Enter your Sign on user name and password.

Forgot password?
Sign In | Subscribe
INSTRUCTORS Raffi Hovasapian John Zhu
Start learning today, and be successful in your academic & professional career. Start Today!

Use Chrome browser to play professor video
Raffi Hovasapian

Raffi Hovasapian

Trigonometric Integrals I

Slide Duration:

Table of Contents

I. Limits and Derivatives
Overview & Slopes of Curves

42m 8s

Intro
0:00
Overview & Slopes of Curves
0:21
Differential and Integral
0:22
Fundamental Theorem of Calculus
6:36
Differentiation or Taking the Derivative
14:24
What Does the Derivative Mean and How do We Find it?
15:18
Example: f'(x)
19:24
Example: f(x) = sin (x)
29:16
General Procedure for Finding the Derivative of f(x)
37:33
More on Slopes of Curves

50m 53s

Intro
0:00
Slope of the Secant Line along a Curve
0:12
Slope of the Tangent Line to f(x) at a Particlar Point
0:13
Slope of the Secant Line along a Curve
2:59
Instantaneous Slope
6:51
Instantaneous Slope
6:52
Example: Distance, Time, Velocity
13:32
Instantaneous Slope and Average Slope
25:42
Slope & Rate of Change
29:55
Slope & Rate of Change
29:56
Example: Slope = 2
33:16
Example: Slope = 4/3
34:32
Example: Slope = 4 (m/s)
39:12
Example: Density = Mass / Volume
40:33
Average Slope, Average Rate of Change, Instantaneous Slope, and Instantaneous Rate of Change
47:46
Example Problems for Slopes of Curves

59m 12s

Intro
0:00
Example I: Water Tank
0:13
Part A: Which is the Independent Variable and Which is the Dependent?
2:00
Part B: Average Slope
3:18
Part C: Express These Slopes as Rates-of-Change
9:28
Part D: Instantaneous Slope
14:54
Example II: y = √(x-3)
28:26
Part A: Calculate the Slope of the Secant Line
30:39
Part B: Instantaneous Slope
41:26
Part C: Equation for the Tangent Line
43:59
Example III: Object in the Air
49:37
Part A: Average Velocity
50:37
Part B: Instantaneous Velocity
55:30
Desmos Tutorial

18m 43s

Intro
0:00
Desmos Tutorial
1:42
Desmos Tutorial
1:43
Things You Must Learn To Do on Your Particular Calculator
2:39
Things You Must Learn To Do on Your Particular Calculator
2:40
Example I: y=sin x
4:54
Example II: y=x³ and y = d/(dx) (x³)
9:22
Example III: y = x² {-5 <= x <= 0} and y = cos x {0 < x < 6}
13:15
The Limit of a Function

51m 53s

Intro
0:00
The Limit of a Function
0:14
The Limit of a Function
0:15
Graph: Limit of a Function
12:24
Table of Values
16:02
lim x→a f(x) Does not Say What Happens When x = a
20:05
Example I: f(x) = x²
24:34
Example II: f(x) = 7
27:05
Example III: f(x) = 4.5
30:33
Example IV: f(x) = 1/x
34:03
Example V: f(x) = 1/x²
36:43
The Limit of a Function, Cont.
38:16
Infinity and Negative Infinity
38:17
Does Not Exist
42:45
Summary
46:48
Example Problems for the Limit of a Function

24m 43s

Intro
0:00
Example I: Explain in Words What the Following Symbols Mean
0:10
Example II: Find the Following Limit
5:21
Example III: Use the Graph to Find the Following Limits
7:35
Example IV: Use the Graph to Find the Following Limits
11:48
Example V: Sketch the Graph of a Function that Satisfies the Following Properties
15:25
Example VI: Find the Following Limit
18:44
Example VII: Find the Following Limit
20:06
Calculating Limits Mathematically

53m 48s

Intro
0:00
Plug-in Procedure
0:09
Plug-in Procedure
0:10
Limit Laws
9:14
Limit Law 1
10:05
Limit Law 2
10:54
Limit Law 3
11:28
Limit Law 4
11:54
Limit Law 5
12:24
Limit Law 6
13:14
Limit Law 7
14:38
Plug-in Procedure, Cont.
16:35
Plug-in Procedure, Cont.
16:36
Example I: Calculating Limits Mathematically
20:50
Example II: Calculating Limits Mathematically
27:37
Example III: Calculating Limits Mathematically
31:42
Example IV: Calculating Limits Mathematically
35:36
Example V: Calculating Limits Mathematically
40:58
Limits Theorem
44:45
Limits Theorem 1
44:46
Limits Theorem 2: Squeeze Theorem
46:34
Example VI: Calculating Limits Mathematically
49:26
Example Problems for Calculating Limits Mathematically

21m 22s

Intro
0:00
Example I: Evaluate the Following Limit by Showing Each Application of a Limit Law
0:16
Example II: Evaluate the Following Limit
1:51
Example III: Evaluate the Following Limit
3:36
Example IV: Evaluate the Following Limit
8:56
Example V: Evaluate the Following Limit
11:19
Example VI: Calculating Limits Mathematically
13:19
Example VII: Calculating Limits Mathematically
14:59
Calculating Limits as x Goes to Infinity

50m 1s

Intro
0:00
Limit as x Goes to Infinity
0:14
Limit as x Goes to Infinity
0:15
Let's Look at f(x) = 1 / (x-3)
1:04
Summary
9:34
Example I: Calculating Limits as x Goes to Infinity
12:16
Example II: Calculating Limits as x Goes to Infinity
21:22
Example III: Calculating Limits as x Goes to Infinity
24:10
Example IV: Calculating Limits as x Goes to Infinity
36:00
Example Problems for Limits at Infinity

36m 31s

Intro
0:00
Example I: Calculating Limits as x Goes to Infinity
0:14
Example II: Calculating Limits as x Goes to Infinity
3:27
Example III: Calculating Limits as x Goes to Infinity
8:11
Example IV: Calculating Limits as x Goes to Infinity
14:20
Example V: Calculating Limits as x Goes to Infinity
20:07
Example VI: Calculating Limits as x Goes to Infinity
23:36
Continuity

53m

Intro
0:00
Definition of Continuity
0:08
Definition of Continuity
0:09
Example: Not Continuous
3:52
Example: Continuous
4:58
Example: Not Continuous
5:52
Procedure for Finding Continuity
9:45
Law of Continuity
13:44
Law of Continuity
13:45
Example I: Determining Continuity on a Graph
15:55
Example II: Show Continuity & Determine the Interval Over Which the Function is Continuous
17:57
Example III: Is the Following Function Continuous at the Given Point?
22:42
Theorem for Composite Functions
25:28
Theorem for Composite Functions
25:29
Example IV: Is cos(x³ + ln x) Continuous at x=π/2?
27:00
Example V: What Value of A Will make the Following Function Continuous at Every Point of Its Domain?
34:04
Types of Discontinuity
39:18
Removable Discontinuity
39:33
Jump Discontinuity
40:06
Infinite Discontinuity
40:32
Intermediate Value Theorem
40:58
Intermediate Value Theorem: Hypothesis & Conclusion
40:59
Intermediate Value Theorem: Graphically
43:40
Example VI: Prove That the Following Function Has at Least One Real Root in the Interval [4,6]
47:46
Derivative I

