Enter your Sign on user name and password.

Forgot password?
Sign In | Subscribe
Start learning today, and be successful in your academic & professional career. Start Today!

Use Chrome browser to play professor video
Summer Ebs

Summer Ebs

Properties of Matter

Slide Duration:

Table of Contents

I. Chemistry
Properties of Matter

30m 50s

Intro
0:00
Matter
0:07
Matter
0:08
Substance, Element, and Compound
0:47
Homogeneous and Heterogeneous Mixture
1:47
Suspension, Colloid, and Solution
3:16
Physical Properties
5:25
Appearance: Color, Shape, Size, Density, and State of Matter
5:26
Behavior: Viscosity, Magnetism, Malleability, and Ductility
8:00
Physical Changes
10:29
Physical Changes
10:30
Chemical Properties
14:38
Chemical Properties
14:39
Chemical Changes
16:35
Chemical Changes
16:36
Signs of Chemical Change
16:55
Example 1: Identify the Mixtures Listed
19:21
Example 2: Physical or Chemical Change?
23:38
Example 3: How Can You Separate a Mixture of Sand, Gravel, Iron, Filings, Salt, and Water?
25:04
Example 4: Physical/Chemical Property and Change
27:27
Energy

53m 22s

Intro
0:00
Energy
0:03
Energy Overview
0:04
Potential Energy
1:48
Potential Energy
1:49
Mechanical (Elastic) Potential Energy
1:54
Chemical Potential Energy
3:15
Nuclear Energy
4:06
Gravitational Potential Energy
4:43
Kinetic Energy
7:34
Kinetic Energy
7:35
Thermal Energy
8:03
Radiant Energy
8:57
Electrical Energy
9:47
Sound
10:17
Motion
10:54
Kinetic Energy: Example
11:31
Law of Conservation of Energy
12:47
Law of Conservation of Energy
12:48
Electrical to Radiant
13:21
Chemical to Thermal
14:34
Potential to Kinetic
15:10
Friction
18:48
Energy Resources
20:06
Nonrenewable: Fossil Fuels
20:51
Nonrenewable: Nuclear
21:56
Renewable: Solar
26:50
Renewable: Wind
29:22
Renewable: Tidal
31:10
Renewable: Hydroelectric
32:30
Renewable: Geothermal
35:24
Example 1: Gravitational Potential Energy
38:40
Example 2: Kinetic Energy
42:20
Example 3: Maximum and Minimum Potential and Kinetic Energy
44:48
Example 4: Should We Use Renewable or Nonrenewable Resources to Generate Electricity?
46:31
Heat and States of Matter

48m 48s

Intro
0:00
Temperature
0:04
Temperature
0:05
Fahrenheit to Celsius
2:15
Celsius to Fahrenheit
4:29
Kelvins to Celsius and Celsius to Kelvins
5:50
Thermal Energy
8:06
Thermal Energy, Kinetic Energy, and Potential Energy
8:07
Changing Thermal Energy: Temperature
9:11
Changing Thermal Energy: State of Matter
9:37
Changing Thermal Energy: Amount of Matter
10:12
Heat
10:59
Heat
11:00
Specific Heat
12:21
Transfer of Thermal Energy
15:15
Conduction
15:16
Convection
16:43
Radiation
19:57
States of Matter
20:43
Solids: Arrangement of Atoms, Shape, Volume, and Molecular Motion
21:35
Liquids: Arrangement of Atoms, Shape, Volume, and Molecular Motion
23:49
Gases: Arrangement of Atoms, Shape, Volume, and Molecular Motion
25:33
Plasma: Arrangement of Atoms, Shape, Volume, and Molecular Motion
27:02
Changing States of Matter
27:49
Melting
27:50
Freezing
28:15
Vaporization
29:04
Boiling
29:17
Condensation
31:21
Temperature and Time Graph
32:18
Thermal Expansion
36:19
Thermal Expansion of Solids
37:16
Thermal Expansion of Liquids
38:17
Thermal Expansion of Gases
39:46
Example 1: Converting Temperatures
40:28
Example 2: Thermal Energy
43:35
Example 3: Quick Matching
44:58
Example 4: Why Does It Feel Cold When You Put Your Hand On the Table?
45:50
Example 5: Heat Transfer
46:48
Example 6: Changing States of Matter
47:29
Atoms and Elements

