Enter your Sign on user name and password.

Forgot password?
Sign In | Subscribe
Start learning today, and be successful in your academic & professional career. Start Today!
Use Chrome browser to play professor video
Dr. Carleen Eaton

Dr. Carleen Eaton

Parabolas

Slide Duration:

Table of Contents

I. Introduction
Introduction to Precalculus

10m 3s

Intro
0:00
Title of the Course
0:06
Different Names for the Course
0:07
Precalculus
0:12
Math Analysis
0:14
Trigonometry
0:16
Algebra III
0:20
Geometry II
0:24
College Algebra
0:30
Same Concepts
0:36
How do the Lessons Work?
0:54
Introducing Concepts
0:56
Apply Concepts
1:04
Go through Examples
1:25
Who is this Course For?
1:38
Those Who Need eExtra Help with Class Work
1:52
Those Working on Material but not in Formal Class at School
1:54
Those Who Want a Refresher
2:00
Try to Watch the Whole Lesson
2:20
Understanding is So Important
3:56
What to Watch First
5:26
Lesson #2: Sets, Elements, and Numbers
5:30
Lesson #7: Idea of a Function
5:33
Lesson #6: Word Problems
6:04
What to Watch First, cont.
6:46
Lesson #2: Sets, Elements and Numbers
6:56
Lesson #3: Variables, Equations, and Algebra
6:58
Lesson #4: Coordinate Systems
7:00
Lesson #5: Midpoint, Distance, the Pythagorean Theorem and Slope
7:02
Lesson #6: Word Problems
7:10
Lesson #7: Idea of a Function
7:12
Lesson #8: Graphs
7:14
Graphing Calculator Appendix
7:40
What to Watch Last
8:46
Let's get Started!
9:48
Sets, Elements, & Numbers

45m 11s

Intro
0:00
Introduction
0:05
Sets and Elements
1:19
Set
1:20
Element
1:23
Name a Set
2:20
Order The Elements Appear In Has No Effect on the Set
2:55
Describing/ Defining Sets
3:28
Directly Say All the Elements
3:36
Clearly Describing All the Members of the Set
3:55
Describing the Quality (or Qualities) Each member Of the Set Has In Common
4:32
Symbols: 'Element of' and 'Subset of'
6:01
Symbol is ∈
6:03
Subset Symbol is ⊂
6:35
Empty Set
8:07
Symbol is ∅
8:20
Since It's Empty, It is a Subset of All Sets
8:44
Union and Intersection
9:54
Union Symbol is ∪
10:08
Intersection Symbol is ∩
10:18
Sets Can Be Weird Stuff
12:26
Can Have Elements in a Set
12:50
We Can Have Infinite Sets
13:09
Example
13:22
Consider a Set Where We Take a Word and Then Repeat It An Ever Increasing Number of Times
14:08
This Set Has Infinitely Many Distinct Elements
14:40
Numbers as Sets
16:03
Natural Numbers ℕ
16:16
Including 0 and the Negatives ℤ
18:13
Rational Numbers ℚ
19:27
Can Express Rational Numbers with Decimal Expansions
22:05
Irrational Numbers
23:37
Real Numbers ℝ: Put the Rational and Irrational Numbers Together
25:15
Interval Notation and the Real Numbers
26:45
Include the End Numbers
27:06
Exclude the End Numbers
27:33
Example
28:28
Interval Notation: Infinity
29:09
Use -∞ or ∞ to Show an Interval Going on Forever in One Direction or the Other
29:14
Always Use Parentheses
29:50
Examples
30:27
Example 1
31:23
Example 2
35:26
Example 3
38:02
Example 4
42:21
Variables, Equations, & Algebra

35m 31s

Intro
0:00
What is a Variable?
0:05
A Variable is a Placeholder for a Number
0:11
Affects the Output of a Function or a Dependent Variable
0:24
Naming Variables
1:51
Useful to Use Symbols
2:21
What is a Constant?
4:14
A Constant is a Fixed, Unchanging Number
4:28
We Might Refer to a Symbol Representing a Number as a Constant
4:51
What is a Coefficient?
5:33
A Coefficient is a Multiplicative Factor on a Variable
5:37
Not All Coefficients are Constants
5:51
Expressions and Equations
6:42
An Expression is a String of Mathematical Symbols That Make Sense Used Together
7:05
An Equation is a Statement That Two Expression Have the Same Value
8:20
The Idea of Algebra
8:51
Equality
8:59
If Two Things Are the Same *Equal), Then We Can Do the Exact Same Operation to Both and the Results Will Be the Same
9:41
Always Do The Exact Same Thing to Both Sides
12:22
Solving Equations
13:23
When You Are Asked to Solve an Equation, You Are Being Asked to Solve for Something
13:33
Look For What Values Makes the Equation True
13:38
Isolate the Variable by Doing Algebra
14:37
Order of Operations
16:02
Why Certain Operations are Grouped
17:01
When You Don't Have to Worry About Order
17:39
Distributive Property
18:15
It Allows Multiplication to Act Over Addition in Parentheses
18:23
We Can Use the Distributive Property in Reverse to Combine Like Terms
19:05
Substitution
20:03
Use Information From One Equation in Another Equation
20:07
Put Your Substitution in Parentheses
20:44
Example 1
23:17
Example 2
25:49
Example 3
28:11
Example 4
30:02
Coordinate Systems

35m 2s

Intro
0:00
Inherent Order in ℝ
0:05
Real Numbers Come with an Inherent Order
0:11
Positive Numbers
0:21
Negative Numbers
0:58
'Less Than' and 'Greater Than'
2:04
Tip To Help You Remember the Signs
2:56
Inequality
4:06
Less Than or Equal and Greater Than or Equal
4:51
One Dimension: The Number Line
5:36
Graphically Represent ℝ on a Number Line
5:43
Note on Infinities
5:57
With the Number Line, We Can Directly See the Order We Put on ℝ
6:35
Ordered Pairs
7:22
Example
7:34
Allows Us to Talk About Two Numbers at the Same Time
9:41
Ordered Pairs of Real Numbers Cannot be Put Into an Order Like we Did with ℝ
10:41
Two Dimensions: The Plane
13:13
We Can Represent Ordered Pairs with the Plane
13:24
Intersection is known as the Origin
14:31
Plotting the Point
14:32
Plane = Coordinate Plane = Cartesian Plane = ℝ²
17:46
The Plane and Quadrants
18:50
Quadrant I
19:04
Quadrant II
19:21
Quadrant III
20:04
Quadrant IV
20:20
Three Dimensions: Space
21:02
Create Ordered Triplets
21:09
Visually Represent This
21:19
Three-Dimension = Space = ℝ³
21:47
Higher Dimensions
22:24
If We Have n Dimensions, We Call It n-Dimensional Space or ℝ to the nth Power
22:31
We Can Represent Places In This n-Dimensional Space As Ordered Groupings of n Numbers
22:41
Hard to Visualize Higher Dimensional Spaces
23:18
Example 1
25:07
Example 2
26:10
Example 3
28:58
Example 4
31:05
Midpoints, Distance, the Pythagorean Theorem, & Slope

48m 43s

Intro
0:00
Introduction
0:07
Midpoint: One Dimension
2:09
Example of Something More Complex
2:31
Use the Idea of a Middle
3:28
Find the Midpoint of Arbitrary Values a and b
4:17
How They're Equivalent
5:05
Official Midpoint Formula
5:46
Midpoint: Two Dimensions
6:19
The Midpoint Must Occur at the Horizontal Middle and the Vertical Middle
6:38
Arbitrary Pair of Points Example
7:25
Distance: One Dimension
9:26
Absolute Value
10:54
Idea of Forcing Positive
11:06
Distance: One Dimension, Formula
11:47
Distance Between Arbitrary a and b
11:48
Absolute Value Helps When the Distance is Negative
12:41
Distance Formula
12:58
The Pythagorean Theorem
13:24
a²+b²=c²
13:50
Distance: Two Dimensions
14:59
Break Into Horizontal and Vertical Parts and then Use the Pythagorean Theorem
15:16
Distance Between Arbitrary Points (x₁,y₁) and (x₂,y₂)
16:21
Slope
19:30
Slope is the Rate of Change
19:41
m = rise over run
21:27
Slope Between Arbitrary Points (x₁,y₁) and (x₂,y₂)
22:31
Interpreting Slope
24:12
Positive Slope and Negative Slope
25:40
m=1, m=0, m=-1
26:48
Example 1
28:25
Example 2
31:42
Example 3
36:40
Example 4
42:48
Word Problems

56m 31s

Intro
0:00
Introduction
0:05
What is a Word Problem?
0:45
Describes Any Problem That Primarily Gets Its Ideas Across With Words Instead of Math Symbols
0:48
Requires Us to Think
1:32
Why Are They So Hard?
2:11
Reason 1: No Simple Formula to Solve Them
2:16
Reason 2: Harder to Teach Word Problems
2:47
You Can Learn How to Do Them!
3:51
Grades
7:57
'But I'm Never Going to Use This In Real Life'
9:46
Solving Word Problems
12:58
First: Understand the Problem
13:37
Second: What Are You Looking For?
14:33
Third: Set Up Relationships
16:21
Fourth: Solve It!
17:48
Summary of Method
19:04
Examples on Things Other Than Math
20:21
Math-Specific Method: What You Need Now
25:30
Understand What the Problem is Talking About
25:37
Set Up and Name Any Variables You Need to Know
25:56
Set Up Equations Connecting Those Variables to the Information in the Problem Statement
26:02
Use the Equations to Solve for an Answer
26:14
Tip
26:58
Draw Pictures
27:22
Breaking Into Pieces
28:28
Try Out Hypothetical Numbers
29:52
Student Logic
31:27
Jump In!
32:40
Example 1
34:03
Example 2
39:15
Example 3
44:22
Example 4
50:24
II. Functions
Idea of a Function

39m 54s

Intro
0:00
Introduction
0:04
What is a Function?
1:06
A Visual Example and Non-Example
1:30
Function Notation
3:47
f(x)
4:05
Express What Sets the Function Acts On
5:45
Metaphors for a Function
6:17
Transformation
6:28
Map
7:17
Machine
8:56
Same Input Always Gives Same Output
10:01
If We Put the Same Input Into a Function, It Will Always Produce the Same Output
10:11
Example of Something That is Not a Function
11:10
A Non-Numerical Example
12:10
The Functions We Will Use
15:05
Unless Told Otherwise, We Will Assume Every Function Takes in Real Numbers and Outputs Real Numbers
15:11
Usually Told the Rule of a Given Function
15:27
How To Use a Function
16:18
Apply the Rule to Whatever Our Input Value Is
16:28
Make Sure to Wrap Your Substitutions in Parentheses
17:09
Functions and Tables
17:36
Table of Values, Sometimes Called a T-Table
17:46
Example
17:56
Domain: What Goes In
18:55
The Domain is the Set of all Inputs That the Function Can Accept
18:56
Example
19:40
Range: What Comes Out
21:27
The Range is the Set of All Possible Outputs a Function Can Assign
21:34
Example
21:49
Another Example Would Be Our Initial Function From Earlier in This Lesson
22:29
Example 1
23:45
Example 2
25:22
Example 3
27:27
Example 4
29:23
Example 5
33:33
Graphs

58m 26s

Intro
0:00
Introduction
0:04
How to Interpret Graphs
1:17
Input / Independent Variable
1:47
Output / Dependent Variable
2:00
Graph as Input ⇒ Output
2:23
One Way to Think of a Graph: See What Happened to Various Inputs
2:25
Example
2:47
Graph as Location of Solution
4:20
A Way to See Solutions
4:36
Example
5:20
Which Way Should We Interpret?
7:13
Easiest to Think In Terms of How Inputs Are Mapped to Outputs
7:20
Sometimes It's Easier to Think In Terms of Solutions
8:39
Pay Attention to Axes
9:50
Axes Tell Where the Graph Is and What Scale It Has
10:09
Often, The Axes Will Be Square
10:14
Example
12:06
Arrows or No Arrows?
16:07
Will Not Use Arrows at the End of Our Graphs
17:13
Graph Stops Because It Hits the Edge of the Graphing Axes, Not Because the Function Stops
17:18
How to Graph
19:47
Plot Points
20:07
Connect with Curves
21:09
If You Connect with Straight Lines
21:44
Graphs of Functions are Smooth
22:21
More Points ⇒ More Accurate
23:38
Vertical Line Test
27:44
If a Vertical Line Could Intersect More Than One Point On a Graph, It Can Not Be the Graph of a Function
28:41
Every Point on a Graph Tells Us Where the x-Value Below is Mapped
30:07
Domain in Graphs
31:37
The Domain is the Set of All Inputs That a Function Can Accept
31:44
Be Aware That Our Function Probably Continues Past the Edge of Our 'Viewing Window'
33:19
Range in Graphs
33:53
Graphing Calculators: Check the Appendix!
36:55
Example 1
38:37
Example 2
45:19
Example 3
50:41
Example 4
53:28
Example 5
55:50
Properties of Functions

48m 49s

Intro
0:00
Introduction
0:05
Increasing Decreasing Constant
0:43
Looking at a Specific Graph
1:15
Increasing Interval
2:39
Constant Function
4:15
Decreasing Interval
5:10
Find Intervals by Looking at the Graph
5:32
Intervals Show x-values; Write in Parentheses
6:39
Maximum and Minimums
8:48
Relative (Local) Max/Min
10:20
Formal Definition of Relative Maximum
12:44
Formal Definition of Relative Minimum
13:05
Max/Min, More Terms
14:18
Definition of Extrema
15:01
Average Rate of Change
16:11
Drawing a Line for the Average Rate
16:48
Using the Slope of the Secant Line
17:36
Slope in Function Notation
18:45
Zeros/Roots/x-intercepts
19:45
What Zeros in a Function Mean
20:25
Even Functions
22:30
Odd Functions
24:36
Even/Odd Functions and Graphs
26:28
Example of an Even Function
27:12
Example of an Odd Function
28:03
Example 1
29:35
Example 2
33:07
Example 3
40:32
Example 4
42:34
Function Petting Zoo