40m 2s

Intro
0:00
Derivative
0:09
Derivative
0:10
Example I: Find the Derivative of f(x)=x³
2:20
Notations for the Derivative
7:32
Notations for the Derivative
7:33
Derivative & Rate of Change
11:14
Recall the Rate of Change
11:15
Instantaneous Rate of Change
17:04
Graphing f(x) and f'(x)
19:10
Example II: Find the Derivative of x⁴ - x²
24:00
Example III: Find the Derivative of f(x)=√x
30:51
Derivatives II

53m 45s

Intro
0:00
Example I: Find the Derivative of (2+x)/(3-x)
0:18
Derivatives II
9:02
f(x) is Differentiable if f'(x) Exists
9:03
Recall: For a Limit to Exist, Both Left Hand and Right Hand Limits Must Equal to Each Other
17:19
Geometrically: Differentiability Means the Graph is Smooth
18:44
Example II: Show Analytically that f(x) = |x| is Nor Differentiable at x=0
20:53
Example II: For x > 0
23:53
Example II: For x < 0
25:36
Example II: What is f(0) and What is the lim |x| as x→0?
30:46
Differentiability & Continuity
34:22
Differentiability & Continuity
34:23
How Can a Function Not be Differentiable at a Point?
39:38
How Can a Function Not be Differentiable at a Point?
39:39
Higher Derivatives
41:58
Higher Derivatives
41:59
Derivative Operator
45:12
Example III: Find (dy)/(dx) & (d²y)/(dx²) for y = x³
49:29
More Example Problems for The Derivative

31m 38s

Intro
0:00
Example I: Sketch f'(x)
0:10
Example II: Sketch f'(x)
2:14
Example III: Find the Derivative of the Following Function sing the Definition
3:49
Example IV: Determine f, f', and f'' on a Graph
12:43
Example V: Find an Equation for the Tangent Line to the Graph of the Following Function at the Given x-value
13:40
Example VI: Distance vs. Time
20:15
Example VII: Displacement, Velocity, and Acceleration
23:56
Example VIII: Graph the Displacement Function
28:20
II. Differentiation
Differentiation of Polynomials & Exponential Functions

47m 35s

Intro
0:00
Differentiation of Polynomials & Exponential Functions
0:15
Derivative of a Function
0:16
Derivative of a Constant
2:35
Power Rule
3:08
If C is a Constant
4:19
Sum Rule
5:22
Exponential Functions
6:26
Example I: Differentiate
7:45
Example II: Differentiate
12:38
Example III: Differentiate
15:13
Example IV: Differentiate
16:20
Example V: Differentiate
19:19
Example VI: Find the Equation of the Tangent Line to a Function at a Given Point
12:18
Example VII: Find the First & Second Derivatives
25:59
Example VIII
27:47
Part A: Find the Velocity & Acceleration Functions as Functions of t
27:48
Part B: Find the Acceleration after 3 Seconds
30:12
Part C: Find the Acceleration when the Velocity is 0
30:53
Part D: Graph the Position, Velocity, & Acceleration Graphs
32:50
Example IX: Find a Cubic Function Whose Graph has Horizontal Tangents
34:53
Example X: Find a Point on a Graph
42:31
The Product, Power & Quotient Rules

47m 25s

Intro
0:00
The Product, Power and Quotient Rules
0:19
Differentiate Functions
0:20
Product Rule
5:30
Quotient Rule
9:15
Power Rule
10:00
Example I: Product Rule
13:48
Example II: Quotient Rule
16:13
Example III: Power Rule
18:28
Example IV: Find dy/dx
19:57
Example V: Find dy/dx
24:53
Example VI: Find dy/dx
28:38
Example VII: Find an Equation for the Tangent to the Curve
34:54
Example VIII: Find d²y/dx²
38:08
Derivatives of the Trigonometric Functions

41m 8s

Intro
0:00
Derivatives of the Trigonometric Functions
0:09
Let's Find the Derivative of f(x) = sin x
0:10
Important Limits to Know
4:59
d/dx (sin x)
6:06
d/dx (cos x)
6:38
d/dx (tan x)
6:50
d/dx (csc x)
7:02
d/dx (sec x)
7:15
d/dx (cot x)
7:27
Example I: Differentiate f(x) = x² - 4 cos x
7:56
Example II: Differentiate f(x) = x⁵ tan x
9:04
Example III: Differentiate f(x) = (cos x) / (3 + sin x)
10:56
Example IV: Differentiate f(x) = e^x / (tan x - sec x)
14:06
Example V: Differentiate f(x) = (csc x - 4) / (cot x)
15:37
Example VI: Find an Equation of the Tangent Line
21:48
Example VII: For What Values of x Does the Graph of the Function x + 3 cos x Have a Horizontal Tangent?
25:17
Example VIII: Ladder Problem
28:23
Example IX: Evaluate
33:22
Example X: Evaluate
36:38
The Chain Rule

24m 56s

Intro
0:00
The Chain Rule
0:13
Recall the Composite Functions
0:14
Derivatives of Composite Functions
1:34
Example I: Identify f(x) and g(x) and Differentiate
6:41
Example II: Identify f(x) and g(x) and Differentiate
9:47
Example III: Differentiate
11:03
Example IV: Differentiate f(x) = -5 / (x² + 3)³
12:15
Example V: Differentiate f(x) = cos(x² + c²)
14:35
Example VI: Differentiate f(x) = cos⁴x +c²
15:41
Example VII: Differentiate
17:03
Example VIII: Differentiate f(x) = sin(tan x²)
19:01
Example IX: Differentiate f(x) = sin(tan² x)
21:02
More Chain Rule Example Problems

25m 32s

Intro
0:00
Example I: Differentiate f(x) = sin(cos(tanx))
0:38
Example II: Find an Equation for the Line Tangent to the Given Curve at the Given Point
2:25
Example III: F(x) = f(g(x)), Find F' (6)
4:22
Example IV: Differentiate & Graph both the Function & the Derivative in the Same Window
5:35
Example V: Differentiate f(x) = ( (x-8)/(x+3) )⁴
10:18
Example VI: Differentiate f(x) = sec²(12x)
12:28
Example VII: Differentiate
14:41
Example VIII: Differentiate
19:25
Example IX: Find an Expression for the Rate of Change of the Volume of the Balloon with Respect to Time
21:13
Implicit Differentiation