30m 12s

Intro
0:00
Atoms
0:05
Atoms
0:06
Atomic Structure
1:01
Electron Cloud
1:02
Nucleus, Protons, and Neutrons
1:43
Quarks
2:07
Protons, Neutrons, Electrons
2:40
Protons, Neutrons, Electrons: Location
2:42
Protons, Neutrons, Electrons: Electric Charge
3:05
Examples
4:10
Electron Configuration
5:32
Electron Configuration
5:33
Elements
12:22
Atomic Number
13:05
Carbon
13:15
Oxygen
14:49
Important Elements for Living Things
16:25
Isotopes
17:04
Isotopes
17:05
Example 1: Atomic Structure and Electrical Charge
21:16
Example 2: Electron Configuration
23:13
Example 3: Electron Configuration
24:57
Example 4: Use the Periodic Table to Complete the Table Below
26:08
Periodic Table

47m 23s

Intro
0:00
Periodic Table
0:06
Atomic Number, Chemical Symbol, and Atomic Mass
0:07
Groups and Periods
4:14
Groups and Periods
4:15
Electron Dot Diagrams
10:05
Electron Dot Diagrams
10:06
Ion Formation
19:09
An Ion Forms When an Atom Gains or Loses Electrons
19:10
A Positive Ion Forms When an Atom Loses and Electron
20:25
A Negative Ion Forms When an Atom Gains an Electron
26:49
Oxidation Numbers
28:51
Oxidation Numbers
28:52
Metals, Nonmetals, Metalloids
34:52
Metals, Nonmetals, Metalloids
34:53
Example 1: Group and Period
37:39
Example 2: Electron Dot Diagrams
39:50
Example 3: How do Fluorine and Calcium Become Ions?
42:10
Example 4: What Are 2 Ways to Find the Oxidation Number of Sodium?
44:58
Chemical Bonding, Part I

51m 6s

Intro
0:00
Chemical Bonds Form Compounds
0:17
Atoms and Electrons
0:18
H2O
2:14
HCl
3:36
C6H12O6
4:16
Ca(NO3)2
5:06
Review: Dot Diagrams
7:10
Review: Ion Formation
8:30
Ionic Bond
9:57
Ionic Bond
9:58
Sodium and Fluorine
10:41
Magnesium and Chlorine
16:30
Covalent Bond
22:19
Covalent Bond
22:20
Hydrogen and Carbon
23:58
Hydrogen and Oxygen
27:28
Multiple Covalent Bonds
29:03
Single Covalent Bond
29:04
Double Covalent Bond
29:40
Triple Covalent Bond
31:50
Polar and Nonpolar Molecules
33:33
Polar Molecules
33:34
Unequal sharing of Electrons and Electronegativities
35:02
Nonpolar Molecules
37:46
Example 1: Elements and Atoms
38:42
Example 2: Dot Diagram of the Bond That Forms Between Magnesium and Oxygen
41:17
Example 3: Dot Diagram of the Bond That Forms Between Nitrogen and Oxygen
45:24
Example 4: Polar or Nonpolar?
47:22
Chemical Bonding, Part 2

56m 22s

Intro
0:00
Bonding Atoms Make Compounds
0:05
Binary Compounds
0:06
Reviwew: Oxidation Number
1:14
Naming Ionic Compounds
1:45
Naming Ionic Compounds
1:46
NaCl
2:26
MgCl2
5:04
Al2S3
6:52
Writing Formulas of Ionic Compounds
10:03
Writing Formulas of Ionic Compounds
10:04
Beryllium Fluoride
10:17
Lithium Nitride
12:24
Calcium Bromide
13:53
Polyatomic Ions
15:31
Polyatomic Ions
15:32
Ammonium Phosphate
17:21
Aluminum Hydroxide
19:37
Magnesium Chlorate
20:54
NaOH
21:47
(NH4)2O
22:17
Mg(NO3)2
22:56
Special Ions
23:28
Iron (III) Iodide
24:28
Lead (IV) Chloride
26:30
Chromium (III) Oxide
27:31
Fe3P2
29:18
CuI2
31:51
PbBr2
33:04
Naming Covalent Compounds
33:57
Naming Covalent Compounds
33:58
Examples
35:03
Ionic or Covalent?
39:50
Ionic vs. Covalent: Electron
39:51
Ionic vs. Covalent: State At Room Temperature
10:23
Ionic vs. Covalent: Metal, Nonmetal, Metalloids
41:02
Ionic vs. Covalent: Naming
41:35
Example 1: Write the Names or Formulas for Each Ionic Compound
42:50
Example 2: Write the Names or Formulas for Each Covalent Compound
46:13
Example 3: Name the Following Ionic Compounds
49:44
Example 4: Provide the Formulas for the Following Ionic Compounds
52:19
Example 5: Ionic or Covalent?
54:21
Chemical Reactions

