Sign In | Sign Up
Start learning today, and be successful in your academic & professional career. Start Today!

Use Chrome browser to play professor video
Dr. Ji Son

Dr. Ji Son

Stemplots

Slide Duration:

Table of Contents

Section 1: Introduction
Descriptive Statistics vs. Inferential Statistics

25m 31s

Intro
0:00
Roadmap
0:10
Roadmap
0:11
Statistics
0:35
Statistics
0:36
Let's Think About High School Science
1:12
Measurement and Find Patterns (Mathematical Formula)
1:13
Statistics = Math of Distributions
4:58
Distributions
4:59
Problematic… but also GREAT
5:58
Statistics
7:33
How is It Different from Other Specializations in Mathematics?
7:34
Statistics is Fundamental in Natural and Social Sciences
7:53
Two Skills of Statistics
8:20
Description (Exploration)
8:21
Inference
9:13
Descriptive Statistics vs. Inferential Statistics: Apply to Distributions
9:58
Descriptive Statistics
9:59
Inferential Statistics
11:05
Populations vs. Samples
12:19
Populations vs. Samples: Is it the Truth?
12:20
Populations vs. Samples: Pros & Cons
13:36
Populations vs. Samples: Descriptive Values
16:12
Putting Together Descriptive/Inferential Stats & Populations/Samples
17:10
Putting Together Descriptive/Inferential Stats & Populations/Samples
17:11
Example 1: Descriptive Statistics vs. Inferential Statistics
19:09
Example 2: Descriptive Statistics vs. Inferential Statistics
20:47
Example 3: Sample, Parameter, Population, and Statistic
21:40
Example 4: Sample, Parameter, Population, and Statistic
23:28
Section 2: About Samples: Cases, Variables, Measurements
About Samples: Cases, Variables, Measurements

32m 14s

Intro
0:00
Data
0:09
Data, Cases, Variables, and Values
0:10
Rows, Columns, and Cells
2:03
Example: Aircrafts
3:52
How Do We Get Data?
5:38
Research: Question and Hypothesis
5:39
Research Design
7:11
Measurement
7:29
Research Analysis
8:33
Research Conclusion
9:30
Types of Variables
10:03
Discrete Variables
10:04
Continuous Variables
12:07
Types of Measurements
14:17
Types of Measurements
14:18
Types of Measurements (Scales)
17:22
Nominal
17:23
Ordinal
19:11
Interval
21:33
Ratio
24:24
Example 1: Cases, Variables, Measurements
25:20
Example 2: Which Scale of Measurement is Used?
26:55
Example 3: What Kind of a Scale of Measurement is This?
27:26
Example 4: Discrete vs. Continuous Variables.
30:31
Section 3: Visualizing Distributions
Introduction to Excel

8m 9s

Intro
0:00
Before Visualizing Distribution
0:10
Excel
0:11
Excel: Organization
0:45
Workbook
0:46
Column x Rows
1:50
Tools: Menu Bar, Standard Toolbar, and Formula Bar
3:00
Excel + Data
6:07
Exce and Data
6:08
Frequency Distributions in Excel

39m 10s

Intro
0:00
Roadmap
0:08
Data in Excel and Frequency Distributions
0:09
Raw Data to Frequency Tables
0:42
Raw Data to Frequency Tables
0:43
Frequency Tables: Using Formulas and Pivot Tables
1:28
Example 1: Number of Births
7:17
Example 2: Age Distribution
20:41
Example 3: Height Distribution
27:45
Example 4: Height Distribution of Males
32:19
Frequency Distributions and Features

25m 29s

Intro
0:00
Roadmap
0:10
Data in Excel, Frequency Distributions, and Features of Frequency Distributions
0:11
Example #1
1:35
Uniform
1:36
Example #2
2:58
Unimodal, Skewed Right, and Asymmetric
2:59
Example #3
6:29
Bimodal
6:30
Example #4a
8:29
Symmetric, Unimodal, and Normal
8:30
Point of Inflection and Standard Deviation
11:13
Example #4b
12:43
Normal Distribution
12:44
Summary
13:56
Uniform, Skewed, Bimodal, and Normal
13:57
Sketch Problem 1: Driver's License
17:34
Sketch Problem 2: Life Expectancy
20:01
Sketch Problem 3: Telephone Numbers
22:01
Sketch Problem 4: Length of Time Used to Complete a Final Exam
23:43
Dotplots and Histograms in Excel

42m 42s

Intro
0:00
Roadmap
0:06
Roadmap
0:07
Previously
1:02
Data, Frequency Table, and visualization
1:03
Dotplots
1:22
Dotplots Excel Example
1:23
Dotplots: Pros and Cons
7:22
Pros and Cons of Dotplots
7:23
Dotplots Excel Example Cont.
9:07
Histograms
12:47
Histograms Overview
12:48
Example of Histograms
15:29
Histograms: Pros and Cons
31:39
Pros
31:40
Cons
32:31
Frequency vs. Relative Frequency
32:53
Frequency
32:54
Relative Frequency
33:36
Example 1: Dotplots vs. Histograms
34:36
Example 2: Age of Pennies Dotplot
36:21
Example 3: Histogram of Mammal Speeds
38:27
Example 4: Histogram of Life Expectancy
40:30
Stemplots

12m 23s

Intro
0:00
Roadmap
0:05
Roadmap
0:06
What Sets Stemplots Apart?
0:46
Data Sets, Dotplots, Histograms, and Stemplots
0:47
Example 1: What Do Stemplots Look Like?
1:58
Example 2: Back-to-Back Stemplots
5:00
Example 3: Quiz Grade Stemplot
7:46
Example 4: Quiz Grade & Afterschool Tutoring Stemplot
9:56
Bar Graphs

22m 49s

Intro
0:00
Roadmap
0:05
Roadmap
0:08
Review of Frequency Distributions
0:44
Y-axis and X-axis
0:45
Types of Frequency Visualizations Covered so Far
2:16
Introduction to Bar Graphs
4:07
Example 1: Bar Graph
5:32
Example 1: Bar Graph
5:33
Do Shapes, Center, and Spread of Distributions Apply to Bar Graphs?
11:07
Do Shapes, Center, and Spread of Distributions Apply to Bar Graphs?
11:08
Example 2: Create a Frequency Visualization for Gender
14:02
Example 3: Cases, Variables, and Frequency Visualization
16:34
Example 4: What Kind of Graphs are Shown Below?
19:29
Section 4: Summarizing Distributions
Central Tendency: Mean, Median, Mode

38m 50s

Intro
0:00
Roadmap
0:07
Roadmap
0:08
Central Tendency 1
0:56
Way to Summarize a Distribution of Scores
0:57
Mode
1:32
Median
2:02
Mean
2:36
Central Tendency 2
3:47
Mode
3:48
Median
4:20
Mean
5:25
Summation Symbol
6:11
Summation Symbol
6:12
Population vs. Sample
10:46
Population vs. Sample
10:47
Excel Examples
15:08
Finding Mode, Median, and Mean in Excel
15:09
Median vs. Mean
21:45
Effect of Outliers
21:46
Relationship Between Parameter and Statistic
22:44
Type of Measurements
24:00
Which Distributions to Use With
24:55
Example 1: Mean
25:30
Example 2: Using Summation Symbol
29:50
Example 3: Average Calorie Count
32:50
Example 4: Creating an Example Set
35:46
Variability