52m 31s

Intro
0:00
Implicit Differentiation
0:09
Implicit Differentiation
0:10
Example I: Find (dy)/(dx) by both Implicit Differentiation and Solving Explicitly for y
12:15
Example II: Find (dy)/(dx) of x³ + x²y + 7y² = 14
19:18
Example III: Find (dy)/(dx) of x³y² + y³x² = 4x
21:43
Example IV: Find (dy)/(dx) of the Following Equation
24:13
Example V: Find (dy)/(dx) of 6sin x cos y = 1
29:00
Example VI: Find (dy)/(dx) of x² cos² y + y sin x = 2sin x cos y
31:02
Example VII: Find (dy)/(dx) of √(xy) = 7 + y²e^x
37:36
Example VIII: Find (dy)/(dx) of 4(x²+y²)² = 35(x²-y²)
41:03
Example IX: Find (d²y)/(dx²) of x² + y² = 25
44:05
Example X: Find (d²y)/(dx²) of sin x + cos y = sin(2x)
47:48
III. Applications of the Derivative
Linear Approximations & Differentials

47m 34s

Intro
0:00
Linear Approximations & Differentials
0:09
Linear Approximations & Differentials
0:10
Example I: Linear Approximations & Differentials
11:27
Example II: Linear Approximations & Differentials
20:19
Differentials
30:32
Differentials
30:33
Example III: Linear Approximations & Differentials
34:09
Example IV: Linear Approximations & Differentials
35:57
Example V: Relative Error
38:46
Related Rates

45m 33s

Intro
0:00
Related Rates
0:08
Strategy for Solving Related Rates Problems #1
0:09
Strategy for Solving Related Rates Problems #2
1:46
Strategy for Solving Related Rates Problems #3
2:06
Strategy for Solving Related Rates Problems #4
2:50
Strategy for Solving Related Rates Problems #5
3:38
Example I: Radius of a Balloon
5:15
Example II: Ladder
12:52
Example III: Water Tank
19:08
Example IV: Distance between Two Cars
29:27
Example V: Line-of-Sight
36:20
More Related Rates Examples

37m 17s

Intro
0:00
Example I: Shadow
0:14
Example II: Particle
4:45
Example III: Water Level
10:28
Example IV: Clock
20:47
Example V: Distance between a House and a Plane
29:11
Maximum & Minimum Values of a Function

40m 44s

Intro
0:00
Maximum & Minimum Values of a Function, Part 1
0:23
Absolute Maximum
2:20
Absolute Minimum
2:52
Local Maximum
3:38
Local Minimum
4:26
Maximum & Minimum Values of a Function, Part 2
6:11
Function with Absolute Minimum but No Absolute Max, Local Max, and Local Min
7:18
Function with Local Max & Min but No Absolute Max & Min
8:48
Formal Definitions
10:43
Absolute Maximum
11:18
Absolute Minimum
12:57
Local Maximum
14:37
Local Minimum
16:25
Extreme Value Theorem
18:08
Theorem: f'(c) = 0
24:40
Critical Number (Critical Value)
26:14
Procedure for Finding the Critical Values of f(x)
28:32
Example I: Find the Critical Values of f(x) x + sinx
29:51
Example II: What are the Absolute Max & Absolute Minimum of f(x) = x + 4 sinx on [0,2π]
35:31
Example Problems for Max & Min

40m 44s

Intro
0:00
Example I: Identify Absolute and Local Max & Min on the Following Graph
0:11
Example II: Sketch the Graph of a Continuous Function
3:11
Example III: Sketch the Following Graphs
4:40
Example IV: Find the Critical Values of f (x) = 3x⁴ - 7x³ + 4x²
6:13
Example V: Find the Critical Values of f(x) = |2x - 5|
8:42
Example VI: Find the Critical Values
11:42
Example VII: Find the Critical Values f(x) = cos²(2x) on [0,2π]
16:57
Example VIII: Find the Absolute Max & Min f(x) = 2sinx + 2cos x on [0,(π/3)]
20:08
Example IX: Find the Absolute Max & Min f(x) = (ln(2x)) / x on [1,3]
24:39
The Mean Value Theorem

25m 54s

Intro
0:00
Rolle's Theorem
0:08
Rolle's Theorem: If & Then
0:09
Rolle's Theorem: Geometrically
2:06
There May Be More than 1 c Such That f'( c ) = 0
3:30
Example I: Rolle's Theorem
4:58
The Mean Value Theorem
9:12
The Mean Value Theorem: If & Then
9:13
The Mean Value Theorem: Geometrically
11:07
Example II: Mean Value Theorem
13:43
Example III: Mean Value Theorem
21:19
Using Derivatives to Graph Functions, Part I

25m 54s

Intro
0:00
Using Derivatives to Graph Functions, Part I
0:12
Increasing/ Decreasing Test
0:13
Example I: Find the Intervals Over Which the Function is Increasing & Decreasing
3:26
Example II: Find the Local Maxima & Minima of the Function
19:18
Example III: Find the Local Maxima & Minima of the Function
31:39
Using Derivatives to Graph Functions, Part II

44m 58s

Intro
0:00
Using Derivatives to Graph Functions, Part II
0:13
Concave Up & Concave Down
0:14
What Does This Mean in Terms of the Derivative?
6:14
Point of Inflection
8:52
Example I: Graph the Function
13:18
Example II: Function x⁴ - 5x²
19:03
Intervals of Increase & Decrease
19:04
Local Maxes and Mins
25:01
Intervals of Concavity & X-Values for the Points of Inflection
29:18
Intervals of Concavity & Y-Values for the Points of Inflection
34:18
Graphing the Function
40:52
Example Problems I

49m 19s

Intro
0:00
Example I: Intervals, Local Maxes & Mins
0:26
Example II: Intervals, Local Maxes & Mins
5:05
Example III: Intervals, Local Maxes & Mins, and Inflection Points
13:40
Example IV: Intervals, Local Maxes & Mins, Inflection Points, and Intervals of Concavity
23:02
Example V: Intervals, Local Maxes & Mins, Inflection Points, and Intervals of Concavity
34:36
Example Problems III

59m 1s

Intro
0:00
Example I: Intervals, Local Maxes & Mins, Inflection Points, Intervals of Concavity, and Asymptotes
0:11
Example II: Intervals, Local Maxes & Mins, Inflection Points, Intervals of Concavity, and Asymptotes
21:24
Example III: Cubic Equation f(x) = Ax³ + Bx² + Cx + D
37:56
Example IV: Intervals, Local Maxes & Mins, Inflection Points, Intervals of Concavity, and Asymptotes
46:19
L'Hospital's Rule

30m 9s

Intro
0:00
L'Hospital's Rule
0:19
Indeterminate Forms
0:20
L'Hospital's Rule
3:38
Example I: Evaluate the Following Limit Using L'Hospital's Rule
8:50
Example II: Evaluate the Following Limit Using L'Hospital's Rule
10:30
Indeterminate Products
11:54
Indeterminate Products
11:55
Example III: L'Hospital's Rule & Indeterminate Products
13:57
Indeterminate Differences
17:00
Indeterminate Differences
17:01
Example IV: L'Hospital's Rule & Indeterminate Differences
18:57
Indeterminate Powers
22:20
Indeterminate Powers
22:21
Example V: L'Hospital's Rule & Indeterminate Powers
25:13
Example Problems for L'Hospital's Rule