49m 13s

Intro
0:00
Chemical Reactions
0:05
Chemical Reactions
0:06
Chemical Formula Example
0:54
Reactants and Products
3:50
Conservation of Mass
4:58
The Total Mass of the Reactant Must Equal the Total Mass of the Products
4:59
Balancing Chemical Equations
6:42
Balancing Equations
11:12
Example 1: Balancing Equations
11:27
Example 2: Balancing Equations
14:15
Example 3: Balancing Equations
16:28
Types of Reactions
19:17
Synthesis
19:18
Decomposition
20:09
Single-Displacement
20:54
Double-Displacement
22:12
Combustion
23:34
Energy in Chemical Reactions
24:41
Chemical Reactions and Activation Energy
24:42
Endergonic Reactions
25:55
Exergonic Reactions
27:51
Rate of Chemical Reactions
29:42
Rate of Chemical Reactions Overview
29:43
Temperature
30:51
Concentration
31:26
Agitation
32:08
Surface Area
32:29
Pressure
33:06
Catalysts and Inhibitors
33:18
Example 1: Translate Into Chemical Equations
34:32
Example 2: Law of Conservation of Mass
37:35
Example 3: Balance the Following Equations
40:33
Example 4: Math Each Equation With the Correct Type of Reaction
44:58
Example 5: Exothermic or Endothermic Reaction?
48:21
Solutions, Acids, and Bases

29m

Intro
0:00
Solutions
0:06
Definition of Solution
0:07
Solute and Solvent
0:26
Example: Salt Water
0:35
Example: Carbonated Water
1:03
Dissolving
1:49
Dissolving
1:50
Example: Liquid Dissolves a Solid at the Surface of the Solid
3:54
Aqueous Solutions: Water as Solvent
4:42
Increasing the Rate of Dissolving
5:33
Stir
5:34
Crush
6:37
Heat
7:36
Solubility
8:31
Definition of Solubility
8:32
Compare the Solubility of Sugar in Water vs. Salt in Water
8:44
Factors that Affect Solubility
11:45
Concentration
12:45
Concentration
12:46
pH Scale
15:21
pH Scale: Acids, Neutral, and Bases
15:22
Acids and Bases
18:01
Chemical Properties
18:02
Physical Properties
18:43
pH Scale
19:31
Examples of Acids and Bases
19:36
Acids and Bases React Together to Form Salt and Water
20:09
Example 1: Identify the Solutes and Solvents for the Following Solutions
21:26
Example 2: Temperature and the Rate of Dissolving/Solubility of a Solid
23:57
Example 3: How Can You Make a Solution Have a Higher Concentration?
25:44
Example 4: Acids and Bases
27:57
II. Physics
Waves

42m 35s

Intro
0:00
Waves
0:05
Introduction to Waves
0:06
Mechanical Waves
1:24
Electromagnetic Waves
1:50
Mechanical Waves
2:13
Transverse
2:14
Longitudinal (Compressional Waves)
4:00
Properties of Waves
7:26
Transverse and Compressional Waves: Wavelength
7:27
Transverse and Compressional Waves: Frequency (Hz)
9:32
Transverse and Compressional Waves: Amplitude
11:30
Wavelength and Frequency are Related
13:40
Wave Speeds
15:01
Wave Speeds
15:02
Behavior of Waves
18:06
Reflection
18:33
Refraction
22:42
Diffraction
24:25
Electromagnetic Waves
26:00
Electromagnetic Waves
26:01
Visible Light
30:49
Visible Light
30:50
Opaque
34:25
Translucent
34:54
Transparent
35:41
Example 1: Label the Transverse Wave
36:59
Example 2: Label the Compressional Wave
38:13
Example 3: What Happens to the Frequency of a Wave as the Wavelength Increases?
39:12
Example 4: Law of Reflection and Light Wave
40:48
Motion