42m 40s

Intro
0:00
Roadmap
0:05
Roadmap
0:06
Variability (or Spread)
0:45
Variability (or Spread)
0:46
Things to Think About
5:45
Things to Think About
5:46
Range, Quartiles and Interquartile Range
6:37
Range
6:38
Interquartile Range
8:42
Interquartile Range Example
10:58
Interquartile Range Example
10:59
Variance and Standard Deviation
12:27
Deviations
12:28
Sum of Squares
14:35
Variance
16:55
Standard Deviation
17:44
Sum of Squares (SS)
18:34
Sum of Squares (SS)
18:35
Population vs. Sample SD
22:00
Population vs. Sample SD
22:01
Population vs. Sample
23:20
Mean
23:21
SD
23:51
Example 1: Find the Mean and Standard Deviation of the Variable Friends in the Excel File
27:21
Example 2: Find the Mean and Standard Deviation of the Tagged Photos in the Excel File
35:25
Example 3: Sum of Squares
38:58
Example 4: Standard Deviation
41:48
Five Number Summary & Boxplots

57m 15s

Intro
0:00
Roadmap
0:06
Roadmap
0:07
Summarizing Distributions
0:37
Shape, Center, and Spread
0:38
5 Number Summary
1:14
Boxplot: Visualizing 5 Number Summary
3:37
Boxplot: Visualizing 5 Number Summary
3:38
Boxplots on Excel
9:01
Using 'Stocks' and Using Stacked Columns
9:02
Boxplots on Excel Example
10:14
When are Boxplots Useful?
32:14
Pros
32:15
Cons
32:59
How to Determine Outlier Status
33:24
Rule of Thumb: Upper Limit
33:25
Rule of Thumb: Lower Limit
34:16
Signal Outliers in an Excel Data File Using Conditional Formatting
34:52
Modified Boxplot
48:38
Modified Boxplot
48:39
Example 1: Percentage Values & Lower and Upper Whisker
49:10
Example 2: Boxplot
50:10
Example 3: Estimating IQR From Boxplot
53:46
Example 4: Boxplot and Missing Whisker
54:35
Shape: Calculating Skewness & Kurtosis

41m 51s

Intro
0:00
Roadmap
0:16
Roadmap
0:17
Skewness Concept
1:09
Skewness Concept
1:10
Calculating Skewness
3:26
Calculating Skewness
3:27
Interpreting Skewness
7:36
Interpreting Skewness
7:37
Excel Example
8:49
Kurtosis Concept
20:29
Kurtosis Concept
20:30
Calculating Kurtosis
24:17
Calculating Kurtosis
24:18
Interpreting Kurtosis
29:01
Leptokurtic
29:35
Mesokurtic
30:10
Platykurtic
31:06
Excel Example
32:04
Example 1: Shape of Distribution
38:28
Example 2: Shape of Distribution
39:29
Example 3: Shape of Distribution
40:14
Example 4: Kurtosis
41:10
Normal Distribution

34m 33s

Intro
0:00
Roadmap
0:13
Roadmap
0:14
What is a Normal Distribution
0:44
The Normal Distribution As a Theoretical Model
0:45
Possible Range of Probabilities
3:05
Possible Range of Probabilities
3:06
What is a Normal Distribution
5:07
Can Be Described By
5:08
Properties
5:49
'Same' Shape: Illusion of Different Shape!
7:35
'Same' Shape: Illusion of Different Shape!
7:36
Types of Problems
13:45
Example: Distribution of SAT Scores
13:46
Shape Analogy
19:48
Shape Analogy
19:49
Example 1: The Standard Normal Distribution and Z-Scores
22:34
Example 2: The Standard Normal Distribution and Z-Scores
25:54
Example 3: Sketching and Normal Distribution
28:55
Example 4: Sketching and Normal Distribution
32:32
Standard Normal Distributions & Z-Scores

41m 44s

Intro
0:00
Roadmap
0:06
Roadmap
0:07
A Family of Distributions
0:28
Infinite Set of Distributions
0:29
Transforming Normal Distributions to 'Standard' Normal Distribution
1:04
Normal Distribution vs. Standard Normal Distribution
2:58
Normal Distribution vs. Standard Normal Distribution
2:59
Z-Score, Raw Score, Mean, & SD
4:08
Z-Score, Raw Score, Mean, & SD
4:09
Weird Z-Scores
9:40
Weird Z-Scores
9:41
Excel
16:45
For Normal Distributions
16:46
For Standard Normal Distributions
19:11
Excel Example
20:24
Types of Problems
25:18
Percentage Problem: P(x)
25:19
Raw Score and Z-Score Problems
26:28
Standard Deviation Problems
27:01
Shape Analogy
27:44
Shape Analogy
27:45
Example 1: Deaths Due to Heart Disease vs. Deaths Due to Cancer
28:24
Example 2: Heights of Male College Students
33:15
Example 3: Mean and Standard Deviation
37:14
Example 4: Finding Percentage of Values in a Standard Normal Distribution
37:49
Normal Distribution: PDF vs. CDF

55m 44s

Intro
0:00
Roadmap
0:15
Roadmap
0:16
Frequency vs. Cumulative Frequency
0:56
Frequency vs. Cumulative Frequency
0:57
Frequency vs. Cumulative Frequency
4:32
Frequency vs. Cumulative Frequency Cont.
4:33
Calculus in Brief
6:21
Derivative-Integral Continuum
6:22
PDF
10:08
PDF for Standard Normal Distribution
10:09
PDF for Normal Distribution
14:32
Integral of PDF = CDF
21:27
Integral of PDF = CDF
21:28
Example 1: Cumulative Frequency Graph
23:31
Example 2: Mean, Standard Deviation, and Probability
24:43
Example 3: Mean and Standard Deviation
35:50
Example 4: Age of Cars
49:32
Section 5: Linear Regression
Scatterplots

47m 19s

Intro
0:00
Roadmap
0:04
Roadmap
0:05
Previous Visualizations
0:30
Frequency Distributions
0:31
Compare & Contrast
2:26
Frequency Distributions Vs. Scatterplots
2:27
Summary Values
4:53
Shape
4:54
Center & Trend
6:41
Spread & Strength
8:22
Univariate & Bivariate
10:25
Example Scatterplot
10:48
Shape, Trend, and Strength
10:49
Positive and Negative Association
14:05
Positive and Negative Association
14:06
Linearity, Strength, and Consistency
18:30
Linearity
18:31
Strength
19:14
Consistency
20:40
Summarizing a Scatterplot
22:58
Summarizing a Scatterplot
22:59
Example 1: Gapminder.org, Income x Life Expectancy
26:32
Example 2: Gapminder.org, Income x Infant Mortality
36:12
Example 3: Trend and Strength of Variables
40:14
Example 4: Trend, Strength and Shape for Scatterplots
43:27
Regression

32m 2s

Intro
0:00
Roadmap
0:05
Roadmap
0:06
Linear Equations
0:34
Linear Equations: y = mx + b
0:35
Rough Line
5:16
Rough Line
5:17
Regression - A 'Center' Line
7:41
Reasons for Summarizing with a Regression Line
7:42
Predictor and Response Variable
10:04
Goal of Regression
12:29
Goal of Regression
12:30
Prediction
14:50
Example: Servings of Mile Per Year Shown By Age
14:51
Intrapolation
17:06
Extrapolation
17:58
Error in Prediction
20:34
Prediction Error
20:35
Residual
21:40
Example 1: Residual
23:34
Example 2: Large and Negative Residual
26:30
Example 3: Positive Residual
28:13
Example 4: Interpret Regression Line & Extrapolate
29:40
Least Squares Regression