38m 14s

Intro
0:00
Example I: Evaluate the Following Limit
0:17
Example II: Evaluate the Following Limit
2:45
Example III: Evaluate the Following Limit
6:54
Example IV: Evaluate the Following Limit
8:43
Example V: Evaluate the Following Limit
11:01
Example VI: Evaluate the Following Limit
14:48
Example VII: Evaluate the Following Limit
17:49
Example VIII: Evaluate the Following Limit
20:37
Example IX: Evaluate the Following Limit
25:16
Example X: Evaluate the Following Limit
32:44
Optimization Problems I

49m 59s

Intro
0:00
Example I: Find the Dimensions of the Box that Gives the Greatest Volume
1:23
Fundamentals of Optimization Problems
18:08
Fundamental #1
18:33
Fundamental #2
19:09
Fundamental #3
19:19
Fundamental #4
20:59
Fundamental #5
21:55
Fundamental #6
23:44
Example II: Demonstrate that of All Rectangles with a Given Perimeter, the One with the Largest Area is a Square
24:36
Example III: Find the Points on the Ellipse 9x² + y² = 9 Farthest Away from the Point (1,0)
35:13
Example IV: Find the Dimensions of the Rectangle of Largest Area that can be Inscribed in a Circle of Given Radius R
43:10
Optimization Problems II

55m 10s

Intro
0:00
Example I: Optimization Problem
0:13
Example II: Optimization Problem
17:34
Example III: Optimization Problem
35:06
Example IV: Revenue, Cost, and Profit
43:22
Newton's Method

30m 22s

Intro
0:00
Newton's Method
0:45
Newton's Method
0:46
Example I: Find x2 and x3
13:18
Example II: Use Newton's Method to Approximate
15:48
Example III: Find the Root of the Following Equation to 6 Decimal Places
19:57
Example IV: Use Newton's Method to Find the Coordinates of the Inflection Point
23:11
IV. Integrals
Antiderivatives

55m 26s

Intro
0:00
Antiderivatives
0:23
Definition of an Antiderivative
0:24
Antiderivative Theorem
7:58
Function & Antiderivative
12:10
x^n
12:30
1/x
13:00
e^x
13:08
cos x
13:18
sin x
14:01
sec² x
14:11
secxtanx
14:18
1/√(1-x²)
14:26
1/(1+x²)
14:36
-1/√(1-x²)
14:45
Example I: Find the Most General Antiderivative for the Following Functions
15:07
Function 1: f(x) = x³ -6x² + 11x - 9
15:42
Function 2: f(x) = 14√(x) - 27 4√x
19:12
Function 3: (fx) = cos x - 14 sinx
20:53
Function 4: f(x) = (x⁵+2√x )/( x^(4/3) )
22:10
Function 5: f(x) = (3e^x) - 2/(1+x²)
25:42
Example II: Given the Following, Find the Original Function f(x)
26:37
Function 1: f'(x) = 5x³ - 14x + 24, f(2) = 40
27:55
Function 2: f'(x) 3 sinx + sec²x, f(π/6) = 5
30:34
Function 3: f''(x) = 8x - cos x, f(1.5) = 12.7, f'(1.5) = 4.2
32:54
Function 4: f''(x) = 5/(√x), f(2) 15, f'(2) = 7
37:54
Example III: Falling Object
41:58
Problem 1: Find an Equation for the Height of the Ball after t Seconds
42:48
Problem 2: How Long Will It Take for the Ball to Strike the Ground?
48:30
Problem 3: What is the Velocity of the Ball as it Hits the Ground?
49:52
Problem 4: Initial Velocity of 6 m/s, How Long Does It Take to Reach the Ground?
50:46
The Area Under a Curve

51m 3s

Intro
0:00
The Area Under a Curve
0:13
Approximate Using Rectangles
0:14
Let's Do This Again, Using 4 Different Rectangles
9:40
Approximate with Rectangles
16:10
Left Endpoint
18:08
Right Endpoint
25:34
Left Endpoint vs. Right Endpoint
30:58
Number of Rectangles
34:08
True Area
37:36
True Area
37:37
Sigma Notation & Limits
43:32
When You Have to Explicitly Solve Something
47:56
Example Problems for Area Under a Curve

33m 7s

Intro
0:00
Example I: Using Left Endpoint & Right Endpoint to Approximate Area Under a Curve
0:10
Example II: Using 5 Rectangles, Approximate the Area Under the Curve
11:32
Example III: Find the True Area by Evaluating the Limit Expression
16:07
Example IV: Find the True Area by Evaluating the Limit Expression
24:52
The Definite Integral

43m 19s

Intro
0:00
The Definite Integral
0:08
Definition to Find the Area of a Curve
0:09
Definition of the Definite Integral
4:08
Symbol for Definite Integral
8:45
Regions Below the x-axis
15:18
Associating Definite Integral to a Function
19:38
Integrable Function
27:20
Evaluating the Definite Integral
29:26
Evaluating the Definite Integral
29:27
Properties of the Definite Integral
35:24
Properties of the Definite Integral
35:25
Example Problems for The Definite Integral

32m 14s

Intro
0:00
Example I: Approximate the Following Definite Integral Using Midpoints & Sub-intervals
0:11
Example II: Express the Following Limit as a Definite Integral
5:28
Example III: Evaluate the Following Definite Integral Using the Definition
6:28
Example IV: Evaluate the Following Integral Using the Definition
17:06
Example V: Evaluate the Following Definite Integral by Using Areas
25:41
Example VI: Definite Integral
30:36
The Fundamental Theorem of Calculus

24m 17s

Intro
0:00
The Fundamental Theorem of Calculus
0:17
Evaluating an Integral
0:18
Lim as x → ∞
12:19
Taking the Derivative
14:06
Differentiation & Integration are Inverse Processes
15:04
1st Fundamental Theorem of Calculus
20:08
1st Fundamental Theorem of Calculus
20:09
2nd Fundamental Theorem of Calculus
22:30
2nd Fundamental Theorem of Calculus
22:31
Example Problems for the Fundamental Theorem

25m 21s

Intro
0:00
Example I: Find the Derivative of the Following Function
0:17
Example II: Find the Derivative of the Following Function
1:40
Example III: Find the Derivative of the Following Function
2:32
Example IV: Find the Derivative of the Following Function
5:55
Example V: Evaluate the Following Integral
7:13
Example VI: Evaluate the Following Integral
9:46
Example VII: Evaluate the Following Integral
12:49
Example VIII: Evaluate the Following Integral
13:53
Example IX: Evaluate the Following Graph
15:24
Local Maxs and Mins for g(x)
15:25
Where Does g(x) Achieve Its Absolute Max on [0,8]
20:54
On What Intervals is g(x) Concave Up/Down?
22:20
Sketch a Graph of g(x)
24:34
More Example Problems, Including Net Change Applications

