Enter your Sign on user name and password.

Forgot password?
Sign In | Sign Up
Start learning today, and be successful in your academic & professional career. Start Today!

Use Chrome browser to play professor video
Dr. Ji Son

Dr. Ji Son

Bar Graphs

Slide Duration:

Table of Contents

I. Introduction
Descriptive Statistics vs. Inferential Statistics

25m 31s

Intro
0:00
Roadmap
0:10
Roadmap
0:11
Statistics
0:35
Statistics
0:36
Let's Think About High School Science
1:12
Measurement and Find Patterns (Mathematical Formula)
1:13
Statistics = Math of Distributions
4:58
Distributions
4:59
Problematic… but also GREAT
5:58
Statistics
7:33
How is It Different from Other Specializations in Mathematics?
7:34
Statistics is Fundamental in Natural and Social Sciences
7:53
Two Skills of Statistics
8:20
Description (Exploration)
8:21
Inference
9:13
Descriptive Statistics vs. Inferential Statistics: Apply to Distributions
9:58
Descriptive Statistics
9:59
Inferential Statistics
11:05
Populations vs. Samples
12:19
Populations vs. Samples: Is it the Truth?
12:20
Populations vs. Samples: Pros & Cons
13:36
Populations vs. Samples: Descriptive Values
16:12
Putting Together Descriptive/Inferential Stats & Populations/Samples
17:10
Putting Together Descriptive/Inferential Stats & Populations/Samples
17:11
Example 1: Descriptive Statistics vs. Inferential Statistics
19:09
Example 2: Descriptive Statistics vs. Inferential Statistics
20:47
Example 3: Sample, Parameter, Population, and Statistic
21:40
Example 4: Sample, Parameter, Population, and Statistic
23:28
II. About Samples: Cases, Variables, Measurements
About Samples: Cases, Variables, Measurements

32m 14s

Intro
0:00
Data
0:09
Data, Cases, Variables, and Values
0:10
Rows, Columns, and Cells
2:03
Example: Aircrafts
3:52
How Do We Get Data?
5:38
Research: Question and Hypothesis
5:39
Research Design
7:11
Measurement
7:29
Research Analysis
8:33
Research Conclusion
9:30
Types of Variables
10:03
Discrete Variables
10:04
Continuous Variables
12:07
Types of Measurements
14:17
Types of Measurements
14:18
Types of Measurements (Scales)
17:22
Nominal
17:23
Ordinal
19:11
Interval
21:33
Ratio
24:24
Example 1: Cases, Variables, Measurements
25:20
Example 2: Which Scale of Measurement is Used?
26:55
Example 3: What Kind of a Scale of Measurement is This?
27:26
Example 4: Discrete vs. Continuous Variables.
30:31
III. Visualizing Distributions
Introduction to Excel

8m 9s

Intro
0:00
Before Visualizing Distribution
0:10
Excel
0:11
Excel: Organization
0:45
Workbook
0:46
Column x Rows
1:50
Tools: Menu Bar, Standard Toolbar, and Formula Bar
3:00
Excel + Data
6:07
Exce and Data
6:08
Frequency Distributions in Excel

39m 10s

Intro
0:00
Roadmap
0:08
Data in Excel and Frequency Distributions
0:09
Raw Data to Frequency Tables
0:42
Raw Data to Frequency Tables
0:43
Frequency Tables: Using Formulas and Pivot Tables
1:28
Example 1: Number of Births
7:17
Example 2: Age Distribution
20:41
Example 3: Height Distribution
27:45
Example 4: Height Distribution of Males
32:19
Frequency Distributions and Features

25m 29s

Intro
0:00
Roadmap
0:10
Data in Excel, Frequency Distributions, and Features of Frequency Distributions
0:11
Example #1
1:35
Uniform
1:36
Example #2
2:58
Unimodal, Skewed Right, and Asymmetric
2:59
Example #3
6:29
Bimodal
6:30
Example #4a
8:29
Symmetric, Unimodal, and Normal
8:30
Point of Inflection and Standard Deviation
11:13
Example #4b
12:43
Normal Distribution
12:44
Summary
13:56
Uniform, Skewed, Bimodal, and Normal
13:57
Sketch Problem 1: Driver's License
17:34
Sketch Problem 2: Life Expectancy
20:01
Sketch Problem 3: Telephone Numbers
22:01
Sketch Problem 4: Length of Time Used to Complete a Final Exam
23:43
Dotplots and Histograms in Excel

42m 42s

Intro
0:00
Roadmap
0:06
Roadmap
0:07
Previously
1:02
Data, Frequency Table, and visualization
1:03
Dotplots
1:22
Dotplots Excel Example
1:23
Dotplots: Pros and Cons
7:22
Pros and Cons of Dotplots
7:23
Dotplots Excel Example Cont.
9:07
Histograms
12:47
Histograms Overview
12:48
Example of Histograms
15:29
Histograms: Pros and Cons
31:39
Pros
31:40
Cons
32:31
Frequency vs. Relative Frequency
32:53
Frequency
32:54
Relative Frequency
33:36
Example 1: Dotplots vs. Histograms
34:36
Example 2: Age of Pennies Dotplot
36:21
Example 3: Histogram of Mammal Speeds
38:27
Example 4: Histogram of Life Expectancy
40:30
Stemplots

12m 23s

Intro
0:00
Roadmap
0:05
Roadmap
0:06
What Sets Stemplots Apart?
0:46
Data Sets, Dotplots, Histograms, and Stemplots
0:47
Example 1: What Do Stemplots Look Like?
1:58
Example 2: Back-to-Back Stemplots
5:00
Example 3: Quiz Grade Stemplot
7:46
Example 4: Quiz Grade & Afterschool Tutoring Stemplot
9:56
Bar Graphs

22m 49s

Intro
0:00
Roadmap
0:05
Roadmap
0:08
Review of Frequency Distributions
0:44
Y-axis and X-axis
0:45
Types of Frequency Visualizations Covered so Far
2:16
Introduction to Bar Graphs
4:07
Example 1: Bar Graph
5:32
Example 1: Bar Graph
5:33
Do Shapes, Center, and Spread of Distributions Apply to Bar Graphs?
11:07
Do Shapes, Center, and Spread of Distributions Apply to Bar Graphs?
11:08
Example 2: Create a Frequency Visualization for Gender
14:02
Example 3: Cases, Variables, and Frequency Visualization
16:34
Example 4: What Kind of Graphs are Shown Below?
19:29
IV. Summarizing Distributions
Central Tendency: Mean, Median, Mode

38m 50s

Intro
0:00
Roadmap
0:07
Roadmap
0:08
Central Tendency 1
0:56
Way to Summarize a Distribution of Scores
0:57
Mode
1:32
Median
2:02
Mean
2:36
Central Tendency 2
3:47
Mode
3:48
Median
4:20
Mean
5:25
Summation Symbol
6:11
Summation Symbol
6:12
Population vs. Sample
10:46
Population vs. Sample
10:47
Excel Examples
15:08
Finding Mode, Median, and Mean in Excel
15:09
Median vs. Mean
21:45
Effect of Outliers
21:46
Relationship Between Parameter and Statistic
22:44
Type of Measurements
24:00
Which Distributions to Use With
24:55
Example 1: Mean
25:30
Example 2: Using Summation Symbol
29:50
Example 3: Average Calorie Count
32:50
Example 4: Creating an Example Set
35:46
Variability

42m 40s

Intro
0:00
Roadmap
0:05
Roadmap
0:06
Variability (or Spread)
0:45
Variability (or Spread)
0:46
Things to Think About
5:45
Things to Think About
5:46
Range, Quartiles and Interquartile Range
6:37
Range
6:38
Interquartile Range
8:42
Interquartile Range Example
10:58
Interquartile Range Example
10:59
Variance and Standard Deviation
12:27
Deviations
12:28
Sum of Squares
14:35
Variance
16:55
Standard Deviation
17:44
Sum of Squares (SS)
18:34
Sum of Squares (SS)
18:35
Population vs. Sample SD
22:00
Population vs. Sample SD
22:01
Population vs. Sample
23:20
Mean
23:21
SD
23:51
Example 1: Find the Mean and Standard Deviation of the Variable Friends in the Excel File
27:21
Example 2: Find the Mean and Standard Deviation of the Tagged Photos in the Excel File
35:25
Example 3: Sum of Squares
38:58
Example 4: Standard Deviation
41:48
Five Number Summary & Boxplots

