 × 10 = 250 + 25 × 3 = 75, the scale is going to read 320N.1040

Considerably more than Buddy's 250N weight while it is accelerating upward.1051

What happens when it comes to rest, when it is stopped?1059

Well, when it is at rest we can use the same equation -- his Fn = mg + MAy, but as we do that now, when it is at rest Ay = 0.1062

Therefore the normal force, the reading on the scale is just mg or 25 kg, Buddy's mass, times his acceleration due to gravity, 10 m/s 2, therefore the scale reads 250N.1083

Scales in elevators, very popular problems. So let us try and put all of this together for a few minutes.1106

We have a truck on a hill here showing a 1 × 105 Newton truck, at rest, on a hill that makes an angle of 8 degrees with the horizontal.1112

What is the component of the truck's weight parallel to the hill?1121

Oh, we can go through and do all the FBDs and P-FBDs, or you could recognize that the weight parallel to the hill, it is just asking for mg parallel.1126

That is going to be mg sin θ.1136

In this case it tells us mg, the trucks weight, is 1 × 105N × the sin of 8 degrees or about 1.4 × 104N.1140

The answer is number 3.1161

How about a force upper ramp?1167

We have a block here weighing 10N on a ramp inclined at 30 degrees to the horizontal.1170

A 3N force of friction (ff) acts on the block as it is pulled up the ramp at constant velocity -- that is important, with force f, which is parallel to the ramp as shown.1175

What is the magnitude of force f?1186

Right away, I start thinking FBDs, let us get ourselves some help here.1190

So there we have our axis, x and y and our forces -- we have the normal force perpendicular to the surface, we have the force f up the ramp, we have a force of friction down the ramp, and we have the 10N force, the weight.1198

And that does not line up with our axis, so we have to do something about that -- P-FBD time.1221

All right, x y -- F up the ramp again, normal force perpendicular to the ramp, force of friction down the ramp -- now 10N, we have a parallel and a perpendicular component.1231

The parallel component is going to be 10 sin θ, mg sin θ, which is going to be 10 sin 30 degrees and the perpendicular component 10 cos 30 degrees.1249

So to find the magnitude of force f, all I am going to do is write my Fnet equation Fnetx =...1263

Well, what I have is f, up the ramp minus force of friction minus 10 sin 30 degrees and that is equal to mass times acceleration.1276

But we are at constant velocity a = 0, so that is all equal to 0.1288

If I want the force f then, f equals the force of friction plus 10 sin 30 degrees.1292

Force of friction is 3N, so that is 3 + 10 sin 30 = 5 for a grand total of 8N.1303

How about acceleration down a ramp?1316

100 kg block sides down a frictionless 30 degree incline as shown. Find the acceleration of the block.1319

Lets start with our FBD.1326

We know it is going to go down, so I will call that the x direction. There is our y.1335

Now we have a normal force perpendicular to the ramp and we have the block's weight (mg).1341

Mg does not line up with an axis, so just like we have been doing -- time to come back to the P-FBD.1349

Our axis again, (x, y), normal force. Now we have our components of mg -- we have mg parallel, mg sin θ, down the ramp, and mg perpendicular, mg cos θ end of the ramp.1358

So if we want to acceleration of the block, I am going to start with the net force in the x direction. 1387 So net force in the x direction is equal to -- we have mg sin θ, the only thing acting in the x direction, and that must equal MA in the x direction.1380

Therefore the acceleration in the x direction must be mg sin θ divided by m, or g sin θ.1403

How cool, we did not even need mass to solve this problem.1416

All we need to know is acceleration due to gravity, a constant here on the surface of the earth, and the angle.1419

The mass does not make a difference.1424

So that the acceleration in the x direction is just going to be 10 sin 30 degrees or 5m/s2. Very slick.1427

Let us take a look at another Atwood machine problem.1443

Find the acceleration of the 20 kg mass, given that the masses are connected by a light string over an ideal massless pulley.1446

And the moment you see "ideal massless pulley" right away you can go and make the assumption that the tensions we have on these are going to be equal.1454

Let us call that t, let us call that (t) right there and we will set them as equal now.1463

And since that is pretty easy to see the 20 kg mass is going to win here, I am going to define that direction as my positive y.1467

Let us call this m1 and we will call this m2.1475

So FBD for m1 -- we have m1g, down, and we have tension, up, and for m1, up is the positive y direction.1480

Lets do the same for m2 again. For m2 we have m2g, down, we have (t), up, and we will call down the positive y direction.1496

So when I write my Newton's Second Law equations for m1, I end up with t - m1g must equal m1a.1509

For mass 2, m2g - t must equal m2a.1521

We do this the same way we did before.1533

We can solve these lots of different ways, but this seems to be working for us right now.1535

So when I add these up, I am going to have t and -t that will make 0, so I end up with m2g - m1g = m1a + m2a.1540

Or solving for (a), we have (g) on the left hand side, m2 - m1 = a, m1 + m2 or a = g times the quantity m2 - m1/m1 + m2.1556

Now I just substitute in my values, a = g (10) × m2 - m1, 20 - 15/m1 + m2, 20 + 15 -- so that is 10 × 5/35 or 1.43 m/s 2.1578

All right, what happens if we switch up our system a little bit?1605

Now we have two masses, m1 and m2, connected by a light string over a massless pulley.1610

So again, the tensions can be equal, but now one of them is on a table on a frictionless surface.1615