29m 20s

Intro
0:00
Introduction
0:04
Don't Forget that Axes Matter!
1:44
The Constant Function
2:40
The Identity Function
3:44
The Square Function
4:40
The Cube Function
5:44
The Square Root Function
6:51
The Reciprocal Function
8:11
The Absolute Value Function
10:19
The Trigonometric Functions
11:56
f(x)=sin(x)
12:12
f(x)=cos(x)
12:24
Alternate Axes
12:40
The Exponential and Logarithmic Functions
13:35
Exponential Functions
13:44
Logarithmic Functions
14:24
Alternating Axes
15:17
Transformations and Compositions
16:08
Example 1
17:52
Example 2
18:33
Example 3
20:24
Example 4
26:07
Transformation of Functions

48m 35s

Intro
0:00
Introduction
0:04
Vertical Shift
1:12
Graphical Example
1:21
A Further Explanation
2:16
Vertical Stretch/Shrink
3:34
Graph Shrinks
3:46
Graph Stretches
3:51
A Further Explanation
5:07
Horizontal Shift
6:49
Moving the Graph to the Right
7:28
Moving the Graph to the Left
8:12
A Further Explanation
8:19
Understanding Movement on the x-axis
8:38
Horizontal Stretch/Shrink
12:59
Shrinking the Graph
13:40
Stretching the Graph
13:48
A Further Explanation
13:55
Understanding Stretches from the x-axis
14:12
Vertical Flip (aka Mirror)
16:55
Example Graph
17:07
Multiplying the Vertical Component by -1
17:18
Horizontal Flip (aka Mirror)
18:43
Example Graph
19:01
Multiplying the Horizontal Component by -1
19:54
Summary of Transformations
22:11
Stacking Transformations
24:46
Order Matters
25:20
Transformation Example
25:52
Example 1
29:21
Example 2
34:44
Example 3
38:10
Example 4
43:46
Composite Functions

33m 24s

Intro
0:00
Introduction
0:04
Arithmetic Combinations
0:40
Basic Operations
1:20
Definition of the Four Arithmetic Combinations
1:40
Composite Functions
2:53
The Function as a Machine
3:32
Function Compositions as Multiple Machines
3:59
Notation for Composite Functions
4:46
Two Formats
6:02
Another Visual Interpretation
7:17
How to Use Composite Functions
8:21
Example of on Function acting on Another
9:17
Example 1
11:03
Example 2
15:27
Example 3
21:11
Example 4
27:06
Piecewise Functions

51m 42s

Intro
0:00
Introduction
0:04
Analogies to a Piecewise Function
1:16
Different Potatoes
1:41
Factory Production
2:27
Notations for Piecewise Functions
3:39
Notation Examples from Analogies
6:11
Example of a Piecewise (with Table)
7:24
Example of a Non-Numerical Piecewise
11:35
Graphing Piecewise Functions
14:15
Graphing Piecewise Functions, Example
16:26
Continuous Functions
16:57
Statements of Continuity
19:30
Example of Continuous and Non-Continuous Graphs
20:05
Interesting Functions: the Step Function
22:00
Notation for the Step Function
22:40
How the Step Function Works
22:56
Graph of the Step Function
25:30
Example 1
26:22
Example 2
28:49
Example 3
36:50
Example 4
46:11
Inverse Functions

49m 37s

Intro
0:00
Introduction
0:04
Analogy by picture
1:10
How to Denote the inverse
1:40
What Comes out of the Inverse
1:52
Requirement for Reversing
2:02
The Basketball Factory
2:12
The Importance of Information
2:45
One-to-One
4:04
Requirement for Reversibility
4:21
When a Function has an Inverse
4:43
One-to-One
5:13
Not One-to-One
5:50
Not a Function
6:19
Horizontal Line Test
7:01
How to the test Works
7:12
One-to-One
8:12
Not One-to-One
8:45
Definition: Inverse Function
9:12
Formal Definition
9:21
Caution to Students
10:02
Domain and Range
11:12
Finding the Range of the Function Inverse
11:56
Finding the Domain of the Function Inverse
12:11
Inverse of an Inverse
13:09
Its just x!
13:26
Proof
14:03
Graphical Interpretation
17:07
Horizontal Line Test
17:20
Graph of the Inverse
18:04
Swapping Inputs and Outputs to Draw Inverses
19:02
How to Find the Inverse
21:03
What We Are Looking For
21:21
Reversing the Function
21:38
A Method to Find Inverses
22:33
Check Function is One-to-One
23:04
Swap f(x) for y
23:25
Interchange x and y
23:41
Solve for y
24:12
Replace y with the inverse
24:40
Some Comments
25:01
Keeping Step 2 and 3 Straight
25:44
Switching to Inverse
26:12
Checking Inverses
28:52
How to Check an Inverse
29:06
Quick Example of How to Check
29:56
Example 1
31:48
Example 2
34:56
Example 3
39:29
Example 4
46:19
Variation Direct and Inverse

28m 49s

Intro
0:00
Introduction
0:06
Direct Variation
1:14
Same Direction
1:21
Common Example: Groceries
1:56
Different Ways to Say that Two Things Vary Directly
2:28
Basic Equation for Direct Variation
2:55
Inverse Variation
3:40
Opposite Direction
3:50
Common Example: Gravity
4:53
Different Ways to Say that Two Things Vary Indirectly
5:48
Basic Equation for Indirect Variation
6:33
Joint Variation
7:27
Equation for Joint Variation
7:53
Explanation of the Constant
8:48
Combined Variation
9:35
Gas Law as a Combination
9:44
Single Constant
10:33
Example 1
10:49
Example 2
13:34
Example 3
15:39
Example 4
19:48
III. Polynomials
Intro to Polynomials

38m 41s

Intro
0:00
Introduction
0:04
Definition of a Polynomial
1:04
Starting Integer
2:06
Structure of a Polynomial
2:49
The a Constants
3:34
Polynomial Function
5:13
Polynomial Equation
5:23
Polynomials with Different Variables
5:36
Degree
6:23
Informal Definition
6:31
Find the Largest Exponent Variable
6:44
Quick Examples
7:36
Special Names for Polynomials
8:59
Based on the Degree
9:23
Based on the Number of Terms
10:12
Distributive Property (aka 'FOIL')
11:37
Basic Distributive Property
12:21
Distributing Two Binomials
12:55
Longer Parentheses
15:12
Reverse: Factoring
17:26
Long-Term Behavior of Polynomials
17:48
Examples
18:13
Controlling Term--Term with the Largest Exponent
19:33
Positive and Negative Coefficients on the Controlling Term
20:21
Leading Coefficient Test
22:07
Even Degree, Positive Coefficient
22:13
Even Degree, Negative Coefficient
22:39
Odd Degree, Positive Coefficient
23:09
Odd Degree, Negative Coefficient
23:27
Example 1
25:11
Example 2
27:16
Example 3
31:16
Example 4
34:41
Roots (Zeros) of Polynomials

41m 7s

Intro
0:00
Introduction
0:05
Roots in Graphs
1:17
The x-intercepts
1:33
How to Remember What 'Roots' Are
1:50
Naïve Attempts
2:31
Isolating Variables
2:45
Failures of Isolating Variables
3:30
Missing Solutions
4:59
Factoring: How to Find Roots
6:28
How Factoring Works
6:36
Why Factoring Works
7:20
Steps to Finding Polynomial Roots
9:21
Factoring: How to Find Roots CAUTION
10:08
Factoring is Not Easy
11:32
Factoring Quadratics
13:08
Quadratic Trinomials
13:21
Form of Factored Binomials
13:38
Factoring Examples
14:40
Factoring Quadratics, Check Your Work
16:58
Factoring Higher Degree Polynomials
18:19
Factoring a Cubic
18:32
Factoring a Quadratic
19:04
Factoring: Roots Imply Factors
19:54
Where a Root is, A Factor Is
20:01
How to Use Known Roots to Make Factoring Easier
20:35
Not all Polynomials Can be Factored
22:30
Irreducible Polynomials
23:27
Complex Numbers Help
23:55
Max Number of Roots/Factors
24:57
Limit to Number of Roots Equal to the Degree
25:18
Why there is a Limit
25:25
Max Number of Peaks/Valleys
26:39
Shape Information from Degree
26:46
Example Graph
26:54
Max, But Not Required
28:00
Example 1
28:37
Example 2
31:21
Example 3
36:12
Example 4
38:40
Completing the Square and the Quadratic Formula

39m 43s

Intro
0:00
Introduction
0:05
Square Roots and Equations
0:51
Taking the Square Root to Find the Value of x
0:55
Getting the Positive and Negative Answers
1:05
Completing the Square: Motivation
2:04
Polynomials that are Easy to Solve
2:20
Making Complex Polynomials Easy to Solve
3:03
Steps to Completing the Square
4:30
Completing the Square: Method
7:22
Move C over
7:35
Divide by A
7:44
Find r
7:59
Add to Both Sides to Complete the Square
8:49
Solving Quadratics with Ease
9:56
The Quadratic Formula
11:38
Derivation
11:43
Final Form
12:23
Follow Format to Use Formula
13:38
How Many Roots?
14:53
The Discriminant
15:47
What the Discriminant Tells Us: How Many Roots
15:58
How the Discriminant Works
16:30
Example 1: Complete the Square
18:24
Example 2: Solve the Quadratic
22:00
Example 3: Solve for Zeroes
25:28
Example 4: Using the Quadratic Formula
30:52
Properties of Quadratic Functions

45m 34s

Intro
0:00
Introduction
0:05
Parabolas
0:35
Examples of Different Parabolas
1:06
Axis of Symmetry and Vertex
1:28
Drawing an Axis of Symmetry
1:51
Placing the Vertex
2:28
Looking at the Axis of Symmetry and Vertex for other Parabolas
3:09
Transformations
4:18
Reviewing Transformation Rules
6:28
Note the Different Horizontal Shift Form
7:45
An Alternate Form to Quadratics
8:54
The Constants: k, h, a
9:05
Transformations Formed
10:01
Analyzing Different Parabolas
10:10
Switching Forms by Completing the Square
11:43
Vertex of a Parabola
16:30
Vertex at (h, k)
16:47
Vertex in Terms of a, b, and c Coefficients
17:28
Minimum/Maximum at Vertex
18:19
When a is Positive
18:25
When a is Negative
18:52
Axis of Symmetry
19:54
Incredibly Minor Note on Grammar
20:52
Example 1
21:48
Example 2
26:35
Example 3
28:55
Example 4
31:40
Intermediate Value Theorem and Polynomial Division

46m 8s

Intro
0:00
Introduction
0:05
Reminder: Roots Imply Factors
1:32
The Intermediate Value Theorem
3:41
The Basis: U between a and b
4:11
U is on the Function
4:52
Intermediate Value Theorem, Proof Sketch
5:51
If Not True, the Graph Would Have to Jump
5:58
But Graph is Defined as Continuous
6:43
Finding Roots with the Intermediate Value Theorem
7:01
Picking a and b to be of Different Signs
7:10
Must Be at Least One Root
7:46
Dividing a Polynomial
8:16
Using Roots and Division to Factor
8:38
Long Division Refresher
9:08
The Division Algorithm
12:18
How It Works to Divide Polynomials
12:37
The Parts of the Equation
13:24
Rewriting the Equation
14:47
Polynomial Long Division
16:20
Polynomial Long Division In Action
16:29
One Step at a Time
20:51
Synthetic Division
22:46
Setup
23:11
Synthetic Division, Example
24:44
Which Method Should We Use
26:39
Advantages of Synthetic Method
26:49
Advantages of Long Division
27:13
Example 1
29:24
Example 2
31:27
Example 3
36:22
Example 4
40:55
Complex Numbers

45m 36s

Intro
0:00
Introduction
0:04
A Wacky Idea
1:02
The Definition of the Imaginary Number
1:22
How it Helps Solve Equations
2:20
Square Roots and Imaginary Numbers
3:15
Complex Numbers
5:00
Real Part and Imaginary Part
5:20
When Two Complex Numbers are Equal
6:10
Addition and Subtraction
6:40
Deal with Real and Imaginary Parts Separately
7:36
Two Quick Examples
7:54
Multiplication
9:07
FOIL Expansion
9:14
Note What Happens to the Square of the Imaginary Number
9:41
Two Quick Examples
10:22
Division
11:27
Complex Conjugates
13:37
Getting Rid of i
14:08
How to Denote the Conjugate
14:48
Division through Complex Conjugates
16:11
Multiply by the Conjugate of the Denominator
16:28
Example
17:46
Factoring So-Called 'Irreducible' Quadratics
19:24
Revisiting the Quadratic Formula
20:12
Conjugate Pairs
20:37
But Are the Complex Numbers 'Real'?
21:27
What Makes a Number Legitimate
25:38
Where Complex Numbers are Used
27:20
Still, We Won't See Much of C
29:05
Example 1
30:30
Example 2
33:15
Example 3
38:12
Example 4
42:07
Fundamental Theorem of Algebra

19m 9s

Intro
0:00
Introduction
0:05
Idea: Hidden Roots
1:16
Roots in Complex Form
1:42
All Polynomials Have Roots
2:08
Fundamental Theorem of Algebra
2:21
Where Are All the Imaginary Roots, Then?
3:17
All Roots are Complex
3:45
Real Numbers are a Subset of Complex Numbers
3:59
The n Roots Theorem
5:01
For Any Polynomial, Its Degree is Equal to the Number of Roots
5:11
Equivalent Statement
5:24
Comments: Multiplicity
6:29
Non-Distinct Roots
6:59
Denoting Multiplicity
7:20
Comments: Complex Numbers Necessary
7:41
Comments: Complex Coefficients Allowed
8:55
Comments: Existence Theorem
9:59
Proof Sketch of n Roots Theorem
10:45
First Root
11:36
Second Root
13:23
Continuation to Find all Roots
16:00
IV. Rational Functions
Rational Functions and Vertical Asymptotes

33m 22s

Intro
0:00
Introduction
0:05
Definition of a Rational Function
1:20
Examples of Rational Functions
2:30
Why They are Called 'Rational'
2:47
Domain of a Rational Function
3:15
Undefined at Denominator Zeros
3:25
Otherwise all Reals
4:16
Investigating a Fundamental Function
4:50
The Domain of the Function
5:04
What Occurs at the Zeroes of the Denominator
5:20
Idea of a Vertical Asymptote
6:23
What's Going On?
6:58
Approaching x=0 from the left
7:32
Approaching x=0 from the right
8:34
Dividing by Very Small Numbers Results in Very Large Numbers
9:31
Definition of a Vertical Asymptote
10:05
Vertical Asymptotes and Graphs
11:15
Drawing Asymptotes by Using a Dashed Line
11:27
The Graph Can Never Touch Its Undefined Point
12:00
Not All Zeros Give Asymptotes
13:02
Special Cases: When Numerator and Denominator Go to Zero at the Same Time
14:58
Cancel out Common Factors
15:49
How to Find Vertical Asymptotes
16:10
Figure out What Values Are Not in the Domain of x
16:24
Determine if the Numerator and Denominator Share Common Factors and Cancel
16:45
Find Denominator Roots
17:33
Note if Asymptote Approaches Negative or Positive Infinity
18:06
Example 1
18:57
Example 2
21:26
Example 3
23:04
Example 4
30:01
Horizontal Asymptotes