57m 15s

Intro
0:00
Roadmap
0:06
Roadmap
0:07
Summarizing Distributions
0:37
Shape, Center, and Spread
0:38
5 Number Summary
1:14
Boxplot: Visualizing 5 Number Summary
3:37
Boxplot: Visualizing 5 Number Summary
3:38
Boxplots on Excel
9:01
Using 'Stocks' and Using Stacked Columns
9:02
Boxplots on Excel Example
10:14
When are Boxplots Useful?
32:14
Pros
32:15
Cons
32:59
How to Determine Outlier Status
33:24
Rule of Thumb: Upper Limit
33:25
Rule of Thumb: Lower Limit
34:16
Signal Outliers in an Excel Data File Using Conditional Formatting
34:52
Modified Boxplot
48:38
Modified Boxplot
48:39
Example 1: Percentage Values & Lower and Upper Whisker
49:10
Example 2: Boxplot
50:10
Example 3: Estimating IQR From Boxplot
53:46
Example 4: Boxplot and Missing Whisker
54:35
Shape: Calculating Skewness & Kurtosis

41m 51s

Intro
0:00
Roadmap
0:16
Roadmap
0:17
Skewness Concept
1:09
Skewness Concept
1:10
Calculating Skewness
3:26
Calculating Skewness
3:27
Interpreting Skewness
7:36
Interpreting Skewness
7:37
Excel Example
8:49
Kurtosis Concept
20:29
Kurtosis Concept
20:30
Calculating Kurtosis
24:17
Calculating Kurtosis
24:18
Interpreting Kurtosis
29:01
Leptokurtic
29:35
Mesokurtic
30:10
Platykurtic
31:06
Excel Example
32:04
Example 1: Shape of Distribution
38:28
Example 2: Shape of Distribution
39:29
Example 3: Shape of Distribution
40:14
Example 4: Kurtosis
41:10
Normal Distribution

34m 33s

Intro
0:00
Roadmap
0:13
Roadmap
0:14
What is a Normal Distribution
0:44
The Normal Distribution As a Theoretical Model
0:45
Possible Range of Probabilities
3:05
Possible Range of Probabilities
3:06
What is a Normal Distribution
5:07
Can Be Described By
5:08
Properties
5:49
'Same' Shape: Illusion of Different Shape!
7:35
'Same' Shape: Illusion of Different Shape!
7:36
Types of Problems
13:45
Example: Distribution of SAT Scores
13:46
Shape Analogy
19:48
Shape Analogy
19:49
Example 1: The Standard Normal Distribution and Z-Scores
22:34
Example 2: The Standard Normal Distribution and Z-Scores
25:54
Example 3: Sketching and Normal Distribution
28:55
Example 4: Sketching and Normal Distribution
32:32
Standard Normal Distributions & Z-Scores

41m 44s

Intro
0:00
Roadmap
0:06
Roadmap
0:07
A Family of Distributions
0:28
Infinite Set of Distributions
0:29
Transforming Normal Distributions to 'Standard' Normal Distribution
1:04
Normal Distribution vs. Standard Normal Distribution
2:58
Normal Distribution vs. Standard Normal Distribution
2:59
Z-Score, Raw Score, Mean, & SD
4:08
Z-Score, Raw Score, Mean, & SD
4:09
Weird Z-Scores
9:40
Weird Z-Scores
9:41
Excel
16:45
For Normal Distributions
16:46
For Standard Normal Distributions
19:11
Excel Example
20:24
Types of Problems
25:18
Percentage Problem: P(x)
25:19
Raw Score and Z-Score Problems
26:28
Standard Deviation Problems
27:01
Shape Analogy
27:44
Shape Analogy
27:45
Example 1: Deaths Due to Heart Disease vs. Deaths Due to Cancer
28:24
Example 2: Heights of Male College Students
33:15
Example 3: Mean and Standard Deviation
37:14
Example 4: Finding Percentage of Values in a Standard Normal Distribution
37:49
Normal Distribution: PDF vs. CDF

55m 44s

Intro
0:00
Roadmap
0:15
Roadmap
0:16
Frequency vs. Cumulative Frequency
0:56
Frequency vs. Cumulative Frequency
0:57
Frequency vs. Cumulative Frequency
4:32
Frequency vs. Cumulative Frequency Cont.
4:33
Calculus in Brief
6:21
Derivative-Integral Continuum
6:22
PDF
10:08
PDF for Standard Normal Distribution
10:09
PDF for Normal Distribution
14:32
Integral of PDF = CDF
21:27
Integral of PDF = CDF
21:28
Example 1: Cumulative Frequency Graph
23:31
Example 2: Mean, Standard Deviation, and Probability
24:43
Example 3: Mean and Standard Deviation
35:50
Example 4: Age of Cars
49:32
V. Linear Regression
Scatterplots

47m 19s

Intro
0:00
Roadmap
0:04
Roadmap
0:05
Previous Visualizations
0:30
Frequency Distributions
0:31
Compare & Contrast
2:26
Frequency Distributions Vs. Scatterplots
2:27
Summary Values
4:53
Shape
4:54
Center & Trend
6:41
Spread & Strength
8:22
Univariate & Bivariate
10:25
Example Scatterplot
10:48
Shape, Trend, and Strength
10:49
Positive and Negative Association
14:05
Positive and Negative Association
14:06
Linearity, Strength, and Consistency
18:30
Linearity
18:31
Strength
19:14
Consistency
20:40
Summarizing a Scatterplot
22:58
Summarizing a Scatterplot
22:59
Example 1: Gapminder.org, Income x Life Expectancy
26:32
Example 2: Gapminder.org, Income x Infant Mortality
36:12
Example 3: Trend and Strength of Variables
40:14
Example 4: Trend, Strength and Shape for Scatterplots
43:27
Regression

32m 2s

Intro
0:00
Roadmap
0:05
Roadmap
0:06
Linear Equations
0:34
Linear Equations: y = mx + b
0:35
Rough Line
5:16
Rough Line
5:17
Regression - A 'Center' Line
7:41
Reasons for Summarizing with a Regression Line
7:42
Predictor and Response Variable
10:04
Goal of Regression
12:29
Goal of Regression
12:30
Prediction
14:50
Example: Servings of Mile Per Year Shown By Age
14:51
Intrapolation
17:06
Extrapolation
17:58
Error in Prediction
20:34
Prediction Error
20:35
Residual
21:40
Example 1: Residual
23:34
Example 2: Large and Negative Residual
26:30
Example 3: Positive Residual
28:13
Example 4: Interpret Regression Line & Extrapolate
29:40
Least Squares Regression

56m 36s

Intro
0:00
Roadmap
0:13
Roadmap
0:14
Best Fit
0:47
Best Fit
0:48
Sum of Squared Errors (SSE)
1:50
Sum of Squared Errors (SSE)
1:51
Why Squared?
3:38
Why Squared?
3:39
Quantitative Properties of Regression Line
4:51
Quantitative Properties of Regression Line
4:52
So How do we Find Such a Line?
6:49
SSEs of Different Line Equations & Lowest SSE
6:50
Carl Gauss' Method
8:01
How Do We Find Slope (b1)
11:00
How Do We Find Slope (b1)
11:01
Hoe Do We Find Intercept
15:11
Hoe Do We Find Intercept
15:12
Example 1: Which of These Equations Fit the Above Data Best?
17:18
Example 2: Find the Regression Line for These Data Points and Interpret It
26:31
Example 3: Summarize the Scatterplot and Find the Regression Line.
34:31
Example 4: Examine the Mean of Residuals
43:52
Correlation