56m 36s

Intro
0:00
Roadmap
0:13
Roadmap
0:14
Best Fit
0:47
Best Fit
0:48
Sum of Squared Errors (SSE)
1:50
Sum of Squared Errors (SSE)
1:51
Why Squared?
3:38
Why Squared?
3:39
Quantitative Properties of Regression Line
4:51
Quantitative Properties of Regression Line
4:52
So How do we Find Such a Line?
6:49
SSEs of Different Line Equations & Lowest SSE
6:50
Carl Gauss' Method
8:01
How Do We Find Slope (b1)
11:00
How Do We Find Slope (b1)
11:01
Hoe Do We Find Intercept
15:11
Hoe Do We Find Intercept
15:12
Example 1: Which of These Equations Fit the Above Data Best?
17:18
Example 2: Find the Regression Line for These Data Points and Interpret It
26:31
Example 3: Summarize the Scatterplot and Find the Regression Line.
34:31
Example 4: Examine the Mean of Residuals
43:52
Correlation

43m 58s

Intro
0:00
Roadmap
0:05
Roadmap
0:06
Summarizing a Scatterplot Quantitatively
0:47
Shape
0:48
Trend
1:11
Strength: Correlation ®
1:45
Correlation Coefficient ( r )
2:30
Correlation Coefficient ( r )
2:31
Trees vs. Forest
11:59
Trees vs. Forest
12:00
Calculating r
15:07
Average Product of z-scores for x and y
15:08
Relationship between Correlation and Slope
21:10
Relationship between Correlation and Slope
21:11
Example 1: Find the Correlation between Grams of Fat and Cost
24:11
Example 2: Relationship between r and b1
30:24
Example 3: Find the Regression Line
33:35
Example 4: Find the Correlation Coefficient for this Set of Data
37:37
Correlation: r vs. r-squared

52m 52s

Intro
0:00
Roadmap
0:07
Roadmap
0:08
R-squared
0:44
What is the Meaning of It? Why Squared?
0:45
Parsing Sum of Squared (Parsing Variability)
2:25
SST = SSR + SSE
2:26
What is SST and SSE?
7:46
What is SST and SSE?
7:47
r-squared
18:33
Coefficient of Determination
18:34
If the Correlation is Strong…
20:25
If the Correlation is Strong…
20:26
If the Correlation is Weak…
22:36
If the Correlation is Weak…
22:37
Example 1: Find r-squared for this Set of Data
23:56
Example 2: What Does it Mean that the Simple Linear Regression is a 'Model' of Variance?
33:54
Example 3: Why Does r-squared Only Range from 0 to 1
37:29
Example 4: Find the r-squared for This Set of Data
39:55
Transformations of Data

27m 8s

Intro
0:00
Roadmap
0:05
Roadmap
0:06
Why Transform?
0:26
Why Transform?
0:27
Shape-preserving vs. Shape-changing Transformations
5:14
Shape-preserving = Linear Transformations
5:15
Shape-changing Transformations = Non-linear Transformations
6:20
Common Shape-Preserving Transformations
7:08
Common Shape-Preserving Transformations
7:09
Common Shape-Changing Transformations
8:59
Powers
9:00
Logarithms
9:39
Change Just One Variable? Both?
10:38
Log-log Transformations
10:39
Log Transformations
14:38
Example 1: Create, Graph, and Transform the Data Set
15:19
Example 2: Create, Graph, and Transform the Data Set
20:08
Example 3: What Kind of Model would You Choose for this Data?
22:44
Example 4: Transformation of Data
25:46
Section 6: Collecting Data in an Experiment
Sampling & Bias

54m 44s

Intro
0:00
Roadmap
0:05
Roadmap
0:06
Descriptive vs. Inferential Statistics
1:04
Descriptive Statistics: Data Exploration
1:05
Example
2:03
To tackle Generalization…
4:31
Generalization
4:32
Sampling
6:06
'Good' Sample
6:40
Defining Samples and Populations
8:55
Population
8:56
Sample
11:16
Why Use Sampling?
13:09
Why Use Sampling?
13:10
Goal of Sampling: Avoiding Bias
15:04
What is Bias?
15:05
Where does Bias Come from: Sampling Bias
17:53
Where does Bias Come from: Response Bias
18:27
Sampling Bias: Bias from Bas Sampling Methods
19:34
Size Bias
19:35
Voluntary Response Bias
21:13
Convenience Sample
22:22
Judgment Sample
23:58
Inadequate Sample Frame
25:40
Response Bias: Bias from 'Bad' Data Collection Methods
28:00
Nonresponse Bias
29:31
Questionnaire Bias
31:10
Incorrect Response or Measurement Bias
37:32
Example 1: What Kind of Biases?
40:29
Example 2: What Biases Might Arise?
44:46
Example 3: What Kind of Biases?
48:34
Example 4: What Kind of Biases?
51:43
Sampling Methods

14m 25s

Intro
0:00
Roadmap
0:05
Roadmap
0:06
Biased vs. Unbiased Sampling Methods
0:32
Biased Sampling
0:33
Unbiased Sampling
1:13
Probability Sampling Methods
2:31
Simple Random
2:54
Stratified Random Sampling
4:06
Cluster Sampling
5:24
Two-staged Sampling
6:22
Systematic Sampling
7:25
Example 1: Which Type(s) of Sampling was this?
8:33
Example 2: Describe How to Take a Two-Stage Sample from this Book
10:16
Example 3: Sampling Methods
11:58
Example 4: Cluster Sample Plan
12:48
Research Design

53m 54s

Intro
0:00
Roadmap
0:06
Roadmap
0:07
Descriptive vs. Inferential Statistics
0:51
Descriptive Statistics: Data Exploration
0:52
Inferential Statistics
1:02
Variables and Relationships
1:44
Variables
1:45
Relationships
2:49
Not Every Type of Study is an Experiment…
4:16
Category I - Descriptive Study
4:54
Category II - Correlational Study
5:50
Category III - Experimental, Quasi-experimental, Non-experimental
6:33
Category III
7:42
Experimental, Quasi-experimental, and Non-experimental
7:43
Why CAN'T the Other Strategies Determine Causation?
10:18
Third-variable Problem
10:19
Directionality Problem
15:49
What Makes Experiments Special?
17:54
Manipulation
17:55
Control (and Comparison)
21:58
Methods of Control
26:38
Holding Constant
26:39
Matching
29:11
Random Assignment
31:48
Experiment Terminology
34:09
'true' Experiment vs. Study
34:10
Independent Variable (IV)
35:16
Dependent Variable (DV)
35:45
Factors
36:07
Treatment Conditions
36:23
Levels
37:43
Confounds or Extraneous Variables
38:04
Blind
38:38
Blind Experiments
38:39
Double-blind Experiments
39:29
How Categories Relate to Statistics
41:35
Category I - Descriptive Study
41:36
Category II - Correlational Study
42:05
Category III - Experimental, Quasi-experimental, Non-experimental
42:43
Example 1: Research Design
43:50
Example 2: Research Design
47:37
Example 3: Research Design
50:12
Example 4: Research Design
52:00
Between and Within Treatment Variability

