Calculus AB AP Calculus AB Practice test: Section 1: Multiple Choice Part 1
Section 7: Sample AP Test: Lecture 1 | 17:50 min
In this lesson, Professor John Zhu gives an introduction to the AP Practice Test: Section 1, Multiple Choice, Part 1. He works through the first several questions for you.


John Zhu
AP Calculus AB Practice test: Section 1: Multiple Choice Part 1
Slide Duration:Table of Contents
11m 26s
- Intro0:00
- Definition0:28
- Properties: Vertical Line Test1:32
- Domain1:38
- Range1:59
- Vertical Line test2:19
- Example 12:33
- Example 23:10
- Properties: Roots or Zeros4:04
- Finding the Root4:16
- Properties: Forms5:12
- Graphically5:20
- List5:46
- Equation6:11
- Function6:38
- Properties: Odd & Even7:12
- Even Function7:14
- Odd Function8:25
- Properties: Increasing & Decreasing9:17
- Increasing Function9:22
- Decreasing Function10:21
13m 58s
- Intro0:00
- Manipulating0:10
- A in the Equation0:39
- B in the Equation0:44
- C & D in the Equation0:49
- Negative values0:59
- Example 11:17
- Example 21:51
- Example 3: Absolute Value Functions3:43
- Example 44:57
- Example 56:17
- Example 68:02
- Example 79:10
- Example 811:02
- Example 911:47
6m 47s
- Intro0:00
- Inverse0:08
- Definition0:18
- Example: Finding the Inverse1:03
- Example 22:29
- Example 33:12
- Example 44:41
5m 4s
- Intro0:00
- Types of Functions: Polynomials0:07
- No Domain Restrictions0:12
- No Discontinuities0:19
- Degree Test0:31
- Types of Functions: Polynomials1:17
- Leading Coefficient Test1:33
- Leading Coefficient Positive, Even Degree1:54
- Leading Coefficient Positive, Odd Degree2:13
- Leading Coefficient Negative Even Degree2:34
- Leading Coefficient Positive, Odd Degree2:46
- Examples: Types of Functions: Polynomials3:03
- Examples: Types of Functions: Polynomials4:18
6m 45s
- Intro0:00
- Types of Functions: Trigonometric0:05
- 6 Functions To Be Familiar With0:14
- Example 1: SIN1:38
- Example 2: COS3:22
- Example 3: TAN4:38
5m 58s
- Intro0:00
- Types of Functions: Trigonometric- Inverse Trig Functions0:07
- Example: Inverse SIN of X0:45
- Example: Inverse Function2:30
- Example: Inverse TAN of X4:42
17m 42s
- Intro0:00
- Types of Functions: Trigonometric- Trig Identities0:07
- 4 Identities0:24
- Pythagorean0:28
- Double Angle1:10
- Power Reducing1:28
- Sum or Difference1:42
- Couple More Identities1:59
- Negative Angle2:04
- Product to Sum2:39
- Example 1: Prove3:00
- Example 2: Simplify Expression5:02
- Example 3: Prove5:56
- Example 4: Prove8:02
- Example 5: Prove With TAN12:43
5m 53s
- Intro0:00
- Types of Functions: Exponentials0:07
- General Form0:10
- Special Exponential Function0:17
- Example 1: Using Exponential Properties0:46
- Example 2: Using Exponential Properties1:58
- Example 3: Using Trig Identities & Exponential Properties3:16
- Example 4: Using Exponential Properties4:37
7m 8s
- Intro0:00
- Types of Functions: Logarithmic0:06
- General Form0:10
- 2 Special Logarithmic Func.0:19
- Euler's # / Natural Log0:27
- Logarithmic & Exponential Relationship0:45
- Log form1:56
- Properties2:09
- Example 1: Apply Basic Principle of Log Func.3:05
- Example 2: Use Properties3:40
- Example 3: Regular Log5:16
15m 36s
- Intro0:00
- Types of Functions: Rational - Definition0:06
- Example 1: Graph Rational Func.0:36
- Example 2: Find Asymptotes of Func.7:02
- Example 3: Find Asymptotes of Func.8:59