43m 58s

Intro
0:00
Roadmap
0:05
Roadmap
0:06
Summarizing a Scatterplot Quantitatively
0:47
Shape
0:48
Trend
1:11
Strength: Correlation ®
1:45
Correlation Coefficient ( r )
2:30
Correlation Coefficient ( r )
2:31
Trees vs. Forest
11:59
Trees vs. Forest
12:00
Calculating r
15:07
Average Product of z-scores for x and y
15:08
Relationship between Correlation and Slope
21:10
Relationship between Correlation and Slope
21:11
Example 1: Find the Correlation between Grams of Fat and Cost
24:11
Example 2: Relationship between r and b1
30:24
Example 3: Find the Regression Line
33:35
Example 4: Find the Correlation Coefficient for this Set of Data
37:37
Correlation: r vs. r-squared

52m 52s

Intro
0:00
Roadmap
0:07
Roadmap
0:08
R-squared
0:44
What is the Meaning of It? Why Squared?
0:45
Parsing Sum of Squared (Parsing Variability)
2:25
SST = SSR + SSE
2:26
What is SST and SSE?
7:46
What is SST and SSE?
7:47
r-squared
18:33
Coefficient of Determination
18:34
If the Correlation is Strong…
20:25
If the Correlation is Strong…
20:26
If the Correlation is Weak…
22:36
If the Correlation is Weak…
22:37
Example 1: Find r-squared for this Set of Data
23:56
Example 2: What Does it Mean that the Simple Linear Regression is a 'Model' of Variance?
33:54
Example 3: Why Does r-squared Only Range from 0 to 1
37:29
Example 4: Find the r-squared for This Set of Data
39:55
Transformations of Data

27m 8s

Intro
0:00
Roadmap
0:05
Roadmap
0:06
Why Transform?
0:26
Why Transform?
0:27
Shape-preserving vs. Shape-changing Transformations
5:14
Shape-preserving = Linear Transformations
5:15
Shape-changing Transformations = Non-linear Transformations
6:20
Common Shape-Preserving Transformations
7:08
Common Shape-Preserving Transformations
7:09
Common Shape-Changing Transformations
8:59
Powers
9:00
Logarithms
9:39
Change Just One Variable? Both?
10:38
Log-log Transformations
10:39
Log Transformations
14:38
Example 1: Create, Graph, and Transform the Data Set
15:19
Example 2: Create, Graph, and Transform the Data Set
20:08
Example 3: What Kind of Model would You Choose for this Data?
22:44
Example 4: Transformation of Data
25:46
VI. Collecting Data in an Experiment
Sampling & Bias

54m 44s

Intro
0:00
Roadmap
0:05
Roadmap
0:06
Descriptive vs. Inferential Statistics
1:04
Descriptive Statistics: Data Exploration
1:05
Example
2:03
To tackle Generalization…
4:31
Generalization
4:32
Sampling
6:06
'Good' Sample
6:40
Defining Samples and Populations
8:55
Population
8:56
Sample
11:16
Why Use Sampling?
13:09
Why Use Sampling?
13:10
Goal of Sampling: Avoiding Bias
15:04
What is Bias?
15:05
Where does Bias Come from: Sampling Bias
17:53
Where does Bias Come from: Response Bias
18:27
Sampling Bias: Bias from Bas Sampling Methods
19:34
Size Bias
19:35
Voluntary Response Bias
21:13
Convenience Sample
22:22
Judgment Sample
23:58
Inadequate Sample Frame
25:40
Response Bias: Bias from 'Bad' Data Collection Methods
28:00
Nonresponse Bias
29:31
Questionnaire Bias
31:10
Incorrect Response or Measurement Bias
37:32
Example 1: What Kind of Biases?
40:29
Example 2: What Biases Might Arise?
44:46
Example 3: What Kind of Biases?
48:34
Example 4: What Kind of Biases?
51:43
Sampling Methods

14m 25s

Intro
0:00
Roadmap
0:05
Roadmap
0:06
Biased vs. Unbiased Sampling Methods
0:32
Biased Sampling
0:33
Unbiased Sampling
1:13
Probability Sampling Methods
2:31
Simple Random
2:54
Stratified Random Sampling
4:06
Cluster Sampling
5:24
Two-staged Sampling
6:22
Systematic Sampling
7:25
Example 1: Which Type(s) of Sampling was this?
8:33
Example 2: Describe How to Take a Two-Stage Sample from this Book
10:16
Example 3: Sampling Methods
11:58
Example 4: Cluster Sample Plan
12:48
Research Design

53m 54s

Intro
0:00
Roadmap
0:06
Roadmap
0:07
Descriptive vs. Inferential Statistics
0:51
Descriptive Statistics: Data Exploration
0:52
Inferential Statistics
1:02
Variables and Relationships
1:44
Variables
1:45
Relationships
2:49
Not Every Type of Study is an Experiment…
4:16
Category I - Descriptive Study
4:54
Category II - Correlational Study
5:50
Category III - Experimental, Quasi-experimental, Non-experimental
6:33
Category III
7:42
Experimental, Quasi-experimental, and Non-experimental
7:43
Why CAN'T the Other Strategies Determine Causation?
10:18
Third-variable Problem
10:19
Directionality Problem
15:49
What Makes Experiments Special?
17:54
Manipulation
17:55
Control (and Comparison)
21:58
Methods of Control
26:38
Holding Constant
26:39
Matching
29:11
Random Assignment
31:48
Experiment Terminology
34:09
'true' Experiment vs. Study
34:10
Independent Variable (IV)
35:16
Dependent Variable (DV)
35:45
Factors
36:07
Treatment Conditions
36:23
Levels
37:43
Confounds or Extraneous Variables
38:04
Blind
38:38
Blind Experiments
38:39
Double-blind Experiments
39:29
How Categories Relate to Statistics
41:35
Category I - Descriptive Study
41:36
Category II - Correlational Study
42:05
Category III - Experimental, Quasi-experimental, Non-experimental
42:43
Example 1: Research Design
43:50
Example 2: Research Design
47:37
Example 3: Research Design
50:12
Example 4: Research Design
52:00
Between and Within Treatment Variability

41m 31s

Intro
0:00
Roadmap
0:06
Roadmap
0:07
Experimental Designs
0:51
Experimental Designs: Manipulation & Control
0:52
Two Types of Variability
2:09
Between Treatment Variability
2:10
Within Treatment Variability
3:31
Updated Goal of Experimental Design
5:47
Updated Goal of Experimental Design
5:48
Example: Drugs and Driving
6:56
Example: Drugs and Driving
6:57
Different Types of Random Assignment
11:27
All Experiments
11:28
Completely Random Design
12:02
Randomized Block Design
13:19
Randomized Block Design
15:48
Matched Pairs Design
15:49
Repeated Measures Design
19:47
Between-subject Variable vs. Within-subject Variable
22:43
Completely Randomized Design
22:44
Repeated Measures Design
25:03
Example 1: Design a Completely Random, Matched Pair, and Repeated Measures Experiment
26:16
Example 2: Block Design
31:41
Example 3: Completely Randomized Designs
35:11
Example 4: Completely Random, Matched Pairs, or Repeated Measures Experiments?
39:01
VII. Review of Probability Axioms
Sample Spaces

37m 52s

Intro
0:00
Roadmap
0:07
Roadmap
0:08
Why is Probability Involved in Statistics
0:48
Probability
0:49
Can People Tell the Difference between Cheap and Gourmet Coffee?
2:08
Taste Test with Coffee Drinkers
3:37
If No One can Actually Taste the Difference
3:38
If Everyone can Actually Taste the Difference
5:36
Creating a Probability Model
7:09
Creating a Probability Model
7:10
D'Alembert vs. Necker
9:41
D'Alembert vs. Necker
9:42
Problem with D'Alembert's Model
13:29
Problem with D'Alembert's Model
13:30
Covering Entire Sample Space
15:08
Fundamental Principle of Counting
15:09
Where Do Probabilities Come From?
22:54
Observed Data, Symmetry, and Subjective Estimates
22:55
Checking whether Model Matches Real World
24:27
Law of Large Numbers
24:28
Example 1: Law of Large Numbers
27:46
Example 2: Possible Outcomes
30:43
Example 3: Brands of Coffee and Taste
33:25
Example 4: How Many Different Treatments are there?
35:33
Addition Rule for Disjoint Events