34m 16s

Intro
0:00
Introduction
0:05
Investigating a Fundamental Function
0:53
What Happens as x Grows Large
1:00
Different View
1:12
Idea of a Horizontal Asymptote
1:36
What's Going On?
2:24
What Happens as x Grows to a Large Negative Number
2:49
What Happens as x Grows to a Large Number
3:30
Dividing by Very Large Numbers Results in Very Small Numbers
3:52
Example Function
4:41
Definition of a Vertical Asymptote
8:09
Expanding the Idea
9:03
What's Going On?
9:48
What Happens to the Function in the Long Run?
9:51
Rewriting the Function
10:13
Definition of a Slant Asymptote
12:09
Symbolical Definition
12:30
Informal Definition
12:45
Beyond Slant Asymptotes
13:03
Not Going Beyond Slant Asymptotes
14:39
Horizontal/Slant Asymptotes and Graphs
15:43
How to Find Horizontal and Slant Asymptotes
16:52
How to Find Horizontal Asymptotes
17:12
Expand the Given Polynomials
17:18
Compare the Degrees of the Numerator and Denominator
17:40
How to Find Slant Asymptotes
20:05
Slant Asymptotes Exist When n+m=1
20:08
Use Polynomial Division
20:24
Example 1
24:32
Example 2
25:53
Example 3
26:55
Example 4
29:22
Graphing Asymptotes in a Nutshell

49m 7s

Intro
0:00
Introduction
0:05
A Process for Graphing
1:22
1. Factor Numerator and Denominator
1:50
2. Find Domain
2:53
3. Simplifying the Function
3:59
4. Find Vertical Asymptotes
4:59
5. Find Horizontal/Slant Asymptotes
5:24
6. Find Intercepts
7:35
7. Draw Graph (Find Points as Necessary)
9:21
Draw Graph Example
11:21
Vertical Asymptote
11:41
Horizontal Asymptote
11:50
Other Graphing
12:16
Test Intervals
15:08
Example 1
17:57
Example 2
23:01
Example 3
29:02
Example 4
33:37
Partial Fractions

44m 56s

Intro
0:00
Introduction: Idea
0:04
Introduction: Prerequisites and Uses
1:57
Proper vs. Improper Polynomial Fractions
3:11
Possible Things in the Denominator
4:38
Linear Factors
6:16
Example of Linear Factors
7:03
Multiple Linear Factors
7:48
Irreducible Quadratic Factors
8:25
Example of Quadratic Factors
9:26
Multiple Quadratic Factors
9:49
Mixing Factor Types
10:28
Figuring Out the Numerator
11:10
How to Solve for the Constants
11:30
Quick Example
11:40
Example 1
14:29
Example 2
18:35
Example 3
20:33
Example 4
28:51
V. Exponential & Logarithmic Functions
Understanding Exponents

35m 17s

Intro
0:00
Introduction
0:05
Fundamental Idea
1:46
Expanding the Idea
2:28
Multiplication of the Same Base
2:40
Exponents acting on Exponents
3:45
Different Bases with the Same Exponent
4:31
To the Zero
5:35
To the First
5:45
Fundamental Rule with the Zero Power
6:35
To the Negative
7:45
Any Number to a Negative Power
8:14
A Fraction to a Negative Power
9:58
Division with Exponential Terms
10:41
To the Fraction
11:33
Square Root
11:58
Any Root
12:59
Summary of Rules
14:38
To the Irrational
17:21
Example 1
20:34
Example 2
23:42
Example 3
27:44
Example 4
31:44
Example 5
33:15
Exponential Functions

47m 4s

Intro
0:00
Introduction
0:05
Definition of an Exponential Function
0:48
Definition of the Base
1:02
Restrictions on the Base
1:16
Computing Exponential Functions
2:29
Harder Computations
3:10
When to Use a Calculator
3:21
Graphing Exponential Functions: a>1
6:02
Three Examples
6:13
What to Notice on the Graph
7:44
A Story
8:27
Story Diagram
9:15
Increasing Exponentials
11:29
Story Morals
14:40
Application: Compound Interest
15:15
Compounding Year after Year
16:01
Function for Compounding Interest
16:51
A Special Number: e
20:55
Expression for e
21:28
Where e stabilizes
21:55
Application: Continuously Compounded Interest
24:07
Equation for Continuous Compounding
24:22
Exponential Decay 0<a<1
25:50
Three Examples
26:11
Why they 'lose' value
26:54
Example 1
27:47
Example 2
33:11
Example 3
36:34
Example 4
41:28
Introduction to Logarithms

40m 31s

Intro
0:00
Introduction
0:04
Definition of a Logarithm, Base 2
0:51
Log 2 Defined
0:55
Examples
2:28
Definition of a Logarithm, General
3:23
Examples of Logarithms
5:15
Problems with Unusual Bases
7:38
Shorthand Notation: ln and log
9:44
base e as ln
10:01
base 10 as log
10:34
Calculating Logarithms
11:01
using a calculator
11:34
issues with other bases
11:58
Graphs of Logarithms
13:21
Three Examples
13:29
Slow Growth
15:19
Logarithms as Inverse of Exponentiation
16:02
Using Base 2
16:05
General Case
17:10
Looking More Closely at Logarithm Graphs
19:16
The Domain of Logarithms
20:41
Thinking about Logs like Inverses
21:08
The Alternate
24:00
Example 1
25:59
Example 2
30:03
Example 3
32:49
Example 4
37:34
Properties of Logarithms

42m 33s

Intro
0:00
Introduction
0:04
Basic Properties
1:12
Inverse--log(exp)
1:43
A Key Idea
2:44
What We Get through Exponentiation
3:18
B Always Exists
4:50
Inverse--exp(log)
5:53
Logarithm of a Power
7:44
Logarithm of a Product
10:07
Logarithm of a Quotient
13:48
Caution! There Is No Rule for loga(M+N)
16:12
Summary of Properties
17:42
Change of Base--Motivation
20:17
No Calculator Button
20:59
A Specific Example
21:45
Simplifying
23:45
Change of Base--Formula
24:14
Example 1
25:47
Example 2
29:08
Example 3
31:14
Example 4
34:13
Solving Exponential and Logarithmic Equations

34m 10s

Intro
0:00
Introduction
0:05
One to One Property
1:09
Exponential
1:26
Logarithmic
1:44
Specific Considerations
2:02
One-to-One Property
3:30
Solving by One-to-One
4:11
Inverse Property
6:09
Solving by Inverses
7:25
Dealing with Equations
7:50
Example of Taking an Exponent or Logarithm of an Equation
9:07
A Useful Property
11:57
Bring Down Exponents
12:01
Try to Simplify
13:20
Extraneous Solutions
13:45
Example 1
16:37
Example 2
19:39
Example 3
21:37
Example 4
26:45
Example 5
29:37
Application of Exponential and Logarithmic Functions

48m 46s

Intro
0:00
Introduction
0:06
Applications of Exponential Functions
1:07
A Secret!
2:17
Natural Exponential Growth Model
3:07
Figure out r
3:34
A Secret!--Why Does It Work?
4:44
e to the r Morphs
4:57
Example
5:06
Applications of Logarithmic Functions
8:32
Examples
8:43
What Logarithms are Useful For
9:53
Example 1
11:29
Example 2
15:30
Example 3
26:22
Example 4
32:05
Example 5
39:19
VI. Trigonometric Functions
Angles

39m 5s

Intro
0:00
Degrees
0:22
Circle is 360 Degrees
0:48
Splitting a Circle
1:13
Radians
2:08
Circle is 2 Pi Radians
2:31
One Radian
2:52
Half-Circle and Right Angle
4:00
Converting Between Degrees and Radians
6:24
Formulas for Degrees and Radians
6:52
Coterminal, Complementary, Supplementary Angles
7:23
Coterminal Angles
7:30
Complementary Angles
9:40
Supplementary Angles
10:08
Example 1: Dividing a Circle
10:38
Example 2: Converting Between Degrees and Radians
11:56
Example 3: Quadrants and Coterminal Angles
14:18
Extra Example 1: Common Angle Conversions
-1
Extra Example 2: Quadrants and Coterminal Angles
-2
Sine and Cosine Functions

43m 16s

Intro
0:00
Sine and Cosine
0:15
Unit Circle
0:22
Coordinates on Unit Circle
1:03
Right Triangles
1:52
Adjacent, Opposite, Hypotenuse
2:25
Master Right Triangle Formula: SOHCAHTOA
2:48
Odd Functions, Even Functions
4:40
Example: Odd Function
4:56
Example: Even Function
7:30
Example 1: Sine and Cosine
10:27
Example 2: Graphing Sine and Cosine Functions
14:39
Example 3: Right Triangle
21:40
Example 4: Odd, Even, or Neither
26:01
Extra Example 1: Right Triangle
-1
Extra Example 2: Graphing Sine and Cosine Functions
-2
Sine and Cosine Values of Special Angles

33m 5s

Intro
0:00
45-45-90 Triangle and 30-60-90 Triangle
0:08
45-45-90 Triangle
0:21
30-60-90 Triangle
2:06
Mnemonic: All Students Take Calculus (ASTC)
5:21
Using the Unit Circle
5:59
New Angles
6:21
Other Quadrants
9:43
Mnemonic: All Students Take Calculus
10:13
Example 1: Convert, Quadrant, Sine/Cosine
13:11
Example 2: Convert, Quadrant, Sine/Cosine
16:48
Example 3: All Angles and Quadrants
20:21
Extra Example 1: Convert, Quadrant, Sine/Cosine
-1
Extra Example 2: All Angles and Quadrants
-2
Modified Sine Waves: Asin(Bx+C)+D and Acos(Bx+C)+D

52m 3s

Intro
0:00
Amplitude and Period of a Sine Wave
0:38
Sine Wave Graph
0:58
Amplitude: Distance from Middle to Peak
1:18
Peak: Distance from Peak to Peak
2:41
Phase Shift and Vertical Shift
4:13
Phase Shift: Distance Shifted Horizontally
4:16
Vertical Shift: Distance Shifted Vertically
6:48
Example 1: Amplitude/Period/Phase and Vertical Shift
8:04
Example 2: Amplitude/Period/Phase and Vertical Shift
17:39
Example 3: Find Sine Wave Given Attributes
25:23
Extra Example 1: Amplitude/Period/Phase and Vertical Shift
-1
Extra Example 2: Find Cosine Wave Given Attributes
-2
Tangent and Cotangent Functions

36m 4s

Intro
0:00
Tangent and Cotangent Definitions
0:21
Tangent Definition
0:25
Cotangent Definition
0:47
Master Formula: SOHCAHTOA
1:01
Mnemonic
1:16
Tangent and Cotangent Values
2:29
Remember Common Values of Sine and Cosine
2:46
90 Degrees Undefined
4:36
Slope and Menmonic: ASTC
5:47
Uses of Tangent
5:54
Example: Tangent of Angle is Slope
6:09
Sign of Tangent in Quadrants
7:49
Example 1: Graph Tangent and Cotangent Functions
10:42
Example 2: Tangent and Cotangent of Angles
16:09
Example 3: Odd, Even, or Neither
18:56
Extra Example 1: Tangent and Cotangent of Angles
-1
Extra Example 2: Tangent and Cotangent of Angles
-2
Secant and Cosecant Functions

27m 18s

Intro
0:00
Secant and Cosecant Definitions
0:17
Secant Definition
0:18
Cosecant Definition
0:33
Example 1: Graph Secant Function
0:48
Example 2: Values of Secant and Cosecant
6:49
Example 3: Odd, Even, or Neither
12:49
Extra Example 1: Graph of Cosecant Function
-1
Extra Example 2: Values of Secant and Cosecant
-2
Inverse Trigonometric Functions

32m 58s

Intro
0:00
Arcsine Function
0:24
Restrictions between -1 and 1
0:43
Arcsine Notation
1:26
Arccosine Function
3:07
Restrictions between -1 and 1
3:36
Cosine Notation
3:53
Arctangent Function
4:30
Between -Pi/2 and Pi/2
4:44
Tangent Notation
5:02
Example 1: Domain/Range/Graph of Arcsine
5:45
Example 2: Arcsin/Arccos/Arctan Values
10:46
Example 3: Domain/Range/Graph of Arctangent
17:14
Extra Example 1: Domain/Range/Graph of Arccosine
-1
Extra Example 2: Arcsin/Arccos/Arctan Values
-2
Computations of Inverse Trigonometric Functions

31m 8s

Intro
0:00
Inverse Trigonometric Function Domains and Ranges
0:31
Arcsine
0:41
Arccosine
1:14
Arctangent
1:41
Example 1: Arcsines of Common Values
2:44
Example 2: Odd, Even, or Neither
5:57
Example 3: Arccosines of Common Values
12:24
Extra Example 1: Arctangents of Common Values
-1
Extra Example 2: Arcsin/Arccos/Arctan Values
-2
VII. Trigonometric Identities
Pythagorean Identity

19m 11s

Intro
0:00
Pythagorean Identity
0:17
Pythagorean Triangle
0:27
Pythagorean Identity
0:45
Example 1: Use Pythagorean Theorem to Prove Pythagorean Identity
1:14
Example 2: Find Angle Given Cosine and Quadrant
4:18
Example 3: Verify Trigonometric Identity
8:00
Extra Example 1: Use Pythagorean Identity to Prove Pythagorean Theorem
-1
Extra Example 2: Find Angle Given Cosine and Quadrant
-2
Identity Tan(squared)x+1=Sec(squared)x

23m 16s

Intro
0:00
Main Formulas
0:19
Companion to Pythagorean Identity
0:27
For Cotangents and Cosecants
0:52
How to Remember
0:58
Example 1: Prove the Identity
1:40
Example 2: Given Tan Find Sec
3:42
Example 3: Prove the Identity
7:45
Extra Example 1: Prove the Identity
-1
Extra Example 2: Given Sec Find Tan
-2
Addition and Subtraction Formulas

