Enter your Sign on user name and password.

Forgot password?
Sign In | Sign Up
Start learning today, and be successful in your academic & professional career. Start Today!

Use Chrome browser to play professor video
Dan Fullerton

Dan Fullerton

Friction

Slide Duration:

Table of Contents

I. Introduction
What is Physics?

7m 12s

Intro
0:00
Objectives
0:11
What is Physics?
0:27
Why?
0:50
Physics Answers the 'Why' Question
0:51
Matter
1:27
Matter
1:28
Mass
1:43
Inertial Mass
1:50
Gravitational Mass
2:13
A Spacecraft's Mass
3:03
What is the Mass of the Spacecraft?
3:05
Energy
3:37
Energy
3:38
Work
3:45
Putting Energy and Work Together
3:50
Mass-Energy Equivalence
4:15
Relationship between Mass & Energy: E = mc²
4:16
Source of Energy on Earth
4:47
The Study of Everything
5:00
Physics is the Study of Everything
5:01
Mechanics
5:29
Topics Covered
5:30
Topics Not Covered
6:07
Next Steps
6:44
Three Things You'd Like to Learn About in Physics
6:45
Math Review

1h 51s

Intro
0:00
Objectives
0:10
Vectors and Scalars
1:06
Scalars
1:07
Vectors
1:27
Vector Representations
2:00
Vector Representations
2:01
Graphical Vector Addition
2:54
Graphical Vector Addition
2:55
Graphical Vector Subtraction
5:36
Graphical Vector Subtraction
5:37
Vector Components
7:12
Vector Components
7:13
Angle of a Vector
8:56
tan θ
9:04
sin θ
9:25
cos θ
9:46
Vector Notation
10:10
Vector Notation 1
10:11
Vector Notation 2
12:59
Example I: Magnitude of the Horizontal & Vertical Component
16:08
Example II: Magnitude of the Plane's Eastward Velocity
17:59
Example III: Magnitude of Displacement
19:33
Example IV: Total Displacement from Starting Position
21:51
Example V: Find the Angle Theta Depicted by the Diagram
26:35
Vector Notation, cont.
27:07
Unit Vector Notation
27:08
Vector Component Notation
27:25
Vector Multiplication
28:39
Dot Product
28:40
Cross Product
28:54
Dot Product
29:03
Dot Product
29:04
Defining the Dot Product
29:26
Defining the Dot Product
29:27
Calculating the Dot Product
29:42
Unit Vector Notation
29:43
Vector Component Notation
30:58
Example VI: Calculating a Dot Product
31:45
Example VI: Part 1 - Find the Dot Product of the Following Vectors
31:46
Example VI: Part 2 - What is the Angle Between A and B?
32:20
Special Dot Products
33:52
Dot Product of Perpendicular Vectors
33:53
Dot Product of Parallel Vectors
34:03
Dot Product Properties
34:51
Commutative
34:52
Associative
35:05
Derivative of A * B
35:24
Example VII: Perpendicular Vectors
35:47
Cross Product
36:42
Cross Product of Two Vectors
36:43
Direction Using the Right-hand Rule
37:32
Cross Product of Parallel Vectors
38:04
Defining the Cross Product
38:13
Defining the Cross Product
38:14
Calculating the Cross Product Unit Vector Notation
38:41
Calculating the Cross Product Unit Vector Notation
38:42
Calculating the Cross Product Matrix Notation
39:18
Calculating the Cross Product Matrix Notation
39:19
Example VII: Find the Cross Product of the Following Vectors
42:09
Cross Product Properties
45:16
Cross Product Properties
45:17
Units
46:41
Fundamental Units
46:42
Derived units
47:13
Example IX: Dimensional Analysis
47:21
Calculus
49:05
Calculus
49:06
Differential Calculus
49:49
Differentiation & Derivative
49:50
Example X: Derivatives
51:21
Integral Calculus
53:03
Integration
53:04
Integral
53:11
Integration & Derivation are Inverse Functions
53:16
Determine the Original Function
53:37
Common Integrations
54:45
Common Integrations
54:46
Example XI: Integrals
55:17
Example XII: Calculus Applications
58:32
II. Kinematics
Describing Motion I

23m 47s

Intro
0:00
Objectives
0:10
Position / Displacement
0:39
Object's Position
0:40
Position Vector
0:45
Displacement
0:56
Position & Displacement are Vectors
1:05
Position & Displacement in 1 Dimension
1:11
Example I: Distance & Displacement
1:21
Average Speed
2:14
Average Speed
2:15
Average Speed is Scalar
2:27
Average Velocity
2:39
Average Velocity
2:40
Average Velocity is a Vector
2:57
Example II: Speed vs. Velocity
3:16
Example II: Deer's Average Speed
3:17
Example II: Deer's Average Velocity
3:48
Example III: Chuck the Hungry Squirrel
4:21
Example III: Chuck's Distance Traveled
4:22
Example III: Chuck's Displacement
4:43
Example III: Chuck's Average Speed
5:25
Example III: Chuck's Average Velocity
5:39
Acceleration
6:11
Acceleration: Definition & Equation
6:12
Acceleration: Units
6:19
Relationship of Acceleration to Velocity
6:52
Example IV: Acceleration Problem
7:05
The Position Vector
7:39
The Position Vector
7:40
Average Velocity
9:35
Average Velocity
9:36
Instantaneous Velocity
11:20
Instantaneous Velocity
11:21
Instantaneous Velocity is the Derivative of Position with Respect to Time
11:35
Area Under the Velocity-time Graph
12:08
Acceleration
12:36
More on Acceleration
12:37
Average Acceleration
13:11
Velocity vs. Time Graph
13:14
Graph Transformations
13:59
Graphical Analysis of Motion
14:00
Velocity and acceleration in 2D
14:35
Velocity Vector in 2D
14:39
Acceleration Vector in 2D
15:26
Polynomial Derivatives
16:10
Polynomial Derivatives
16:11
Example V: Polynomial Kinematics
16:31
Example VI: Velocity Function
17:54
Example VI: Part A - Determine the Acceleration at t=1 Second
17:55
Example VI: Part B - Determine the Displacement between t=0 and t=5 Seconds
18:33
Example VII: Tortoise and Hare
20:14
Example VIII: d-t Graphs
22:40
Describing Motion II

36m 47s

Intro
0:00
Objectives
0:09
Special Case: Constant Acceleration
0:31
Constant Acceleration & Kinematic Equations
0:32
Deriving the Kinematic Equations
1:28
V = V₀ + at
1:39
∆x = V₀t +(1/2)at²
2:03
V² = V₀² +2a∆x
4:05
Problem Solving Steps
7:02
Step 1
7:13
Step 2
7:18
Step 3
7:27
Step 4
7:30
Step 5
7:31
Example IX: Horizontal Kinematics
7:38
Example X: Vertical Kinematics
9:45
Example XI: 2 Step Problem
11:23
Example XII: Acceleration Problem
15:01
Example XIII: Particle Diagrams
15:57
Example XIV: Particle Diagrams
17:36
Example XV: Quadratic Solution
18:46
Free Fall
22:56
Free Fall
22:57
Air Resistance
23:24
Air Resistance
23:25
Acceleration Due to Gravity
23:48
Acceleration Due to Gravity
23:49
Objects Falling From Rest
24:18
Objects Falling From Rest
24:19
Example XVI: Falling Objects
24:55
Objects Launched Upward
26:01
Objects Launched Upward
26:02
Example XVII: Ball Thrown Upward
27:16
Example XVIII: Height of a Jump
27:48
Example XIX: Ball Thrown Downward
31:10
Example XX: Maximum Height
32:27
Example XXI: Catch-Up Problem
33:53
Example XXII: Ranking Max Height
35:52
Projectile Motion