20m 29s

Intro
0:00
Roadmap
0:08
Roadmap
0:09
Disjoint Events
0:41
Disjoint Events
0:42
Meaning of 'or'
2:39
In Regular Life
2:40
In Math/Statistics/Computer Science
3:10
Addition Rule for Disjoin Events
3:55
If A and B are Disjoint: P (A and B)
3:56
If A and B are Disjoint: P (A or B)
5:15
General Addition Rule
5:41
General Addition Rule
5:42
Generalized Addition Rule
8:31
If A and B are not Disjoint: P (A or B)
8:32
Example 1: Which of These are Mutually Exclusive?
10:50
Example 2: What is the Probability that You will Have a Combination of One Heads and Two Tails?
12:57
Example 3: Engagement Party
15:17
Example 4: Home Owner's Insurance
18:30
Conditional Probability

57m 19s

Intro
0:00
Roadmap
0:05
Roadmap
0:06
'or' vs. 'and' vs. Conditional Probability
1:07
'or' vs. 'and' vs. Conditional Probability
1:08
'and' vs. Conditional Probability
5:57
P (M or L)
5:58
P (M and L)
8:41
P (M|L)
11:04
P (L|M)
12:24
Tree Diagram
15:02
Tree Diagram
15:03
Defining Conditional Probability
22:42
Defining Conditional Probability
22:43
Common Contexts for Conditional Probability
30:56
Medical Testing: Positive Predictive Value
30:57
Medical Testing: Sensitivity
33:03
Statistical Tests
34:27
Example 1: Drug and Disease
36:41
Example 2: Marbles and Conditional Probability
40:04
Example 3: Cards and Conditional Probability
45:59
Example 4: Votes and Conditional Probability
50:21
Independent Events

24m 27s

Intro
0:00
Roadmap
0:05
Roadmap
0:06
Independent Events & Conditional Probability
0:26
Non-independent Events
0:27
Independent Events
2:00
Non-independent and Independent Events
3:08
Non-independent and Independent Events
3:09
Defining Independent Events
5:52
Defining Independent Events
5:53
Multiplication Rule
7:29
Previously…
7:30
But with Independent Evens
8:53
Example 1: Which of These Pairs of Events are Independent?
11:12
Example 2: Health Insurance and Probability
15:12
Example 3: Independent Events
17:42
Example 4: Independent Events
20:03
VIII. Probability Distributions
Introduction to Probability Distributions

56m 45s

Intro
0:00
Roadmap
0:08
Roadmap
0:09
Sampling vs. Probability
0:57
Sampling
0:58
Missing
1:30
What is Missing?
3:06
Insight: Probability Distributions
5:26
Insight: Probability Distributions
5:27
What is a Probability Distribution?
7:29
From Sample Spaces to Probability Distributions
8:44
Sample Space
8:45
Probability Distribution of the Sum of Two Die
11:16
The Random Variable
17:43
The Random Variable
17:44
Expected Value
21:52
Expected Value
21:53
Example 1: Probability Distributions
28:45
Example 2: Probability Distributions
35:30
Example 3: Probability Distributions
43:37
Example 4: Probability Distributions
47:20
Expected Value & Variance of Probability Distributions

53m 41s

Intro
0:00
Roadmap
0:06
Roadmap
0:07
Discrete vs. Continuous Random Variables
1:04
Discrete vs. Continuous Random Variables
1:05
Mean and Variance Review
4:44
Mean: Sample, Population, and Probability Distribution
4:45
Variance: Sample, Population, and Probability Distribution
9:12
Example Situation
14:10
Example Situation
14:11
Some Special Cases…
16:13
Some Special Cases…
16:14
Linear Transformations
19:22
Linear Transformations
19:23
What Happens to Mean and Variance of the Probability Distribution?
20:12
n Independent Values of X
25:38
n Independent Values of X
25:39
Compare These Two Situations
30:56
Compare These Two Situations
30:57
Two Random Variables, X and Y
32:02
Two Random Variables, X and Y
32:03
Example 1: Expected Value & Variance of Probability Distributions
35:35
Example 2: Expected Values & Standard Deviation
44:17
Example 3: Expected Winnings and Standard Deviation
48:18
Binomial Distribution

55m 15s

Intro
0:00
Roadmap
0:05
Roadmap
0:06
Discrete Probability Distributions
1:42
Discrete Probability Distributions
1:43
Binomial Distribution
2:36
Binomial Distribution
2:37
Multiplicative Rule Review
6:54
Multiplicative Rule Review
6:55
How Many Outcomes with k 'Successes'
10:23
Adults and Bachelor's Degree: Manual List of Outcomes
10:24
P (X=k)
19:37
Putting Together # of Outcomes with the Multiplicative Rule
19:38
Expected Value and Standard Deviation in a Binomial Distribution
25:22
Expected Value and Standard Deviation in a Binomial Distribution
25:23
Example 1: Coin Toss
33:42
Example 2: College Graduates
38:03
Example 3: Types of Blood and Probability
45:39
Example 4: Expected Number and Standard Deviation
51:11
IX. Sampling Distributions of Statistics
Introduction to Sampling Distributions

48m 17s

Intro
0:00
Roadmap
0:08
Roadmap
0:09
Probability Distributions vs. Sampling Distributions
0:55
Probability Distributions vs. Sampling Distributions
0:56
Same Logic
3:55
Logic of Probability Distribution
3:56
Example: Rolling Two Die
6:56
Simulating Samples
9:53
To Come Up with Probability Distributions
9:54
In Sampling Distributions
11:12
Connecting Sampling and Research Methods with Sampling Distributions
12:11
Connecting Sampling and Research Methods with Sampling Distributions
12:12
Simulating a Sampling Distribution
14:14
Experimental Design: Regular Sleep vs. Less Sleep
14:15
Logic of Sampling Distributions
23:08
Logic of Sampling Distributions
23:09
General Method of Simulating Sampling Distributions
25:38
General Method of Simulating Sampling Distributions
25:39
Questions that Remain
28:45
Questions that Remain
28:46
Example 1: Mean and Standard Error of Sampling Distribution
30:57
Example 2: What is the Best Way to Describe Sampling Distributions?
37:12
Example 3: Matching Sampling Distributions
38:21
Example 4: Mean and Standard Error of Sampling Distribution
41:51
Sampling Distribution of the Mean

1h 8m 48s

Intro
0:00
Roadmap
0:05
Roadmap
0:06
Special Case of General Method for Simulating a Sampling Distribution
1:53
Special Case of General Method for Simulating a Sampling Distribution
1:54
Computer Simulation
3:43
Using Simulations to See Principles behind Shape of SDoM
15:50
Using Simulations to See Principles behind Shape of SDoM
15:51
Conditions
17:38
Using Simulations to See Principles behind Center (Mean) of SDoM
20:15
Using Simulations to See Principles behind Center (Mean) of SDoM
20:16
Conditions: Does n Matter?
21:31
Conditions: Does Number of Simulation Matter?
24:37
Using Simulations to See Principles behind Standard Deviation of SDoM
27:13
Using Simulations to See Principles behind Standard Deviation of SDoM
27:14
Conditions: Does n Matter?
34:45
Conditions: Does Number of Simulation Matter?
36:24
Central Limit Theorem
37:13
SHAPE
38:08
CENTER
39:34
SPREAD
39:52
Comparing Population, Sample, and SDoM
43:10
Comparing Population, Sample, and SDoM
43:11
Answering the 'Questions that Remain'
48:24
What Happens When We Don't Know What the Population Looks Like?
48:25
Can We Have Sampling Distributions for Summary Statistics Other than the Mean?
49:42
How Do We Know whether a Sample is Sufficiently Unlikely?
53:36
Do We Always Have to Simulate a Large Number of Samples in Order to get a Sampling Distribution?
54:40
Example 1: Mean Batting Average
55:25
Example 2: Mean Sampling Distribution and Standard Error
59:07
Example 3: Sampling Distribution of the Mean
1:01:04
Sampling Distribution of Sample Proportions