- Example 4: Graph Rational Func.11:08
14m 58s
- Intro0:00
- Types of Conic Sections0:06
- Parabolas0:19
- Circles1:36
- Ellipses2:40
- Hyperbolas4:42
- Complete the Square6:40
- Example: Conic Sections9:08
- Example 2: Conic Sections10:59
- Example 3: Graph Conic Sections12:21
7m 15s
- Intro0:00
- Definition0:06
- Example: Limit0:17
- Properties1:13
- 1st Property1:21
- 2nd Property1:34
- Special Property1:51
- Limits2:36
- Explain Example2:49
- Limits Example4:39
- Limits Example5:21
8m 1s
- Intro0:00
- Solving Limits with Algebra0:07
- Example 1: Solve Algebraically0:30
- Solving Limits with Algebra, Example 22:28
- Solving Limits with Algebra, Example 33:18
- Solving Limits with Algebra, Example 44:56
- Solving Limits with Algebra, Example 56:26
3m 16s
- Intro0:00
- Rational Limit Rules0:07
- Review of Solving Problem Algebraically0:08
- Limit Rules0:28
- Rule 10:35
- Rule 20:40
- Rule 30:45
- Rational Limit Rules1:02
- Applying 1st Rule1:22
- Rational Limit Rules1:50
- Applying 2nd Rule2:09
- Rational Limit Rules2:26
- Applying 3rd Rule2:40
9m 57s
- Intro0:00
- Types of Limits: One-Sided Limit Rules0:06
- Example0:19
- Applying Same Rule0:34
- Rule to Keep In Mind0:52
- Types of Limits: One-Sided Limit Example 11:12
- Limit of x² From Negative Side2:11
- Types of Limits: One-Sided Limit, Example 22:27
- Types of Limits: One-Sided Limit, Example 34:26
- Types of Limits: One-Sided Limit, Example 45:47
- One-Sided Limit Example: X with Even Degree Polynomial7:00
- One-Sided Limit Example: Entire Denominator Squared8:09
8m 28s
- Intro0:00
- Types of Limits: Special Trig Limits0:07
- Pre-set Rules0:35
- Special Trig Limits, Example 10:58
- Special Trig Limits, Example 22:50
- Special Trig Limits, Example 33:55
- Special Trig Limits, Example 4: With More Degrees4:57
- Special Trig Limits, Example 56:21
10m 14s
- Intro0:00
- Definition0:06
- 3 Rules: f(x) Is Continuous…0:21
- Example 1: Finding Continuity1:06
- Types of Discontinuity2:44
- Jump2:52
- Point3:24
- Essential (Asymptote)3:47
- Removable4:17
- Example 2: Continuity Examples4:41
- Example 3: Continuity Examples6:13
- Example 4: Locate & Identify Type of Discontinuities8:00
6m 16s
- Intro0:00
- Problem 10:08
- Problem 21:51
- Problem 32:54
- Problem 44:31
4m 11s
- Intro0:00
- Definition0:09
- Formal Definition0:45
- Difference Quotient1:12
- Basic Derivatives1:16
- Differentiability2:54
7m 7s
- Intro0:00
- Basic Rules of Differentiation0:09
- Constant Rule0:14
- Constant Multiple Rule1:10
- Addition and Difference Rule1:40
- Example 1: Constant Rule2:25
- Example 2: Constant Multiple Rule3:01
- Example 3: Constant Multiple Rule3:35
- Example 4: Constant Rule4:34
- Example 5: Constant Multiple Rule5:03
- Example 65:33
7m 14s
- Intro0:00
- Power Rule0:07
- Power Rule Definition0:30
- Example 11:11
- Example 22:25
- Example 33:05
- Example 44:18
- Example 55:13
7m 53s
- Intro0:00
- Trigonometric Rules0:07
- COS X0:38
- Find Derivative1:02
- Example 12:46
- Example 2: COS Function3:09
- Example 3: Composite Expression3:54
- Example 4: Sec Function5:02
- Example 5: CSC5:33
- Example 6L COT6:42
11m 11s
- Intro0:00
- Product Rule0:07
- Definition0:20
- Example 10:43
- Example 22:11
- Example 34:24
- Example 45:24
- Example 56:42
- Example 67:51
16m 50s
- Intro0:00
- Quotient Rule0:07
- Definition0:30
- Example 11:17