52m 52s

Intro
0:00
Addition and Subtraction Formulas
0:09
How to Remember
0:48
Cofunction Identities
1:31
How to Remember Graphically
1:44
Where to Use Cofunction Identities
2:52
Example 1: Derive the Formula for cos(A-B)
3:08
Example 2: Use Addition and Subtraction Formulas
16:03
Example 3: Use Addition and Subtraction Formulas to Prove Identity
25:11
Extra Example 1: Use cos(A-B) and Cofunction Identities
-1
Extra Example 2: Convert to Radians and use Formulas
-2
Double Angle Formulas

29m 5s

Intro
0:00
Main Formula
0:07
How to Remember from Addition Formula
0:18
Two Other Forms
1:35
Example 1: Find Sine and Cosine of Angle using Double Angle
3:16
Example 2: Prove Trigonometric Identity using Double Angle
9:37
Example 3: Use Addition and Subtraction Formulas
12:38
Extra Example 1: Find Sine and Cosine of Angle using Double Angle
-1
Extra Example 2: Prove Trigonometric Identity using Double Angle
-2
Half-Angle Formulas

43m 55s

Intro
0:00
Main Formulas
0:09
Confusing Part
0:34
Example 1: Find Sine and Cosine of Angle using Half-Angle
0:54
Example 2: Prove Trigonometric Identity using Half-Angle
11:51
Example 3: Prove the Half-Angle Formula for Tangents
18:39
Extra Example 1: Find Sine and Cosine of Angle using Half-Angle
-1
Extra Example 2: Prove Trigonometric Identity using Half-Angle
-2
VIII. Applications of Trigonometry
Trigonometry in Right Angles

25m 43s

Intro
0:00
Master Formula for Right Angles
0:11
SOHCAHTOA
0:15
Only for Right Triangles
1:26
Example 1: Find All Angles in a Triangle
2:19
Example 2: Find Lengths of All Sides of Triangle
7:39
Example 3: Find All Angles in a Triangle
11:00
Extra Example 1: Find All Angles in a Triangle
-1
Extra Example 2: Find Lengths of All Sides of Triangle
-2
Law of Sines

56m 40s

Intro
0:00
Law of Sines Formula
0:18
SOHCAHTOA
0:27
Any Triangle
0:59
Graphical Representation
1:25
Solving Triangle Completely
2:37
When to Use Law of Sines
2:55
ASA, SAA, SSA, AAA
2:59
SAS, SSS for Law of Cosines
7:11
Example 1: How Many Triangles Satisfy Conditions, Solve Completely
8:44
Example 2: How Many Triangles Satisfy Conditions, Solve Completely
15:30
Example 3: How Many Triangles Satisfy Conditions, Solve Completely
28:32
Extra Example 1: How Many Triangles Satisfy Conditions, Solve Completely
-1
Extra Example 2: How Many Triangles Satisfy Conditions, Solve Completely
-2
Law of Cosines

49m 5s

Intro
0:00
Law of Cosines Formula
0:23
Graphical Representation
0:34
Relates Sides to Angles
1:00
Any Triangle
1:20
Generalization of Pythagorean Theorem
1:32
When to Use Law of Cosines
2:26
SAS, SSS
2:30
Heron's Formula
4:49
Semiperimeter S
5:11
Example 1: How Many Triangles Satisfy Conditions, Solve Completely
5:53
Example 2: How Many Triangles Satisfy Conditions, Solve Completely
15:19
Example 3: Find Area of a Triangle Given All Side Lengths
26:33
Extra Example 1: How Many Triangles Satisfy Conditions, Solve Completely
-1
Extra Example 2: Length of Third Side and Area of Triangle
-2
Finding the Area of a Triangle

27m 37s

Intro
0:00
Master Right Triangle Formula and Law of Cosines
0:19
SOHCAHTOA
0:27
Law of Cosines
1:23
Heron's Formula
2:22
Semiperimeter S
2:37
Example 1: Area of Triangle with Two Sides and One Angle
3:12
Example 2: Area of Triangle with Three Sides
6:11
Example 3: Area of Triangle with Three Sides, No Heron's Formula
8:50
Extra Example 1: Area of Triangle with Two Sides and One Angle
-1
Extra Example 2: Area of Triangle with Two Sides and One Angle
-2
Word Problems and Applications of Trigonometry

34m 25s

Intro
0:00
Formulas to Remember
0:11
SOHCAHTOA
0:15
Law of Sines
0:55
Law of Cosines
1:48
Heron's Formula
2:46
Example 1: Telephone Pole Height
4:01
Example 2: Bridge Length
7:48
Example 3: Area of Triangular Field
14:20
Extra Example 1: Kite Height
-1
Extra Example 2: Roads to a Town
-2
IX. Systems of Equations and Inequalities
Systems of Linear Equations

55m 40s

Intro
0:00
Introduction
0:04
Graphs as Location of 'True'
1:49
All Locations that Make the Function True
2:25
Understand the Relationship Between Solutions and the Graph
3:43
Systems as Graphs
4:07
Equations as Lines
4:20
Intersection Point
5:19
Three Possibilities for Solutions
6:17
Independent
6:24
Inconsistent
6:36
Dependent
7:06
Solving by Substitution
8:37
Solve for One Variable
9:07
Substitute into the Second Equation
9:34
Solve for Both Variables
10:12
What If a System is Inconsistent or Dependent?
11:08
No Solutions
11:25
Infinite Solutions
12:30
Solving by Elimination
13:56
Example
14:22
Determining the Number of Solutions
16:30
Why Elimination Makes Sense
17:25
Solving by Graphing Calculator
19:59
Systems with More than Two Variables
23:22
Example 1
25:49
Example 2
30:22
Example 3
34:11
Example 4
38:55
Example 5
46:01
(Non-) Example 6
53:37
Systems of Linear Inequalities

1h 13s

Intro
0:00
Introduction
0:04
Inequality Refresher-Solutions
0:46
Equation Solutions vs. Inequality Solutions
1:02
Essentially a Wide Variety of Answers
1:35
Refresher--Negative Multiplication Flips
1:43
Refresher--Negative Flips: Why?
3:19
Multiplication by a Negative
3:43
The Relationship Flips
3:55
Refresher--Stick to Basic Operations
4:34
Linear Equations in Two Variables
6:50
Graphing Linear Inequalities
8:28
Why It Includes a Whole Section
8:43
How to Show The Difference Between Strict and Not Strict Inequalities
10:08
Dashed Line--Not Solutions
11:10
Solid Line--Are Solutions
11:24
Test Points for Shading
11:42
Example of Using a Point
12:41
Drawing Shading from the Point
13:14
Graphing a System
14:53
Set of Solutions is the Overlap
15:17
Example
15:22
Solutions are Best Found Through Graphing
18:05
Linear Programming-Idea
19:52
Use a Linear Objective Function
20:15
Variables in Objective Function have Constraints
21:24
Linear Programming-Method
22:09
Rearrange Equations
22:21
Graph
22:49
Critical Solution is at the Vertex of the Overlap
23:40
Try Each Vertice
24:35
Example 1
24:58
Example 2
28:57
Example 3
33:48
Example 4
43:10
Nonlinear Systems

41m 1s

Intro
0:00
Introduction
0:06
Substitution
1:12
Example
1:22
Elimination
3:46
Example
3:56
Elimination is Less Useful for Nonlinear Systems
4:56
Graphing
5:56
Using a Graphing Calculator
6:44
Number of Solutions
8:44
Systems of Nonlinear Inequalities
10:02
Graph Each Inequality
10:06
Dashed and/or Solid
10:18
Shade Appropriately
11:14
Example 1
13:24
Example 2
15:50
Example 3
22:02
Example 4
29:06
Example 4, cont.
33:40
X. Vectors and Matrices
Vectors

1h 9m 31s

Intro
0:00
Introduction
0:10
Magnitude of the Force
0:22
Direction of the Force
0:48
Vector
0:52
Idea of a Vector
1:30
How Vectors are Denoted
2:00
Component Form
3:20
Angle Brackets and Parentheses
3:50
Magnitude/Length
4:26
Denoting the Magnitude of a Vector
5:16
Direction/Angle
7:52
Always Draw a Picture
8:50
Component Form from Magnitude & Angle
10:10
Scaling by Scalars
14:06
Unit Vectors
16:26
Combining Vectors - Algebraically
18:10
Combining Vectors - Geometrically
19:54
Resultant Vector
20:46
Alternate Component Form: i, j
21:16
The Zero Vector
23:18
Properties of Vectors
24:20
No Multiplication (Between Vectors)
28:30
Dot Product
29:40
Motion in a Medium
30:10
Fish in an Aquarium Example
31:38
More Than Two Dimensions
33:12
More Than Two Dimensions - Magnitude
34:18
Example 1
35:26
Example 2
38:10
Example 3
45:48
Example 4
50:40
Example 4, cont.
56:07
Example 5
1:01:32
Dot Product & Cross Product

35m 20s

Intro
0:00
Introduction
0:08
Dot Product - Definition
0:42
Dot Product Results in a Scalar, Not a Vector
2:10
Example in Two Dimensions
2:34
Angle and the Dot Product
2:58
The Dot Product of Two Vectors is Deeply Related to the Angle Between the Two Vectors
2:59
Proof of Dot Product Formula
4:14
Won't Directly Help Us Better Understand Vectors
4:18
Dot Product - Geometric Interpretation
4:58
We Can Interpret the Dot Product as a Measure of How Long and How Parallel Two Vectors Are
7:26
Dot Product - Perpendicular Vectors
8:24
If the Dot Product of Two Vectors is 0, We Know They are Perpendicular to Each Other
8:54
Cross Product - Definition
11:08
Cross Product Only Works in Three Dimensions
11:09
Cross Product - A Mnemonic
12:16
The Determinant of a 3 x 3 Matrix and Standard Unit Vectors
12:17
Cross Product - Geometric Interpretations
14:30
The Right-Hand Rule
15:17
Cross Product - Geometric Interpretations Cont.
17:00
Example 1
18:40
Example 2
22:50
Example 3
24:04
Example 4
26:20
Bonus Round
29:18
Proof: Dot Product Formula
29:24
Proof: Dot Product Formula, cont.
30:38
Matrices

54m 7s

Intro
0:00
Introduction
0:08
Definition of a Matrix
3:02
Size or Dimension
3:58
Square Matrix
4:42
Denoted by Capital Letters
4:56
When are Two Matrices Equal?
5:04
Examples of Matrices
6:44
Rows x Columns
6:46
Talking About Specific Entries
7:48
We Use Capitals to Denote a Matrix and Lower Case to Denotes Its Entries
8:32
Using Entries to Talk About Matrices
10:08
Scalar Multiplication
11:26
Scalar = Real Number
11:34
Example
12:36
Matrix Addition
13:08
Example
14:22
Matrix Multiplication
15:00
Example
18:52
Matrix Multiplication, cont.
19:58
Matrix Multiplication and Order (Size)
25:26
Make Sure Their Orders are Compatible
25:27
Matrix Multiplication is NOT Commutative
28:20
Example
30:08
Special Matrices - Zero Matrix (0)
32:48
Zero Matrix Has 0 for All of its Entries
32:49
Special Matrices - Identity Matrix (I)
34:14
Identity Matrix is a Square Matrix That Has 1 for All Its Entries on the Main Diagonal and 0 for All Other Entries
34:15
Example 1
36:16
Example 2
40:00
Example 3
44:54
Example 4
50:08
Determinants & Inverses of Matrices

47m 12s

Intro
0:00
Introduction
0:06
Not All Matrices Are Invertible
1:30
What Must a Matrix Have to Be Invertible?
2:08
Determinant
2:32
The Determinant is a Real Number Associated With a Square Matrix
2:38
If the Determinant of a Matrix is Nonzero, the Matrix is Invertible
3:40
Determinant of a 2 x 2 Matrix
4:34
Think in Terms of Diagonals
5:12
Minors and Cofactors - Minors
6:24
Example
6:46
Minors and Cofactors - Cofactors
8:00
Cofactor is Closely Based on the Minor
8:01
Alternating Sign Pattern
9:04
Determinant of Larger Matrices
10:56
Example
13:00
Alternative Method for 3x3 Matrices
16:46
Not Recommended
16:48
Inverse of a 2 x 2 Matrix
19:02
Inverse of Larger Matrices
20:00
Using Inverse Matrices
21:06
When Multiplied Together, They Create the Identity Matrix
21:24
Example 1
23:45
Example 2
27:21
Example 3
32:49
Example 4
36:27
Finding the Inverse of Larger Matrices
41:59
General Inverse Method - Step 1
43:25
General Inverse Method - Step 2
43:27
General Inverse Method - Step 2, cont.
43:27
General Inverse Method - Step 3
45:15
Using Matrices to Solve Systems of Linear Equations

58m 34s

Intro
0:00
Introduction
0:12
Augmented Matrix
1:44
We Can Represent the Entire Linear System With an Augmented Matrix
1:50
Row Operations
3:22
Interchange the Locations of Two Rows
3:50
Multiply (or Divide) a Row by a Nonzero Number
3:58
Add (or Subtract) a Multiple of One Row to Another
4:12
Row Operations - Keep Notes!
5:50
Suggested Symbols
7:08
Gauss-Jordan Elimination - Idea
8:04
Gauss-Jordan Elimination - Idea, cont.
9:16
Reduced Row-Echelon Form
9:18
Gauss-Jordan Elimination - Method
11:36
Begin by Writing the System As An Augmented Matrix
11:38
Gauss-Jordan Elimination - Method, cont.
13:48
Cramer's Rule - 2 x 2 Matrices
17:08
Cramer's Rule - n x n Matrices
19:24
Solving with Inverse Matrices
21:10
Solving Inverse Matrices, cont.
25:28
The Mighty (Graphing) Calculator
26:38
Example 1
29:56
Example 2
33:56
Example 3
37:00
Example 3, cont.
45:04
Example 4
51:28
XI. Alternate Ways to Graph
Parametric Equations