54m 37s

Intro
0:00
Roadmap
0:06
Roadmap
0:07
Intro to Sampling Distribution of Sample Proportions (SDoSP)
0:51
Categorical Data (Examples)
0:52
Wish to Estimate Proportion of Population from Sample…
2:00
Notation
3:34
Population Proportion and Sample Proportion Notations
3:35
What's the Difference?
9:19
SDoM vs. SDoSP: Type of Data
9:20
SDoM vs. SDoSP: Shape
11:24
SDoM vs. SDoSP: Center
12:30
SDoM vs. SDoSP: Spread
15:34
Binomial Distribution vs. Sampling Distribution of Sample Proportions
19:14
Binomial Distribution vs. SDoSP: Type of Data
19:17
Binomial Distribution vs. SDoSP: Shape
21:07
Binomial Distribution vs. SDoSP: Center
21:43
Binomial Distribution vs. SDoSP: Spread
24:08
Example 1: Sampling Distribution of Sample Proportions
26:07
Example 2: Sampling Distribution of Sample Proportions
37:58
Example 3: Sampling Distribution of Sample Proportions
44:42
Example 4: Sampling Distribution of Sample Proportions
45:57
X. Inferential Statistics
Introduction to Confidence Intervals

42m 53s

Intro
0:00
Roadmap
0:06
Roadmap
0:07
Inferential Statistics
0:50
Inferential Statistics
0:51
Two Problems with This Picture…
3:20
Two Problems with This Picture…
3:21
Solution: Confidence Intervals (CI)
4:59
Solution: Hypotheiss Testing (HT)
5:49
Which Parameters are Known?
6:45
Which Parameters are Known?
6:46
Confidence Interval - Goal
7:56
When We Don't Know m but know s
7:57
When We Don't Know
18:27
When We Don't Know m nor s
18:28
Example 1: Confidence Intervals
26:18
Example 2: Confidence Intervals
29:46
Example 3: Confidence Intervals
32:18
Example 4: Confidence Intervals
38:31
t Distributions

1h 2m 6s

Intro
0:00
Roadmap
0:04
Roadmap
0:05
When to Use z vs. t?
1:07
When to Use z vs. t?
1:08
What is z and t?
3:02
z-score and t-score: Commonality
3:03
z-score and t-score: Formulas
3:34
z-score and t-score: Difference
5:22
Why not z? (Why t?)
7:24
Why not z? (Why t?)
7:25
But Don't Worry!
15:13
Gossett and t-distributions
15:14
Rules of t Distributions
17:05
t-distributions are More Normal as n Gets Bigger
17:06
t-distributions are a Family of Distributions
18:55
Degrees of Freedom (df)
20:02
Degrees of Freedom (df)
20:03
t Family of Distributions
24:07
t Family of Distributions : df = 2 , 4, and 60
24:08
df = 60
29:16
df = 2
29:59
How to Find It?
31:01
'Student's t-distribution' or 't-distribution'
31:02
Excel Example
33:06
Example 1: Which Distribution Do You Use? Z or t?
45:26
Example 2: Friends on Facebook
47:41
Example 3: t Distributions
52:15
Example 4: t Distributions , confidence interval, and mean
55:59
Introduction to Hypothesis Testing

1h 6m 33s

Intro
0:00
Roadmap
0:06
Roadmap
0:07
Issues to Overcome in Inferential Statistics
1:35
Issues to Overcome in Inferential Statistics
1:36
What Happens When We Don't Know What the Population Looks Like?
2:57
How Do We Know whether a sample is Sufficiently Unlikely
3:43
Hypothesizing a Population
6:44
Hypothesizing a Population
6:45
Null Hypothesis
8:07
Alternative Hypothesis
8:56
Hypotheses
11:58
Hypotheses
11:59
Errors in Hypothesis Testing
14:22
Errors in Hypothesis Testing
14:23
Steps of Hypothesis Testing
21:15
Steps of Hypothesis Testing
21:16
Single Sample HT ( When Sigma Available)
26:08
Example: Average Facebook Friends
26:09
Step1
27:08
Step 2
27:58
Step 3
28:17
Step 4
32:18
Single Sample HT (When Sigma Not Available)
36:33
Example: Average Facebook Friends
36:34
Step1: Hypothesis Testing
36:58
Step 2: Significance Level
37:25
Step 3: Decision Stage
37:40
Step 4: Sample
41:36
Sigma and p-value
45:04
Sigma and p-value
45:05
On tailed vs. Two Tailed Hypotheses
45:51
Example 1: Hypothesis Testing
48:37
Example 2: Heights of Women in the US
57:43
Example 3: Select the Best Way to Complete This Sentence
1:03:23
Confidence Intervals for the Difference of Two Independent Means

55m 14s

Intro
0:00
Roadmap
0:14
Roadmap
0:15
One Mean vs. Two Means
1:17
One Mean vs. Two Means
1:18
Notation
2:41
A Sample! A Set!
2:42
Mean of X, Mean of Y, and Difference of Two Means
3:56
SE of X
4:34
SE of Y
6:28
Sampling Distribution of the Difference between Two Means (SDoD)
7:48
Sampling Distribution of the Difference between Two Means (SDoD)
7:49
Rules of the SDoD (similar to CLT!)
15:00
Mean for the SDoD Null Hypothesis
15:01
Standard Error
17:39
When can We Construct a CI for the Difference between Two Means?
21:28
Three Conditions
21:29
Finding CI
23:56
One Mean CI
23:57
Two Means CI
25:45
Finding t
29:16
Finding t
29:17
Interpreting CI
30:25
Interpreting CI
30:26
Better Estimate of s (s pool)
34:15
Better Estimate of s (s pool)
34:16
Example 1: Confidence Intervals
42:32
Example 2: SE of the Difference
52:36
Hypothesis Testing for the Difference of Two Independent Means

50m

Intro
0:00
Roadmap
0:06
Roadmap
0:07
The Goal of Hypothesis Testing
0:56
One Sample and Two Samples
0:57
Sampling Distribution of the Difference between Two Means (SDoD)
3:42
Sampling Distribution of the Difference between Two Means (SDoD)
3:43
Rules of the SDoD (Similar to CLT!)
6:46
Shape
6:47
Mean for the Null Hypothesis
7:26
Standard Error for Independent Samples (When Variance is Homogenous)
8:18
Standard Error for Independent Samples (When Variance is not Homogenous)
9:25
Same Conditions for HT as for CI
10:08
Three Conditions
10:09
Steps of Hypothesis Testing
11:04
Steps of Hypothesis Testing
11:05
Formulas that Go with Steps of Hypothesis Testing
13:21
Step 1
13:25
Step 2
14:18
Step 3
15:00
Step 4
16:57
Example 1: Hypothesis Testing for the Difference of Two Independent Means
18:47
Example 2: Hypothesis Testing for the Difference of Two Independent Means
33:55
Example 3: Hypothesis Testing for the Difference of Two Independent Means
44:22
Confidence Intervals & Hypothesis Testing for the Difference of Two Paired Means