41m 31s

Intro
0:00
Roadmap
0:06
Roadmap
0:07
Experimental Designs
0:51
Experimental Designs: Manipulation & Control
0:52
Two Types of Variability
2:09
Between Treatment Variability
2:10
Within Treatment Variability
3:31
Updated Goal of Experimental Design
5:47
Updated Goal of Experimental Design
5:48
Example: Drugs and Driving
6:56
Example: Drugs and Driving
6:57
Different Types of Random Assignment
11:27
All Experiments
11:28
Completely Random Design
12:02
Randomized Block Design
13:19
Randomized Block Design
15:48
Matched Pairs Design
15:49
Repeated Measures Design
19:47
Between-subject Variable vs. Within-subject Variable
22:43
Completely Randomized Design
22:44
Repeated Measures Design
25:03
Example 1: Design a Completely Random, Matched Pair, and Repeated Measures Experiment
26:16
Example 2: Block Design
31:41
Example 3: Completely Randomized Designs
35:11
Example 4: Completely Random, Matched Pairs, or Repeated Measures Experiments?
39:01
Section 7: Review of Probability Axioms
Sample Spaces

37m 52s

Intro
0:00
Roadmap
0:07
Roadmap
0:08
Why is Probability Involved in Statistics
0:48
Probability
0:49
Can People Tell the Difference between Cheap and Gourmet Coffee?
2:08
Taste Test with Coffee Drinkers
3:37
If No One can Actually Taste the Difference
3:38
If Everyone can Actually Taste the Difference
5:36
Creating a Probability Model
7:09
Creating a Probability Model
7:10
D'Alembert vs. Necker
9:41
D'Alembert vs. Necker
9:42
Problem with D'Alembert's Model
13:29
Problem with D'Alembert's Model
13:30
Covering Entire Sample Space
15:08
Fundamental Principle of Counting
15:09
Where Do Probabilities Come From?
22:54
Observed Data, Symmetry, and Subjective Estimates
22:55
Checking whether Model Matches Real World
24:27
Law of Large Numbers
24:28
Example 1: Law of Large Numbers
27:46
Example 2: Possible Outcomes
30:43
Example 3: Brands of Coffee and Taste
33:25
Example 4: How Many Different Treatments are there?
35:33
Addition Rule for Disjoint Events

20m 29s

Intro
0:00
Roadmap
0:08
Roadmap
0:09
Disjoint Events
0:41
Disjoint Events
0:42
Meaning of 'or'
2:39
In Regular Life
2:40
In Math/Statistics/Computer Science
3:10
Addition Rule for Disjoin Events
3:55
If A and B are Disjoint: P (A and B)
3:56
If A and B are Disjoint: P (A or B)
5:15
General Addition Rule
5:41
General Addition Rule
5:42
Generalized Addition Rule
8:31
If A and B are not Disjoint: P (A or B)
8:32
Example 1: Which of These are Mutually Exclusive?
10:50
Example 2: What is the Probability that You will Have a Combination of One Heads and Two Tails?
12:57
Example 3: Engagement Party
15:17
Example 4: Home Owner's Insurance
18:30
Conditional Probability

57m 19s

Intro
0:00
Roadmap
0:05
Roadmap
0:06
'or' vs. 'and' vs. Conditional Probability
1:07
'or' vs. 'and' vs. Conditional Probability
1:08
'and' vs. Conditional Probability
5:57
P (M or L)
5:58
P (M and L)
8:41
P (M|L)
11:04
P (L|M)
12:24
Tree Diagram
15:02
Tree Diagram
15:03
Defining Conditional Probability
22:42
Defining Conditional Probability
22:43
Common Contexts for Conditional Probability
30:56
Medical Testing: Positive Predictive Value
30:57
Medical Testing: Sensitivity
33:03
Statistical Tests
34:27
Example 1: Drug and Disease
36:41
Example 2: Marbles and Conditional Probability
40:04
Example 3: Cards and Conditional Probability
45:59
Example 4: Votes and Conditional Probability
50:21
Independent Events

24m 27s

Intro
0:00
Roadmap
0:05
Roadmap
0:06
Independent Events & Conditional Probability
0:26
Non-independent Events
0:27
Independent Events
2:00
Non-independent and Independent Events
3:08
Non-independent and Independent Events
3:09
Defining Independent Events
5:52
Defining Independent Events
5:53
Multiplication Rule
7:29
Previously…
7:30
But with Independent Evens
8:53
Example 1: Which of These Pairs of Events are Independent?
11:12
Example 2: Health Insurance and Probability
15:12
Example 3: Independent Events
17:42
Example 4: Independent Events
20:03
Section 8: Probability Distributions
Introduction to Probability Distributions

56m 45s

Intro
0:00
Roadmap
0:08
Roadmap
0:09
Sampling vs. Probability
0:57
Sampling
0:58
Missing
1:30
What is Missing?
3:06
Insight: Probability Distributions
5:26
Insight: Probability Distributions
5:27
What is a Probability Distribution?
7:29
From Sample Spaces to Probability Distributions
8:44
Sample Space
8:45
Probability Distribution of the Sum of Two Die
11:16
The Random Variable
17:43
The Random Variable
17:44
Expected Value
21:52
Expected Value
21:53
Example 1: Probability Distributions
28:45
Example 2: Probability Distributions
35:30
Example 3: Probability Distributions
43:37
Example 4: Probability Distributions
47:20
Expected Value & Variance of Probability Distributions

53m 41s

Intro
0:00
Roadmap
0:06
Roadmap
0:07
Discrete vs. Continuous Random Variables
1:04
Discrete vs. Continuous Random Variables
1:05
Mean and Variance Review
4:44
Mean: Sample, Population, and Probability Distribution
4:45
Variance: Sample, Population, and Probability Distribution
9:12
Example Situation
14:10
Example Situation
14:11
Some Special Cases…
16:13
Some Special Cases…
16:14
Linear Transformations
19:22
Linear Transformations
19:23
What Happens to Mean and Variance of the Probability Distribution?
20:12
n Independent Values of X
25:38
n Independent Values of X
25:39
Compare These Two Situations
30:56
Compare These Two Situations
30:57
Two Random Variables, X and Y
32:02
Two Random Variables, X and Y
32:03
Example 1: Expected Value & Variance of Probability Distributions
35:35
Example 2: Expected Values & Standard Deviation
44:17
Example 3: Expected Winnings and Standard Deviation
48:18
Binomial Distribution

55m 15s

Intro
0:00
Roadmap
0:05
Roadmap
0:06
Discrete Probability Distributions
1:42
Discrete Probability Distributions
1:43
Binomial Distribution
2:36
Binomial Distribution
2:37
Multiplicative Rule Review
6:54
Multiplicative Rule Review
6:55
How Many Outcomes with k 'Successes'
10:23
Adults and Bachelor's Degree: Manual List of Outcomes
10:24
P (X=k)
19:37
Putting Together # of Outcomes with the Multiplicative Rule
19:38
Expected Value and Standard Deviation in a Binomial Distribution
25:22
Expected Value and Standard Deviation in a Binomial Distribution
25:23
Example 1: Coin Toss
33:42
Example 2: College Graduates
38:03
Example 3: Types of Blood and Probability
45:39
Example 4: Expected Number and Standard Deviation
51:11
Section 9: Sampling Distributions of Statistics
Introduction to Sampling Distributions