34m 22s

Intro
0:00
Example I: Evaluate the Following Indefinite Integral
0:10
Example II: Evaluate the Following Definite Integral
0:59
Example III: Evaluate the Following Integral
2:59
Example IV: Velocity Function
7:46
Part A: Net Displacement
7:47
Part B: Total Distance Travelled
13:15
Example V: Linear Density Function
20:56
Example VI: Acceleration Function
25:10
Part A: Velocity Function at Time t
25:11
Part B: Total Distance Travelled During the Time Interval
28:38
Solving Integrals by Substitution

27m 20s

Intro
0:00
Table of Integrals
0:35
Example I: Evaluate the Following Indefinite Integral
2:02
Example II: Evaluate the Following Indefinite Integral
7:27
Example IIII: Evaluate the Following Indefinite Integral
10:57
Example IV: Evaluate the Following Indefinite Integral
12:33
Example V: Evaluate the Following
14:28
Example VI: Evaluate the Following
16:00
Example VII: Evaluate the Following
19:01
Example VIII: Evaluate the Following
21:49
Example IX: Evaluate the Following
24:34
V. Applications of Integration
Areas Between Curves

34m 56s

Intro
0:00
Areas Between Two Curves: Function of x
0:08
Graph 1: Area Between f(x) & g(x)
0:09
Graph 2: Area Between f(x) & g(x)
4:07
Is It Possible to Write as a Single Integral?
8:20
Area Between the Curves on [a,b]
9:24
Absolute Value
10:32
Formula for Areas Between Two Curves: Top Function - Bottom Function
17:03
Areas Between Curves: Function of y
17:49
What if We are Given Functions of y?
17:50
Formula for Areas Between Two Curves: Right Function - Left Function
21:48
Finding a & b
22:32
Example Problems for Areas Between Curves

42m 55s

Intro
0:00
Instructions for the Example Problems
0:10
Example I: y = 7x - x² and y=x
0:37
Example II: x=y²-3, x=e^((1/2)y), y=-1, and y=2
6:25
Example III: y=(1/x), y=(1/x³), and x=4
12:25
Example IV: 15-2x² and y=x²-5
15:52
Example V: x=(1/8)y³ and x=6-y²
20:20
Example VI: y=cos x, y=sin(2x), [0,π/2]
24:34
Example VII: y=2x², y=10x², 7x+2y=10
29:51
Example VIII: Velocity vs. Time
33:23
Part A: At 2.187 Minutes, Which care is Further Ahead?
33:24
Part B: If We Shaded the Region between the Graphs from t=0 to t=2.187, What Would This Shaded Area Represent?
36:32
Part C: At 4 Minutes Which Car is Ahead?
37:11
Part D: At What Time Will the Cars be Side by Side?
37:50
Volumes I: Slices

34m 15s

Intro
0:00
Volumes I: Slices
0:18
Rotate the Graph of y=√x about the x-axis
0:19
How can I use Integration to Find the Volume?
3:16
Slice the Solid Like a Loaf of Bread
5:06
Volumes Definition
8:56
Example I: Find the Volume of the Solid Obtained by Rotating the Region Bounded by the Given Functions about the Given Line of Rotation
12:18
Example II: Find the Volume of the Solid Obtained by Rotating the Region Bounded by the Given Functions about the Given Line of Rotation
19:05
Example III: Find the Volume of the Solid Obtained by Rotating the Region Bounded by the Given Functions about the Given Line of Rotation
25:28
Volumes II: Volumes by Washers

51m 43s

Intro
0:00
Volumes II: Volumes by Washers
0:11
Rotating Region Bounded by y=x³ & y=x around the x-axis
0:12
Equation for Volumes by Washer
11:14
Process for Solving Volumes by Washer
13:40
Example I: Find the Volume of the Solid Obtained by Rotating the Region Bounded by the Following Functions around the Given Axis
15:58
Example II: Find the Volume of the Solid Obtained by Rotating the Region Bounded by the Following Functions around the Given Axis
25:07
Example III: Find the Volume of the Solid Obtained by Rotating the Region Bounded by the Following Functions around the Given Axis
34:20
Example IV: Find the Volume of the Solid Obtained by Rotating the Region Bounded by the Following Functions around the Given Axis
44:05
Volumes III: Solids That Are Not Solids-of-Revolution

49m 36s

Intro
0:00
Solids That Are Not Solids-of-Revolution
0:11
Cross-Section Area Review
0:12
Cross-Sections That Are Not Solids-of-Revolution
7:36
Example I: Find the Volume of a Pyramid Whose Base is a Square of Side-length S, and Whose Height is H
10:54
Example II: Find the Volume of a Solid Whose Cross-sectional Areas Perpendicular to the Base are Equilateral Triangles
20:39
Example III: Find the Volume of a Pyramid Whose Base is an Equilateral Triangle of Side-Length A, and Whose Height is H
29:27
Example IV: Find the Volume of a Solid Whose Base is Given by the Equation 16x² + 4y² = 64
36:47
Example V: Find the Volume of a Solid Whose Base is the Region Bounded by the Functions y=3-x² and the x-axis
46:13
Volumes IV: Volumes By Cylindrical Shells

50m 2s

Intro
0:00
Volumes by Cylindrical Shells
0:11
Find the Volume of the Following Region
0:12
Volumes by Cylindrical Shells: Integrating Along x
14:12
Volumes by Cylindrical Shells: Integrating Along y
14:40
Volumes by Cylindrical Shells Formulas
16:22
Example I: Using the Method of Cylindrical Shells, Find the Volume of the Solid
18:33
Example II: Using the Method of Cylindrical Shells, Find the Volume of the Solid
25:57
Example III: Using the Method of Cylindrical Shells, Find the Volume of the Solid
31:38
Example IV: Using the Method of Cylindrical Shells, Find the Volume of the Solid
38:44
Example V: Using the Method of Cylindrical Shells, Find the Volume of the Solid
44:03
The Average Value of a Function

32m 13s

Intro
0:00
The Average Value of a Function
0:07
Average Value of f(x)
0:08
What if The Domain of f(x) is Not Finite?
2:23
Let's Calculate Average Value for f(x) = x² [2,5]
4:46
Mean Value Theorem for Integrate
9:25
Example I: Find the Average Value of the Given Function Over the Given Interval
14:06
Example II: Find the Average Value of the Given Function Over the Given Interval
18:25
Example III: Find the Number A Such that the Average Value of the Function f(x) = -4x² + 8x + 4 Equals 2 Over the Interval [-1,A]
24:04
Example IV: Find the Average Density of a Rod
27:47
VI. Techniques of Integration
Integration by Parts

50m 32s

Intro
0:00
Integration by Parts
0:08
The Product Rule for Differentiation
0:09
Integrating Both Sides Retains the Equality
0:52
Differential Notation
2:24
Example I: ∫ x cos x dx
5:41
Example II: ∫ x² sin(2x)dx
12:01
Example III: ∫ (e^x) cos x dx
18:19
Example IV: ∫ (sin^-1) (x) dx
23:42
Example V: ∫₁⁵ (lnx)² dx
28:25
Summary
32:31
Tabular Integration
35:08
Case 1
35:52
Example: ∫x³sinx dx
36:39
Case 2
40:28
Example: ∫e^(2x) sin 3x
41:14
Trigonometric Integrals I