1h 14m 11s

Intro
0:00
Roadmap
0:09
Roadmap
0:10
The Goal of Hypothesis Testing
1:27
One Sample and Two Samples
1:28
Independent Samples vs. Paired Samples
3:16
Independent Samples vs. Paired Samples
3:17
Which is Which?
5:20
Independent SAMPLES vs. Independent VARIABLES
7:43
independent SAMPLES vs. Independent VARIABLES
7:44
T-tests Always…
10:48
T-tests Always…
10:49
Notation for Paired Samples
12:59
Notation for Paired Samples
13:00
Steps of Hypothesis Testing for Paired Samples
16:13
Steps of Hypothesis Testing for Paired Samples
16:14
Rules of the SDoD (Adding on Paired Samples)
18:03
Shape
18:04
Mean for the Null Hypothesis
18:31
Standard Error for Independent Samples (When Variance is Homogenous)
19:25
Standard Error for Paired Samples
20:39
Formulas that go with Steps of Hypothesis Testing
22:59
Formulas that go with Steps of Hypothesis Testing
23:00
Confidence Intervals for Paired Samples
30:32
Confidence Intervals for Paired Samples
30:33
Example 1: Confidence Intervals & Hypothesis Testing for the Difference of Two Paired Means
32:28
Example 2: Confidence Intervals & Hypothesis Testing for the Difference of Two Paired Means
44:02
Example 3: Confidence Intervals & Hypothesis Testing for the Difference of Two Paired Means
52:23
Type I and Type II Errors

31m 27s

Intro
0:00
Roadmap
0:18
Roadmap
0:19
Errors and Relationship to HT and the Sample Statistic?
1:11
Errors and Relationship to HT and the Sample Statistic?
1:12
Instead of a Box…Distributions!
7:00
One Sample t-test: Friends on Facebook
7:01
Two Sample t-test: Friends on Facebook
13:46
Usually, Lots of Overlap between Null and Alternative Distributions
16:59
Overlap between Null and Alternative Distributions
17:00
How Distributions and 'Box' Fit Together
22:45
How Distributions and 'Box' Fit Together
22:46
Example 1: Types of Errors
25:54
Example 2: Types of Errors
27:30
Example 3: What is the Danger of the Type I Error?
29:38
Effect Size & Power

44m 41s

Intro
0:00
Roadmap
0:05
Roadmap
0:06
Distance between Distributions: Sample t
0:49
Distance between Distributions: Sample t
0:50
Problem with Distance in Terms of Standard Error
2:56
Problem with Distance in Terms of Standard Error
2:57
Test Statistic (t) vs. Effect Size (d or g)
4:38
Test Statistic (t) vs. Effect Size (d or g)
4:39
Rules of Effect Size
6:09
Rules of Effect Size
6:10
Why Do We Need Effect Size?
8:21
Tells You the Practical Significance
8:22
HT can be Deceiving…
10:25
Important Note
10:42
What is Power?
11:20
What is Power?
11:21
Why Do We Need Power?
14:19
Conditional Probability and Power
14:20
Power is:
16:27
Can We Calculate Power?
19:00
Can We Calculate Power?
19:01
How Does Alpha Affect Power?
20:36
How Does Alpha Affect Power?
20:37
How Does Effect Size Affect Power?
25:38
How Does Effect Size Affect Power?
25:39
How Does Variability and Sample Size Affect Power?
27:56
How Does Variability and Sample Size Affect Power?
27:57
How Do We Increase Power?
32:47
Increasing Power
32:48
Example 1: Effect Size & Power
35:40
Example 2: Effect Size & Power
37:38
Example 3: Effect Size & Power
40:55
XI. Analysis of Variance
F-distributions

24m 46s

Intro
0:00
Roadmap
0:04
Roadmap
0:05
Z- & T-statistic and Their Distribution
0:34
Z- & T-statistic and Their Distribution
0:35
F-statistic
4:55
The F Ration ( the Variance Ratio)
4:56
F-distribution
12:29
F-distribution
12:30
s and p-value
15:00
s and p-value
15:01
Example 1: Why Does F-distribution Stop At 0 But Go On Until Infinity?
18:33
Example 2: F-distributions
19:29
Example 3: F-distributions and Heights
21:29
ANOVA with Independent Samples

1h 9m 25s

Intro
0:00
Roadmap
0:05
Roadmap
0:06
The Limitations of t-tests
1:12
The Limitations of t-tests
1:13
Two Major Limitations of Many t-tests
3:26
Two Major Limitations of Many t-tests
3:27
Ronald Fisher's Solution… F-test! New Null Hypothesis
4:43
Ronald Fisher's Solution… F-test! New Null Hypothesis (Omnibus Test - One Test to Rule Them All!)
4:44
Analysis of Variance (ANoVA) Notation
7:47
Analysis of Variance (ANoVA) Notation
7:48
Partitioning (Analyzing) Variance
9:58
Total Variance
9:59
Within-group Variation
14:00
Between-group Variation
16:22
Time out: Review Variance & SS
17:05
Time out: Review Variance & SS
17:06
F-statistic
19:22
The F Ratio (the Variance Ratio)
19:23
S²bet = SSbet / dfbet
22:13
What is This?
22:14
How Many Means?
23:20
So What is the dfbet?
23:38
So What is SSbet?
24:15
S²w = SSw / dfw
26:05
What is This?
26:06
How Many Means?
27:20
So What is the dfw?
27:36
So What is SSw?
28:18
Chart of Independent Samples ANOVA
29:25
Chart of Independent Samples ANOVA
29:26
Example 1: Who Uploads More Photos: Unknown Ethnicity, Latino, Asian, Black, or White Facebook Users?
35:52
Hypotheses
35:53
Significance Level
39:40
Decision Stage
40:05
Calculate Samples' Statistic and p-Value
44:10
Reject or Fail to Reject H0
55:54
Example 2: ANOVA with Independent Samples
58:21
Repeated Measures ANOVA

1h 15m 13s

Intro
0:00
Roadmap
0:05
Roadmap
0:06
The Limitations of t-tests
0:36
Who Uploads more Pictures and Which Photo-Type is Most Frequently Used on Facebook?
0:37
ANOVA (F-test) to the Rescue!
5:49
Omnibus Hypothesis
5:50
Analyze Variance
7:27
Independent Samples vs. Repeated Measures
9:12
Same Start
9:13
Independent Samples ANOVA
10:43
Repeated Measures ANOVA
12:00
Independent Samples ANOVA
16:00
Same Start: All the Variance Around Grand Mean
16:01
Independent Samples
16:23
Repeated Measures ANOVA
18:18
Same Start: All the Variance Around Grand Mean
18:19
Repeated Measures
18:33
Repeated Measures F-statistic
21:22
The F Ratio (The Variance Ratio)
21:23
S²bet = SSbet / dfbet
23:07
What is This?
23:08
How Many Means?
23:39
So What is the dfbet?
23:54
So What is SSbet?
24:32
S² resid = SS resid / df resid
25:46
What is This?
25:47
So What is SS resid?
26:44
So What is the df resid?
27:36
SS subj and df subj
28:11
What is This?
28:12
How Many Subject Means?
29:43
So What is df subj?
30:01
So What is SS subj?
30:09
SS total and df total
31:42
What is This?
31:43
What is the Total Number of Data Points?
32:02
So What is df total?
32:34
so What is SS total?
32:47
Chart of Repeated Measures ANOVA
33:19
Chart of Repeated Measures ANOVA: F and Between-samples Variability
33:20
Chart of Repeated Measures ANOVA: Total Variability, Within-subject (case) Variability, Residual Variability
35:50
Example 1: Which is More Prevalent on Facebook: Tagged, Uploaded, Mobile, or Profile Photos?
40:25
Hypotheses
40:26
Significance Level
41:46
Decision Stage
42:09
Calculate Samples' Statistic and p-Value
46:18
Reject or Fail to Reject H0
57:55
Example 2: Repeated Measures ANOVA
58:57
Example 3: What's the Problem with a Bunch of Tiny t-tests?
1:13:59
XII. Chi-square Test
Chi-Square Goodness-of-Fit Test

58m 23s

Intro
0:00
Roadmap
0:05
Roadmap
0:06
Where Does the Chi-Square Test Belong?
0:50
Where Does the Chi-Square Test Belong?
0:51
A New Twist on HT: Goodness-of-Fit
7:23
HT in General
7:24
Goodness-of-Fit HT
8:26
Hypotheses about Proportions
12:17
Null Hypothesis
12:18
Alternative Hypothesis
13:23
Example
14:38
Chi-Square Statistic
17:52
Chi-Square Statistic
17:53
Chi-Square Distributions
24:31
Chi-Square Distributions
24:32
Conditions for Chi-Square
28:58
Condition 1
28:59
Condition 2
30:20
Condition 3
30:32
Condition 4
31:47
Example 1: Chi-Square Goodness-of-Fit Test
32:23
Example 2: Chi-Square Goodness-of-Fit Test
44:34
Example 3: Which of These Statements Describe Properties of the Chi-Square Goodness-of-Fit Test?
56:06
Chi-Square Test of Homogeneity