30m 34s

Intro
0:00
Objectives
0:07
What is a Projectile?
0:28
What is a Projectile?
0:29
Path of a Projectile
0:58
Path of a Projectile
0:59
Independence of Motion
2:45
Vertical & Horizontal Motion
2:46
Example I: Horizontal Launch
3:14
Example II: Parabolic Path
7:20
Angled Projectiles
8:01
Angled Projectiles
8:02
Example III: Human Cannonball
10:05
Example IV: Motion Graphs
14:39
Graphing Projectile Motion
19:05
Horizontal Equation
19:06
Vertical Equation
19:46
Example V: Arrow Fired from Tower
21:28
Example VI: Arrow Fired from Tower
24:10
Example VII: Launch from a Height
24:40
Example VIII: Acceleration of a Projectile
29:49
Circular & Relative Motion

30m 24s

Intro
0:00
Objectives
0:08
Radians and Degrees
0:32
Degrees
0:35
Radians
0:40
Example I: Radians and Degrees
1:08
Example I: Part A - Convert 90 Degrees to Radians
1:09
Example I: Part B - Convert 6 Radians to Degrees
2:08
Linear vs. Angular Displacement
2:38
Linear Displacement
2:39
Angular Displacement
2:52
Linear vs. Angular Velocity
3:18
Linear Velocity
3:19
Angular Velocity
3:25
Direction of Angular Velocity
4:36
Direction of Angular Velocity
4:37
Converting Linear to Angular Velocity
5:05
Converting Linear to Angular Velocity
5:06
Example II: Earth's Angular Velocity
6:12
Linear vs. Angular Acceleration
7:26
Linear Acceleration
7:27
Angular Acceleration
7:32
Centripetal Acceleration
8:05
Expressing Position Vector in Terms of Unit Vectors
8:06
Velocity
10:00
Centripetal Acceleration
11:14
Magnitude of Centripetal Acceleration
13:24
Example III: Angular Velocity & Centripetal Acceleration
14:02
Example IV: Moon's Orbit
15:03
Reference Frames
17:44
Reference Frames
17:45
Laws of Physics
18:00
Motion at Rest vs. Motion at a Constant Velocity
18:21
Motion is Relative
19:20
Reference Frame: Sitting in a Lawn Chair
19:21
Reference Frame: Sitting on a Train
19:56
Calculating Relative Velocities
20:19
Calculating Relative Velocities
20:20
Example: Calculating Relative Velocities
20:57
Example V: Man on a Train
23:19
Example VI: Airspeed
24:56
Example VII: 2-D Relative Motion
26:12
Example VIII: Relative Velocity w/ Direction
28:32
III. Dynamics
Newton's First Law & Free Body Diagrams

23m 57s

Intro
0:00
Objectives
0:11
Newton's 1st Law of Motion
0:28
Newton's 1st Law of Motion
0:29
Force
1:16
Definition of Force
1:17
Units of Force
1:20
How Much is a Newton?
1:25
Contact Forces
1:47
Field Forces
2:32
What is a Net Force?
2:53
What is a Net Force?
2:54
What Does It Mean?
4:35
What Does It Mean?
4:36
Objects at Rest
4:52
Objects at Rest
4:53
Objects in Motion
5:12
Objects in Motion
5:13
Equilibrium
6:03
Static Equilibrium
6:04
Mechanical Equilibrium
6:22
Translational Equilibrium
6:38
Inertia
6:48
Inertia
6:49
Inertial Mass
6:58
Gravitational Mass
7:11
Example I: Inertia
7:40
Example II: Inertia
8:03
Example III: Translational Equilibrium
8:25
Example IV: Net Force
9:19
Free Body Diagrams
10:34
Free Body Diagrams Overview
10:35
Falling Elephant: Free Body Diagram
10:53
Free Body Diagram Neglecting Air Resistance
10:54
Free Body Diagram Including Air Resistance
11:22
Soda on Table
11:54
Free Body Diagram for a Glass of Soda Sitting on a Table
11:55
Free Body Diagram for Box on Ramp
13:38
Free Body Diagram for Box on Ramp
13:39
Pseudo- Free Body Diagram
15:26
Example V: Translational Equilibrium
18:35
Newton's Second & Third Laws of Motion

23m 57s

Intro
0:00
Objectives
0:09
Newton's 2nd Law of Motion
0:36
Newton's 2nd Law of Motion
0:37
Applying Newton's 2nd Law
1:12
Step 1
1:13
Step 2
1:18
Step 3
1:27
Step 4
1:36
Example I: Block on a Surface
1:42
Example II: Concurrent Forces
2:42
Mass vs. Weight
4:09
Mass
4:10
Weight
4:28
Example III: Mass vs. Weight
4:45
Example IV: Translational Equilibrium
6:43
Example V: Translational Equilibrium
8:23
Example VI: Determining Acceleration
10:13
Example VII: Stopping a Baseball
12:38
Example VIII: Steel Beams
14:11
Example IX: Tension Between Blocks
17:03
Example X: Banked Curves
18:57
Example XI: Tension in Cords
24:03
Example XII: Graphical Interpretation
27:13
Example XIII: Force from Velocity
28:12
Newton's 3rd Law
29:16
Newton's 3rd Law
29:17
Examples - Newton's 3rd Law
30:01
Examples - Newton's 3rd Law
30:02
Action-Reaction Pairs
30:40
Girl Kicking Soccer Ball
30:41
Rocket Ship in Space
31:02
Gravity on You
31:23
Example XIV: Force of Gravity
32:11
Example XV: Sailboat
32:38
Example XVI: Hammer and Nail
33:18
Example XVII: Net Force
33:47
Friction

20m 41s

Intro
0:00
Objectives
0:06
Coefficient of Friction
0:21
Coefficient of Friction
0:22
Approximate Coefficients of Friction
0:44
Kinetic or Static?
1:21
Sled Sliding Down a Snowy Hill
1:22
Refrigerator at Rest that You Want to Move
1:32
Car with Tires Rolling Freely
1:49
Car Skidding Across Pavement
2:01
Example I: Car Sliding
2:21
Example II: Block on Incline
3:04
Calculating the Force of Friction
3:33
Calculating the Force of Friction
3:34
Example III: Finding the Frictional Force
4:02
Example IV: Box on Wood Surface
5:34
Example V: Static vs. Kinetic Friction
7:35
Example VI: Drag Force on Airplane
7:58
Example VII: Pulling a Sled
8:41
Example VIII: AP-C 2007 FR1
13:23
Example VIII: Part A
13:24
Example VIII: Part B
14:40
Example VIII: Part C
15:19
Example VIII: Part D
17:08
Example VIII: Part E
18:24
Retarding & Drag Forces