24m 50s

Intro
0:00
Example I: ∫ sin³ (x) dx
1:36
Example II: ∫ cos⁵(x)sin²(x)dx
4:36
Example III: ∫ sin⁴(x)dx
9:23
Summary for Evaluating Trigonometric Integrals of the Following Type: ∫ (sin^m) (x) (cos^p) (x) dx
15:59
#1: Power of sin is Odd
16:00
#2: Power of cos is Odd
16:41
#3: Powers of Both sin and cos are Odd
16:55
#4: Powers of Both sin and cos are Even
17:10
Example IV: ∫ tan⁴ (x) sec⁴ (x) dx
17:34
Example V: ∫ sec⁹(x) tan³(x) dx
20:55
Summary for Evaluating Trigonometric Integrals of the Following Type: ∫ (sec^m) (x) (tan^p) (x) dx
23:31
#1: Power of sec is Odd
23:32
#2: Power of tan is Odd
24:04
#3: Powers of sec is Odd and/or Power of tan is Even
24:18
Trigonometric Integrals II

22m 12s

Intro
0:00
Trigonometric Integrals II
0:09
Recall: ∫tanx dx
0:10
Let's Find ∫secx dx
3:23
Example I: ∫ tan⁵ (x) dx
6:23
Example II: ∫ sec⁵ (x) dx
11:41
Summary: How to Deal with Integrals of Different Types
19:04
Identities to Deal with Integrals of Different Types
19:05
Example III: ∫cos(5x)sin(9x)dx
19:57
More Example Problems for Trigonometric Integrals

17m 22s

Intro
0:00
Example I: ∫sin²(x)cos⁷(x)dx
0:14
Example II: ∫x sin²(x) dx
3:56
Example III: ∫csc⁴ (x/5)dx
8:39
Example IV: ∫( (1-tan²x)/(sec²x) ) dx
11:17
Example V: ∫ 1 / (sinx-1) dx
13:19
Integration by Partial Fractions I

55m 12s

Intro
0:00
Integration by Partial Fractions I
0:11
Recall the Idea of Finding a Common Denominator
0:12
Decomposing a Rational Function to Its Partial Fractions
4:10
2 Types of Rational Function: Improper & Proper
5:16
Improper Rational Function
7:26
Improper Rational Function
7:27
Proper Rational Function
11:16
Proper Rational Function & Partial Fractions
11:17
Linear Factors
14:04
Irreducible Quadratic Factors
15:02
Case 1: G(x) is a Product of Distinct Linear Factors
17:10
Example I: Integration by Partial Fractions
20:33
Case 2: D(x) is a Product of Linear Factors
40:58
Example II: Integration by Partial Fractions
44:41
Integration by Partial Fractions II

42m 57s

Intro
0:00
Case 3: D(x) Contains Irreducible Factors
0:09
Example I: Integration by Partial Fractions
5:19
Example II: Integration by Partial Fractions
16:22
Case 4: D(x) has Repeated Irreducible Quadratic Factors
27:30
Example III: Integration by Partial Fractions
30:19
VII. Differential Equations
Introduction to Differential Equations

46m 37s

Intro
0:00
Introduction to Differential Equations
0:09
Overview
0:10
Differential Equations Involving Derivatives of y(x)
2:08
Differential Equations Involving Derivatives of y(x) and Function of y(x)
3:23
Equations for an Unknown Number
6:28
What are These Differential Equations Saying?
10:30
Verifying that a Function is a Solution of the Differential Equation
13:00
Verifying that a Function is a Solution of the Differential Equation
13:01
Verify that y(x) = 4e^x + 3x² + 6x + e^π is a Solution of this Differential Equation
17:20
General Solution
22:00
Particular Solution
24:36
Initial Value Problem
27:42
Example I: Verify that a Family of Functions is a Solution of the Differential Equation
32:24
Example II: For What Values of K Does the Function Satisfy the Differential Equation
36:07
Example III: Verify the Solution and Solve the Initial Value Problem
39:47
Separation of Variables

28m 8s

Intro
0:00
Separation of Variables
0:28
Separation of Variables
0:29
Example I: Solve the Following g Initial Value Problem
8:29
Example II: Solve the Following g Initial Value Problem
13:46
Example III: Find an Equation of the Curve
18:48
Population Growth: The Standard & Logistic Equations

51m 7s

Intro
0:00
Standard Growth Model
0:30
Definition of the Standard/Natural Growth Model
0:31
Initial Conditions
8:00
The General Solution
9:16
Example I: Standard Growth Model
10:45
Logistic Growth Model
18:33
Logistic Growth Model
18:34
Solving the Initial Value Problem
25:21
What Happens When t → ∞
36:42
Example II: Solve the Following g Initial Value Problem
41:50
Relative Growth Rate
46:56
Relative Growth Rate
46:57
Relative Growth Rate Version for the Standard model
49:04
Slope Fields

24m 37s

Intro
0:00
Slope Fields
0:35
Slope Fields
0:36
Graphing the Slope Fields, Part 1
11:12
Graphing the Slope Fields, Part 2
15:37
Graphing the Slope Fields, Part 3
17:25
Steps to Solving Slope Field Problems
20:24
Example I: Draw or Generate the Slope Field of the Differential Equation y'=x cos y
22:38
VIII. AP Practic Exam
AP Practice Exam: Section 1, Part A No Calculator

45m 29s

Intro
0:00
Exam Link
0:10
Problem #1
1:26
Problem #2
2:52
Problem #3
4:42
Problem #4
7:03
Problem #5
10:01
Problem #6
13:49
Problem #7
15:16
Problem #8
19:06
Problem #9
23:10
Problem #10
28:10
Problem #11
31:30
Problem #12
33:53
Problem #13
37:45
Problem #14
41:17
AP Practice Exam: Section 1, Part A No Calculator, cont.

