Start learning today, and be successful in your academic & professional career. Start Today!

Loading video...

## Discussion

## Study Guides

## Practice Questions

## Download Lecture Slides

## Table of Contents

## Related Books

### Dividing Monomials

- To divide one monomial by another one, use the following properties of exponents:
- a
^{m}÷ a^{n}= a^{m–n}, (a ÷ b)^{m}= a^{m}÷ b^{m}, a^{0}= 1 for any nonzero number a, and a^{–n}= 1 ÷ a^{n}for any nonzero number a. - An expression is in
*simplified form*if it has only positive exponents. - You will often be asked to convert a given expression into simplified form

### Dividing Monomials

[(15x

^{7}y^{4}z^{5})/(51x^{4}y^{3}z^{2})]- [5/17]x
^{7 − 4}y^{4 − 3}z^{5 − 2}

[5/17]x

^{3}yz^{3}[(20x

^{5}y^{6}z^{9})/(48x^{3}y^{4}z^{6})][5/12]x

^{2}y^{2}z^{3}[(13a

^{8}b^{9}c^{14})/(39a^{5}b^{7}c^{10})][1/3]a

^{3}b^{2}c^{4}( [(4j

^{5}k^{6}l^{7})/(16j^{2}k^{4}l^{0})] )^{3}- l
^{0}= 1( [(1j^{5 − 2}k^{6 − 4}l^{7})/(4 ×1)] )^{3} - ( [(j
^{3}k^{2}l^{7})/4] )^{3} - [(( j
^{3})^{3}( k^{2})^{3}( l^{7})^{3})/4]

[(j

^{9}k^{6}l^{21})/4]( [(14j

^{4}k^{8}l^{22})/(21j^{2}k^{5}l^{15})] )^{2}- ( [(2j
^{4 − 2}k^{8 − 5}l^{22 − 15})/3] )^{2} - ( [(2j
^{2}k^{3}l^{7})/3] )^{2} - [(( 2 )
^{2}( j^{2})^{2}( k^{3})^{2}( l^{7})^{2})/3]

[(4j

^{4}k^{6}l^{14})/3]( [(60a

^{7}b^{11}c^{13})/(12a^{4}b^{6}c^{5})] )^{4}- ( [(5a
^{7 − 4}b^{11 − 6}c^{13 − 5})/1] )^{4} - ( [(5a
^{3}b^{5}c^{8})/1] )^{4} - ( 5a
^{3}b^{5}c^{8})^{4} - 5
^{4}( a^{3})^{4}( b^{5})^{4}( c^{8})^{4}

625a

^{12}b^{20}c^{32}[(x

^{ − 4}y^{3}z^{ − 6})/(x^{5}y^{ − 4}z^{ − 2})]- x
^{ − 4 − 5}y^{3 − ( − 4)}z^{ − 6 − ( − 2)} - x
^{ − 9}y^{7}z^{ − 4} - a
^{ − n}= [1/(a^{n})]

[(y

^{6})/(x^{9}z^{4})][(x

^{ − 7}y^{ − 9}z^{11})/(x^{4}y^{ − 6}z^{ − 3})]- x
^{ − 7 − 4}y^{ − 9 − 6}z^{11 − 3} - x
^{ − 11}y^{ − 15}z^{8}

[(z

^{8})/(x^{11}y^{15})][(a

^{ − 6}b^{ − 17}c^{25}d^{31})/(a^{ − 5}b^{8}c^{ − 11}d^{10})]- a
^{ − 6 − ( − 5)}b^{ − 17 − 8}c^{25 − ( − 11)}d^{31 − 10} - a
^{ − 1}b^{ − 25}c^{36}d^{21}

[(c

^{36}d^{21})/(ab^{25})]( [(4r

^{ − 2}s^{3}t^{5})/(5r^{5}s^{ − 6}t^{ − 7})] )^{ − 2}- ( [(4r
^{ − 2 − 5}s^{3 − ( − 6)}t^{5 − ( − 7)})/5] )^{ − 2} - ( [(4r
^{ − 7}s^{9}t^{12})/5] )^{ − 2} - ( [(4s
^{9}t^{12})/(5r^{7})] )^{ − 2} - [(( 4s
^{9}t^{12}))/(( 5r^{7})^{ − 2})]^{ − 2} - [(4
^{ − 2}s^{ − 18}t^{ − 24})/(5^{ − 2}r^{ − 14})] - [(5
^{2}r^{14})/(4^{2}s^{18}t^{24})]

[(25r

^{14})/(16s^{18}t^{24})]*These practice questions are only helpful when you work on them offline on a piece of paper and then use the solution steps function to check your answer.

Answer

### Dividing Monomials

Lecture Slides are screen-captured images of important points in the lecture. Students can download and print out these lecture slide images to do practice problems as well as take notes while watching the lecture.

- Intro 0:00
- Properties of Exponents 0:05
- Dividing with Same Base 0:15
- Example
- Quotient Raised to Power 2:22
- Example
- Raising to 0 Power 4:00
- Example
- Negative Exponents 5:45
- Example
- Example 1: Simplify the Monomial 7:33
- Example 2: Simplify the Monomial 14:56
- Example 3: Simplify the Monomial 13:30
- Example 4: Simplify the Monomial 17:35

1 answer

Last reply by: Dr Carleen Eaton

Tue Aug 2, 2016 10:49 PM

Post by Catherine MOLAKAL on July 27, 2016

i mean in example 2

0 answers

Post by Catherine MOLAKAL on July 27, 2016

in example 1, wont z be 2-1= 1 and in the end multiplied into 3

so z^3

1 answer

Last reply by: Dr Carleen Eaton

Fri Nov 4, 2011 4:45 PM

Post by Jonathan Taylor on November 3, 2011

Z SQUARE 2-1