53m 33s

Intro
0:00
Introduction
0:06
Definition
1:10
Plane Curve
1:24
The Key Idea
2:00
Graphing with Parametric Equations
2:52
Same Graph, Different Equations
5:04
How Is That Possible?
5:36
Same Graph, Different Equations, cont.
5:42
Here's Another to Consider
7:56
Same Plane Curve, But Still Different
8:10
A Metaphor for Parametric Equations
9:36
Think of Parametric Equations As a Way to Describe the Motion of An Object
9:38
Graph Shows Where It Went, But Not Speed
10:32
Eliminating Parameters
12:14
Rectangular Equation
12:16
Caution
13:52
Creating Parametric Equations
14:30
Interesting Graphs
16:38
Graphing Calculators, Yay!
19:18
Example 1
22:36
Example 2
28:26
Example 3
37:36
Example 4
41:00
Projectile Motion
44:26
Example 5
47:00
Polar Coordinates

48m 7s

Intro
0:00
Introduction
0:04
Polar Coordinates Give Us a Way To Describe the Location of a Point
0:26
Polar Equations and Functions
0:50
Plotting Points with Polar Coordinates
1:06
The Distance of the Point from the Origin
1:09
The Angle of the Point
1:33
Give Points as the Ordered Pair (r,θ)
2:03
Visualizing Plotting in Polar Coordinates
2:32
First Way We Can Plot
2:39
Second Way We Can Plot
2:50
First, We'll Look at Visualizing r, Then θ
3:09
Rotate the Length Counter-Clockwise by θ
3:38
Alternatively, We Can Visualize θ, Then r
4:06
'Polar Graph Paper'
6:17
Horizontal and Vertical Tick Marks Are Not Useful for Polar
6:42
Use Concentric Circles to Helps Up See Distance From the Pole
7:08
Can Use Arc Sectors to See Angles
7:57
Multiple Ways to Name a Point
9:17
Examples
9:30
For Any Angle θ, We Can Make an Equivalent Angle
10:44
Negative Values for r
11:58
If r Is Negative, We Go In The Direction Opposite the One That The Angle θ Points Out
12:22
Another Way to Name the Same Point: Add π to θ and Make r Negative
13:44
Converting Between Rectangular and Polar
14:37
Rectangular Way to Name
14:43
Polar Way to Name
14:52
The Rectangular System Must Have a Right Angle Because It's Based on a Rectangle
15:08
Connect Both Systems Through Basic Trigonometry
15:38
Equation to Convert From Polar to Rectangular Coordinate Systems
16:55
Equation to Convert From Rectangular to Polar Coordinate Systems
17:13
Converting to Rectangular is Easy
17:20
Converting to Polar is a Bit Trickier
17:21
Draw Pictures
18:55
Example 1
19:50
Example 2
25:17
Example 3
31:05
Example 4
35:56
Example 5
41:49
Polar Equations & Functions

38m 16s

Intro
0:00
Introduction
0:04
Equations and Functions
1:16
Independent Variable
1:21
Dependent Variable
1:30
Examples
1:46
Always Assume That θ Is In Radians
2:44
Graphing in Polar Coordinates
3:29
Graph is the Same Way We Graph 'Normal' Stuff
3:32
Example
3:52
Graphing in Polar - Example, Cont.
6:45
Tips for Graphing
9:23
Notice Patterns
10:19
Repetition
13:39
Graphing Equations of One Variable
14:39
Converting Coordinate Types
16:16
Use the Same Conversion Formulas From the Previous Lesson
16:23
Interesting Graphs
17:48
Example 1
18:03
Example 2
18:34
Graphing Calculators, Yay!
19:07
Plot Random Things, Alter Equations You Understand, Get a Sense for How Polar Stuff Works
19:11
Check Out the Appendix
19:26
Example 1
21:36
Example 2
28:13
Example 3
34:24
Example 4
35:52
XII. Complex Numbers and Polar Coordinates
Polar Form of Complex Numbers

40m 43s

Intro
0:00
Polar Coordinates
0:49
Rectangular Form
0:52
Polar Form
1:25
R and Theta
1:51
Polar Form Conversion
2:27
R and Theta
2:35
Optimal Values
4:05
Euler's Formula
4:25
Multiplying Two Complex Numbers in Polar Form
6:10
Multiply r's Together and Add Exponents
6:32
Example 1: Convert Rectangular to Polar Form
7:17
Example 2: Convert Polar to Rectangular Form
13:49
Example 3: Multiply Two Complex Numbers
17:28
Extra Example 1: Convert Between Rectangular and Polar Forms
-1
Extra Example 2: Simplify Expression to Polar Form
-2
DeMoivre's Theorem

57m 37s

Intro
0:00
Introduction to DeMoivre's Theorem
0:10
n nth Roots
3:06
DeMoivre's Theorem: Finding nth Roots
3:52
Relation to Unit Circle
6:29
One nth Root for Each Value of k
7:11
Example 1: Convert to Polar Form and Use DeMoivre's Theorem
8:24
Example 2: Find Complex Eighth Roots
15:27
Example 3: Find Complex Roots
27:49
Extra Example 1: Convert to Polar Form and Use DeMoivre's Theorem
-1
Extra Example 2: Find Complex Fourth Roots
-2
XIII. Counting & Probability
Counting

31m 36s

Intro
0:00
Introduction
0:08
Combinatorics
0:56
Definition: Event
1:24
Example
1:50
Visualizing an Event
3:02
Branching line diagram
3:06
Addition Principle
3:40
Example
4:18
Multiplication Principle
5:42
Example
6:24
Pigeonhole Principle
8:06
Example
10:26
Draw Pictures
11:06
Example 1
12:02
Example 2
14:16
Example 3
17:34
Example 4
21:26
Example 5
25:14
Permutations & Combinations

44m 3s

Intro
0:00
Introduction
0:08
Permutation
0:42
Combination
1:10
Towards a Permutation Formula
2:38
How Many Ways Can We Arrange the Letters A, B, C, D, and E?
3:02
Towards a Permutation Formula, cont.
3:34
Factorial Notation
6:56
Symbol Is '!'
6:58
Examples
7:32
Permutation of n Objects
8:44
Permutation of r Objects out of n
9:04
What If We Have More Objects Than We Have Slots to Fit Them Into?
9:46
Permutation of r Objects Out of n, cont.
10:28
Distinguishable Permutations
14:46
What If Not All Of the Objects We're Permuting Are Distinguishable From Each Other?
14:48
Distinguishable Permutations, cont.
17:04
Combinations
19:04
Combinations, cont.
20:56
Example 1
23:10
Example 2
26:16
Example 3
28:28
Example 4
31:52
Example 5
33:58
Example 6
36:34
Probability

36m 58s

Intro
0:00
Introduction
0:06
Definition: Sample Space
1:18
Event = Something Happening
1:20
Sample Space
1:36
Probability of an Event
2:12
Let E Be An Event and S Be The Corresponding Sample Space
2:14
'Equally Likely' Is Important
3:52
Fair and Random
5:26
Interpreting Probability
6:34
How Can We Interpret This Value?
7:24
We Can Represent Probability As a Fraction, a Decimal, Or a Percentage
8:04
One of Multiple Events Occurring
9:52
Mutually Exclusive Events
10:38
What If The Events Are Not Mutually Exclusive?
12:20
Taking the Possibility of Overlap Into Account
13:24
An Event Not Occurring
17:14
Complement of E
17:22
Independent Events
19:36
Independent
19:48
Conditional Events
21:28
What Is The Events Are Not Independent Though?
21:30
Conditional Probability
22:16
Conditional Events, cont.
23:51
Example 1
25:27
Example 2
27:09
Example 3
28:57
Example 4
30:51
Example 5
34:15
XIV. Conic Sections
Parabolas

41m 27s

Intro
0:00
What is a Parabola?
0:20
Definition of a Parabola
0:29
Focus
0:59
Directrix
1:15
Axis of Symmetry
3:08
Vertex
3:33
Minimum or Maximum
3:44
Standard Form
4:59
Horizontal Parabolas
5:08
Vertex Form
5:19
Upward or Downward
5:41
Example: Standard Form
6:06
Graphing Parabolas
8:31
Shifting
8:51
Example: Completing the Square
9:22
Symmetry and Translation
12:18
Example: Graph Parabola
12:40
Latus Rectum
17:13
Length
18:15
Example: Latus Rectum
18:35
Horizontal Parabolas
18:57
Not Functions
20:08
Example: Horizontal Parabola
21:21
Focus and Directrix
24:11
Horizontal
24:48
Example 1: Parabola Standard Form
25:12
Example 2: Graph Parabola
30:00
Example 3: Graph Parabola
33:13
Example 4: Parabola Equation
37:28
Circles

21m 3s

Intro
0:00
What are Circles?
0:08
Example: Equidistant
0:17
Radius
0:32
Equation of a Circle
0:44
Example: Standard Form
1:11
Graphing Circles
1:47
Example: Circle
1:56
Center Not at Origin
3:07
Example: Completing the Square
3:51
Example 1: Equation of Circle
6:44
Example 2: Center and Radius
11:51
Example 3: Radius
15:08
Example 4: Equation of Circle
16:57
Ellipses

46m 51s

Intro
0:00
What Are Ellipses?
0:11
Foci
0:23
Properties of Ellipses
1:43
Major Axis, Minor Axis
1:47
Center
1:54
Length of Major Axis and Minor Axis
3:21
Standard Form
5:33
Example: Standard Form of Ellipse
6:09
Vertical Major Axis
9:14
Example: Vertical Major Axis
9:46
Graphing Ellipses
12:51
Complete the Square and Symmetry
13:00
Example: Graphing Ellipse
13:16
Equation with Center at (h, k)
19:57
Horizontal and Vertical
20:14
Difference
20:27
Example: Center at (h, k)
20:55
Example 1: Equation of Ellipse
24:05
Example 2: Equation of Ellipse
27:57
Example 3: Equation of Ellipse
32:32
Example 4: Graph Ellipse
38:27
Hyperbolas

38m 15s

Intro
0:00
What are Hyperbolas?
0:12
Two Branches
0:18
Foci
0:38
Properties
2:00
Transverse Axis and Conjugate Axis
2:06
Vertices
2:46
Length of Transverse Axis
3:14
Distance Between Foci
3:31
Length of Conjugate Axis
3:38
Standard Form
5:45
Vertex Location
6:36
Known Points
6:52
Vertical Transverse Axis
7:26
Vertex Location
7:50
Asymptotes
8:36
Vertex Location
8:56
Rectangle
9:28
Diagonals
10:29
Graphing Hyperbolas
12:58
Example: Hyperbola
13:16
Equation with Center at (h, k)
16:32
Example: Center at (h, k)
17:21
Example 1: Equation of Hyperbola
19:20
Example 2: Equation of Hyperbola
22:48
Example 3: Graph Hyperbola
26:05
Example 4: Equation of Hyperbola
36:29
Conic Sections

18m 43s

Intro
0:00
Conic Sections
0:16
Double Cone Sections
0:24
Standard Form
1:27
General Form
1:37
Identify Conic Sections
2:16
B = 0
2:50
X and Y
3:22
Identify Conic Sections, Cont.
4:46
Parabola
5:17
Circle
5:51
Ellipse
6:31
Hyperbola
7:10
Example 1: Identify Conic Section
8:01
Example 2: Identify Conic Section
11:03
Example 3: Identify Conic Section
11:38
Example 4: Identify Conic Section
14:50
XV. Sequences, Series, & Induction
Introduction to Sequences

57m 45s

Intro
0:00
Introduction
0:06
Definition: Sequence
0:28
Infinite Sequence
2:08
Finite Sequence
2:22
Length
2:58
Formula for the nth Term
3:22
Defining a Sequence Recursively
5:54
Initial Term
7:58
Sequences and Patterns
10:40
First, Identify a Pattern
12:52
How to Get From One Term to the Next
17:38
Tips for Finding Patterns
19:52
More Tips for Finding Patterns
24:14
Even More Tips
26:50
Example 1
30:32
Example 2
34:54
Fibonacci Sequence
34:55
Example 3
38:40
Example 4
45:02
Example 5
49:26
Example 6
51:54
Introduction to Series

40m 27s

Intro
0:00
Introduction
0:06
Definition: Series
1:20
Why We Need Notation
2:48
Simga Notation (AKA Summation Notation)
4:44
Thing Being Summed
5:42
Index of Summation
6:21
Lower Limit of Summation
7:09
Upper Limit of Summation
7:23
Sigma Notation, Example
7:36
Sigma Notation for Infinite Series
9:08
How to Reindex
10:58
How to Reindex, Expanding
12:56
How to Reindex, Substitution
16:46
Properties of Sums
19:42
Example 1
23:46
Example 2
25:34
Example 3
27:12
Example 4
29:54
Example 5
32:06
Example 6
37:16
Arithmetic Sequences & Series

31m 36s

Intro
0:00
Introduction
0:05
Definition: Arithmetic Sequence
0:47
Common Difference
1:13
Two Examples
1:19
Form for the nth Term
2:14
Recursive Relation
2:33
Towards an Arithmetic Series Formula
5:12
Creating a General Formula
10:09
General Formula for Arithmetic Series
14:23
Example 1
15:46
Example 2
17:37
Example 3
22:21
Example 4
24:09
Example 5
27:14
Geometric Sequences & Series

39m 27s

Intro
0:00
Introduction
0:06
Definition
0:48
Form for the nth Term
2:42
Formula for Geometric Series
5:16
Infinite Geometric Series
11:48
Diverges
13:04
Converges
14:48
Formula for Infinite Geometric Series
16:32
Example 1
20:32
Example 2
22:02
Example 3
26:00
Example 4
30:48
Example 5
34:28
Mathematical Induction

49m 53s

Intro
0:00
Introduction
0:06
Belief Vs. Proof
1:22
A Metaphor for Induction
6:14
The Principle of Mathematical Induction
11:38
Base Case
13:24
Inductive Step
13:30
Inductive Hypothesis
13:52
A Remark on Statements
14:18
Using Mathematical Induction
16:58
Working Example
19:58
Finding Patterns
28:46
Example 1
30:17
Example 2
37:50
Example 3
42:38
The Binomial Theorem