48m 17s

Intro
0:00
Roadmap
0:08
Roadmap
0:09
Probability Distributions vs. Sampling Distributions
0:55
Probability Distributions vs. Sampling Distributions
0:56
Same Logic
3:55
Logic of Probability Distribution
3:56
Example: Rolling Two Die
6:56
Simulating Samples
9:53
To Come Up with Probability Distributions
9:54
In Sampling Distributions
11:12
Connecting Sampling and Research Methods with Sampling Distributions
12:11
Connecting Sampling and Research Methods with Sampling Distributions
12:12
Simulating a Sampling Distribution
14:14
Experimental Design: Regular Sleep vs. Less Sleep
14:15
Logic of Sampling Distributions
23:08
Logic of Sampling Distributions
23:09
General Method of Simulating Sampling Distributions
25:38
General Method of Simulating Sampling Distributions
25:39
Questions that Remain
28:45
Questions that Remain
28:46
Example 1: Mean and Standard Error of Sampling Distribution
30:57
Example 2: What is the Best Way to Describe Sampling Distributions?
37:12
Example 3: Matching Sampling Distributions
38:21
Example 4: Mean and Standard Error of Sampling Distribution
41:51
Sampling Distribution of the Mean

1h 8m 48s

Intro
0:00
Roadmap
0:05
Roadmap
0:06
Special Case of General Method for Simulating a Sampling Distribution
1:53
Special Case of General Method for Simulating a Sampling Distribution
1:54
Computer Simulation
3:43
Using Simulations to See Principles behind Shape of SDoM
15:50
Using Simulations to See Principles behind Shape of SDoM
15:51
Conditions
17:38
Using Simulations to See Principles behind Center (Mean) of SDoM
20:15
Using Simulations to See Principles behind Center (Mean) of SDoM
20:16
Conditions: Does n Matter?
21:31
Conditions: Does Number of Simulation Matter?
24:37
Using Simulations to See Principles behind Standard Deviation of SDoM
27:13
Using Simulations to See Principles behind Standard Deviation of SDoM
27:14
Conditions: Does n Matter?
34:45
Conditions: Does Number of Simulation Matter?
36:24
Central Limit Theorem
37:13
SHAPE
38:08
CENTER
39:34
SPREAD
39:52
Comparing Population, Sample, and SDoM
43:10
Comparing Population, Sample, and SDoM
43:11
Answering the 'Questions that Remain'
48:24
What Happens When We Don't Know What the Population Looks Like?
48:25
Can We Have Sampling Distributions for Summary Statistics Other than the Mean?
49:42
How Do We Know whether a Sample is Sufficiently Unlikely?
53:36
Do We Always Have to Simulate a Large Number of Samples in Order to get a Sampling Distribution?
54:40
Example 1: Mean Batting Average
55:25
Example 2: Mean Sampling Distribution and Standard Error
59:07
Example 3: Sampling Distribution of the Mean
1:01:04
Sampling Distribution of Sample Proportions

54m 37s

Intro
0:00
Roadmap
0:06
Roadmap
0:07
Intro to Sampling Distribution of Sample Proportions (SDoSP)
0:51
Categorical Data (Examples)
0:52
Wish to Estimate Proportion of Population from Sample…
2:00
Notation
3:34
Population Proportion and Sample Proportion Notations
3:35
What's the Difference?
9:19
SDoM vs. SDoSP: Type of Data
9:20
SDoM vs. SDoSP: Shape
11:24
SDoM vs. SDoSP: Center
12:30
SDoM vs. SDoSP: Spread
15:34
Binomial Distribution vs. Sampling Distribution of Sample Proportions
19:14
Binomial Distribution vs. SDoSP: Type of Data
19:17
Binomial Distribution vs. SDoSP: Shape
21:07
Binomial Distribution vs. SDoSP: Center
21:43
Binomial Distribution vs. SDoSP: Spread
24:08
Example 1: Sampling Distribution of Sample Proportions
26:07
Example 2: Sampling Distribution of Sample Proportions
37:58
Example 3: Sampling Distribution of Sample Proportions
44:42
Example 4: Sampling Distribution of Sample Proportions
45:57
Section 10: Inferential Statistics
Introduction to Confidence Intervals

42m 53s

Intro
0:00
Roadmap
0:06
Roadmap
0:07
Inferential Statistics
0:50
Inferential Statistics
0:51
Two Problems with This Picture…
3:20
Two Problems with This Picture…
3:21
Solution: Confidence Intervals (CI)
4:59
Solution: Hypotheiss Testing (HT)
5:49
Which Parameters are Known?
6:45
Which Parameters are Known?
6:46
Confidence Interval - Goal
7:56
When We Don't Know m but know s
7:57
When We Don't Know
18:27
When We Don't Know m nor s
18:28
Example 1: Confidence Intervals
26:18
Example 2: Confidence Intervals
29:46
Example 3: Confidence Intervals
32:18
Example 4: Confidence Intervals
38:31
t Distributions

1h 2m 6s

Intro
0:00
Roadmap
0:04
Roadmap
0:05
When to Use z vs. t?
1:07
When to Use z vs. t?
1:08
What is z and t?
3:02
z-score and t-score: Commonality
3:03
z-score and t-score: Formulas
3:34
z-score and t-score: Difference
5:22
Why not z? (Why t?)
7:24
Why not z? (Why t?)
7:25
But Don't Worry!
15:13
Gossett and t-distributions
15:14
Rules of t Distributions
17:05
t-distributions are More Normal as n Gets Bigger
17:06
t-distributions are a Family of Distributions
18:55
Degrees of Freedom (df)
20:02
Degrees of Freedom (df)
20:03
t Family of Distributions
24:07
t Family of Distributions : df = 2 , 4, and 60
24:08
df = 60
29:16
df = 2
29:59
How to Find It?
31:01
'Student's t-distribution' or 't-distribution'
31:02
Excel Example
33:06
Example 1: Which Distribution Do You Use? Z or t?
45:26
Example 2: Friends on Facebook
47:41
Example 3: t Distributions
52:15
Example 4: t Distributions , confidence interval, and mean
55:59
Introduction to Hypothesis Testing

1h 6m 33s

Intro
0:00
Roadmap
0:06
Roadmap
0:07
Issues to Overcome in Inferential Statistics
1:35
Issues to Overcome in Inferential Statistics
1:36
What Happens When We Don't Know What the Population Looks Like?
2:57
How Do We Know whether a sample is Sufficiently Unlikely
3:43
Hypothesizing a Population
6:44
Hypothesizing a Population
6:45
Null Hypothesis
8:07
Alternative Hypothesis
8:56
Hypotheses
11:58
Hypotheses
11:59
Errors in Hypothesis Testing
14:22
Errors in Hypothesis Testing
14:23
Steps of Hypothesis Testing
21:15
Steps of Hypothesis Testing
21:16
Single Sample HT ( When Sigma Available)
26:08
Example: Average Facebook Friends
26:09
Step1
27:08
Step 2
27:58
Step 3
28:17
Step 4
32:18
Single Sample HT (When Sigma Not Available)
36:33
Example: Average Facebook Friends
36:34
Step1: Hypothesis Testing
36:58
Step 2: Significance Level
37:25
Step 3: Decision Stage
37:40
Step 4: Sample
41:36
Sigma and p-value
45:04
Sigma and p-value
45:05
On tailed vs. Two Tailed Hypotheses
45:51
Example 1: Hypothesis Testing
48:37
Example 2: Heights of Women in the US
57:43
Example 3: Select the Best Way to Complete This Sentence
1:03:23
Confidence Intervals for the Difference of Two Independent Means