32m 10s

Intro
0:00
Objectives
0:07
Retarding Forces
0:41
Retarding Forces
0:42
The Skydiver
1:30
Drag Forces on a Free-falling Object
1:31
Velocity as a Function of Time
5:31
Velocity as a Function of Time
5:32
Velocity as a Function of Time, cont.
12:27
Acceleration
12:28
Velocity as a Function of Time, cont.
15:16
Graph: Acceleration vs. Time
16:06
Graph: Velocity vs. Time
16:40
Graph: Displacement vs. Time
17:04
Example I: AP-C 2005 FR1
17:43
Example I: Part A
17:44
Example I: Part B
19:17
Example I: Part C
20:17
Example I: Part D
21:09
Example I: Part E
22:42
Example II: AP-C 2013 FR2
24:26
Example II: Part A
24:27
Example II: Part B
25:25
Example II: Part C
26:22
Example II: Part D
27:04
Example II: Part E
30:50
Ramps & Inclines

20m 31s

Intro
0:00
Objectives
0:06
Drawing Free Body Diagrams for Ramps
0:32
Step 1: Choose the Object & Draw It as a Dot or Box
0:33
Step 2: Draw and Label all the External Forces
0:39
Step 3: Sketch a Coordinate System
0:42
Example: Object on a Ramp
0:52
Pseudo-Free Body Diagrams
2:06
Pseudo-Free Body Diagrams
2:07
Redraw Diagram with All Forces Parallel to Axes
2:18
Box on a Ramp
4:08
Free Body Diagram for Box on a Ramp
4:09
Pseudo-Free Body Diagram for Box on a Ramp
4:54
Example I: Box at Rest
6:13
Example II: Box Held By Force
6:35
Example III: Truck on a Hill
8:46
Example IV: Force Up a Ramp
9:29
Example V: Acceleration Down a Ramp
12:01
Example VI: Able of Repose
13:59
Example VII: Sledding
17:03
Atwood Machines

24m 58s

Intro
0:00
Objectives
0:07
What is an Atwood Machine?
0:25
What is an Atwood Machine?
0:26
Properties of Atwood Machines
1:03
Ideal Pulleys are Frictionless and Massless
1:04
Tension is Constant
1:14
Setup for Atwood Machines
1:26
Setup for Atwood Machines
1:27
Solving Atwood Machine Problems
1:52
Solving Atwood Machine Problems
1:53
Alternate Solution
5:24
Analyze the System as a Whole
5:25
Example I: Basic Atwood Machine
7:31
Example II: Moving Masses
9:59
Example III: Masses and Pulley on a Table
13:32
Example IV: Mass and Pulley on a Ramp
15:47
Example V: Ranking Atwood Machines
19:50
IV. Work, Energy, & Power
Work

37m 34s

Intro
0:00
Objectives
0:07
What is Work?
0:36
What is Work?
0:37
Units of Work
1:09
Work in One Dimension
1:31
Work in One Dimension
1:32
Examples of Work
2:19
Stuntman in a Jet Pack
2:20
A Girl Struggles to Push Her Stalled Car
2:50
A Child in a Ghost Costume Carries a Bag of Halloween Candy Across the Yard
3:24
Example I: Moving a Refrigerator
4:03
Example II: Liberating a Car
4:53
Example III: Lifting Box
5:30
Example IV: Pulling a Wagon
6:13
Example V: Ranking Work on Carts
7:13
Non-Constant Forces
12:21
Non-Constant Forces
12:22
Force vs. Displacement Graphs
13:49
Force vs. Displacement Graphs
13:50
Hooke's Law
14:41
Hooke's Law
14:42
Determining the Spring Constant
15:38
Slope of the Graph Gives the Spring Constant, k
15:39
Work Done in Compressing the Spring
16:34
Find the Work Done in Compressing the String
16:35
Example VI: Finding Spring Constant
17:21
Example VII: Calculating Spring Constant
19:48
Example VIII: Hooke's Law
20:30
Example IX: Non-Linear Spring
22:18
Work in Multiple Dimensions
23:52
Work in Multiple Dimensions
23:53
Work-Energy Theorem
25:25
Work-Energy Theorem
25:26
Example X: Work-Energy Theorem
28:35
Example XI: Work Done on Moving Carts
30:46
Example XII: Velocity from an F-d Graph
35:01
Energy & Conservative Forces

28m 4s

Intro
0:00
Objectives
0:08
Energy Transformations
0:31
Energy Transformations
0:32
Work-Energy Theorem
0:57
Kinetic Energy
1:12
Kinetic Energy: Definition
1:13
Kinetic Energy: Equation
1:55
Example I: Frog-O-Cycle
2:07
Potential Energy
2:46
Types of Potential Energy
2:47
A Potential Energy Requires an Interaction between Objects
3:29
Internal energy
3:50
Internal Energy
3:51
Types of Energy
4:37
Types of Potential & Kinetic Energy
4:38
Gravitational Potential Energy
5:42
Gravitational Potential Energy
5:43
Example II: Potential Energy
7:27
Example III: Kinetic and Potential Energy
8:16
Example IV: Pendulum
9:09
Conservative Forces
11:37
Conservative Forces Overview
11:38
Type of Conservative Forces
12:42
Types of Non-conservative Forces
13:02
Work Done by Conservative Forces
13:28
Work Done by Conservative Forces
13:29
Newton's Law of Universal Gravitation
14:18
Gravitational Force of Attraction between Any Two Objects with Mass
14:19
Gravitational Potential Energy
15:27
Gravitational Potential Energy
15:28
Elastic Potential Energy
17:36
Elastic Potential Energy
17:37
Force from Potential Energy
18:51
Force from Potential Energy
18:52
Gravitational Force from the Gravitational Potential Energy
20:46
Gravitational Force from the Gravitational Potential Energy
20:47
Hooke's Law from Potential Energy
22:04
Hooke's Law from Potential Energy
22:05
Summary
23:16
Summary
23:17
Example V: Kinetic Energy of a Mass
24:40
Example VI: Force from Potential Energy
25:48
Example VII: Work on a Spinning Disc
26:54
Conservation of Energy