1h 13m 13s

Intro
0:00
Introduction
0:06
We've Learned That a Binomial Is An Expression That Has Two Terms
0:07
Understanding Binomial Coefficients
1:20
Things We Notice
2:24
What Goes In the Blanks?
5:52
Each Blank is Called a Binomial Coefficient
6:18
The Binomial Theorem
6:38
Example
8:10
The Binomial Theorem, cont.
10:46
We Can Also Write This Expression Compactly Using Sigma Notation
12:06
Proof of the Binomial Theorem
13:22
Proving the Binomial Theorem Is Within Our Reach
13:24
Pascal's Triangle
15:12
Pascal's Triangle, cont.
16:12
Diagonal Addition of Terms
16:24
Zeroth Row
18:04
First Row
18:12
Why Do We Care About Pascal's Triangle?
18:50
Pascal's Triangle, Example
19:26
Example 1
21:26
Example 2
24:34
Example 3
28:34
Example 4
32:28
Example 5
37:12
Time for the Fireworks!
43:38
Proof of the Binomial Theorem
43:44
We'll Prove This By Induction
44:04
Proof (By Induction)
46:36
Proof, Base Case
47:00
Proof, Inductive Step - Notation Discussion
49:22
Induction Step
49:24
Proof, Inductive Step - Setting Up
52:26
Induction Hypothesis
52:34
What We What To Show
52:44
Proof, Inductive Step - Start
54:18
Proof, Inductive Step - Middle
55:38
Expand Sigma Notations
55:48
Proof, Inductive Step - Middle, cont.
58:40
Proof, Inductive Step - Checking In
1:01:08
Let's Check In With Our Original Goal
1:01:12
Want to Show
1:01:18
Lemma - A Mini Theorem
1:02:18
Proof, Inductive Step - Lemma
1:02:52
Proof of Lemma: Let's Investigate the Left Side
1:03:08
Proof, Inductive Step - Nearly There
1:07:54
Proof, Inductive Step - End!
1:09:18
Proof, Inductive Step - End!, cont.
1:11:01
XVI. Preview of Calculus
Idea of a Limit

40m 22s

Intro
0:00
Introduction
0:05
Motivating Example
1:26
Fuzzy Notion of a Limit
3:38
Limit is the Vertical Location a Function is Headed Towards
3:44
Limit is What the Function Output is Going to Be
4:15
Limit Notation
4:33
Exploring Limits - 'Ordinary' Function
5:26
Test Out
5:27
Graphing, We See The Answer Is What We Would Expect
5:44
Exploring Limits - Piecewise Function
6:45
If We Modify the Function a Bit
6:49
Exploring Limits - A Visual Conception
10:08
Definition of a Limit
12:07
If f(x) Becomes Arbitrarily Close to Some Number L as x Approaches Some Number c, Then the Limit of f(x) As a Approaches c is L.
12:09
We Are Not Concerned with f(x) at x=c
12:49
We Are Considering x Approaching From All Directions, Not Just One Side
13:10
Limits Do Not Always Exist
15:47
Finding Limits
19:49
Graphs
19:52
Tables
21:48
Precise Methods
24:53
Example 1
26:06
Example 2
27:39
Example 3
30:51
Example 4
33:11
Example 5
37:07
Formal Definition of a Limit

57m 11s

Intro
0:00
Introduction
0:06
New Greek Letters
2:42
Delta
3:14
Epsilon
3:46
Sometimes Called the Epsilon-Delta Definition of a Limit
3:56
Formal Definition of a Limit
4:22
What does it MEAN!?!?
5:00
The Groundwork
5:38
Set Up the Limit
5:39
The Function is Defined Over Some Portion of the Reals
5:58
The Horizontal Location is the Value the Limit Will Approach
6:28
The Vertical Location L is Where the Limit Goes To
7:00
The Epsilon-Delta Part
7:26
The Hard Part is the Second Part of the Definition
7:30
Second Half of Definition
10:04
Restrictions on the Allowed x Values
10:28
The Epsilon-Delta Part, cont.
13:34
Sherlock Holmes and Dr. Watson
15:08
The Adventure of the Delta-Epsilon Limit
15:16
Setting
15:18
We Begin By Setting Up the Game As Follows
15:52
The Adventure of the Delta-Epsilon, cont.
17:24
This Game is About Limits
17:46
What If I Try Larger?
19:39
Technically, You Haven't Proven the Limit
20:53
Here is the Method
21:18
What We Should Concern Ourselves With
22:20
Investigate the Left Sides of the Expressions
25:24
We Can Create the Following Inequalities
28:08
Finally…
28:50
Nothing Like a Good Proof to Develop the Appetite
30:42
Example 1
31:02
Example 1, cont.
36:26
Example 2
41:46
Example 2, cont.
47:50
Finding Limits

32m 40s

Intro
0:00
Introduction
0:08
Method - 'Normal' Functions
2:04
The Easiest Limits to Find
2:06
It Does Not 'Break'
2:18
It Is Not Piecewise
2:26
Method - 'Normal' Functions, Example
3:38
Method - 'Normal' Functions, cont.
4:54
The Functions We're Used to Working With Go Where We Expect Them To Go
5:22
A Limit is About Figuring Out Where a Function is 'Headed'
5:42
Method - Canceling Factors
7:18
One Weird Thing That Often Happens is Dividing By 0
7:26
Method - Canceling Factors, cont.
8:16
Notice That The Two Functions Are Identical With the Exception of x=0
8:20
Method - Canceling Factors, cont.
10:00
Example
10:52
Method - Rationalization
12:04
Rationalizing a Portion of Some Fraction
12:05
Conjugate
12:26
Method - Rationalization, cont.
13:14
Example
13:50
Method - Piecewise
16:28
The Limits of Piecewise Functions
16:30
Example 1
17:42
Example 2
18:44
Example 3
20:20
Example 4
22:24
Example 5
24:24
Example 6
27:12
Continuity & One-Sided Limits

32m 43s

Intro
0:00
Introduction
0:06
Motivating Example
0:56
Continuity - Idea
2:14
Continuous Function
2:18
All Parts of Function Are Connected
2:28
Function's Graph Can Be Drawn Without Lifting Pencil
2:36
There Are No Breaks or Holes in Graph
2:56
Continuity - Idea, cont.
3:38
We Can Interpret the Break in the Continuity of f(x) as an Issue With the Function 'Jumping'
3:52
Continuity - Definition
5:16
A Break in Continuity is Caused By the Limit Not Matching Up With What the Function Does
5:18
Discontinuous
6:02
Discontinuity
6:10
Continuity and 'Normal' Functions
6:48
Return of the Motivating Example
8:14
One-Sided Limit
8:48
One-Sided Limit - Definition
9:16
Only Considers One Side
9:20
Be Careful to Keep Track of Which Symbol Goes With Which Side
10:06
One-Sided Limit - Example
10:50
There Does Not Necessarily Need to Be a Connection Between Left or Right Side Limits
11:16
Normal Limits and One-Sided Limits
12:08
Limits of Piecewise Functions
14:12
'Breakover' Points
14:22
We Find the Limit of a Piecewise Function By Checking If the Left and Right Side Limits Agree With Each Other
15:34
Example 1
16:40
Example 2
18:54
Example 3
22:00
Example 4
26:36
Limits at Infinity & Limits of Sequences

32m 49s

Intro
0:00
Introduction
0:06
Definition: Limit of a Function at Infinity
1:44
A Limit at Infinity Works Very Similarly to How a Normal Limit Works
2:38
Evaluating Limits at Infinity
4:08
Rational Functions
4:17
Examples
4:30
For a Rational Function, the Question Boils Down to Comparing the Long Term Growth Rates of the Numerator and Denominator
5:22
There are Three Possibilities
6:36
Evaluating Limits at Infinity, cont.
8:08
Does the Function Grow Without Bound? Will It 'Settle Down' Over Time?
10:06
Two Good Ways to Think About This
10:26
Limit of a Sequence
12:20
What Value Does the Sequence Tend to Do in the Long-Run?
12:41
The Limit of a Sequence is Very Similar to the Limit of a Function at Infinity
12:52
Numerical Evaluation
14:16
Numerically: Plug in Numbers and See What Comes Out
14:24
Example 1
16:42
Example 2
21:00
Example 3
22:08
Example 4
26:14
Example 5
28:10
Example 6
31:06
Instantaneous Slope & Tangents (Derivatives)

51m 13s

Intro
0:00
Introduction
0:08
The Derivative of a Function Gives Us a Way to Talk About 'How Fast' the Function If Changing
0:16
Instantaneous Slop
0:22
Instantaneous Rate of Change
0:28
Slope
1:24
The Vertical Change Divided by the Horizontal
1:40
Idea of Instantaneous Slope
2:10
What If We Wanted to Apply the Idea of Slope to a Non-Line?
2:14
Tangent to a Circle
3:52
What is the Tangent Line for a Circle?
4:42
Tangent to a Curve
5:20
Towards a Derivative - Average Slope
6:36
Towards a Derivative - Average Slope, cont.
8:20
An Approximation
11:24
Towards a Derivative - General Form
13:18
Towards a Derivative - General Form, cont.
16:46
An h Grows Smaller, Our Slope Approximation Becomes Better
18:44
Towards a Derivative - Limits!
20:04
Towards a Derivative - Limits!, cont.
22:08
We Want to Show the Slope at x=1
22:34
Towards a Derivative - Checking Our Slope
23:12
Definition of the Derivative
23:54
Derivative: A Way to Find the Instantaneous Slope of a Function at Any Point
23:58
Differentiation
24:54
Notation for the Derivative
25:58
The Derivative is a Very Important Idea In Calculus
26:04
The Important Idea
27:34
Why Did We Learn the Formal Definition to Find a Derivative?
28:18
Example 1
30:50
Example 2
36:06
Example 3
40:24
The Power Rule
44:16
Makes It Easier to Find the Derivative of a Function
44:24
Examples
45:04
n Is Any Constant Number
45:46
Example 4
46:26
Area Under a Curve (Integrals)

45m 26s

Intro
0:00
Introduction
0:06
Integral
0:12
Idea of Area Under a Curve
1:18
Approximation by Rectangles
2:12
The Easiest Way to Find Area is With a Rectangle
2:18
Various Methods for Choosing Rectangles
4:30
Rectangle Method - Left-Most Point
5:12
The Left-Most Point
5:16
Rectangle Method - Right-Most Point
5:58
The Right-Most Point
6:00
Rectangle Method - Mid-Point
6:42
Horizontal Mid-Point
6:48
Rectangle Method - Maximum (Upper Sum)
7:34
Maximum Height
7:40
Rectangle Method - Minimum
8:54
Minimum Height
9:02
Evaluating the Area Approximation
10:08
Split the Interval Into n Sub-Intervals
10:30
More Rectangles, Better Approximation
12:14
The More We Us , the Better Our Approximation Becomes
12:16
Our Approximation Becomes More Accurate as the Number of Rectangles n Goes Off to Infinity
12:44
Finding Area with a Limit
13:08
If This Limit Exists, It Is Called the Integral From a to b
14:08
The Process of Finding Integrals is Called Integration
14:22
The Big Reveal
14:40
The Integral is Based on the Antiderivative
14:46
The Big Reveal - Wait, Why?
16:28
The Rate of Change for the Area is Based on the Height of the Function
16:50
Height is the Derivative of Area, So Area is Based on the Antiderivative of Height
17:50
Example 1
19:06
Example 2
22:48
Example 3
29:06
Example 3, cont.
35:14
Example 4
40:14
XVII. Appendix: Graphing Calculators
Buying a Graphing Calculator

10m 41s

Intro
0:00
Should You Buy?
0:06
Should I Get a Graphing Utility?
0:20
Free Graphing Utilities - Web Based
0:38
Personal Favorite: Desmos
0:58
Free Graphing Utilities - Offline Programs
1:18
GeoGebra
1:31
Microsoft Mathematics
1:50
Grapher
2:18
Other Graphing Utilities - Tablet/Phone
2:48
Should You Buy a Graphing Calculator?
3:22
The Only Real Downside
4:10
Deciding on Buying
4:20
If You Plan on Continuing in Math and/or Science
4:26
If Money is Not Particularly Tight for You
4:32
If You Don't Plan to Continue in Math and Science
5:02
If You Do Plan to Continue and Money Is Tight
5:28
Which to Buy
5:44
Which Graphing Calculator is Best?
5:46
Too Many Factors
5:54
Do Your Research
6:12
The Old Standby
7:10
TI-83 (Plus)
7:16
TI-84 (Plus)
7:18
Tips for Purchasing
9:17
Buy Online
9:19
Buy Used
9:35
Ask Around
10:09
Graphing Calculator Basics

10m 51s

Intro
0:00
Read the Manual
0:06
Skim It
0:20
Play Around and Experiment
0:34
Syntax
0:40
Definition of Syntax in English and Math
0:46
Pay Careful Attention to Your Syntax When Working With a Calculator
2:08
Make Sure You Use Parentheses to Indicate the Proper Order of Operations
2:16
Think About the Results
3:54
Settings
4:58
You'll Almost Never Need to Change the Settings on Your Calculator
5:00
Tell Calculator In Settings Whether the Angles Are In Radians or Degrees
5:26
Graphing Mode
6:32
Error Messages
7:10
Don't Panic
7:11
Internet Search
7:32
So Many Things
8:14
More Powerful Than You Realize
8:18
Other Things Your Graphing Calculator Can Do
8:24
Playing Around
9:16
Graphing Functions, Window Settings, & Table of Values

10m 38s

Intro
0:00
Graphing Functions
0:18
Graphing Calculator Expects the Variable to Be x
0:28
Syntax
0:58
The Syntax We Choose Will Affect How the Function Graphs
1:00
Use Parentheses
1:26
The Viewing Window
2:00
One of the Most Important Ideas When Graphing Is To Think About The Viewing Window
2:01
For Example
2:30
The Viewing Window, cont.
2:36
Window Settings
3:24
Manually Choose Window Settings
4:20
x Min
4:40
x Max
4:42
y Min
4:44
y Max
4:46
Changing the x Scale or y Scale
5:08
Window Settings, cont.
5:44
Table of Values
7:38
Allows You to Quickly Churn Out Values for Various Inputs
7:42
For example
7:44
Changing the Independent Variable From 'Automatic' to 'Ask'
8:50
Finding Points of Interest

9m 45s

Intro
0:00
Points of Interest
0:06
Interesting Points on the Graph
0:11
Roots/Zeros (Zero)
0:18
Relative Minimums (Min)
0:26
Relative Maximums (Max)
0:32
Intersections (Intersection)
0:38
Finding Points of Interest - Process
1:48
Graph the Function
1:49
Adjust Viewing Window
2:12
Choose Point of Interest Type
2:54
Identify Where Search Should Occur
3:04
Give a Guess
3:36
Get Result
4:06
Advanced Technique: Arbitrary Solving
5:10
Find Out What Input Value Causes a Certain Output
5:12
For Example
5:24
Advanced Technique: Calculus
7:18
Derivative
7:22
Integral
7:30
But How Do You Show Work?
8:20
Parametric & Polar Graphs

7m 8s

Intro
0:00
Change Graph Type
0:08
Located in General 'Settings'
0:16
Graphing in Parametric
1:06
Set Up Both Horizontal Function and Vertical Function
1:08
For Example
2:04
Graphing in Polar
4:00
For Example
4:28
Loading...
This is a quick preview of the lesson. For full access, please Log In or Sign up.
For more information, please see full course syllabus of Pre Calculus
  • Discussion

  • Study Guides

  • Download Lecture Slides

  • Table of Contents

  • Transcription

  • Related Books

Lecture Comments (12)

1 answer

Last reply by: Dr Carleen Eaton
Sun Jun 1, 2014 10:00 PM

Post by Sophie Zhong on April 26, 2014

Does the equation h=-b/2a and k=-(b^2-4ac)/4a also apply in horizontal parabolas? Because when I used it for example 1, I came up with h=-(-12/6)=2, k=-2, which is wrong.