- Example 2: With No X In Numerator2:49
- Example 34:30
- Example 4: With Decimals6:46
- Example 58:53
- Example 6: With Trig Functions12:55
19m 48s
- Intro0:00
- Chain Rule0:07
- Definition0:17
- Example 1: Applying the Chain Rule1:33
- Example 24:25
- Example 36:02
- Example 49:25
- Example 512:47
- Example 615:27
15m
- Intro0:00
- Types of Derivatives: Higher Order Derivatives0:07
- 1st Derivative / F Prime0:19
- 2nd Derivative0:25
- 3rd Derivative0:32
- Example 11:48
- Example 2: Find 3rd Derivative3:13
- Example 3: Acceleration4:25
- Example 410:20
- Example 5: 2nd Derivative12:11
13m 14s
- Intro0:00
- Types of Derivatives: Exponential Functions0:08
- Derivatives: Definition/ Formula0:28
- Example 11:25
- Example 22:47
- Example 34:13
- Example 47:11
- Example 59:23
- Example 611:06
11m 30s
- Intro0:00
- Types of Derivatives: Logarithmic Functions0:06
- Rule for Logarithmic Functions0:28
- Example 10:58
- Example 23:10
- Example 34:38
- Example 47:18
- Example 58:48
- Example 69:38
16m 54s
- Intro0:00
- Types of Derivatives: Inverse Trigonometric Functions0:06
- 6 Fundamental Properties of Inverse Trigonometric Functions0:38
- Example 12:17
- Example 23:41
- Example 35:37
- Example 47:24
- Example 510:08
16m 53s
- Intro0:00
- Implicit Differentiation: First Order0:07
- Example 1: Setting Up0:45
- Example 1: Solving1:41
- Implicit Differentiation: Second Order (Ex. 2)4:55
- Example 3: Implicit Differentiation9:11
- Example 4: Implicit Differentiation9:56
- Example 5: Implicit Differentiation With Double Derivative12:46
11m 7s
- Intro0:00
- Practice Problem 10:09
- Answer3:24
- Practice Problem 23:36
- Answer6:29
- Practice Problem 36:42
- Answer8:39
- Practice Problem 48:43
- Answer9:33
- Practice Problem 59:41
- Answer10:40
22m 36s
- Intro0:00
- Tangent and Normal Lines0:10
- Definition0:22
- Example 10:55
- Tangent and Normal Lines: Example 22:43
- Tangent and Normal Lines5:21
- Example 35:35
- Tangent and Normal Lines: Example 49:14
- Tangent and Normal Lines: Example 512:27
- Tangent and Normal Lines: Example 615:54
- Tangent and Normal Lines: Example 719:05
18m 42s
- Intro0:00
- Position, Velocity, and Acceleration0:10
- Position Function0:14
- Velocity Function0:34
- Acceleration Function1:01
- Example 11:20
- Example 26:31
- Example Continue: Velocity When Acceleration is Zero6:32
- Example 3: Where Is Particle Changing Directions?8:16
- Example 4: Total Distance Traveled From 0 to 2 Second11:09
- Example 5: Ball Drop Problem16:40
26m 22s
- Intro0:00
- Related Rates0:06
- Finding Rate of Change: Organization & Big Picture0:23
- Example 2: Area of a Circle1:17
- Example 3: Spherical Volume Expanding4:19
- Example 4: Traveling Problem7:57
- Example 5: Square Increase12:37
- Example 6: Standard Related Rates Problem16:59
- Example 7: Standard Related Rates Problem19:49
12m 22s
- Intro0:00
- Extrema: First Derivative Test0:09
- Example 10:46
- Example 2: Real World Application/ Cost Function4:05
- Example 3: Minimums & Maximums7:10
- Example 4: Find Critical Points10:52
11m 43s
- Intro0:00
- Concavity: Second Derivative Test0:06
- Definition0:34
- Example 10:54
- Example 22:51
- Example 34:08
- Example 45:52
8m 28s
- Intro0:00
- Rolle's Theorem0:07
- Conditions0:11
- Summary0:41
- Example 11:09
- Example 23:08
- Example 34:48
9m 39s
- Intro0:00
- Mean Value Theorem0:06
- Rolle's Theorem0:07