54m 56s

Intro
0:00
Objectives
0:09
Conservation of Mechanical Energy
0:32
Consider a Single Conservative Force Doing Work on a Closed System
0:33
Non-Conservative Forces
1:40
Non-Conservative Forces
1:41
Work Done by a Non-conservative Force
1:47
Formula: Total Energy
1:54
Formula: Total Mechanical Energy
2:04
Example I: Falling Mass
2:15
Example II: Law of Conservation of Energy
4:07
Example III: The Pendulum
6:34
Example IV: Cart Compressing a Spring
10:12
Example V: Cart Compressing a Spring
11:12
Example V: Part A - Potential Energy Stored in the Compressed Spring
11:13
Example V: Part B - Maximum Vertical Height
12:01
Example VI: Car Skidding to a Stop
13:05
Example VII: Block on Ramp
14:22
Example VIII: Energy Transfers
16:15
Example IX: Roller Coaster
20:04
Example X: Bungee Jumper
23:32
Example X: Part A - Speed of the Jumper at a Height of 15 Meters Above the Ground
24:48
Example X: Part B - Speed of the Jumper at a Height of 30 Meters Above the Ground
26:53
Example X: Part C - How Close Does the Jumper Get to the Ground?
28:28
Example XI: AP-C 2002 FR3
30:28
Example XI: Part A
30:59
Example XI: Part B
31:54
Example XI: Part C
32:50
Example XI: Part D & E
33:52
Example XII: AP-C 2007 FR3
35:24
Example XII: Part A
35:52
Example XII: Part B
36:27
Example XII: Part C
37:48
Example XII: Part D
39:32
Example XIII: AP-C 2010 FR1
41:07
Example XIII: Part A
41:34
Example XIII: Part B
43:05
Example XIII: Part C
45:24
Example XIII: Part D
47:18
Example XIV: AP-C 2013 FR1
48:25
Example XIV: Part A
48:50
Example XIV: Part B
49:31
Example XIV: Part C
51:27
Example XIV: Part D
52:46
Example XIV: Part E
53:25
Power

16m 44s

Intro
0:00
Objectives
0:06
Defining Power
0:20
Definition of Power
0:21
Units of Power
0:27
Average Power
0:43
Instantaneous Power
1:03
Instantaneous Power
1:04
Example I: Horizontal Box
2:07
Example II: Accelerating Truck
4:48
Example III: Motors Delivering Power
6:00
Example IV: Power Up a Ramp
7:00
Example V: Power from Position Function
8:51
Example VI: Motorcycle Stopping
10:48
Example VII: AP-C 2003 FR1
11:52
Example VII: Part A
11:53
Example VII: Part B
12:50
Example VII: Part C
14:36
Example VII: Part D
15:52
V. Momentum
Momentum & Impulse

13m 9s

Intro
0:00
Objectives
0:07
Momentum
0:39
Definition of Momentum
0:40
Total Momentum
1:00
Formula for Momentum
1:05
Units of Momentum
1:11
Example I: Changing Momentum
1:18
Impulse
2:27
Impulse
2:28
Example II: Impulse
2:41
Relationship Between Force and ∆p (Impulse)
3:36
Relationship Between Force and ∆p (Impulse)
3:37
Example III: Force from Momentum
4:37
Impulse-Momentum Theorem
5:14
Impulse-Momentum Theorem
5:15
Example IV: Impulse-Momentum
6:26
Example V: Water Gun & Horizontal Force
7:56
Impulse from F-t Graphs
8:53
Impulse from F-t Graphs
8:54
Example VI: Non-constant Forces
9:16
Example VII: F-t Graph
10:01
Example VIII: Impulse from Force
11:19
Conservation of Linear Momentum

46m 30s

Intro
0:00
Objectives
0:08
Conservation of Linear Momentum
0:28
In an Isolated System
0:29
In Any Closed System
0:37
Direct Outcome of Newton's 3rd Law of Motion
0:47
Collisions and Explosions
1:07
Collisions and Explosions
1:08
The Law of Conservation of Linear Momentum
1:25
Solving Momentum Problems
1:35
Solving Momentum Problems
1:36
Types of Collisions
2:08
Elastic Collision
2:09
Inelastic Collision
2:34
Example I: Traffic Collision
3:00
Example II: Collision of Two Moving Objects
6:55
Example III: Recoil Velocity
9:47
Example IV: Atomic Collision
12:12
Example V: Collision in Multiple Dimensions
18:11
Example VI: AP-C 2001 FR1
25:16
Example VI: Part A
25:33
Example VI: Part B
26:44
Example VI: Part C
28:17
Example VI: Part D
28:58
Example VII: AP-C 2002 FR1
30:10
Example VII: Part A
30:20
Example VII: Part B
32:14
Example VII: Part C
34:25
Example VII: Part D
36:17
Example VIII: AP-C 2014 FR1
38:55
Example VIII: Part A
39:28
Example VIII: Part B
41:00
Example VIII: Part C
42:57
Example VIII: Part D
44:20
Center of Mass

28m 26s

Intro
0:00
Objectives
0:07
Center of Mass
0:45
Center of Mass
0:46
Finding Center of Mass by Inspection
1:25
For Uniform Density Objects
1:26
For Objects with Multiple Parts
1:36
For Irregular Objects
1:44
Example I: Center of Mass by Inspection
2:06
Calculating Center of Mass for Systems of Particles
2:25
Calculating Center of Mass for Systems of Particles
2:26
Example II: Center of Mass (1D)
3:15
Example III: Center of Mass of Continuous System
4:29
Example IV: Center of Mass (2D)
6:00
Finding Center of Mass by Integration
7:38
Finding Center of Mass by Integration
7:39
Example V: Center of Mass of a Uniform Rod
8:10
Example VI: Center of Mass of a Non-Uniform Rod
11:40
Center of Mass Relationships
14:44
Center of Mass Relationships
14:45
Center of Gravity
17:36
Center of Gravity
17:37
Uniform Gravitational Field vs. Non-uniform Gravitational Field
17:53
Example VII: AP-C 2004 FR1
18:26
Example VII: Part A
18:45
Example VII: Part B
19:38
Example VII: Part C
21:03
Example VII: Part D
22:04
Example VII: Part E
24:52
VI. Uniform Circular Motion
Uniform Circular Motion

21m 36s

Intro
0:00
Objectives
0:08
Uniform Circular Motion
0:42
Distance Around the Circle for Objects Traveling in a Circular Path at Constant Speed
0:51
Average Speed for Objects Traveling in a Circular Path at Constant Speed
1:15
Frequency
1:42
Definition of Frequency
1:43
Symbol of Frequency
1:46
Units of Frequency
1:49
Period
2:04
Period
2:05
Frequency and Period
2:19
Frequency and Period
2:20
Example I: Race Car
2:32
Example II: Toy Train
3:22
Example III: Round-A-Bout
4:07
Example III: Part A - Period of the Motion
4:08
Example III: Part B- Frequency of the Motion
4:43
Example III: Part C- Speed at Which Alan Revolves
4:58
Uniform Circular Motion
5:28
Is an Object Undergoing Uniform Circular Motion Accelerating?
5:29
Direction of Centripetal Acceleration
6:21
Direction of Centripetal Acceleration
6:22
Magnitude of Centripetal Acceleration
8:23
Magnitude of Centripetal Acceleration
8:24
Example IV: Car on a Track
8:39
Centripetal Force
10:14
Centripetal Force
10:15
Calculating Centripetal Force
11:47
Calculating Centripetal Force
11:48
Example V: Acceleration
12:41
Example VI: Direction of Centripetal Acceleration
13:44
Example VII: Loss of Centripetal Force
14:03
Example VIII: Bucket in Horizontal Circle
14:44
Example IX: Bucket in Vertical Circle
15:24
Example X: Demon Drop
17:38
Example X: Question 1
18:02
Example X: Question 2
18:25
Example X: Question 3
19:22
Example X: Question 4
20:13
VII. Rotational Motion
Rotational Kinematics