1 answer

Last reply by: Dr Carleen Eaton
Thu May 16, 2013 11:10 PM

Post by Saki Amagai on May 16, 2013

I don't know why but.. I'm having trouble watching this entire conic section due to technical issues. I don't have any problem for the other ones. It's just this section that I get "network failure". I really need to watch this... Can you please check if there's nothing wrong with the server? Thank you.

1 answer

Last reply by: Dr Carleen Eaton
Sun Jan 27, 2013 1:01 PM

Post by Monis Mirza on January 26, 2013

how do you find the maximum and minimum of a parabola using the equation?
i have a test on this on monday and i really need the answer!

0 answers

Post by julius mogyorossy on January 11, 2013

Merc, I think you are correct. I dig it that Educator is being advertised on my blog page. Educator said, learn like you are going to live forever, it seems somebody there knows who I am.

1 answer

Last reply by: Dr Carleen Eaton
Thu Feb 9, 2012 7:43 PM

Post by Edmund Mercado on February 9, 2012

For Horizontal Parabolas at 18:57, should the standard form say x = a(y-k)^2 +h instead of
y = a(x-k)^2 +h with the x and y in opposite positions?

0 answers

Post by norman stradleigh on June 21, 2011

thanks really helped me out

1 answer

Last reply by: Dr Carleen Eaton
Mon Jul 5, 2010 5:15 PM

Post by Timothy miranda on June 21, 2010

thanks that cleared it up for me

Parabolas

  • Understand the geometric significance of the sign of the coefficient of the squared term in the equation of a parabola.
  • Use the axis of symmetry to help you graph a parabola.
  • Know the standard formula for a parabola.
  • Review how to complete the square.
  • If the coefficient of the squared term is not 1, then before completing the square, you must first factor this coefficient out of both the squared term and the linear term.

Parabolas

Lecture Slides are screen-captured images of important points in the lecture. Students can download and print out these lecture slide images to do practice problems as well as take notes while watching the lecture.

  • Intro 0:00
  • What is a Parabola? 0:20
    • Definition of a Parabola
    • Focus
    • Directrix
    • Axis of Symmetry
  • Vertex 3:33
    • Minimum or Maximum
  • Standard Form 4:59
    • Horizontal Parabolas
    • Vertex Form
    • Upward or Downward
    • Example: Standard Form
  • Graphing Parabolas 8:31
    • Shifting
    • Example: Completing the Square
    • Symmetry and Translation
    • Example: Graph Parabola
  • Latus Rectum 17:13
    • Length
    • Example: Latus Rectum
  • Horizontal Parabolas 18:57
    • Not Functions
    • Example: Horizontal Parabola
  • Focus and Directrix 24:11
    • Horizontal
  • Example 1: Parabola Standard Form 25:12
  • Example 2: Graph Parabola 30:00
  • Example 3: Graph Parabola 33:13
  • Example 4: Parabola Equation 37:28

Transcription: Parabolas

Welcome to Educator.com.0000

Today, we are going to talk about parabolas.0002

And in some earlier lectures in this series on quadratic equations, we talked about parabolas and did some graphing.0004

But now, we are going to go on and give a specific definition to parabolas, and learn about some other features of parabolas.0011

Although you have seen parabolas previously, when we graphed, we didn't form a specific definition of them.0021

So, the definition of a parabola is that it is the set of points in the plane whose distance from a given point,0027

called the focus, is equal to its distance from a given line, called the directrix.0033

Let's talk about that before we go on to talk about the axis of symmetry.0041

So, if you had a parabola (let's say right here; and we will do an upward-facing parabola), you would have some point,0045

which is known as the focus, and a line (I'm going to put that right about here) called the directrix.0059

By definition, every point on this parabola is equidistant from the focus and the directrix.0080

So, if I took a point right here, and I measured the distance from the focus, it would be equal to the distance from the directrix.0085

And this is just a very rough sketch; but these distances actually would be equal; they are theoretically equal.0095

Looking right here at the vertex, these distances would be equal; so that would be, say, y.0108

If I took some other point, say here, and I measured here to here, these two distances would be equal.0117

So, a couple things to note: the focus is inside the parabola; the directrix is outside.0128

And this is because the focus and the directrix are on the opposite sides of the vertex.0150

So, you could have a parabola facing downward, and then it would have a focus here and a directrix up here.0155

We are also going to talk, today, about parabolas that face to the left and right--horizontal parabolas.0165

But right now, we are going to stick with just (for this discussion) focusing on vertical ones,0173

the definition being that every point in the parabola equidistant between the focus and the directrix.0180

The axis of symmetry of the parabola passes through the focus; and it is perpendicular to the directrix.0189

In this case, the y-axis is the axis of symmetry; it is right here.0195

And you see that it passes through the focus, and it forms a right angle; it is perpendicular to the directrix.0204

Again, we talked about some of these concepts in earlier lectures.0214

But to review, vertex: the vertex of a parabola is the point at which the axis of symmetry intersects the parabola.0216

And it is a maximum or minimum point on the parabola, if the axis of symmetry is vertical.0224

If the axis of symmetry is horizontal (say we have a parabola like this, then the axis of symmetry would be horizontal),0230

we still have a vertex, but it is not a maximum or minimum.0242

And again, we are going to focus a little more on vertical parabolas right now, and then we will talk about horizontal parabolas.0247

So, if I have a downward-facing parabola, the vertex is here; the axis of symmetry is right here.0254

And this vertex is the maximum; this is as large as y gets--it is the largest value that the function attains.0265

If I am looking at a vertex that is upward-facing, then the axis of symmetry...we will put it right here; and the vertex is here.0274

In this case, the vertex is a minimum; this is the smallest value that the function will attain.0286

The standard form of a parabola with vertex at (h,k) is y = a(x - h)2 + k.0299

And this is for vertical parabolas; there is a slightly different form when we are talking about horizontal parabolas.0308

And you might recall this form of the equation that we covered earlier on, under the lecture on quadratic equations.0314

And we called this the vertex form of the equation; now we are going to refer to it as standard form.0319

And it is a very useful form, because it tells you a lot about the parabola.0324

The axis of symmetry is x = h: so I know a few things just from looking at this.0330

I know the vertex, because it is (h,k); I know the axis of symmetry--it is at x = h;0335

and if I look at a, I will know if the parabola is upward- or downward-facing.0341

If a is greater than 0, the parabola will open upward; and k gives you the minimum.0348

If a is a negative value--if it is less than 0--the parabola opens downward, and k is the maximum value of the function.0357

Let's look at an example: y = 2(x - 1)2 + 4.0367

So, this is in standard form: this means that I have h = 1, k = 4, and a = 2.0374

So, I know that my vertex is going to be at (1,4); the axis of symmetry is going to be at x = h, so at x = 1.0384

And since a is greater than 0, this opens upward.0404

So, I can sketch this out: I have a vertex at (1,4), right here, and it opens upward.0411

And the axis of symmetry is going to be right here at x = 1.0421

Here is my vertex at (1,4); and this vertex is a minimum, because this opens upward.0428

The minimum value is k, which is 4.0433

If I were to take a similar situation, but say y = -2(x - 1)2 + 4,0441

I would have, again, an h equal to 1 and a k equal to 4, but this time a would be -2, so this would open downward.0453

What I would end up with would be a parabola here, again, with the vertex at (1,4).0465

But it would open downward, and therefore, this would be a maximum.0473

Also, if the absolute value of a is greater than 1, you end up with a relatively narrow parabola.0481

If the absolute value of a is less than 1, you end up with a relatively wide parabola.0490

So, this form is very useful, because just by having the equation in this form, we can at least sketch the graph.0500

Let's talk a little bit more about graphing parabolas.0508

You can use symmetry and translations to graph a parabola: and by translations, we mean a shift.0511

Looking at the standard form: what this really is: if you took a graph of y = ax2, this is letting h equal 0 and k equal 0.0519

And then, if you altered what h is, it is going to shift the graph horizontally by that number of units.0530

If you alter what k is, it is going to translate or shift that graph upward and downward by a certain number of units.0538

In order to graph a parabola, you often need to put it in standard form.0547

Let's start out by just talking about putting an equation or a parabola in standard form.0552

And then we will go on and look at some graphs, and how different values of h and k can affect the graph.0556

So, in order to put the equation into standard form...let's say you are given an equation such as this, y = x2 + 6x - 8,0562

and I want it in this standard form, y = a(x - h)2 + k.0572

The first thing to do (and this is, again, review from an earlier lesson--you can go back and look at the lesson0580

on completing the square as part of this lecture series, but we will review it again now): first, I am going0586

to isolate the x variable terms on the right side of the equation.0592

I am going to add 8 to both sides: now I am going to complete the square.0596

I am going to focus on this, and I need to add a term to it to make this a perfect square trinomial.0602

The term I am going to add is going to be b2/4.0608

In this case, b is 6, so this is going to give me 62/4, which is 36/4, which is equal to 9.0613

So, that is what I need to add in here: y + 8, plus I need to add 9 to both sides.0627

It is easy to forget to add it to the other side, because you get so focused on completing the square.0640

But if you don't, the equation will no longer be balanced.0645

So, I am going to add 9 to both sides.0648

And I want this to end up in this form; so I am going to rewrite this.0653

First I will add these two together to simplify to get y + 17 =...well, this is a perfect square trinomial, so I just take (x + 3)2.0657

And I look at what I have, and it is almost in this form, but not quite.0668

I want to isolate y on the left, so I am going to subtract 17 from both sides to get y = (x + 3)2 - 17.0671

And this is in this form: a happens to be equal to 1 in this case.0679

And so, if you are given an equation that is not in standard form, and you want to get it in standard form,0683

isolate the x variable values on the right (although if we are working with horizontal parabolas,0690

it is going to be the other way around, as we will see in a minute--we are actually going to end up0697

getting the y variable terms on the right; but for now, the x variable terms on the right); complete the square0701

by adding the b2/4 term to both sides of the equation; and then simplify;0707

shift things around as needed to get it in this form.0716

Remember, also, that if you have a leading coefficient that is something other than 1,0718

when you get to this step after isolating the x variable terms, you are going to need to factor out that term before completing the square.0724

All right, assuming that you have gotten your equation in standard form, and you are ready to graph the parabola, you are going to use symmetry.0734

The two halves of the parabola are symmetrical; if you graph half the points, you can use reflection across the axis of symmetry to graph the other points.0741

And translation is knowing how h and k, and changes in h and k, affect the graph, in order to graph.0749

All right, so let's just start out with something in this form--a very basic equation for a parabola.0760

Let's let f(x) equal x2, so it is in this form: y = ax2.0767

And so, here, what is happening is: if you think about what we have, we have a = 1, and then h is 0 and k is 0.0775

What this tells me is that the vertex is going to be at (0,0), and the axis of symmetry is going to be at x = 0.0784

And you can also very easily find some points to graph this.0796

right now, I am just going to sketch it out, and not worry about exact points, just so you get the idea.0800

So, since a = 1, this is going to open upward; this is going to be upward-opening, so the vertex is here at (0,0);0805

it is upward-opening; and it is going to look something like this.0819

So, this is my graph here of y, or f(x), = x2.0833

Now, let's say I change this slightly: let's say I have another function, g(x) = x2 + 2.0838

So, looking at this form, h is still 0; but now I have k = 2.0847

And according to this, this is going to shift the graph up 2 units; so k is going to translate this graph up 2 units.0855

I have a similar graph, but it is going to be with the vertex right here at (0,2).0867

And remember that the axis of symmetry is at x = h, so the axis of symmetry is going to still be at x = 0; right here--this is the axis of symmetry.0880

This is shifted upward; it still opens upward, because a is positive.0888

So, now I am just going to have a similar idea, but shifted upward by 2.0892

So here, I have y = x2 + 2.0901

If this had been a -2, then it would have been shifted down by 2, and I would have had a graph right here.0907

So, let's see what happens when I change h.0912

Let's get a third function: we will call it h(x) = (x - 1)2.0917

OK, now what I have here is h = 1; k, if I look here, is 0.0935

Therefore, the vertex (this is the vertex right here) equals (1,0), and the axis of symmetry is going to be at x = 1.0947

So, this is going to be shifted to the right; so I am going to have a graph something...let me move this out of the way...like this.0962

So, this one is y = x2, and this is y = (x - 1)2.0979

Important take-home points: a change in h will shift the graph horizontally, to the right or left.0991

A change in k will shift the basic graph either up or down, by k number of units.1001

Using symmetry: if I were to graph these out exactly, I would need to find points.1009

And I don't need to find all of the points: for example, if I had a parabola that was a downward-facing parabola1013

somewhere, then I could use the axis of symmetry, and I could just find the points over here and reflect across that axis in order to graph.1021

All right, this concept is another one adding on to our knowledge of parabolas from prior lessons.1034

And it is defining a segment called the latus rectum.1040

The latus rectum is the segment passing through the focus and perpendicular to the axis of symmetry.1044

Let's see what that means--let's visualize that.1051

Let's say I have a parabola like this, and let's say the focus is here.1054

So, this passes through the focus, and is perpendicular to the axis of symmetry.1065

