Professor Murray

Comparison Test

Slide Duration:Table of Contents

24m 52s

- Intro0:00
- Important Equation0:07
- Where It Comes From (Product Rule)0:20
- Why Use It?0:35
- Lecture Example 11:24
- Lecture Example 23:30
- Shortcut: Tabular Integration7:34
- Example7:52
- Lecture Example 310:00
- Mnemonic: LIATE14:44
- Ln, Inverse, Algebra, Trigonometry, e15:38
- Additional Example 4-1
- Additional Example 5-2

25m 30s

- Intro0:00
- Important Equation0:07
- Powers (Odd and Even)0:19
- What To Do1:03
- Lecture Example 11:37
- Lecture Example 23:12
- Half-Angle Formulas6:16
- Both Powers Even6:31
- Lecture Example 37:06
- Lecture Example 410:59
- Additional Example 5-1
- Additional Example 6-2

30m 9s

- Intro0:00
- Important Equations0:06
- How They Work0:35
- Example1:45
- Remember: du and dx2:50
- Lecture Example 13:43
- Lecture Example 210:01
- Lecture Example 312:04
- Additional Example 4-1
- Additional Example 5-2

41m 22s

- Intro0:00
- Overview0:07
- Why Use It?0:18
- Lecture Example 11:21
- Lecture Example 26:52
- Lecture Example 313:28
- Additional Example 4-1
- Additional Example 5-2

20m

- Intro0:00
- Using Tables0:09
- Match Exactly0:32
- Lecture Example 11:16
- Lecture Example 25:28
- Lecture Example 38:51
- Additional Example 4-1
- Additional Example 5-2

22m 36s

- Intro0:00
- Trapezoidal Rule0:13
- Graphical Representation0:20
- How They Work1:08
- Formula1:47
- Why a Trapezoid?2:53
- Lecture Example 15:10
- Midpoint Rule8:23
- Why Midpoints?8:56
- Formula9:37
- Lecture Example 211:22
- Left/Right Endpoint Rule13:54
- Left Endpoint14:08
- Right Endpoint14:39
- Lecture Example 315:32
- Additional Example 4-1
- Additional Example 5-2

21m 8s

- Intro0:00
- Important Equation0:03
- Estimating Area0:28
- Difference from Previous Methods0:50
- General Principle1:09
- Lecture Example 13:49
- Lecture Example 26:32
- Lecture Example 39:07
- Additional Example 4-1
- Additional Example 5-2

44m 18s

- Intro0:00
- Horizontal and Vertical Asymptotes0:04
- Example: Horizontal0:16
- Formal Notation0:37
- Example: Vertical1:58
- Formal Notation2:29
- Lecture Example 15:01
- Lecture Example 27:41
- Lecture Example 311:32
- Lecture Example 415:49
- Formulas to Remember18:26
- Improper Integrals18:36
- Lecture Example 521:34
- Lecture Example 6 (Hidden Discontinuities)26:51
- Additional Example 7-1
- Additional Example 8-2

23m 20s

- Intro0:00
- Important Equation0:04
- Why It Works0:49
- Common Mistake1:21
- Lecture Example 12:14
- Lecture Example 26:26
- Lecture Example 310:49
- Additional Example 4-1
- Additional Example 5-2

28m 53s

- Intro0:00
- Important Equation0:05
- Surface Area0:38
- Relation to Arclength1:11
- Lecture Example 11:46
- Lecture Example 24:29
- Lecture Example 39:34
- Additional Example 4-1
- Additional Example 5-2

24m 37s

- Intro0:00
- Important Equation0:09
- Main Idea0:12
- Different Forces0:45
- Weight Density Constant1:10
- Variables (Depth and Width)2:21
- Lecture Example 13:28
- Additional Example 2-1
- Additional Example 3-2

25m 39s

- Intro0:00
- Important Equation0:07
- Main Idea0:25
- Centroid1:00
- Area1:28
- Lecture Example 11:44
- Lecture Example 26:13
- Lecture Example 310:04
- Additional Example 4-1
- Additional Example 5-2

22m 26s

- Intro0:00
- Important Equations0:05
- Slope of Tangent Line0:30
- Arc length1:03
- Lecture Example 11:40
- Lecture Example 24:23
- Lecture Example 38:38
- Additional Example 4-1
- Additional Example 5-2

30m 59s

- Intro0:00
- Important Equations0:05
- Polar Coordinates in Calculus0:42
- Area0:58
- Arc length1:41
- Lecture Example 12:14
- Lecture Example 24:12
- Lecture Example 310:06
- Additional Example 4-1
- Additional Example 5-2

31m 13s

- Intro0:00
- Definition and Theorem0:05
- Monotonically Increasing0:25
- Monotonically Decreasing0:40
- Monotonic0:48
- Bounded1:00
- Theorem1:11
- Lecture Example 11:31
- Lecture Example 211:06
- Lecture Example 314:03
- Additional Example 4-1
- Additional Example 5-2

31m 46s

- Intro0:00
- Important Definitions0:05
- Sigma Notation0:13
- Sequence of Partial Sums0:30
- Converging to a Limit1:49
- Diverging to Infinite2:20
- Geometric Series2:40
- Common Ratio2:47
- Sum of a Geometric Series3:09
- Test for Divergence5:11
- Not for Convergence6:06
- Lecture Example 18:32
- Lecture Example 210:25
- Lecture Example 316:26
- Additional Example 4-1
- Additional Example 5-2

23m 26s

- Intro0:00
- Important Theorem and Definition0:05
- Three Conditions0:25
- Converging and Diverging0:51
- P-Series1:11
- Lecture Example 12:19
- Lecture Example 25:08
- Lecture Example 36:38
- Additional Example 4-1
- Additional Example 5-2