Find the acceleration of m2.1621

Let us see what we can do here.1624

Right away I can tell that this thing is going to accelerate in that direction.1626

So I am going to call that the positive y direction.1631

And if we start by our FBD for m1 -- I have down m1g -- I have the normal force on m1, and let us call that t in both places -- can call it the same thing since it is equal -- T to the right.1634

And we also have m2 here, where we have m2g down, and t up.1656

And here that is the positive y direction and for m1 that is our positive y direction.1665

So let us write our equations -- Newton's Second Law over here for m1.1673

I am going to look in the x direction and just say that Fnet is t, which equals m1a.1676

For m2, same idea -- Net force is going to be m2g - t = m2a.1685

Let us add those together like we did before.1697

Our first equation, t = m1a, and our second equation, m2g - t = m2a.1700

When I put them all together and I end up with m2g on the left-hand side equals m1a + m2a or m2g = a × the quantity, m1 + m2.1713

Or if I want the acceleration of the system, which will be the acceleration of m2, a = g × m2/m1 + m2.1730

Slightly different problem, but we solved it the same way, using those same skills, those same tools.1745

What happens if we put our masses and pulleys on a ramp?1754

We are getting a little bit more involved every time.1758

Well, in this case, it is kind of tough to tell exactly which one is going to win but I am just going to pick a direction to begin with and I am going to call that direction around the pulley my positive y direction.1762

So once I have done that, I notice it is a massless pulley again so we can call both of those tensions, the tension is going to be equal, and we are looking for the acceleration of mass2 which is the same as the acceleration of mass1, and it is the same as the acceleration of the system.1774

So let us start by drawing our free body diagram for m1.1789

It is on a ramp, so let us call that our positive direction.1794

We also have the y axis and for our object, we have m1g, always down, we have the normal force on it, Fn, and we have force of tension up the ramp.1799

Right away again, we should be thinking P-FBD because m1g does not line up with the axis.1819

So let us do that right here. There we go.1826

We have tension up the ramp. We have normal force, -- now, m1g, we have got to break up into components -- the component parallel to the ramp is going to be m1g sin 30 degrees and perpendicular to the ramp, m1g, cos sin 30 degrees.1833

If we go and we also draw the FBD now for mass2 -- let us do that over here -- we have tension up, m2g down, and we are defining down as the positive y direction.1857

So this, Newton's Second Law equation is easy. Fnety is going to be equal to m2g - t which is m2a.1871

Over here, we have a little bit more work to do.1885

If we wanted to write the equation here, let us look in the x direction since that is the direction it is going to be moving -- I have the t - m1g sin 30 degrees = m1a.1888

If I rearrange this a little bit, t = m1g sin 30 degrees + m1a.1904

All right. Well, I am going to do this one a little bit differently.1916

I am going to replace t in this equation with all of that so when I do that, I get the m2g - m1g sin 30 - m1a = m2a.1919

We are solving for a again, so let us get all the a's on the same side, m2g - m1g sin 30 degrees = a × m1 + m2.1939

Or a = g × the quantity m2 - m1 sin 30 degrees/m1 + m2.1954

We are just extending what we have been doing to slightly more complicated situations.1970

Let us try one last more to round all this out.1977

Let us go back to our elevators problem.1980

Darryl the Duck, who has a weight of 230N is standing on a scale in an elevator when the elevator accelerates downwards at 3 m/s2. What does the scale read?1983

Remember what we are really looking for here is the normal force at scale.1994

Well, FBD for Darryl the Duck, we have mg down, which is 230N -- we know his weight.1999

We have the normal force or the force of the scale up on him.2008

Let us call down our positive y direction.2012

Net force in the y direction then is going to be mg - the normal force and that must equal ma.2018

Therefore, the normal force must equal mg - ma or normal force = mg (230N) - ma in this case -- well, we do not know his mass.2029

But we know mg = 230N, o if mg = 230, then m must be 230/g or 230/10 which is 23 kg.2050

So mass, 23 kg × the acceleration and since it is down and we call down positive -- that is a positive 3 m/s2.2063

So the normal force then, 230 - 23 × 3 or about 161N.2073

So his typical weight is 230N, but as the elevator accelerates down underneath him, he feels lighter for a second, the scale reads less.2082

That goofy feeling you have when the elevator drops out from underneath you and you feel like you are lighter for a second, well you are not lighter, the normal force is actually less on you.2090

Imagine you are on the bottom floor and the elevator jolts up with you in it.2100

Don't you feel heavy for a second, like you are being compressed into the bottom of the elevator?2103

That is when the scale reads more than your typical weight.2107

Hopefully, that gets you a good start on some applications of Newton's Second Law and all these different dynamics problems ranging from boxes on ramps to Atwood machines to elevator problems.2111

Hope you have gotten something great out of it.2122

Thank you for watching Educator.com and make it a great day!2124

Educator®

Please sign in for full access to this lesson.

Sign-InORCreate Account

Enter your Sign-on user name and password.

Forgot password?

Start Learning Now

Our free lessons will get you started (Adobe Flash® required).
Get immediate access to our entire library.

Sign up for Educator.com

Membership Overview

  • Unlimited access to our entire library of courses.
  • Search and jump to exactly what you want to learn.
  • *Ask questions and get answers from the community and our teachers!
  • Practice questions with step-by-step solutions.
  • Download lesson files for programming and software training practice.
  • Track your course viewing progress.
  • Download lecture slides for taking notes.

Use this form or mail us to .

For support articles click here.