51m 36s

Intro
0:00
Roadmap
0:09
Roadmap
0:10
Goodness-of-Fit vs. Homogeneity
1:13
Goodness-of-Fit HT
1:14
Homogeneity
2:00
Analogy
2:38
Hypotheses About Proportions
5:00
Null Hypothesis
5:01
Alternative Hypothesis
6:11
Example
6:33
Chi-Square Statistic
10:12
Same as Goodness-of-Fit Test
10:13
Set Up Data
12:28
Setting Up Data Example
12:29
Expected Frequency
16:53
Expected Frequency
16:54
Chi-Square Distributions & df
19:26
Chi-Square Distributions & df
19:27
Conditions for Test of Homogeneity
20:54
Condition 1
20:55
Condition 2
21:39
Condition 3
22:05
Condition 4
22:23
Example 1: Chi-Square Test of Homogeneity
22:52
Example 2: Chi-Square Test of Homogeneity
32:10
XIII. Overview of Statistics
Overview of Statistics

18m 11s

Intro
0:00
Roadmap
0:07
Roadmap
0:08
The Statistical Tests (HT) We've Covered
0:28
The Statistical Tests (HT) We've Covered
0:29
Organizing the Tests We've Covered…
1:08
One Sample: Continuous DV and Categorical DV
1:09
Two Samples: Continuous DV and Categorical DV
5:41
More Than Two Samples: Continuous DV and Categorical DV
8:21
The Following Data: OK Cupid
10:10
The Following Data: OK Cupid
10:11
Example 1: Weird-MySpace-Angle Profile Photo
10:38
Example 2: Geniuses
12:30
Example 3: Promiscuous iPhone Users
13:37
Example 4: Women, Aging, and Messaging
16:07
Loading...
This is a quick preview of the lesson. For full access, please Log In or Sign up.
For more information, please see full course syllabus of Statistics
  • Discussion

  • Download Lecture Slides

  • Table of Contents

  • Transcription

  • Related Books

Lecture Comments (1)

0 answers

Post by Brijesh Bolar on August 12, 2012

I am a bit confused between continuous and discrete variable? Why is no. of siblings a continuous variable and not discrete variable in the example 3 above.

Bar Graphs

Lecture Slides are screen-captured images of important points in the lecture. Students can download and print out these lecture slide images to do practice problems as well as take notes while watching the lecture.

  • Intro 0:00
  • Roadmap 0:05
    • Roadmap
  • Review of Frequency Distributions 0:44
    • Y-axis and X-axis
    • Types of Frequency Visualizations Covered so Far
    • Introduction to Bar Graphs
  • Example 1: Bar Graph 5:32
    • Example 1: Bar Graph
  • Do Shapes, Center, and Spread of Distributions Apply to Bar Graphs? 11:07
    • Do Shapes, Center, and Spread of Distributions Apply to Bar Graphs?
  • Example 2: Create a Frequency Visualization for Gender 14:02
  • Example 3: Cases, Variables, and Frequency Visualization 16:34
  • Example 4: What Kind of Graphs are Shown Below? 19:29

Transcription: Bar Graphs

Welcome back to www.educator.com.0000

Today we are going to be covering bar graphs.0002

Today’s roadmap looks like this, first we are going to review all the frequency distributions that we have done so.0010

Then we are going to talk about a little bit about bar graphs and how they are different.0017

Mainly is that they involve categorical variables and looking at the frequency of each value.0020

Then we are going to contrast bar graphs and histograms because they are going to0026

look very similar to each other but they are very different ideas underlying them.0030

But they look superficially similar.0036

We are going to talk about whether shape applies to bar graphs, central tendency instead as well.0038

First let us review all the frequency distributions we have done so far.0048

What was on the Y axis?0052

Well since they are frequency distributions, largely it is something like frequency.0054

Sometimes you will see frequency distributions that have relative frequency and that does not change the shape, center, or spread.0060

Because you are basically just dividing by a constant.0072

What was on that X axis?0075

Remember in all of our histograms, dot plots, and stem plot so far, it is usually on the X axis.0078

In the case of stem plots in that sort of Y axis, that central column that is going to be the values of the variable, whatever your variable is.0086

So far we have looked at variables such as height, number of friends, photos, number of photos, those kind of variables.0105

We have each of those variables and we have all the values for that variable on the X axis.0128

Let us look at the different types of frequency visualizations we have looked at so far.0137

You could think of them as graphs or charts.0146

We have covered dot plots, remember what those look like?0154

They look like little dots or stars.0158

We have looked at histograms which look like bars, those are pretty frequent.0163

We have looked at stem and leaf plots that have the actual numbers in them like 2, 3, 4 and then they have 0 – 5, 0 – 2.0171

We are going to look at bar graphs.0184

When I draw a bar graph, which one does this look like?0186

It looks very similar to the histograms, right.0194

Here is the difference, so far in all three of these kinds here the variable of interest has always been continuous.0198

There is something in between 62 inches and 63 inches, right?0220

Like having 100 friends and 101 friends.0227

It is meaningful having 101 friends, having one more friend.0233

These have been interval, they have ratio values and so these variables have largely been continuous.0238

In bar graphs, I will color this red so that you know it is different.0248

In bar graphs, for the first time we are going to be looking at variables that are categorical.0258

If you recall categorical means that these variables are going to be like little bins, right?0268

There is nothing in between 1 and 2, in the case of categorical variables0276

and these are going to be largely useful for things that are nominal measures.0283

Things like gender having been male or female.0288

There are some things in between male and female but for the purposes of statistics we treat as a categorical variable.0291

They are nothing in between hair color, you either have black hair or brownish hair or blondish hair rates and reddish hair, other colors.0301

There is nothing in between eye color.0315

It is not a continuo necessarily.0318

Because of that categorical variables are going to be visualized in a very different way.0321

These visualizations are going to be called bar graphs.0328

Let us go ahead and look at an example of the bar graph.0335

They basically look like histograms superficially but the way you could tell is by looking at the X axis.0338

This is how you can be able to tell whether it is a histogram or bar graph because on the X axis you should see a categorical variable.0349

Let us look at an example.0361

If you put up the Excel file that you could download, here we have all of these variables in these columns.0365

Each of our cases is one of our people from www.facebook.com, these are our 100 friends from www.facebook.com.0373

Let us go down to the column that says relationship status, here it is.0381

Here is relationship status.0387

This is something that www.facebook.com really big for, because all of a sudden you could internet stalk people0389

and figure out what their relationship status is.0395

But here what we see is relationship status is a whole bunch of numbers.0398

If you click on the variables sheet, it will tell you what those numbers stand for.0404

Relationship status is in column H and we are going to color this in red fonts so you could clearly follow along.0410

If you scroll to the right it tells you that it is a nominal kind of measure and it is a categorical variable.0419

Perfect for doing bar graphs.0425

Here is what the dummy coding looks like.0427

Although they are numbers there, those numbers do not actually stand for numbers.0430

They are just dummy codes because they are stand ins for nominal names, nominal categories.0434

Here it says if there is a 0 in that column, it just means that the relationship status is left blank or unfilled in.0443

If they have a 1 it means that they are single.0451

If it is a 2, they are in a relationship.0455

If it is a 3, they are engaged.0458

If it is a 4, they are married.0461

If it is a 5, it is complicated.0463

If it is a 6, they just put something else.0466

We know that they have 0 through 6 as the potential values that could be in that variable.0470

Let us go to the relationship status sheet.0478

Here I have already filled in the category labels for you and the status is that they would have.0482