32m 52s

Intro
0:00
Objectives
0:07
Radians and Degrees
0:35
Once Around a Circle: In Degrees
0:36
Once Around a Circle: In Radians
0:48
Measurement of Radian
0:51
Example I: Radian and Degrees
1:08
Example I: Convert 90° to Radians
1:09
Example I: Convert 6 Radians to Degree
1:23
Linear vs. Angular Displacement
1:43
Linear Displacement
1:44
Angular Displacement
1:51
Linear vs. Angular Velocity
2:04
Linear Velocity
2:05
Angular Velocity
2:10
Direction of Angular Velocity
2:28
Direction of Angular Velocity
2:29
Converting Linear to Angular Velocity
2:58
Converting Linear to Angular Velocity
2:59
Example II: Angular Velocity of Earth
3:51
Linear vs. Angular Acceleration
4:35
Linear Acceleration
4:36
Angular Acceleration
4:42
Example III: Angular Acceleration
5:09
Kinematic Variable Parallels
6:30
Kinematic Variable Parallels: Translational & Angular
6:31
Variable Translations
7:00
Variable Translations: Translational & Angular
7:01
Kinematic Equation Parallels
7:38
Kinematic Equation Parallels: Translational & Rotational
7:39
Example IV: Deriving Centripetal Acceleration
8:29
Example V: Angular Velocity
13:24
Example V: Part A
13:25
Example V: Part B
14:15
Example VI: Wheel in Motion
14:39
Example VII: AP-C 2003 FR3
16:23
Example VII: Part A
16:38
Example VII: Part B
17:34
Example VII: Part C
24:02
Example VIII: AP-C 2014 FR2
25:35
Example VIII: Part A
25:47
Example VIII: Part B
26:28
Example VIII: Part C
27:48
Example VIII: Part D
28:26
Example VIII: Part E
29:16
Moment of Inertia

24m

Intro
0:00
Objectives
0:07
Types of Inertia
0:34
Inertial Mass
0:35
Moment of Inertia
0:44
Kinetic Energy of a Rotating Disc
1:25
Kinetic Energy of a Rotating Disc
1:26
Calculating Moment of Inertia (I)
5:32
Calculating Moment of Inertia (I)
5:33
Moment of Inertia for Common Objects
5:49
Moment of Inertia for Common Objects
5:50
Example I: Point Masses
6:46
Example II: Uniform Rod
9:09
Example III: Solid Cylinder
13:07
Parallel Axis Theorem (PAT)
17:33
Parallel Axis Theorem (PAT)
17:34
Example IV: Calculating I Using the Parallel Axis Theorem
18:39
Example V: Hollow Sphere
20:18
Example VI: Long Thin Rod
20:55
Example VII: Ranking Moment of Inertia
21:50
Example VIII: Adjusting Moment of Inertia
22:39
Torque

26m 9s

Intro
0:00
Objectives
0:06
Torque
0:18
Definition of Torque
0:19
Torque & Rotation
0:26
Lever Arm ( r )
0:30
Example: Wrench
0:39
Direction of the Torque Vector
1:45
Direction of the Torque Vector
1:46
Finding Direction Using the Right-hand Rule
1:53
Newton's 2nd Law: Translational vs. Rotational
2:20
Newton's 2nd Law: Translational vs. Rotational
2:21
Equilibrium
3:17
Static Equilibrium
3:18
Dynamic Equilibrium
3:30
Example I: See-Saw Problem
3:46
Example II: Beam Problem
7:12
Example III: Pulley with Mass
10:34
Example IV: Net Torque
13:46
Example V: Ranking Torque
15:29
Example VI: Ranking Angular Acceleration
16:25
Example VII: Café Sign
17:19
Example VIII: AP-C 2008 FR2
19:44
Example VIII: Part A
20:12
Example VIII: Part B
21:08
Example VIII: Part C
22:36
Example VIII: Part D
24:37
Rotational Dynamics

56m 58s

Intro
0:00
Objectives
0:08
Conservation of Energy
0:48
Translational Kinetic Energy
0:49
Rotational Kinetic Energy
0:54
Total Kinetic Energy
1:03
Example I: Disc Rolling Down an Incline
1:10
Rotational Dynamics
4:25
Rotational Dynamics
4:26
Example II: Strings with Massive Pulleys
4:37
Example III: Rolling without Slipping
9:13
Example IV: Rolling with Slipping
13:45
Example V: Amusement Park Swing
22:49
Example VI: AP-C 2002 FR2
26:27
Example VI: Part A
26:48
Example VI: Part B
27:30
Example VI: Part C
29:51
Example VI: Part D
30:50
Example VII: AP-C 2006 FR3
31:39
Example VII: Part A
31:49
Example VII: Part B
36:20
Example VII: Part C
37:14
Example VII: Part D
38:48
Example VIII: AP-C 2010 FR2
39:40
Example VIII: Part A
39:46
Example VIII: Part B
40:44
Example VIII: Part C
44:31
Example VIII: Part D
46:44
Example IX: AP-C 2013 FR3
48:27
Example IX: Part A
48:47
Example IX: Part B
50:33
Example IX: Part C
53:28
Example IX: Part D
54:15
Example IX: Part E
56:20
Angular Momentum

33m 2s

Intro
0:00
Objectives
0:09
Linear Momentum
0:44
Definition of Linear Momentum
0:45
Total Angular Momentum
0:52
p = mv
0:59
Angular Momentum
1:08
Definition of Angular Momentum
1:09
Total Angular Momentum
1:21
A Mass with Velocity v Moving at Some Position r
1:29
Calculating Angular Momentum
1:44
Calculating Angular Momentum
1:45
Spin Angular Momentum
4:17
Spin Angular Momentum
4:18
Example I: Object in Circular Orbit
4:51
Example II: Angular Momentum of a Point Particle
6:34
Angular Momentum and Net Torque
9:03
Angular Momentum and Net Torque
9:04
Conservation of Angular Momentum
11:53
Conservation of Angular Momentum
11:54
Example III: Ice Skater Problem
12:20
Example IV: Combining Spinning Discs
13:52
Example V: Catching While Rotating
15:13
Example VI: Changes in Angular Momentum
16:47
Example VII: AP-C 2005 FR3
17:37
Example VII: Part A
18:12
Example VII: Part B
18:32
Example VII: Part C
19:53
Example VII: Part D
21:52
Example VIII: AP-C 2014 FR3
24:23
Example VIII: Part A
24:31
Example VIII: Part B
25:33
Example VIII: Part C
26:58
Example VIII: Part D
28:24
Example VIII: Part E
30:42
VIII. Oscillations
Oscillations