41m 55s

Intro
0:00
Problem #15
0:22
Problem #16
3:10
Problem #17
5:30
Problem #18
8:03
Problem #19
9:53
Problem #20
14:51
Problem #21
17:30
Problem #22
22:12
Problem #23
25:48
Problem #24
29:57
Problem #25
33:35
Problem #26
35:57
Problem #27
37:57
Problem #28
40:04
AP Practice Exam: Section I, Part B Calculator Allowed

58m 47s

Intro
0:00
Problem #1
1:22
Problem #2
4:55
Problem #3
10:49
Problem #4
13:05
Problem #5
14:54
Problem #6
17:25
Problem #7
18:39
Problem #8
20:27
Problem #9
26:48
Problem #10
28:23
Problem #11
34:03
Problem #12
36:25
Problem #13
39:52
Problem #14
43:12
Problem #15
47:18
Problem #16
50:41
Problem #17
56:38
AP Practice Exam: Section II, Part A Calculator Allowed

25m 40s

Intro
0:00
Problem #1: Part A
1:14
Problem #1: Part B
4:46
Problem #1: Part C
8:00
Problem #2: Part A
12:24
Problem #2: Part B
16:51
Problem #2: Part C
17:17
Problem #3: Part A
18:16
Problem #3: Part B
19:54
Problem #3: Part C
21:44
Problem #3: Part D
22:57
AP Practice Exam: Section II, Part B No Calculator

31m 20s

Intro
0:00
Problem #4: Part A
1:35
Problem #4: Part B
5:54
Problem #4: Part C
8:50
Problem #4: Part D
9:40
Problem #5: Part A
11:26
Problem #5: Part B
13:11
Problem #5: Part C
15:07
Problem #5: Part D
19:57
Problem #6: Part A
22:01
Problem #6: Part B
25:34
Problem #6: Part C
28:54
Loading...
This is a quick preview of the lesson. For full access, please Log In or Sign up.
For more information, please see full course syllabus of AP Calculus AB
  • Discussion

  • Download Lecture Slides

  • Table of Contents

  • Transcription

Lecture Comments (6)

5 answers

Last reply by: Professor Hovasapian
Tue Jan 31, 2017 6:55 AM

Post by Gautham Padmakumar on January 22, 2016

Hi Raffi,
I think I caught an error on your lecture. In example 5 just as you're finishing up you multiply  U^8 ( U^2 - 1) and you write it as U^10 - U^2 when you actually meant U^10 - U^8 I believe.
So the final answer would be sec^11(x) / 11 - sec^9(x) / 9 + C
Thankss

Trigonometric Integrals I

Lecture Slides are screen-captured images of important points in the lecture. Students can download and print out these lecture slide images to do practice problems as well as take notes while watching the lecture.

  • Intro 0:00
  • Example I: ∫ sin³ (x) dx 1:36
  • Example II: ∫ cos⁵(x)sin²(x)dx 4:36
  • Example III: ∫ sin⁴(x)dx 9:23
  • Summary for Evaluating Trigonometric Integrals of the Following Type: ∫ (sin^m) (x) (cos^p) (x) dx 15:59
    • #1: Power of sin is Odd
    • #2: Power of cos is Odd
    • #3: Powers of Both sin and cos are Odd
    • #4: Powers of Both sin and cos are Even
  • Example IV: ∫ tan⁴ (x) sec⁴ (x) dx 17:34
  • Example V: ∫ sec⁹(x) tan³(x) dx 20:55
  • Summary for Evaluating Trigonometric Integrals of the Following Type: ∫ (sec^m) (x) (tan^p) (x) dx 23:31
    • #1: Power of sec is Odd
    • #2: Power of tan is Odd
    • #3: Powers of sec is Odd and/or Power of tan is Even

Transcription: Trigonometric Integrals I

Hello, welcome back to www.educator.com, and welcome back to AP Calculus.0000

Today, we are going to talk about trigonometric integrals.0005

We are going to be spending a couple of lessons on this, I think two or three, because they are fairly involved.0007

I want to make sure that there were enough examples to go around.0014

Let us jump right on in.0019

There are many integrals involving trig functions.0022

Let me work in blue.0025

There are many integrals involving trig functions that require special handling and manipulation.0029

Examples is really the best way to present this material.0067

We are just going to do example and the presentation.0070

Hopefully, everything will start to make sense.0073

Examples are the best way to present this material.0075

Let us jump right on in, our first example is evaluate the integral of sin³ x dx.0094

We have our nice little modified integral sign that is unique to us.0104

How do we deal with this?0111

Let us see what we can do.0114

One of the things that we can do is the following.0115

Sin³ (x) is equal to sin² x × sin x.0117

I have pulled out a sin x.0127

Sin² x, using one of my Pythagorean identities, I’m going to write this as 1 - cos² x × sin x.0130

Our original integral of sin³ x dx is actually equal to the integral of 1 - cos² x sin x dx.0143

Now we go ahead and use a u substitution.0159

Let me just go to blue.0166

U is equal to cos(x), du is equal to the derivative of cos is - sin(x) dx, sin(x) dx is equal to –du.0169

Therefore, this integral becomes, we have the integral of 1 - cos²,0190

1 - u² sin x dx × - du which is equal to the integral of u² - 1 du.0202

I use this minus sign and I just flip this.0222

The rest is easy.0226

This is just, the integral is equal to u³/ 3 - u + c.0227

Of course, we said u is cos x.0239

This is equal to cos³ x/ 3 - cos x + c.0242

There you go, that is it.0250

Trigonometric integral is going to come down to manipulation.0252

The same way that it was for the identities, when you are doing identities, proving those things in pre-calculus,0257

moving things around, trying this identity, trying that identity.0264

Pulling things out, recognizing when something is a derivative of the other.0268

That is it, that is just the nature of the trigonometric integrals.0272

Let us try another example here.0276

This time we have, let me go back to black so I can fix this.0279

The integral of cos⁵ x sin² dx.0283

Here we have an odd power of cos.0289

I’m going to pull out a cos.0297

We have an odd power of cos.0299

I’m going to rewrite this as the integral of cos⁴ x × sin² x cos x dx.0310

I just pulled out one of the cos, separated it out.0325

This is going to equal the integral of cos² x² sin² x cos x dx.0329

Now I’m going to rewrite cos² as 1 - sin².0344

It equals the integral of 1 - sin² x × sin² x cos x dx.0349

I suppose I could multiply it out.0367

Should I multiply first?0372

That is fine, I’m just going to go ahead and I will use a u substitution.0374

I will let u equal to sin x.0378

Let me do it over here, I want some more room.0385

I have got u was equal to sin x and I got du = cos x dx.0388

That turns into the integral of 1 - u² × u² × du which is equal to the integral of,0400

I’m sorry this is² and this is², sorry about that.0415

We have got 1 - 2u² + u⁴ × u² du.0424

That is going to equal the integral of u² - 2u⁴ + u⁶ du.0437

And that is equal to u³/ 3 – 2u⁵/ 5 + u⁷/ 7 + c.0447

Let us go ahead and we said that u is equal to sin x.0477

Our final answer is sin³ x/ 3 – 2 sin⁵ x/ 5 + sin⁷ x/ 7 + c.0480

There you go.0499

This was with an odd power of cos.0506

An odd power of sin works the same way.0512

In other words, pull out one of the sins, express.0521

Now the even power of the cos, in terms of the sin, sin, and the cos.0526

What we did here is, odd power of cos, we pulled out a cos, we express the cos as a sin.0535

And then, we simplify it by using u substitution, by u = sin x.0542

An odd power of sin works the same way.0545

You are to pull out a sin, you are going to express the sin as the cos, and then, you are going to let u equal cos.0547

But I’m going to be actually be summarizing all this, after I do a few examples.0555

It is not a problem.0558

Let us see, this time we have sin⁴ x.0563

Now we have an even power of a trig function.0570

How do we deal what this one?0587

With even powers of trig functions, we are going to employ the following identities.0590