Let us make a frequency table, this is going to look the same as before.0488

Let us go ahead and put in our formula, the equal sign (=) first for the function count if.0492

I want Excel to count this person and if they have a blank in their relationship status.0501

I will put in a comma because I know I’m going to need that.0515

Here is my data and I know this is going to stay put if I put in dollar sign ($).0520

I’m going to lock it in place and that just tells me what sheet we are in.0529

Count in this data if it meets this criteria of 0.0538

I’m going to close my parentheses.0547

There are 13 people out of our 100 that have left their relationship status blank.0550

I’m just going to copy and paste all of that down and we see that just from looking at our frequency table,0557

We could see that most of the people in our sample are single or in a relationship, not too serious.0561

Here we will select all of these before we meet the bar graphs.0573

The reason of selecting these category labels is that when I select them, Excel will just fill it in for me.0581

It will fill in that X axis for me.0588

I’m going to click on charts and go ahead and click on column.0592

And here we go.0598

I’m going to delete that because it is redundant.0603

Here we have a nice bar graph.0607

Notice that it looks almost exactly like a histogram but one of the difference is that in bar graphs0612

there are spaces in between to indicate that these are separate bins that cannot be continuously looked at.0618

Because of that we see that here we see the same information as we saw in the frequency table that being single is the most frequent category.0627

Being in a relationship is the second most frequent.0640

These are all much less frequent and it is a little common to leave a blank but not too common.0643

That is one example of a bar graph.0653

It looks just like histograms but the difference was we used categorical variable.0660

Let us take our example that I have just copied and pasted it on here and let us look at whether sheet, center,0670

or spread of distributions that we have looked at before apply to bar graphs.0678

Now let us think about this, can we really say that this is a skewed right sheet? that it has a tail?0683

Let us think about this.0695

Well, in order to answer that question we might want to think about this idea, will it matter if the order of the bars were reversed?0697

Let us say I decided to put the people who left it blank over here and people who said it is complicated.0705

I have decided to dummy code that as number 1 right.0712

And let us say I decided to switch single, married, and in a relationship with engaged.0717

I will switch all of those.0724

It would look like a left skewed distribution.0726

The ordering down here is largely arbitrary.0734

There is no rule that says that we have to put these values in these order because being blank, single, in a relationship,0742

engaged, married, complicated, and other, it does not have a set order that corresponds the numbers.0751

We might have some order that have being married is the most committed.0758

Being engaged is second committed or something.0764

We do not have some order that we want to put on it but largely this is not arbitrary ordering.0767

We could switch up these bars and that will be okay.0772

However, in histogram we cannot arbitrary rechange the bar for value 1 and 2 because in that case 1 and 2 actually means something.0778

It means something numerical.0792

Here 1 and 2 do not actually mean numerical.0794

It means something nominal, it is just a stand in for a name.0798

Because of that,sheet does not quite apply neither does center except for mode.0804

Mode is the one that we would use for categorical variables.0813

How would you have a mean here?0819

Spread does not quite make sense here either.0823

In a bar graph, we cannot quite use the same constants that we have been using for the rest of the frequency visualizations.0832

Let us move on to example 2.0845

Let us create a frequency visualization of gender and what would that be called or let us answer this question first.0847

What would that be called?0853

What kind of variable is gender?0855

Gender you could have values such as male, female, blank, and we could consider that the categorical variable.0859

When you have a categorical variable, we would be making a bar graph.0869

Let us go back to our examples.0877

If you move on to the gender sheet, here we have gender values 0, 1, 2.0881

1 means they are male, 2 means they are female, and 0 means they did not put their gender down.0889

Let us put in our formula, count if.0896

I’m going to go to my data and let us find the gender column.0901

Here is the beginning, gender is right here.0908

I’m going to put in a comma because I know I will need that.0923

Let us put in this gender.0929

Count if it is 0 and let us lock this data in place so that we could easily copy and paste later.0932

It turns out that 0 people left it blank.0949

Then male and female should add up to 100.0954

52 + 48 adds up to 100.0957

When we skipped that blank one because no one left it blank, let us just select male and female.0960

Go to charts and hit column if it is not already selected.0968

Go and create a bar graph.0975

Here on the x axis we have a categorical variable gender and here we have frequency just like we did before.0979

Let us move on.0993

Example number 3, supposedly collect the following information from each student0995

in a class, age, hair color, number of siblings, miles away from school.1001

What are the cases in this data set and what kind of variables are here?1007

Is it a categorical or continuous?1014

What kind of frequency does visualization when we create for each variable?1017

Let us start with the first question.1023

What are the cases?1025

What is the thing that unites all of these 4 variables together?1028

That is going to be each students.1036

Each student is a case.1038

What kind of variables do we have here?1045

I will put this in blue.1047

What kind of variable is age, continuous or categorical?1048

Age is a number that means actually something, right?1053

Being 10, 11, 12, and there are always gaps in between.1056

Age is continuous.1061

What about something like hair color?1067

Hair color we usually coat it as something categorical.1069

What about number of siblings?1080

Number of siblings is tricky because the number means something, definitely.1082

There is 1, 2, 3 and 3 is definitely more than 2 but there is no such thing as having like 2.5 siblings.1089

This is kind of continuous but I’m going to list it as continuous for now.1100

One of the things is going to be that later when we create an average.1106

The number of children in a family or something like 1.75.1113

We know that average means something and because of that I’m going to list that as continuous.1120

Miles from school that is also going to be continuous.1127

Because of that, what kind of frequency visualization will we use for each variable?1134

For age, for every continuous variable we will use a histogram.1141

Why do not we just fill that in for all of these?1152

For our 1 categorical variable we would use bar graphs.1160

Here is example 4, what kinds of graphs are shown below?1172

Let us see.1175

Let us look at the first one on top.1178

It says this is the graph of a fast food industry.1182

It seems to have number of stores plotted on the Y axis, frequency number of stores.1185

They are Mc Donald’s, Burger King, and Taco Bell, 1992 and 1996.1193

It seems like each of these have more stores in 1996 than in 1992, something like that.1199

Here what kind of graph is this?1209

Is this a dot plot? No.1219

A stem plot? No, we could rule this out.1223

It basically comes on if it is a bar graph or a histogram.1226

That is going to depend on whether the X axis has categorical or continuous variables.1230

Here you could see that these are grouped into Mc Donald’s, Burger King, and Taco Bell.1238

Those are names of fast food restaurants.1246

Fast foods restaurant is on our X axis.1250

Fast food restaurants is a categorical variable so we know that this one is in red, bar graph.1254

Even though in a year is continuous it is not listed in a continuous way.1267

They only picked 2 of random years, right?1274

Fast food restaurants this is categorical.1288

Even year, they are treating it as if it is categorical here.1294

Let us look at this one, here we have Mc Donald’s and this must be years that Mc Donald’s1298

has been offering and here is the net income in billions of dollars.1306

Even though it says like something like 1.5, this is $1.5 billion, it is the net income.1312

Look at this in 2008, they are making $4.8 billion.1321

By the way, I took the data from the last entry journal.1327

Here year is on the X axis.1333

Year is continuous or they are treating it continuous here because they do not skip any number.1339

It is 3, 4, 5, 6, 7, 8, right?1347

This is the number of dollars made.1349

Here we consider this a histogram.1356

That is it for bar graphs.1366

Thanks for using www.educator.com.1368

Educator®

Please sign in for full access to this lesson.

Sign-InORCreate Account

Enter your Sign-on user name and password.

Forgot password?

Start Learning Now

Our free lessons will get you started (Adobe Flash® required).
Get immediate access to our entire library.

Sign up for Educator.com

Membership Overview

  • Unlimited access to our entire library of courses.
  • Search and jump to exactly what you want to learn.
  • *Ask questions and get answers from the community and our teachers!
  • Practice questions with step-by-step solutions.
  • Download lesson files for programming and software training practice.
  • Track your course viewing progress.
  • Download lecture slides for taking notes.

Use this form or mail us to .

For support articles click here.