1h 1m 12s

Intro
0:00
Objectives
0:08
Simple Harmonic Motion
0:45
Simple Harmonic Motion
0:46
Circular Motion vs. Simple Harmonic Motion (SHM)
1:39
Circular Motion vs. Simple Harmonic Motion (SHM)
1:40
Position, Velocity, & Acceleration
4:55
Position
4:56
Velocity
5:12
Acceleration
5:49
Frequency and Period
6:37
Frequency
6:42
Period
6:49
Angular Frequency
7:05
Angular Frequency
7:06
Example I: Oscillating System
7:37
Example I: Determine the Object's Angular Frequency
7:38
Example I: What is the Object's Position at Time t = 10s?
8:16
Example I: At What Time is the Object at x = 0.1m?
9:10
Mass on a Spring
10:17
Mass on a Spring
10:18
Example II: Analysis of Spring-Block System
11:34
Example III: Spring-Block ranking
12:53
General Form of Simple Harmonic Motion
14:41
General Form of Simple Harmonic Motion
14:42
Graphing Simple Harmonic Motion (SHM)
15:22
Graphing Simple Harmonic Motion (SHM)
15:23
Energy of Simple Harmonic Motion (SHM)
15:49
Energy of Simple Harmonic Motion (SHM)
15:50
Horizontal Spring Oscillator
19:24
Horizontal Spring Oscillator
19:25
Vertical Spring Oscillator
20:58
Vertical Spring Oscillator
20:59
Springs in Series
23:30
Springs in Series
23:31
Springs in Parallel
26:08
Springs in Parallel
26:09
The Pendulum
26:59
The Pendulum
27:00
Energy and the Simple Pendulum
27:46
Energy and the Simple Pendulum
27:47
Frequency and Period of a Pendulum
30:16
Frequency and Period of a Pendulum
30:17
Example IV: Deriving Period of a Simple Pendulum
31:42
Example V: Deriving Period of a Physical Pendulum
35:20
Example VI: Summary of Spring-Block System
38:16
Example VII: Harmonic Oscillator Analysis
44:14
Example VII: Spring Constant
44:24
Example VII: Total Energy
44:45
Example VII: Speed at the Equilibrium Position
45:05
Example VII: Speed at x = 0.30 Meters
45:37
Example VII: Speed at x = -0.40 Meter
46:46
Example VII: Acceleration at the Equilibrium Position
47:21
Example VII: Magnitude of Acceleration at x = 0.50 Meters
47:35
Example VII: Net Force at the Equilibrium Position
48:04
Example VII: Net Force at x = 0.25 Meter
48:20
Example VII: Where does Kinetic Energy = Potential Energy?
48:33
Example VIII: Ranking Spring Systems
49:35
Example IX: Vertical Spring Block Oscillator
51:45
Example X: Ranking Period of Pendulum
53:50
Example XI: AP-C 2009 FR2
54:50
Example XI: Part A
54:58
Example XI: Part B
57:57
Example XI: Part C
59:11
Example XII: AP-C 2010 FR3
1:00:18
Example XII: Part A
1:00:49
Example XII: Part B
1:02:47
Example XII: Part C
1:04:30
Example XII: Part D
1:05:53
Example XII: Part E
1:08:13
IX. Gravity & Orbits
Gravity & Orbits

34m 59s

Intro
0:00
Objectives
0:07
Newton's Law of Universal Gravitation
0:45
Newton's Law of Universal Gravitation
0:46
Example I: Gravitational Force Between Earth and Sun
2:24
Example II: Two Satellites
3:39
Gravitational Field Strength
4:23
Gravitational Field Strength
4:24
Example III: Weight on Another Planet
6:22
Example IV: Gravitational Field of a Hollow Shell
7:31
Example V: Gravitational Field Inside a Solid Sphere
8:33
Velocity in Circular Orbit
12:05
Velocity in Circular Orbit
12:06
Period and Frequency for Circular Orbits
13:56
Period and Frequency for Circular Orbits
13:57
Mechanical Energy for Circular Orbits
16:11
Mechanical Energy for Circular Orbits
16:12
Escape Velocity
17:48
Escape Velocity
17:49
Kepler's 1st Law of Planetary Motion
19:41
Keller's 1st Law of Planetary Motion
19:42
Kepler's 2nd Law of Planetary Motion
20:05
Keller's 2nd Law of Planetary Motion
20:06
Kepler's 3rd Law of Planetary Motion
20:57
Ratio of the Squares of the Periods of Two Planets
20:58
Ratio of the Squares of the Periods to the Cubes of Their Semi-major Axes
21:41
Total Mechanical Energy for an Elliptical Orbit
21:57
Total Mechanical Energy for an Elliptical Orbit
21:58
Velocity and Radius for an Elliptical Orbit
22:35
Velocity and Radius for an Elliptical Orbit
22:36
Example VI: Rocket Launched Vertically
24:26
Example VII: AP-C 2007 FR2
28:16
Example VII: Part A
28:35
Example VII: Part B
29:51
Example VII: Part C
31:14
Example VII: Part D
32:23
Example VII: Part E
33:16
X. Sample AP Exam
1998 AP Practice Exam: Multiple Choice

28m 11s

Intro
0:00
Problem 1
0:30
Problem 2
0:51
Problem 3
1:25
Problem 4
2:00
Problem 5
3:05
Problem 6
4:19
Problem 7
4:48
Problem 8
5:18
Problem 9
5:38
Problem 10
6:26
Problem 11
7:21
Problem 12
8:08
Problem 13
8:35
Problem 14
9:20
Problem 15
10:09
Problem 16
10:25
Problem 17
11:30
Problem 18
12:27
Problem 19
13:00
Problem 20
14:40
Problem 21
15:44
Problem 22
16:42
Problem 23
17:35
Problem 24
17:54
Problem 25
18:32
Problem 26
19:08
Problem 27
20:56
Problem 28
22:19
Problem 29
22:36
Problem 30
23:18
Problem 31
24:06
Problem 32
24:40
1998 AP Practice Exam: Free Response Questions (FRQ)

28m 11s

Intro
0:00
Question 1
0:15
Part A: I
0:16
Part A: II
0:46
Part A: III
1:13
Part B
1:40
Part C
2:49
Part D: I
4:46
Part D: II
5:15
Question 2
5:46
Part A: I
6:13
Part A: II
7:05
Part B: I
7:48
Part B: II
8:42
Part B: III
9:03
Part B: IV
9:26
Part B: V
11:32
Question 3
13:30
Part A: I
13:50
Part A: II
14:16
Part A: III
14:38
Part A: IV
14:56
Part A: V
15:36
Part B
16:11
Part C
17:00
Part D: I
19:56
Part D: II
21:08
Loading...
This is a quick preview of the lesson. For full access, please Log In or Sign up.
For more information, please see full course syllabus of AP Physics C: Mechanics
  • Discussion

  • Study Guides

  • Download Lecture Slides

  • Table of Contents

  • Transcription

  • Related Books

Lecture Comments (6)

1 answer

Last reply by: Professor Dan Fullerton
Sat Jan 7, 2017 5:54 PM

Post by Jim Tang on January 7, 2017

Great video! I still can't get sliding vs. skidding stuff with friction around my head. Since sliding is motion, I keep thinking it should be kinetic friction.

1 answer

Last reply by: Professor Dan Fullerton
Tue Nov 15, 2016 6:04 AM

Post by Tuong Tran on November 14, 2016

Hi Professor, for question e of the Free Response, why is the net force in the x direction not F1cos(theta)-friction, but only F1cos(theta)?

1 answer

Last reply by: Cathy Zhao
Sat Aug 13, 2016 9:08 PM

Post by Cathy Zhao on August 13, 2016

Hi Professor Fullerton, I have trouble viewing this video. The video automatically stops at 12:23, so I can't watch any content after 12:23.