We employ the following identities.0599

Let us go ahead and put them in blue.0608

Sin² x = ½ of 1 - cos 2x and cos² x = ½ of 1 + cos 2x.0613

In this case, we have the integral of sin⁴.0637

The integral of sin⁴ x dx is equal to the integral of sin² x² dx,0641

which is equal to the integral, sin², we said is ½.0653

This is going to be ½ of 1 - cos 2x² dx.0657

That is going to equal the integral of ¼ × 1 - 2 cos 2x + cos² 2x dx = ¼ the integral of dx -1/4 × -2.0671

This is going to be -1/2 × the integral of cos 2x dx + ¼ × the integral of cos² x dx.0699

This is easy to solve, this is easy to solve.0722

Here we are going to have to do another round of using this.0724

What we get is the following.0729

Let me rewrite what it is that I had.0731

I had ¼ the integral of dx - ½ the integral of cos of 2x dx + the integral of cos² 2x dx.0733

I think it was ¼, if I’m not mistaken, yes.0750

That is going to equal ¼ x, that takes care of that one, -1/4 sin of 2x,0755

that takes care of that one, + ¼ × the integral of cos² 2x dx.0767

This is the integral that we have to deal with, right here.0777

Now we are going to use cos² x is equal to ½ of 1 + cos 2x.0781

This integral comes down here and we end up with ¼ the integral of ½ of 1 + cos 2x dx,0794

which is equal to ¼ × ½ the integral of dx, that is that one.0812

+ ½ the integral of cos² x = 1 + cos 2x.0825

We have cos² 2x.0842

This is cos 4x, the integral of cos 4x dx, my apologies.0846

This is equal to 1/8 x + ¼ × ½ is 1/8.0854

The integral ¼ of 4 comes out as ¼.0871

It is going to be 8 × 4 is 32 + 1/32 × sin(4x).0880

Putting it all together, this was that.0890

We cannot forget this and this.0906

Our final integral is equal to, I will write integral was equal to ¼ x which is this one,0908

-1/4 sin 2x + 1/8 x + 1/32 sin 4x + c.0932

There you go, that is it.0951

Our summary for evaluating trigonometric integrals of the following type.0960

When we have integrals of the type sin to some power m, let me work in red, to some power m × cos to some power p.0965

Here are our choices, if the power of the sin is odd, you pull one of the sin x.0975

You use sin² x = 1 - cos² x.0982

You express everything in terms of cos x.0986

You pull a sin x, expressive everything in cos x.0990

Then set u equal to cos x, simplify and integrate using u substitution.0994

If the power of cos is odd, you pull a cos x.1001

You use cos² = 1 – sin², express everything in terms of sin x and set u = sin x, and then, u substitution and simplify.1006

If the powers of both sin and cos are odd, either of the procedures above will work.1023

It does not really matter which one you choose.1027

If the powers of both sin and cos are even, we use the following identities.1031

Sin² is equal to this, cos² is equal to this.1038

When sin is odd, when cos is odd, when both are odd, either one is fine, or when both are even.1042

There are four possibilities.1049

Let us deal with our next set of examples and then we can summarize those.1055

We have the integral of tan⁴ sec⁴ x dx.1061

Let us do this, because the derivative of ddx of tan x = sec² x and the derivative of sec x = sec x tan x,1075

we might try something similar to what we did before, pull out something.1099

You might try pulling out certain powers of one or the other.1108

I’m going to try this, I’m going to rewrite this.1122

Let me work in blue.1129

The integral of tan⁴ x sec⁴ x dx.1133

I’m going to pull out, I’m going to break up the sec⁴.1141

I’m going to pull out a sec² because I have the relationship between tan is sec².1143

I’m going to write this as the integral of tan⁴ x × sec² x dx.1149

Now I'm going to express this, in terms of tan.1161

I have = the integral of tan⁴ x × 1 + tan² x which is sec² x × sec² x dx.1166

I’m going to let u = tan x and my du = sec² x dx.1184

That takes care of that right there.1193

I end up with the integral of u⁴ × 1 + u² du, nice and easy.1196

= the integral of u⁴ + u⁶ du.1211

That is equal to u⁵/ 5 + u⁷/ 7 + c.1220

I get u is equal to tan(x).1228

My final integral is equal to tan⁵ x/ 5 + tan⁷ (x)/ 7 + c.1233

There you go, nice.1246

The same thing, we just pulled something out.1247

Use the u substitution and express it.1251

This time, let us see, what do we got?1258

We have the integral of sec⁹ tan³.1264

Let us pull out sec x tan x.1268

This integral is going to equal the integral of sec⁸ x tan² x × sec x tan x, that is what I pulled out, dx.1286

We know an identity, we have sec² x = 1 + tan² x.1318

Therefore, tan² x is equal to sec² x – 1.1325

Wherever I see a tan, I will put that in.1332

That is going to equal the integral of sec⁸ x × sec² x – 1 × sec x tan x dx.1336

I will let u = sec x, my u substitution.1350

My du = sec x tan x dx.1355

I’m left with the integral of u⁸ × u² – 1 × du = the integral of u ⁺10 – u² du.1361

It = u ⁺11/ 11 – u³/ 3 + c.1384

I’m left with my integral, my final answer is going to be u is sec(x).1391

It is going to be sec ⁺11 (x)/ 11 – sec³/ 3 + c.1397

There you go, nice and simple, pretty straightforward.1407

Let us summarize this.1411

When we have an integral of the form sec to something power m, tan to some power p, my choices are as follows.1415

If a power of secant is even, pull out a sec².1424

Use sec² = tan² + 1, express everything in terms of tan x.1431

Pull out a sec², express everything in terms of tan x.1436

Set u = tan x and use u substitution to solve.1440

That is if the power of secant is even.1445

If the power of tangent is odd, pull a sec x tan x.1447

Use tan² = sec² – 1, express everything in terms of sec.1452

Let u equal secant.1456

If the power of secant is odd and or the power of tan is even, you are going to utilize whatever resources you have at your disposal.1459

That one is a toss up to see what you can do.1471

Welcome to the wonderful world of trigonometric integrals.1475

That takes care of that.1479

With that, thank you so much for joining us here at www.educator.com.1482

We will see you next time for a continuation of trigonometric integrals.1487

Take care, bye.1490

Educator®

Please sign in for full access to this lesson.

Sign-InORCreate Account

Enter your Sign-on user name and password.

Forgot password?

Start Learning Now

Our free lessons will get you started (Adobe Flash® required).
Get immediate access to our entire library.

Sign up for Educator.com

Membership Overview

  • Unlimited access to our entire library of courses.
  • Search and jump to exactly what you want to learn.
  • *Ask questions and get answers from the community and our teachers!
  • Practice questions with step-by-step solutions.
  • Download lesson files for programming and software training practice.
  • Track your course viewing progress.
  • Download lecture slides for taking notes.

Use this form or mail us to .

For support articles click here.