- Mean Value Theorem Conditions0:24
- Mean Value Theorem Definition0:36
- Example 10:56
- Example 22:44
- Example 35:28
- Example 47:15
12m 25s
- Intro0:00
- Differentials0:08
- 1st Differential Formula0:29
- 2nd Differential Formula0:57
- Example 11:06
- Example 23:21
- Example 35:49
- Example 47:19
- Example 59:06
13m 21s
- Intro0:00
- Practice Problem 10:10
- Answer1:57
- Practice Problem 22:08
- Answer5:39
- Practice Problem 35:45
- Answer9:59
- Practice Problem 410:12
- Answer11:49
- Practice Problem 511:52
- Answer13:00
10m 22s
- Intro0:00
- Practice Problem 10:10
- Slope1:30
- Tangent Line Equation2:17
- Absolute Minimum2:24
- 2 Possible X Points With Minimums3:15
- One Interest Point4:14
- Concavity4:33
- Positive Value = Positive Concavity4:10
- Minimum Point5:34
- Absolute Minimum6:18
- Point(s) of Inflection6:31
- Definition6:49
- 2 Points Of Inflection9:59
1m 8s
- Intro0:00
- Definition0:09
- Definition0:16
- Example0:20
8m 50s
- Intro0:00
- Power Rule0:06
- Example 10:25
- Example 22:02
- Example 32:54
- Example 43:45
- Example 54:49
- Example 66:47
9m 43s
- Intro0:00
- Basic Rules of Integration0:09
- Constant Rule0:22
- Example 10:40
- Addition and Difference Rule1:40
- Example 21:58
- Example 3: Subtraction/ Difference Rule2:47
- Example 43:55
- Example 55:19
- Example 67:37
8m 58s
- Intro0:00
- Trigonometric Rules0:09
- Integral of SIN0:38
- Example 1: Integral of SIN1:46
- Example 2: Integral of COS2:38
- Example 3: With 2 terms of X3:06
- Example 4: Integral of SEC4:15
- Example 5: Integral of CSC5:06
- Example 66:18
13m 59s
- Intro0:00
- Chain Rule0:07
- Example 10:37
- Example 23:17
- Example 35:09
- Example 47:53
- Example 59:40
- Example 611:39
12m 52s
- Intro0:00
- Types of Integrals: Exponential Functions0:09
- Rule 10:30
- Rule 20:49
- Example 11:11
- Example 22:54
- Example 34:19
- Example 45:19
- Example 57:37
- Example 69:04
13m
- Intro0:00
- Types of Integrals: Natural Log Functions0:09
- Example 10:49
- Example 22:06
- Example 34:01
- Example 45:37
- Example 57:30
- Example 69:05
8m 29s
- Intro0:00
- Types of Integrals: Inverse Trig Functions0:09
- One Property0:40
- Example 11:19
- Example 23:44
- Example 34:53
- Example 45:53
15m 37s
- Intro0:00
- Problem 10:09
- Answer4:09
- Problem 24:33
- Answer5:54
- Problem 35:59
- Answer8:02
- Problem 48:06
- Answer10:27
- Problem 510:43
- Answer14:46
15m 55s
- Intro0:00
- Fundamental Theorem of Calculus: Properties0:10
- Definition of Integral0:49
- Example 11:14
- Fundamental Theorem of Calculus: Properties2:40
- Rule 12:50
- Rule 23:14
- Rule 33:33
- Rule 43:52
- Example 24:07
- Example 36:17
- Example 49:31
- Example 510:52
- Example 613:34
18m 34s
- Intro0:00
- Area Under Curve0:07
- Definition of Integral0:09
- Left Endpoint1:17
- Right Endpoint1:47
- Midpoints2:09
- Example 12:40
- Example 24:59
- Example 38:48
- Example 410:23
- Example 512:30
- Example 615:32
10m 35s
- Intro0:00
- Reimann Sums0:08
- Definition1:07
- Example 12:48
- Example 25:38
- Example 37:21
- Example 49:14
12m 46s
- Intro0:00
- The Trapezoid Rule0:09
- Definition: Area Of A Trapezoid0:26
- Terms of Formula1:35
- Example 12:11
- Example 24:29
- Example 37:22
- Example 410:01
11m 22s
- Intro0:00
- Mean Value Theorem of Integration0:06
- Example 10:53
- Example 22:29
- Example 33:48
- Example 46:02
4m 44s
- Intro0:00
- Second Fundamental Theorem of Calculus0:07