Friction

  • Kinetic friction acts on objects sliding against each other. Static friction acts on objects that are not sliding.
  • The magnitude of the frictional force is determined by the nature of the surfaces in contact and the normal force acting on the object.
  • The force of kinetic friction is equal to the product of the coefficient of kinetic friction and the normal force.
  • The force of static friction is less than or equal to the product of the coefficient of static friction and the normal force.

Friction

Lecture Slides are screen-captured images of important points in the lecture. Students can download and print out these lecture slide images to do practice problems as well as take notes while watching the lecture.

  • Intro 0:00
  • Objectives 0:06
  • Coefficient of Friction 0:21
    • Coefficient of Friction
    • Approximate Coefficients of Friction
  • Kinetic or Static? 1:21
    • Sled Sliding Down a Snowy Hill
    • Refrigerator at Rest that You Want to Move
    • Car with Tires Rolling Freely
    • Car Skidding Across Pavement
  • Example I: Car Sliding 2:21
  • Example II: Block on Incline 3:04
  • Calculating the Force of Friction 3:33
    • Calculating the Force of Friction
  • Example III: Finding the Frictional Force 4:02
  • Example IV: Box on Wood Surface 5:34
  • Example V: Static vs. Kinetic Friction 7:35
  • Example VI: Drag Force on Airplane 7:58
  • Example VII: Pulling a Sled 8:41
  • Example VIII: AP-C 2007 FR1 13:23
    • Example VIII: Part A
    • Example VIII: Part B
    • Example VIII: Part C
    • Example VIII: Part D
    • Example VIII: Part E

Transcription: Friction

Hello everyone and welcome back to www.educator.com.0000

In this lesson we are going to talk about friction.0003

Our objectives include defining and identifying frictional forces.0006

Explaining the factors that determine the amount of friction between two surfaces and0011

determining the frictional force and the coefficient of friction between two surfaces.0015

Let us start off by talking about the coefficient of friction.0020

The ratio of the frictional force to the normal force provides the coefficient of friction.0024

μ is the coefficient of friction.0029

It is unit less and it is a force of friction divided by the normal force.0031

Friction caused by the interaction of two objects and this coefficient of friction depends on the nature of the surfaces.0035

Some approximate coefficients of friction for different types of friction.0045

Kinetic friction is objects that are sliding against each other.0049

Static friction is objects that are not sliding against each other.0054

Rub around dry concrete for example has a kinetic coefficient of 0.68 and a static coefficient of 0.9.0059

That means once it is moving or once it is sliding, it has less friction than it does and start trying to get it to start sliding.0066

It is pretty common to see a static coefficient of friction larger than the kinetic coefficient of friction.0073

Let us take a look at some situations.0081

Are these situations static or kinetic?0083

A sled sliding down a snowy hill that would be kinetic because we have objects that are sliding.0086

How about a refrigerator at rest that you want to move?0093

That is static because it is not sliding.0096

That is why it takes more force to get something to start sliding to overcome static friction.0099

Once you get it sliding you are dealing with kinetic friction which is less.0104

A car with tires rolling freely, that is static because it is not sliding.0110

If the tires are going down off the pavement in any given point, they are static with respect to the pavement.0116

If you happen to skid across the pavement now you have sliding or kinetic friction.0122

When you are using that coefficient of friction you will use either the kinetic (μ K) or the static (μ S) coefficient.0130

Let us take the example of a car sliding.0141

A car's performance is tested on various horizontal road surfaces.0144

The brakes are applied causing the rubber tires of the car to slide along the road without rolling.0147

Without rolling they are sliding and right away we are thinking kinetic.0153

The tires encounter the greatest force of friction to stop the car on and you have a couple choices here0159

which are dry concrete, dry asphalt, wet concrete, or wet asphalt.0164

I am going to look for the largest coefficient of friction that would be right here on dry concrete and that must be our answer.0172

Largest coefficient of friction, largest amount of frictional force.0179

Here we have a block on an incline.0186

It is sliding down a plane in angle θ.0188

If the angle θ is increased, the coefficient of kinetic friction between the bottom surface of the block and the surface of the incline will?0191

That is going to remain the same.0199

Remember the coefficient of friction just depends on the nature of the surfaces and that does not change as you adjust the angle.0201

How do we calculate the force of friction?0213

The force of friction depends only upon the nature of the surfaces in contact, the μ and the magnitude of the normal force (fn).0216

Or oftentimes I like to write normal force as just (n) so you can say the force of friction is μ × the normal force.0223

Of course friction is fun.0231

You can combine this with Newton’s 2nd law in the free body diagrams like we did in our last lesson to solve more involved problems.0235

Here we go.0243

The diagram below shows a 4kg object accelerating at 10m/s² on a rough, horizontal surface.0244

What is the magnitude of the frictional force (ff) acting on the object?0251

First thing that I am going to do is draw my free body diagram.0257

Let us put our axis over here.0262

As I label my forces we have the normal force.0269

We have the weight of our object (mg).0274

Those must be balanced because it is not accelerating up off the ground or into the ground because that would be goofy.0277

We have a 15 N applied force and we have some frictional force which they are labeling (ff).0283

Let us take a look.0294

Let us apply Newton’s second law in the x direction, the net force in the x direction we will call it to the right positive.0294

We have 15 N - the force of friction = mass × acceleration in the x direction which is 4 kg × 10 m/s².0302

15 N - the force of friction = 40 N.0319

Our force of friction must be 10 N.0324

That is easy and straightforward.0330

Let us take a look at a box on a wooden surface.0334

A horizontal force of 8 N is used to pull a 20 N wooden box.0336

A 20 N wooden box that is not its mass but 20 N is its weight.0341

It is moving toward the right along a horizontal wood surface and it tells us the coefficient of kinetic friction is 0.3.0345

Find the frictional force acting on the box.0352

Remember friction is fun which is going to be 0.3 or coefficient of kinetic friction since it is sliding × the normal force or if we have 20 N as its weight,0356

the normal force n must exactly balance that and be 20 N or otherwise it will accelerate off of the floor.0370

Multiplied by 20 N is going to be 6 N.0377

How about the net force acting on the box?0382

The net force we got 8 N to the right and we got our frictional force to the left0387

and that is going to be 8 N – our frictional force we just found is 6 N.0397

Our net must be 2 N to the right.0403

The mass of the box, all of its weight (mg) is 20 N.0408

The net means its mass must be 20 N over the acceleration due to gravity (G) or 20 N / 10 m/s² is just going to be 2kg.0415

Finally is the acceleration of the box.0428

Net force in the x direction we said was 2 N and that is equal to (ma).0432

A is equal to 2 N over our mass 2kg.0441

It is going to accelerate it to 1 m/s² to the right.0446

Static vs. Kinetic friction.0456

Compared to the force needed to start sliding a crate across a rough level floor, the force needed to keep it sliding once it is moving.0459

Well that is going to be less.0466

You probably know that from practical experience but also our coefficient of kinetic friction is less than our coefficient of static friction.0467

Drag forces.0478

An airplane is moving with the constant velocity in a level flight.0480

Compare the magnitude of the forward force provided by the engines to the magnitude of the backward frictional drag force.0483