22m 44s

- Intro0:00
- Important Tests0:01
- Comparison Test0:22
- Limit Comparison Test1:05
- Lecture Example 11:44
- Lecture Example 23:52
- Lecture Example 36:01
- Lecture Example 410:04
- Additional Example 5-1
- Additional Example 6-2

25m 26s

- Intro0:00
- Main Theorems0:05
- Alternation Series Test (Leibniz)0:11
- How It Works0:26
- Two Conditions0:46
- Never Use for Divergence1:12
- Estimates of Sums1:50
- Lecture Example 13:19
- Lecture Example 24:46
- Lecture Example 36:28
- Additional Example 4-1
- Additional Example 5-2

33m 27s

- Intro0:00
- Theorems and Definitions0:06
- Two Common Questions0:17
- Absolutely Convergent0:45
- Conditionally Convergent1:18
- Divergent1:51
- Missing Case2:02
- Ratio Test3:07
- Root Test4:45
- Lecture Example 15:46
- Lecture Example 29:23
- Lecture Example 313:13
- Additional Example 4-1
- Additional Example 5-2

38m 36s

- Intro0:00
- Main Definitions and Pattern0:07
- What Is The Point0:22
- Radius of Convergence Pattern0:45
- Interval of Convergence2:42
- Lecture Example 13:24
- Lecture Example 210:55
- Lecture Example 314:44
- Additional Example 4-1
- Additional Example 5-2

30m 18s

- Intro0:00
- Taylor and Maclaurin Series0:08
- Taylor Series0:12
- Maclaurin Series0:59
- Taylor Polynomial1:20
- Lecture Example 12:35
- Lecture Example 26:51
- Lecture Example 311:38
- Lecture Example 417:29
- Additional Example 5-1
- Additional Example 6-2

50m 50s

- Intro0:00
- Main Formulas0:06
- Alternating Series Error Bound0:28
- Taylor's Remainder Theorem1:18
- Lecture Example 13:09
- Lecture Example 29:08
- Lecture Example 317:35
- Additional Example 4-1
- Additional Example 5-2

For more information, please see full course syllabus of College Calculus: Level II

# College Calculus: Level II Comparison Test

Section 4: Sequences and Series: Lecture 4 | 22:44 min

In this video se are going to talk about the Comparison Test. The way this works is that we will be given a series that we are going to call an, and we create our own series that we will call bn. Then we will try to compare these two series to each other. So, first, we are going to talk about how to determine when the given series converges and when it diverges using the Comparison Test. We will see some examples that illustrate what happens when the test goes the right way and the wrong way. Then we are going to talk about second test called the Limit Comparison Test and see how it works.

## Share this knowledge with your friends!

## Copy & Paste this embed code into your website’s HTML

Please ensure that your website editor is in text mode when you paste the code.(In Wordpress, the mode button is on the top right corner.)

- - Allow users to view the embedded video in full-size.

*Since this lesson is not free, only the preview will appear on your website.*

1 answer

Last reply by: Dr. William Murray

Thu Aug 4, 2016 6:02 PM

Post by Peter Ke on July 30, 2016

For example 3, why can't we go straight to testing if the exponent is bigger than or less than 1 instead of wasting time doing the limit comparison test?

1 answer

Last reply by: Dr. William Murray

Thu Apr 24, 2014 6:18 PM

Post by Brandyn Albrecht on April 22, 2014

Quick question. taking an/bn is just to figure out if the series are similar or whatever in terms of divergence, but for example 1 just to double check I took (1/n+1)/1/n and got n/(n+1) which converges to 1, which is a positive real number, which means an and bn should act similarly right? But they don't because an is smaller than bn, so does the an/bn approach only work for more confusing questions like example 3, and not for all questions in general?

3 answers

Last reply by: Dr. William Murray

Tue Dec 17, 2013 9:09 PM

Post by Xenia Jeanty on November 30, 2013

lecture example 3 why is sqrt n/n same as 1/sqrt n? Can you please explain how did we get there?

1 answer

Last reply by: Dr. William Murray

Tue Aug 13, 2013 5:24 PM

Post by charles daniel on July 24, 2013

lecture example 3 in the denominator n/n^2 should be equal to zero ..right?..why is it equal to one

1 answer

Last reply by: Dr. William Murray

Tue Aug 13, 2013 5:21 PM

Post by charles daniel on July 24, 2013

lecture example 3 .. how is the bn of root(2n+17)/n become root n/n

1 answer

Last reply by: Dr. William Murray

Tue Apr 16, 2013 8:27 PM

Post by Alena Schwartsman on April 14, 2013

Thank you Dr. Murray, concise and to the point. I like how you repeat the test's requirements with every example; easier to memorize the tests this way. Overall, I love how you explain things! Thank you again!

1 answer

Last reply by: Dr. William Murray

Wed Apr 3, 2013 6:43 PM

Post by Rohail Tariq on April 1, 2013

cool

1 answer

Last reply by: Dr. William Murray

Wed Apr 3, 2013 6:42 PM

Post by Ahmad Alshammari on September 13, 2011

why you put .. 3^(n-2) !!

1 answer

Last reply by: Dr. William Murray

Wed Apr 3, 2013 6:34 PM

Post by Srinivasa Rao RAVELLA on April 14, 2011

how would you should tan(1/x) is convergent with the limit comparison test

1 answer

Last reply by: Dr. William Murray

Wed Apr 3, 2013 6:26 PM

Post by Romin Abdolahzadi on April 4, 2011

Regarding the limit comparison test: If the limit is equal to 0, then if Bn converges then An also converges!