55m 14s

Intro
0:00
Roadmap
0:14
Roadmap
0:15
One Mean vs. Two Means
1:17
One Mean vs. Two Means
1:18
Notation
2:41
A Sample! A Set!
2:42
Mean of X, Mean of Y, and Difference of Two Means
3:56
SE of X
4:34
SE of Y
6:28
Sampling Distribution of the Difference between Two Means (SDoD)
7:48
Sampling Distribution of the Difference between Two Means (SDoD)
7:49
Rules of the SDoD (similar to CLT!)
15:00
Mean for the SDoD Null Hypothesis
15:01
Standard Error
17:39
When can We Construct a CI for the Difference between Two Means?
21:28
Three Conditions
21:29
Finding CI
23:56
One Mean CI
23:57
Two Means CI
25:45
Finding t
29:16
Finding t
29:17
Interpreting CI
30:25
Interpreting CI
30:26
Better Estimate of s (s pool)
34:15
Better Estimate of s (s pool)
34:16
Example 1: Confidence Intervals
42:32
Example 2: SE of the Difference
52:36
Hypothesis Testing for the Difference of Two Independent Means

50m

Intro
0:00
Roadmap
0:06
Roadmap
0:07
The Goal of Hypothesis Testing
0:56
One Sample and Two Samples
0:57
Sampling Distribution of the Difference between Two Means (SDoD)
3:42
Sampling Distribution of the Difference between Two Means (SDoD)
3:43
Rules of the SDoD (Similar to CLT!)
6:46
Shape
6:47
Mean for the Null Hypothesis
7:26
Standard Error for Independent Samples (When Variance is Homogenous)
8:18
Standard Error for Independent Samples (When Variance is not Homogenous)
9:25
Same Conditions for HT as for CI
10:08
Three Conditions
10:09
Steps of Hypothesis Testing
11:04
Steps of Hypothesis Testing
11:05
Formulas that Go with Steps of Hypothesis Testing
13:21
Step 1
13:25
Step 2
14:18
Step 3
15:00
Step 4
16:57
Example 1: Hypothesis Testing for the Difference of Two Independent Means
18:47
Example 2: Hypothesis Testing for the Difference of Two Independent Means
33:55
Example 3: Hypothesis Testing for the Difference of Two Independent Means
44:22
Confidence Intervals & Hypothesis Testing for the Difference of Two Paired Means

1h 14m 11s

Intro
0:00
Roadmap
0:09
Roadmap
0:10
The Goal of Hypothesis Testing
1:27
One Sample and Two Samples
1:28
Independent Samples vs. Paired Samples
3:16
Independent Samples vs. Paired Samples
3:17
Which is Which?
5:20
Independent SAMPLES vs. Independent VARIABLES
7:43
independent SAMPLES vs. Independent VARIABLES
7:44
T-tests Always…
10:48
T-tests Always…
10:49
Notation for Paired Samples
12:59
Notation for Paired Samples
13:00
Steps of Hypothesis Testing for Paired Samples
16:13
Steps of Hypothesis Testing for Paired Samples
16:14
Rules of the SDoD (Adding on Paired Samples)
18:03
Shape
18:04
Mean for the Null Hypothesis
18:31
Standard Error for Independent Samples (When Variance is Homogenous)
19:25
Standard Error for Paired Samples
20:39
Formulas that go with Steps of Hypothesis Testing
22:59
Formulas that go with Steps of Hypothesis Testing
23:00
Confidence Intervals for Paired Samples
30:32
Confidence Intervals for Paired Samples
30:33
Example 1: Confidence Intervals & Hypothesis Testing for the Difference of Two Paired Means
32:28
Example 2: Confidence Intervals & Hypothesis Testing for the Difference of Two Paired Means
44:02
Example 3: Confidence Intervals & Hypothesis Testing for the Difference of Two Paired Means
52:23
Type I and Type II Errors

31m 27s

Intro
0:00
Roadmap
0:18
Roadmap
0:19
Errors and Relationship to HT and the Sample Statistic?
1:11
Errors and Relationship to HT and the Sample Statistic?
1:12
Instead of a Box…Distributions!
7:00
One Sample t-test: Friends on Facebook
7:01
Two Sample t-test: Friends on Facebook
13:46
Usually, Lots of Overlap between Null and Alternative Distributions
16:59
Overlap between Null and Alternative Distributions
17:00
How Distributions and 'Box' Fit Together
22:45
How Distributions and 'Box' Fit Together
22:46
Example 1: Types of Errors
25:54
Example 2: Types of Errors
27:30
Example 3: What is the Danger of the Type I Error?
29:38
Effect Size & Power

44m 41s

Intro
0:00
Roadmap
0:05
Roadmap
0:06
Distance between Distributions: Sample t
0:49
Distance between Distributions: Sample t
0:50
Problem with Distance in Terms of Standard Error
2:56
Problem with Distance in Terms of Standard Error
2:57
Test Statistic (t) vs. Effect Size (d or g)
4:38
Test Statistic (t) vs. Effect Size (d or g)
4:39
Rules of Effect Size
6:09
Rules of Effect Size
6:10
Why Do We Need Effect Size?
8:21
Tells You the Practical Significance
8:22
HT can be Deceiving…
10:25
Important Note
10:42
What is Power?
11:20
What is Power?
11:21
Why Do We Need Power?
14:19
Conditional Probability and Power
14:20
Power is:
16:27
Can We Calculate Power?
19:00
Can We Calculate Power?
19:01
How Does Alpha Affect Power?
20:36
How Does Alpha Affect Power?
20:37
How Does Effect Size Affect Power?
25:38
How Does Effect Size Affect Power?
25:39
How Does Variability and Sample Size Affect Power?
27:56
How Does Variability and Sample Size Affect Power?
27:57
How Do We Increase Power?
32:47
Increasing Power
32:48
Example 1: Effect Size & Power
35:40
Example 2: Effect Size & Power
37:38
Example 3: Effect Size & Power
40:55
Section 11: Analysis of Variance
F-distributions

24m 46s

Intro
0:00
Roadmap
0:04
Roadmap
0:05
Z- & T-statistic and Their Distribution
0:34
Z- & T-statistic and Their Distribution
0:35
F-statistic
4:55
The F Ration ( the Variance Ratio)
4:56
F-distribution
12:29
F-distribution
12:30
s and p-value
15:00
s and p-value
15:01
Example 1: Why Does F-distribution Stop At 0 But Go On Until Infinity?
18:33
Example 2: F-distributions
19:29
Example 3: F-distributions and Heights
21:29
ANOVA with Independent Samples

1h 9m 25s

Intro
0:00
Roadmap
0:05
Roadmap
0:06
The Limitations of t-tests
1:12
The Limitations of t-tests
1:13
Two Major Limitations of Many t-tests
3:26
Two Major Limitations of Many t-tests
3:27
Ronald Fisher's Solution… F-test! New Null Hypothesis
4:43
Ronald Fisher's Solution… F-test! New Null Hypothesis (Omnibus Test - One Test to Rule Them All!)
4:44
Analysis of Variance (ANoVA) Notation
7:47
Analysis of Variance (ANoVA) Notation
7:48
Partitioning (Analyzing) Variance
9:58
Total Variance
9:59
Within-group Variation
14:00
Between-group Variation
16:22
Time out: Review Variance & SS
17:05
Time out: Review Variance & SS
17:06
F-statistic
19:22
The F Ratio (the Variance Ratio)
19:23
S²bet = SSbet / dfbet
22:13
What is This?
22:14
How Many Means?
23:20
So What is the dfbet?
23:38
So What is SSbet?
24:15
S²w = SSw / dfw
26:05
What is This?
26:06
How Many Means?
27:20
So What is the dfw?
27:36
So What is SSw?
28:18
Chart of Independent Samples ANOVA
29:25
Chart of Independent Samples ANOVA
29:26
Example 1: Who Uploads More Photos: Unknown Ethnicity, Latino, Asian, Black, or White Facebook Users?
35:52
Hypotheses
35:53
Significance Level
39:40
Decision Stage
40:05
Calculate Samples' Statistic and p-Value
44:10
Reject or Fail to Reject H0
55:54
Example 2: ANOVA with Independent Samples
58:21
Repeated Measures ANOVA