37m 21s

Intro
0:00
Distance vs. Displacement
0:04
Distance
0:05
Displacement
0:49
Speed
4:47
Speed
4:48
Instantaneous Speed
6:14
Average Speed
6:40
Velocity
7:25
Distance-Time Graphs
8:21
Distance-Time Graphs
8:22
Acceleration
13:38
Acceleration Definition
13:39
Acceleration Equation
15:23
Positive Acceleration
18:43
Negative Acceleration
18:52
Speed-Time Graphs
20:56
Speed-Time Graphs
20:57
Example 1: Displacement, Distance, and Average Speed
25:15
Example 2: Velocities
28:02
Example 3: Acceleration
28:59
Example 4: Distance and Time
30:19
Example 5: Speed and Time
34:08
Forces

35m 3s

Intro
0:00
Force
0:04
Force Definition
0:05
Net Force
1:44
Balanced Forces
3:06
Unbalanced Forces
4:23
Forces Examples
5:09
Friction
7:53
Friction Definition
7:54
Static Friction
8:23
Sliding Friction
9:35
Rolling Friction
10:11
Fluid Friction
11:13
Air Resistance
12:10
Newton's Laws of Motion
14:06
First Law of Motion
14:07
Inertia
15:56
Newton's Laws Continued
17:13
Second Law of Motion
17:14
Third Law of Motion
18:35
Gravitational Force
24:17
Gravity and Gravitational Force
24:18
Example 1: Horizontal Force, Frictional Force, and Net Force
28:36
Example 2: Net Force and Acceleration
29:38
Example 3: Gravitational Force
30:35
Example 4: Force of Air Resistance and Net Force
32:32
Density & Buoyancy

23m 43s

Intro
0:00
Density
0:05
Definition of Density
0:06
Density = Mass / Volume
1:01
Density of Irregular Objects
3:58
Density of Irregular Objects
3:59
Buoyant Force
7:46
Buoyancy
7:47
Archimedes' Principle
9:23
Floating and Sinking
12:47
Floating and Sinking: Looking at Density
12:48
Example 1: Density of an Object
16:15
Example 2: Density of Yourself
17:28
Example 3: Using Archimedes' Principle to Predict If an Object Will Sink or Float in Water
19:38
Example 4: Will Aluminum, Gold, and Oil Float or Sink When Placed Into Water?
22:06
Loading...
This is a quick preview of the lesson. For full access, please Log In or Sign up.
For more information, please see full course syllabus of Physical Science
  • Discussion

  • Study Guides

  • Practice Questions

  • Download Lecture Slides

  • Table of Contents

  • Related Books & Services

Lecture Comments (27)

0 answers

Post by Firebird wang on November 2, 2016

Ms, I know that AP Statistics is not your subject, but I just wonder if you are able to watch the two videos which called AP Statistics Practice Test 2013 an AP Statistics Practice Test 2014 in the AP Statistics content? Both videos showing network error, I dont know why. I already tried in different computers already.

0 answers

Post by Shahram Ahmadi N. Emran on June 8, 2015

don't you mean state change instead of stage change on example 4 for boiling water

0 answers

Post by Carroll Fields on April 13, 2015

If you were to leave hydrogen peroxide in a transparent bottle in the sun and it chemically changes into water , is it pure enough to drink.

0 answers

Post by Aniket D on March 30, 2014

Why is the melting and freezing point the same.

1 answer

Last reply by: Professor Ebs
Wed Jan 8, 2014 12:19 AM

Post by Olivia Lin on October 19, 2013

If iron and sulphur mix together by heating to form iron sulphide, the iron can't be attracted by magnet.

Therefore,Iron changes its properties.

If iron sulphide decomposite separate, can iron reverts its magnetism?

1 answer

Last reply by: Professor Ebs
Wed Jan 8, 2014 12:15 AM

Post by Olivia Lin on October 19, 2013

What are the differences between the homogeneous and sudstance?

For instance, the salt water consists of water and sodium chloride. But it can be a compound too if they are completely mixed together.
Is it correct?