This is the focus, and here we have the axis of symmetry.1072

That means the latus rectum is going to pass through here, and it is going to be perpendicular to the axis of symmetry.1083

So, that is this line; this is the latus rectum.1090

The equation for its length is the absolute value of 1/a; and if you have the equation of the parabola in standard form,1095

then this a is the same a as you will see in that formula.1108

So, this is something you might occasionally need to use.1112

For example, if I were given an equation of a parabola y = 2(x - 3)2 + 5,1115

and I was asked to find the length of the latus rectum of this parabola, then I would just say,1122

"OK, a equals 2; therefore, the length equals the absolute value of 1/2."1127

Horizontal parabolas: I mentioned that you can also have parabolas that open to the right or left, not just up and down,1138

although up to this point in the course, we have just talked about vertical parabolas, or parabolas that open upward or downward.1143

For parabolas whose axis of symmetry is horizontal, we end up with equations in this form: y = a(x - k)2 + h.1150

So, one thing to note: the positions of the x's and y's are reversed, but so are the h's and k's.1160

In the vertical formula, the h was in here, and the k was out here.1168

So, be careful when you are working with this formula to notice that the positions of h and k are reversed.1171

And there are translations of x = ay2, and then again, h and k shift this graph around horizontally and vertically.1177

So, it would look something like this, for example: the axis of symmetry would be right here;1189

and it would be a horizontal axis of symmetry; or maybe I have one that opens to the left, and it has an axis of symmetry right here.1197

These do not represent functions; and you can see that they don't represent functions1208

by trying to pass a vertical line through them: they fail the vertical line test.1212

Remember: with a function, the vertical line test tells us that a vertical line drawn...you could try1216

any possible area of the curve, and the vertical line will only cross the curve once.1224

If the vertical line crosses the curve more than once, it is not a function.1230

So, this fails the vertical line test.1233

It is not a function; it is still an equation--you can still make a graph of it; but horizontal parabolas do not represent functions.1241

I am working on graphing some horizontal parabolas.1250

When you look at the equation in standard form, y = a...and remember, the k and h are in opposite positions;1253

they are reversed...looking at a, if a is positive (if a is greater than 0), then the parabola is going to open to the right.1263

If a is negative, then the parabola is going to open to the left.1273

So, let's look at a very simple horizontal parabola, x = y2.1278

OK, the vertex is at (h,k); and I can see that h and k are both 0, so the vertex equals (0,0).1284

The axis of symmetry is at y = k, so that is going to be at y = 0.1294

And the a here is 1: a = 1, so this opens to the right.1298

So, you are going to have a parabola that looks something like this.1308

You could have another parabola, x = -y2.1321

Here we would have the same vertex and the same axis of symmetry; here the x-axis is actually the axis of symmetry.1325

And I look at a now, and a equals -1, so this parabola is going to open to the left.1333

So, I am going to end up with a parabola like this.1343

Now again, change in h or change in k is going to shift this parabola a bit.1350

Let's change h and see what happens: let's let x equal y2 + 2.1358

Here I have h = 2, k = 0; so (2,0) is the vertex; a = 1, so it is positive, so this still opens to the right.1366

If I look at this, x = y2...here is my graph of x = y2; over here is x = -y2.1379

Now, I am going to have h = 2, so that is going to shift horizontally by 2.1386

(2,0) will be the vertex; and it is going to open to the right.1397

So, this is x = y2 over here; right here, this is actually x = y2 + 2 now.1402

And k, as discussed before, shifts the graph of a parabola vertically.1416

The same idea here: if I were to change k, then I would shift this graph up or down by k units.1423

So, with horizontal parabolas, you need to be familiar with this equation.1430

You need to know that they open to the right if a is greater than 0; they open to the left if a is less than 0.1435

The vertex is at (h,k), and the axis of symmetry is y = k.1441

And you also need to keep in mind that these do not represent functions.1446

In the beginning of today's lesson, we talked about the focus and directrix.1452

And here are formulas to allow you to find those if you need to.1455

If you have a vertical parabola, the coordinates of the focus are h for the x-coordinate, and k plus 1/4a.1460

And the equation for the directrix is y = k - 1/4a; remember that the directrix is a line, so this is giving you the equation for that line.1473

And this would be for a vertical parabola; for a horizontal parabola, the focus is found at the coordinates h + 1/4a;1485

and then the y-coordinate is k, so the focus is a point, and this gives the coordinates of that point.1493

The directrix is a line, and the equation for this line for a horizontal parabola is x = h - 1/4a.1498

And you might need to occasionally use these when we are working problems.1505

And we will see that in one of the examples, actually, shortly.1508

Starting out with Example 1: Write in standard form and identify the key features: x = 3y2 - 12y + 10.1513

We have x equal to all of this; so this tells me, since I have x set equal to this y2 term, that I am looking at a horizontal parabola.1524

So, the standard form of this equation is going to be x = a(y - k)2 + h.1536

Remember, h and k are going to be in opposite positions.1547

In order to get this equation in standard form, we need to complete the square.1550

This time, since I am working with a horizontal parabola, I am going to isolate all of the y variable terms on the right.1554

And I am going to do that by subtracting 10 from both sides to get x - 10 = 3y2 - 12y.1561

This leading coefficient is not 1, so I have to factor it out.1569

And then, I have to be really careful when I am adding to both sides of the equation, because this is factored out.1573

So, factor out a 3 to get y2 - 4y.1580

I need to complete the square: that means I need to add something over here.1585

And the term that I need to add is going to be b2/4.1589

b is actually 4; so this is going to be 42/4, equals 16/4, equals 4.1594

Here is where I need to be careful: on the right, I am adding 4 inside these parentheses, which is pretty straightforward.1604

But what I need to do on the left is realize that I am actually going to be adding 3 times 4, which is 12.1613

So, if I were just to add 4, this equation would not be balanced,1628

because in reality, what I am doing over here is adding 3 times 4.1631

So, on the right, I am going to add 12; and I got that from 3 times 4.1635

Simplifying the left: 12 - 10 is 2; on the right, inside here, I now have a perfect square.1640

And I want this to end up in this form, so I am going to write this as (y - 2) (and it is negative, because I end up with a negative sign in here) squared.1649

I am almost done; I just need to move this constant over to the right to have it in this form.1661

x = 3 times (y - 2)2, minus 2.1666

So, now that I have this in standard form, I can identify key features.1671

Key features: 1: this is a horizontal parabola, as you can see from looking at this equation.1677

2: The vertex is at (h,k); h is 2, and k is also 2.1686

Actually, being careful with the signs, h is actually -2, because remember, standard form has a plus here.1703

I don't have a plus here; I could rewrite this so that I do, and that would give me + -2.1710

And it is good practice, actually, to write it exactly in this form, although this is correct--you could leave it like this.1718

By writing it in this form...and the same thing if I had ended up with a plus here--then I would need to rewrite that,1725

because here I need a negative to be in standard form; if I ended up with a plus here,1736

then I would have needed to rewrite that, as well, which would have been equal to minus -2.1741

Standard form, just like this, looking here, gives me a vertex at (-2,2).1748

And because a equals 3, that means that a is greater than 0; a is positive, so the parabola opens to the right.1755

OK, so key features: horizontal parabola; it has a vertex at (-2,2); a = 3, so this tells me that the parabola opens to the right.1773

We can also say that the axis of symmetry is at y = k, and therefore the axis of symmetry is at y = 2.1784

OK, in Example 2, we are asked to graph.1797

And you will notice that this is the same equation that we worked with in Example 1.1802

We already figured out standard form: and standard form is x = 3(y - 2)2 - 2.1806

And for clarity, we can actually write this as I did at the end, which is 3(y - 2)2 + -2,1816

so that we truly have it in standard form, with the plus here to make it easy to see what is going on.1826

To graph this, I want to know the vertex: the vertex is (h,k): h here is -2; k is 2.1831

The axis of symmetry is going to be at y = k; k is 2, so it is going to be at y = 2.1840

I know that this opens to the right, so I have a general sense of this graph.1854

But I can also just find a few points.1859

And we are used to working with a situation where x is the input and y is the output.1868

It is the opposite here, so we need to be really careful.1873

I also want to note that, since the vertex is here at (-2,2), and this opens to the right,1876

for this graph, we are not going to have values of x that are smaller than -2.1881

So, if I end up with something where an x is smaller than -2, then it is going to be off the graph.1885

Let's let y equal 1: if y is 1, 1 - 2 is -1, squared gives me 1; 1 times 3 is 3, minus 2 is 1; so, when y is 1, x is 1.1891

Let's let y equal 3: when y is 3, 3 minus 2 is 1, squared is 1; 1 times 3 is 3, minus 2 is 1.1906

And you can see, as I mentioned, that this is not a function; it failed the vertical line test (as horizontal parabolas do).1915

And you can see that there is an x-value, 1, that is assigned 2 values of y; so it does not meet the definition of a function.1921

So, just a couple of points...let's do one more: 0...0 minus 2 is -2; squared is 4; 4 times 3 is 12; 12 minus 2 is 10.1929

So, that is off this graph; but it gives us an idea of the shape.1941

So, I know that my axis of symmetry is going to be here; and I have a point at (1,1);1945

I have another point at (1,3); and then I have a point way out here at (10,0).1954

I know that this is going to be a fairly narrow graph, because a equals 3.1960

This is the graph of the horizontal parabola described by this equation; and here it is, written in standard form.1971

So, it opens to the right; it is fairly narrow, because a equals 3.1979

It has a vertex at (-2,2), and it has an axis of symmetry at y = 2.1984

Example 3: we are asked to graph; this is also going to be a horizontal parabola.1994

We are going to start out by putting it in the standard form, x = (y - k)2 + h.1999

We need to complete the square; start out by isolating the y variable terms on the right.2009

So, I am going to add 6 to both sides to get -2y2 + 8y.2014

Since the leading coefficient is not 1, I need to factor it out; so I am going to factor this -2 to get y2.2021

Factoring a -2 from here would give me a -4.2032

And I need to add something to this to complete the square.2035

What I need to add is b2/4.2040

b is 4, so I am going to be adding 42/4; that is 16, divided by 4; that is 4.2044

So, I am going to be adding 4 to the right; but to the left, I am actually adding -2 times 4, which is -8.2061

So, we subtract 8 from that side; to this side, since I am adding inside the parentheses, I am just adding 4.2073

But then, 4 times -2--that is how I got the -8 on the left.2082

This gives me x - 2 = -2; and I want it in this form, so I am going to rewrite this as (y - 2)2.2085

The last thing I need to do is add 2 to both sides; and I have it in standard form.2097

Now that I have this in standard form, it is much easier to graph.2106

The vertex is going to be at (h,k); so h is here; k is here; the vertex is at (2,2).2110

There is going to be an axis of symmetry at y = k, and so that is going to be at y = 2; my axis of symmetry is going to be at y = 2.2119

Now, to finish out graphing this, I am going to find a few points.2142

I have the vertex at (2,2); I also know that a is less than 0 (a is negative), so I know this is going to open to the left.2146

So, I know it is going to look something like this; but I will find a couple of points.2155

And I know that x is (actually, (2,2) is right here)...I know that this opens to the left, and that x is not going to get any larger than that.2158

The graph is just going to go this way.2172

So, I can't use values that end up giving me an x that is greater than 2.2174

Let's try some simple values: I am going to try 1 for y, and looking in standard form, 1 - 2 gives me -1, squared is 1, times -2 is -2, plus 2 is 0.2181

And 3: 3 minus 2 is 1, squared is 1; 1 times -2 is -2, plus 2 is 0.2195

So, I have a couple of points here: this is at 0...when x is 0, y is 1; when x is 0, y is 3.2204

And this is going to give me a parabola shaped like this, opening to the left with a vertex at (2,2).2214

The axis of symmetry would be right through here; and I have a couple of points, just to make it a bit more precise.2226

So, the first step in graphing a parabola is always to get it into this form by completing the square.2235

And then, using the features you can see from here, sketch it out, and finding a few points, make the graph more accurate.2240

Find the equation of the parabola with a vertex of (2,3) and focus at (2,7); draw the graph.2250

This is a very challenging problem: we are not given an equation--we actually have to find the equation based on some key points that we are given.2256

Well, I am given that the vertex is at (2,3); so I know that the vertex is right here; that is the vertex.2266

This time, I am also given the focus; the focus is at (2,7), which is going to be up here somewhere...5, 6, 7...about here.2278

So, the vertex is (2,3); the focus is (2,7).2290

Remember, in the beginning of this lesson, I mentioned that the focus is always inside the parabola.2296

Since the focus is inside the parabola, I already know that this has to open upward.2301

So, I know something about the shape of the graph.2306

Let's find the equation: now, I know that this is a vertical parabola, because the focus is inside the parabola.2311

That told me that this has to open upward, so I know I am dealing with a vertical parabola.2316

And that helps me to find the equation, because the standard form is going to be y = a(x - h)2 + k.2320

I am given the vertex, so I am given h and k: I know that h = 2 and k = 3.2330

In order to write this equation, I need a, h, and k; all I am missing is a.2340

I am given the piece of information, though, that the focus is (2,7).2347

And that is going to allow me to find a.2350

You will recall that I mentioned the formulas for focus and directrix.2353

And for a vertical parabola, the focus is at h...the x-coordinate is h, which we see here; and the y-coordinate is k + 1/4a.2359

And I know the focus is at (2,7): so 2 = h, and 7 = k + 1/4a, according to this definition.2377

Well, since I know that k is 3, then I can solve this.2392

So, I know k; so I can solve for a.2401

Subtract 3 from both sides to get 1/4a; 1/a equals 16; multiply both sides by a, and then divide both sides by 16,2408

or just take the reciprocal of each side (essentially, that is what you are doing) to get a = 1/16.2422

Now, I have h and k given; I was able to figure out a, based on the definition of focus.2427

So, I end up with the equation y = 1/16(x - 2)2 + 3.2433

So, this is the equation.2444

And as you know, once we have the equation, the graphing is pretty easy.2446

I know that this opens upward; and since I know what a is, I know that this is going to be a pretty wide parabola; the a is a small value.2451

I am going to have a parabola that opens upward, with a vertex of (2,3), and fairly wide in shape.2461

That was a pretty challenging problem, because you had to go back2470

and think about how you could use a formula to find the focus; and knowing the focus allowed you to find a.2473

That concludes this lesson on parabolas at Educator.com; thanks for visiting!2483