1h 15m 13s

Intro
0:00
Roadmap
0:05
Roadmap
0:06
The Limitations of t-tests
0:36
Who Uploads more Pictures and Which Photo-Type is Most Frequently Used on Facebook?
0:37
ANOVA (F-test) to the Rescue!
5:49
Omnibus Hypothesis
5:50
Analyze Variance
7:27
Independent Samples vs. Repeated Measures
9:12
Same Start
9:13
Independent Samples ANOVA
10:43
Repeated Measures ANOVA
12:00
Independent Samples ANOVA
16:00
Same Start: All the Variance Around Grand Mean
16:01
Independent Samples
16:23
Repeated Measures ANOVA
18:18
Same Start: All the Variance Around Grand Mean
18:19
Repeated Measures
18:33
Repeated Measures F-statistic
21:22
The F Ratio (The Variance Ratio)
21:23
S²bet = SSbet / dfbet
23:07
What is This?
23:08
How Many Means?
23:39
So What is the dfbet?
23:54
So What is SSbet?
24:32
S² resid = SS resid / df resid
25:46
What is This?
25:47
So What is SS resid?
26:44
So What is the df resid?
27:36
SS subj and df subj
28:11
What is This?
28:12
How Many Subject Means?
29:43
So What is df subj?
30:01
So What is SS subj?
30:09
SS total and df total
31:42
What is This?
31:43
What is the Total Number of Data Points?
32:02
So What is df total?
32:34
so What is SS total?
32:47
Chart of Repeated Measures ANOVA
33:19
Chart of Repeated Measures ANOVA: F and Between-samples Variability
33:20
Chart of Repeated Measures ANOVA: Total Variability, Within-subject (case) Variability, Residual Variability
35:50
Example 1: Which is More Prevalent on Facebook: Tagged, Uploaded, Mobile, or Profile Photos?
40:25
Hypotheses
40:26
Significance Level
41:46
Decision Stage
42:09
Calculate Samples' Statistic and p-Value
46:18
Reject or Fail to Reject H0
57:55
Example 2: Repeated Measures ANOVA
58:57
Example 3: What's the Problem with a Bunch of Tiny t-tests?
1:13:59
Section 12: Chi-square Test
Chi-Square Goodness-of-Fit Test

58m 23s

Intro
0:00
Roadmap
0:05
Roadmap
0:06
Where Does the Chi-Square Test Belong?
0:50
Where Does the Chi-Square Test Belong?
0:51
A New Twist on HT: Goodness-of-Fit
7:23
HT in General
7:24
Goodness-of-Fit HT
8:26
Hypotheses about Proportions
12:17
Null Hypothesis
12:18
Alternative Hypothesis
13:23
Example
14:38
Chi-Square Statistic
17:52
Chi-Square Statistic
17:53
Chi-Square Distributions
24:31
Chi-Square Distributions
24:32
Conditions for Chi-Square
28:58
Condition 1
28:59
Condition 2
30:20
Condition 3
30:32
Condition 4
31:47
Example 1: Chi-Square Goodness-of-Fit Test
32:23
Example 2: Chi-Square Goodness-of-Fit Test
44:34
Example 3: Which of These Statements Describe Properties of the Chi-Square Goodness-of-Fit Test?
56:06
Chi-Square Test of Homogeneity

51m 36s

Intro
0:00
Roadmap
0:09
Roadmap
0:10
Goodness-of-Fit vs. Homogeneity
1:13
Goodness-of-Fit HT
1:14
Homogeneity
2:00
Analogy
2:38
Hypotheses About Proportions
5:00
Null Hypothesis
5:01
Alternative Hypothesis
6:11
Example
6:33
Chi-Square Statistic
10:12
Same as Goodness-of-Fit Test
10:13
Set Up Data
12:28
Setting Up Data Example
12:29
Expected Frequency
16:53
Expected Frequency
16:54
Chi-Square Distributions & df
19:26
Chi-Square Distributions & df
19:27
Conditions for Test of Homogeneity
20:54
Condition 1
20:55
Condition 2
21:39
Condition 3
22:05
Condition 4
22:23
Example 1: Chi-Square Test of Homogeneity
22:52
Example 2: Chi-Square Test of Homogeneity
32:10
Section 13: Overview of Statistics
Overview of Statistics

18m 11s

Intro
0:00
Roadmap
0:07
Roadmap
0:08
The Statistical Tests (HT) We've Covered
0:28
The Statistical Tests (HT) We've Covered
0:29
Organizing the Tests We've Covered…
1:08
One Sample: Continuous DV and Categorical DV
1:09
Two Samples: Continuous DV and Categorical DV
5:41
More Than Two Samples: Continuous DV and Categorical DV
8:21
The Following Data: OK Cupid
10:10
The Following Data: OK Cupid
10:11
Example 1: Weird-MySpace-Angle Profile Photo
10:38
Example 2: Geniuses
12:30
Example 3: Promiscuous iPhone Users
13:37
Example 4: Women, Aging, and Messaging
16:07
Loading...
This is a quick preview of the lesson. For full access, please Log In or Sign up.
For more information, please see full course syllabus of Statistics
  • Discussion

  • Download Lecture Slides

  • Table of Contents

  • Transcription

  • Related Books

Lecture Comments (6)

1 answer

Last reply by: Shawn Freeman
Wed Mar 16, 2016 10:01 AM

Post by Shawn Freeman on March 16, 2016

For the independent events example why does A and B only include the right possible outcomes and not all the possible outcomes? For example, A doesn't have TT & TH.

1 answer

Last reply by: Drew Fulkerson
Mon Jun 9, 2014 3:16 PM

Post by Shihab Al hasni on February 2, 2014

You said firstly, mutually exclusive is two events, share outcomes and in Extra Example 2, you said they shouldn't share anything in common, how that's even possible?

1 answer

Last reply by: Maximillian Lanander
Tue Oct 15, 2013 11:00 AM

Post by Cathy Walker on May 1, 2013

At 6:30 he lists the sample space of two coin flips as: HH, HT, TH and then say and writes HH again. NO mention of TT. Let's hope I get a response sooner than the post from Michael Sampson that took 3 months.

Stemplots

Lecture Slides are screen-captured images of important points in the lecture. Students can download and print out these lecture slide images to do practice problems as well as take notes while watching the lecture.