There is a key term in this question or one highlight, constant velocity.0490

Whenever you say constant velocity, right away you should be thinking acceleration is 0 and the net force = 0.0497

The forward force of the engines must exactly balance the frictional drag force.0505

Frictional drag force they have to be equal otherwise it would be accelerating so they must be the same.0510

Let us do a sled problem.0521

Susie pulls the handle of a 20kg sled across the yard with the force of 100 N as shown.0524

The yard exerts a frictional force of 25 N on the sled.0530

We are asked to find the coefficient of friction and determine the distance the sled travels.0536

If it starts from rest and Susie maintains her 100 N force for 5 seconds.0542

Let us start by drawing our free body diagram.0548

I am just going to sketch them up here.0551

We have an applied force which is 100 N that is an angle of 30°.0555

We have the normal force from the ground.0566

We have the weight down.0569

We have our frictional force (f) is 25 N.0574

If we wanted to we could draw our pseudo free body diagram.0580

We are going to do that down here in the bottom left.0585

Let us see.0589

Let us put it maybe right there.0591

We still have our normal force up.0597

We have our weight down.0601

We have our frictional force to the left.0605

We got to breakup our 100 N force and angle of 30° in the x and y components.0608

The x component of that is going to be 100 cos 30.0613

I will draw that in here 100 cos 30.0617

The y component is 100 sin 30°.0621

We can start our solutions.0628

Let us start by looking at the net force in the y direction to find the coefficient of friction.0631

Net force in the y direction is going to be (MA y) which we know is going to be 0.0637

The net force in the y we got 100 sin 30 + our normal force - mg = 0.0645

The normal force must equal mg -100 sin 30.0660

Our normal force (mg) that is just going to be our 20kg 10 m/s² - 100 sin 30 that is just going to be 50.0669

If 200 - 50 = 150 N for our normal force.0685

Our force of friction then (μ) is our coefficient of friction is our frictional force divided by normal force.0690

Our frictional force it gives us 25 N and our normal force we just said was 150 N.0700

Our coefficient of friction must be 0.167.0707

We want to see how far it travels given this information and that looks like a kinematics problem but I think first I need to find the acceleration.0716

Let us take a look at the net force in the x direction that is going to be 100 cos 30 that is 86 .6 N - our frictional force which we just said was 25 N0726

and that is going to be 86.6 -25 that 61.6 N.0739

Our acceleration is our net force divided by the mass or 61.6 N / 20kg is about 3.1 m/s².0746

I know our acceleration and our initial velocity and I know the time.0762

I can use my kinematic equations now to find how far it goes.0767

Δ x = V initial t + ½ (at)².0772

It is a horizontal problem.0778

Our initial velocity is 0 so this is just ½ × our acceleration 3.1 m/s² × our time 5s² or about 38.8 meters.0780

Let us finish off by looking in an old AP free response problem.0800

What we are going to do is have you go to this link to find the 2007 released mechanics exam free response number 1.0804

I recommend you go to the site, look it over, print it out, even try it on your own first while you hit pause on the video and see how you do.0813

Then come back here hit play on the video and check your answers as you go.0820

If you get stuck use my solution to help get you going again through to the problem.0824

I have that here the 2007 mechanics free response 1.0830

We are given the box and we are applying a force at some angle.0837

We are asked on the figure to draw a free body diagram showing all the forces on the block.0840

We will start with the block and we should be pretty good at this by now.0845

Our forces, we have the normal force.0849

We have its weight.0855

We have this force (f1).0858

And we have our frictional force (ff).0863

They are forces.0871

Part B, just derive an expression for the normal force exerted by the surface on the block.0874

If we want the normal force and I am going to look in the y direction with Newton’s 2nd law.0881

Net force in the y direction must be n + we got to use the y component of (f1) that is going to be f1 sin our angle θ.0887

And down we have - mg and all of that has to equal 0.0901

Therefore, if I solve for the normal force that is going to be mg - f1 sin θ.0907

Part C, derive an expression for the coefficient of kinetic friction between the block and the surface.0922

To do that, I need to find first the force of friction.0929

We will go to Newton’s 2nd law in the x direction.0934

My x is going to be f1 cos θ - our force of friction.0939

And because we know force of friction is μ × the normal force, we can write that as f1 cos θ - μ × our normal force = ma1 our acceleration.0947

Therefore μ × the normal force must equal f1 cos θ –ma1 which implies then that μ must equal f1 cos θ –ma1/ the normal force.0970

We already determined that the normal force is mg - f1 sin θ so this implies then that μ must equal (f1 cos θ - ma1) ÷ mg - f1 sin θ.0996

Let see we now have got the part D.1029

Let us go to the next page to give ourselves some room.1031

It looks like we got some graphs to make.1034

Let us see if we can draw these in here first.1037

For part D, we are going to have a couple of graphs where we have a velocity graph and a position graph.1040

For part D, we have velocity vs. time and we have x vs. time displacement.1061

If we want to graph these from what we already know we must have a constantly increasing velocity because our object is accelerating.1073

The T graph of that if we start from rest and tells us we do must look kind of like that.1083

In our position time graph as it says, it starts at position 0 must have that shape.1092

There are our graphs for part D.1102

Part E, if the applied force is large enough the block will lose contact with the surface.1106

Derive an expression for the magnitude of the greatest acceleration the block can have and still maintain contact with the ground.1113

As we do that one, I am going to realize that when that first breaks contact with the ground, right at that point the normal force is 0.1122

The ground is no longer pushing up on it and that is going to be my condition that is going to help me figure out where this occurs.1130

If the normal force is 0 that implies them that f1 sin θ = mg or f1 is going to be equal to mg / sin (θ).1136

We also know from our f net equation that force in the x direction is going to be f1 cos θ = ma.1151

There is no friction because there is no normal force.1164

Acceleration = f1 cos θ / m.1167

We will call that equation 2 then equation 1 and as we combine them 1 and 2,1174

that means that our acceleration (A) which is f1 cos θ / m must be equal to how we replace f1 with mg / sin (θ).1182

We have mg / sin (θ).1197

We still have a cos (θ) here as well as an (m).1202

We can do a couple of simplifications m / m makes a ratio of 1.1207

Sin / cos is tan (θ).1211

I would write this as g / tan (θ).1213

There is our acceleration right when it starts to leave ground.1223

Right at the point where it is just barely touching the ground g / 10 θ.1226

Hopefully that gets you a good start on friction.1233

Thank you for watching educator.com.1236

I look forward to seeing you again soon. Make it a great day everyone.1238

Educator®

Please sign in for full access to this lesson.

Sign-InORCreate Account

Enter your Sign-on user name and password.

Forgot password?

Start Learning Now

Our free lessons will get you started (Adobe Flash® required).
Get immediate access to our entire library.

Sign up for Educator.com

Membership Overview

  • Unlimited access to our entire library of courses.
  • Search and jump to exactly what you want to learn.
  • *Ask questions and get answers from the community and our teachers!
  • Practice questions with step-by-step solutions.
  • Download lesson files for programming and software training practice.
  • Track your course viewing progress.
  • Download lecture slides for taking notes.

Use this form or mail us to .

For support articles click here.