- Definition0:39
- Example 11:08
- Example 22:07
- Example 32:48
- Example 43:23
16m 39s
- Intro0:00
- Example 10:10
- Example 23:00
- Example 34:46
- Example 48:22
- Example 511:04
- Example 613:09
21m 9s
- Intro0:00
- Revolving Solids Washer Disk Methods0:11
- Explanation0:33
- Formula3:12
- Example 13:42
- Example 26:54
- Example 39:29
- Example 412:16
- Example 515:35
26m 46s
- Intro0:00
- Revolving Solids: Cylindrical Shells Method0:09
- Volume Of A Solid0:25
- Formula2:51
- Example 12:56
- Example 27:28
- Example 311:39
- Example 417:36
- Example 521:45
27m 41s
- Intro0:00
- Revolving Solids Known Cross Sections0:08
- Example 10:35
- Example 26:01
- Example 311:03
- Example 417:29
- Example 522:19
17m 54s
- Intro0:00
- Differential Equations0:08
- Example 10:30
- Differential Equations: Euler's Method2:33
- Rules2:39
- Example 23:00
- Example 35:42
- Example 49:44
- Example 514:14
16m 30s
- Intro0:00
- Slope Fields0:08
- What Are Slope Fields0:21
- Example 10:42
- Example 26:30
- Example 311:17
14m 19s
- Intro0:00
- Practice Problem 10:10
- Answer3:46
- Practice Problem 23:49
- Answer6:20
- Practice Problem 36:26
- Answer8:02
- Practice Problem 48:07
- Answer10:58
- Practice Problem 511:05
- Answer14:06
9m 14s
- Intro0:00
- Problem 10:10
- Part A0:24
- Part A: Solution2:04
- Part B2:10
- Problem 1, Part B Continue2:23
- Part B: Solution6:15
- Problem 1, Part C6:58
- Part C: Solution12:40
- Problem 212:52
- Part A13:02
- Part A: Solution15:34
- Part B16:03
- Part B: Solution18:48
17m 50s
- Intro0:00
- Problem 10:20
- Problem 21:24
- Problem 32:53
- Problem 43:56
- Problem 58:18
- Problem 69:06
- Problem 710:14
- Problem 812:16
- Problem 914:13
17m 32s
- Intro0:00
- Problem 100:18
- Problem 112:26
- Problem 126:11
- Problem 137:04
- Problem 148:06
- Problem 1510:32
- Problem 1611:40
- Problem 1713:00
- Problem 1814:43
22m 14s
- Intro0:00
- Problem 190:21
- Problem 202:33
- Problem 217:23
- Problem 2210:24
- Problem 2312:18
- Problem 2413:13
- Problem 2515:52
- Problem 2617:03
- Problem 2719:44
19m 35s
- Intro0:00
- Problem 280:23
- Problem 293:50
- Problem 305:31
- Problem 319:02
- Problem 3210:07
- Problem 3311:27
- Problem 3413:47
- Problem 3515:21
- Problem 3616:53
25m 43s
- Intro0:00
- Problem 370:22
- Problem 382:27
- Problem 395:36
- Problem 407:21
- Problem 4110:08
- Problem 4211:29
- Problem 4313:07
- Problem 4418:18
- Problem 4521:08
16m 50s
- Intro0:00
- Problem 1, Part A0:20
- Problem 1, Part B3:03
- Problem 1, Part C4:11
- Problem 1, Part D5:36
- Problem 2, Part A7:37
- Problem 2, Part B9:02
- Problem 2, Part C12:31
21m 36s
- Intro0:00
- Problem 3, Part A0:18
- Problem 3, Part B5:57
- Problem 4, Part A11:26
- Problem 4, Part B12:28
- Problem 4, Part C15:35
- Problem 4, Part D18:56
13m 39s
- Intro0:00
- Problem 5, Part A0:21
- Problem 5, Part B3:07
- Problem 5, Part C6:43
- Problem 68:24
For more information, please see full course syllabus of Calculus AB
0 answers
Post by fatih kilinc on November 12, 2015
where are the questions?
1 answer
Last reply by: Arshin Jain
Tue Jul 1, 2014 11:18 PM
Post by Oguzhan Yabici on May 7, 2013
I cant get the questions to download. :/
0 answers
Post by Sheri Kuo on February 16, 2013
where can we get the question part of the exam?
Is this an old exam?
0 answers
Post by James Xie on August 27, 2012
#8
(d^2y)/(dx^2) < 0, not >