  • Intro 0:00
  • Roadmap 0:05
    • Roadmap
  • What Sets Stemplots Apart? 0:46
    • Data Sets, Dotplots, Histograms, and Stemplots
  • Example 1: What Do Stemplots Look Like? 1:58
  • Example 2: Back-to-Back Stemplots 5:00
  • Example 3: Quiz Grade Stemplot 7:46
  • Example 4: Quiz Grade & Afterschool Tutoring Stemplot 9:56

Transcription: Stemplots

Hi and welcome to www.educator.com.0000

Today we are going to be talking about stem plots.0002

We are going to talk about stem plots because they are another kind of visualization.0007

What sets them apart from other kinds of ways that you could visualize a distribution.0011

What do they look like and how did we construct one.0016

I should say upfront that stem plots are not frequently used but they are sometimes used in tests and classes.0019

They are frequently mentioned in textbooks which is I’m covering in a lesson.0028

If you are working with very large data sets, stem plots would not be very useful to you.0035

If you are actually trying to work with data, you might want to get this lesson.0040

What sets stem plots apart?0048

Let us think about this.0051

When we look at data sets, those rows and rows of data, they include the exact values but it does not show us the distribution visually.0053

It is almost impossible to see the distribution.0063

The nice thing about dot plots and histograms is that it shows you the distribution visually.0067

You could see the shape, the center and how spread out it is.0072

Unfortunately they do not always show the exact values.0079

Sometimes dot plots do but only if you have very small range.0083

Stem plots are a way of grouping the values yet it includes the exact values so it is nice.0090

It is between the dot plots and histograms, you can group them together and bin them together0106

but you will still see the exact values and it shows you the distributions visually.0112

What do stem plots actually look like?0120

Here is our first example.0122

They are also called stem and leaf plots.0124

The stems are the tens digit and the leaves are the ones digit of your data.0128

Let us take this class.0137

Let us say it is a physics class and here are the test grades for all these people.0138

I have put it already in order, from the least to the greatest.0144

Couple of people are really doing poorly in this class, actually more that half.0151

These people are doing well but they are facing to be a minority.0157

Let us get it into our stem plot.0162

On a stem plot we put the tens in one column.0164

The tens that we have are 2, 3, 4, 5, 6, 7, 8, 9 and here are the ones numbers.0168

What I have taken, I will put it in a different color.0177

I have taken this number and I have split it apart into 2 and 0.0181

Now I look at the next set, there are 3 people who scored in the 30’s but I’m missing one of them.0185

It should be 0 and 7 and 8.0195

Let us look at all those people who scored in the 40’s which looks like this is the majority.0202

I will put the 0, 0, 2, 2, 5, 5, 8, 8 and then let us look at those score in the 50’s.0209

There is one person who scored 50 and one person who scored 52 and 67.0222

I will put the 6 here and the 7 here.0231

For the 70’s there are 3 people, I will put the 2, 7, 8.0235

The ones places.0241

For the 80’s there are two people, the 0 and 8.0243

For the 90’s there is just one person who got 97.0247

When you look at the stem plot, to read each of these values you cannot read this as 3,078.0252

You have to read this as the 30, 37, and 38.0260

This is a 40, 40, 42, 42, 45, 45, 48, 48.0268

When you look over here you could see a distribution.0274

If you imagine totaling this over on the side you would see that this is a right skewed distribution.0281

That is the stem and leaf plot looks like.0297

The other thing you could do is you could create back to back stem plots.0303

You could use the same stem but with the leaves coming off either side of it.0307

In this way you could compare two distributions at once.0311

Let us say in the same physics class, someone is interested in whether it helps to have had calculus before.0315

Because calculus is the math that underlies physics.0321

We have put all the people who have not taken calculus before, the no’s and put them up here.0325

We have put all the people who have taken calculus before down here.0334

Now let us put in a stem plot.0339

The stems are going to be the same, 2, 3, 4, 5, 6, 7, 8 and 9 but let us start with the no calculus distribution.0342

Here we have somebody who scored 30 and nobody scored at the 20’s.0351

Here is a 30.0358

Here are two people who scored in the 40’s.0360

Here is one person who scored in the 50’s.0369

This very high performer has also not taken calculus before.0374

That is surprising.0379

Let us look at these people who have taken calculus before.0381

Here is one person in the 20’s, right there.0384

Two people who scored in the 30’s, 37 and 38.0388

Lots of people who scored in the 40’s, 40, 40, 42, 45, 45, and 48.0393

One person who scored in the 50’s. 52.0402

One person who scored in the 60’s.0405

Three people who scored in the 70’s, 72, 77, 78.0408

And two people who scored in their 80’s 80 and 88.0414

Let us put the distribution.0420

Here the distribution seems to be something like this.0422

Here the distribution definitely looks similar, they are both right skewed distributions.0430

Remember, right skewed means that a tail is with the high values.0440

That is how we know that they are right skewed even though right now it seems that they are down skewed or south skewed.0459

Let us start from scratch and try to create our stem plots.0470

Here these are cross grades, persons from the same class and it goes up to 50 but let us see.0473

There is all these scores here but they are not in any particular order.0480

Right now it seems like there is 20 but then it goes to 20.0485

This will be hard to create a stem plot because all the values are in different order.0491

What is helpful in creating a stem plot is putting this data into the right order first.0495

Here is that same data that has been sorted.0503

It seems like we have 10, 20, 30 up to 40.0508

Let us start the stem and I will put my stem in blue.0513

Let me put my stem over on one side because it is going to be a one sided stem and leaf plot.0522

1, 2, 3, 4.0528

I will put my leaves in red.0535

From ones I need to put 11, 13, 15.0538

For the 20’s I need to put 22, 23, 28, and 29.0545

For the 30’s I need 30, 30, 33, 33, 34, 34, 6, 7, and 8.0555

Perfect.0567

For the 40’s I need 0, 4, 4, 8, and 9.0570

There is our stem plot.0577

Our stem plot looks like that.0580

I cannot quite tell.0585

There are still few values here.0587

These are tough to see the distribution.0590

It could be normal, uniform, even.0592

Let us go on.0597

Our last example, example 4.0599

We are going to make a two sided stem plot.0600

We are going to look at whether after school tutoring, those who go down here and those that do not go, do their distributions look similar or not?0604

It is either that.0616

Thankfully these values happens to be sorted already, we do no have to worry about that.0618

Let us start with our stems.0625

I will put my stems in blue.0628

I will going to put m y stem now in the middle.0630

It might be a little bit squished.0633

I will put it down here at 1, 2, 3, 4.0636

Let us start with those with no tutoring.0643

How many of them scored in the 10’s?0652

1 and 3.0657

How many of them scored in the 20’s?0660

That is 2, 3, and 9.0664

How many of them scored in the 30’s?0668

That is 3, 30, 33, 6, and 7.0671

How many of them scored in the 40’s?0677

Just one.0679

Now let us look at those who have had tutoring.0681

Only one person scored in the tens.0689

One person scored in the 20’s.0693

It seems a fair number scored in the 30’s, 3, 4, 4, and 8.0698

Who scored in the 40’s?0707

40, 44, 48, and 49.0709

When you look at this distributions, this seem more like tutoring might help but you will also do not know.0716

Maybe the people who are more like with it go to tutoring, who knows?0728

It may not be the tutoring itself.0734

We could prepare these two distributions side by side.0736

That is it for stem plots.0740

Thanks for using www.educator.com.0742

Educator®

Please sign in to participate in this lecture discussion.

Resetting Your Password?
OR

Start Learning Now

Our free lessons will get you started (Adobe Flash® required).
Get immediate access to our entire library.

Membership Overview

  • Available 24/7. Unlimited Access to Our Entire Library.
  • Search and jump to exactly what you want to learn.
  • *Ask questions and get answers from the community and our teachers!
  • Practice questions with step-by-step solutions.
  • Download lecture slides for taking notes.
  • Track your course viewing progress.
  • Accessible anytime, anywhere with our Android and iOS apps.

Use this form or mail us to .

For support articles click here.