1 answer

Last reply by: Professor Ebs
Sun May 19, 2013 3:48 PM

Post by Saakshi Dhingra on May 19, 2013

what are the 2 mixtures that look like solutions
I already know that one is a suspension, but i'm not sure what the other ones is (i think it might be a colloid)
this is a question on my final exam review.

0 answers

Post by Yisrael Harris on May 5, 2013

Hi, I have completed the Physical Science course, and I would like to say that I enjoyed it very much.

0 answers

Post by Doreen Wagner on December 13, 2012

After a balloon has been blown up and deflated, the latex becomes much more flexible. Is "becoming more flexible" a physical change?

0 answers

Post by Doreen Wagner on December 6, 2012

Why do bubbles keep coming from the bottom of a glass of soda? Is it undergoing a physical change or a chemical change?

0 answers

Post by Doreen Wagner on December 5, 2012

Is there a difference between something being malleable and flexible?

0 answers

Post by Doreen Wagner on December 4, 2012

When leaves change color is that a physical change

0 answers

Post by Doreen Wagner on December 4, 2012

Is there possibly more ways to see signs of a chemical change?

0 answers

Post by Doreen Wagner on December 2, 2012

is it possable to reverse the effects of oxidation?

1 answer

Last reply by: Professor Ebs
Wed Nov 28, 2012 1:36 PM

Post by chun yung on November 27, 2012

If u mix 2 substance each of they made out of 1 atom(not the same kind of atom) does it make it compound or mixture?

1 answer

Last reply by: Professor Ebs
Wed Nov 28, 2012 1:33 PM

Post by chun yung on November 27, 2012

Can u determind the difference of the a substance and misture by eyes?
IF u have a pure substance made out of 2 elements does that make compound or mixture?

1 answer

Last reply by: Professor Ebs
Wed Nov 28, 2012 1:31 PM

Post by Doreen Wagner on November 21, 2012

If you blew up a baloon and it deflated would that be a physical change?

1 answer

Last reply by: Professor Ebs
Fri Sep 14, 2012 12:04 PM

Post by Max Mayo on August 31, 2012

Heat and Temperature are two different things...

1 answer

Last reply by: Professor Ebs
Mon Aug 6, 2012 10:32 PM

Post by Della Stuckey on November 29, 2011

You said a increase or decrease in temperature for chemical change, but what about ice to water, that is increasing heat, but it is a physical change?

Properties of Matter

  • Matter is anything that has mass or takes up space.
  • All matter is made up of one or more elements
  • Matter that is pure and made up of a fixed composition is a pure substance.
  • A pure substance has a fixed composition, can be an element or a compound which is made up of more than one element. Compounds have different properties of elements that are bonded to form compounds
  • A mixture is made up of more than one pure substances
  • A heterogeneous mixture is where each component of the mixture is unevenly mixed and visible. If the particles settle in a liquid, the mixture is a heterogeneous suspension.
  • A homogeneous mixture is where the components of the mixture are evenly mixed and not visible. If the particles are dissolved, the mixture is a solution. If the particles are suspended, the mixture is a colloid.
  • A physical property is a characteristic that can be observed without being changed, like appearance, magnetism, and ductility.
  • A physical change is a change in a physical property where no new substance is formed.
  • A chemical property is a characteristic that indicates the ability of the substance to change into a new substance such as flammability or reactivity to light.
  • A chemical change is a change in a chemical property where a new substance is formed.

Properties of Matter

Since elements and compounds both have fixed compositions, they are classified as ______?
Substances
How would you classify a mixture in which visible particles settle?
A heterogeneous suspension.
What type of property can be observed without being changed?
A physical property
Physical properties can be based on ______ such as size, shape, and state of matter or ______ such as viscosity or ductility.
Appearance/Behavior
What type of change does not form a new substance?
A physical change
What process can you use to separate pure water from the mixture that we call coffee?
Use distillation to boil the pure water to separate it from the tiny coffee grounds in a cup of coffee.
If an object burns, has it undergone a chemical change or a physical change? Why?
A chemical change because it has changed into a different type of matter.
What type of change has occurred when you mix a solid and a liquid together and you see a flash of light and hear a popping sound?
A chemical change since both sound formation and light are signs of a chemical change.
When does a physical change occur?
A physical change occurs when a physical property changes.
What types of change(s) occur when a metal liquid is cooled and then pounded into a sheet?
Both changing from a liquid to a solid (state change) and pounding into a sheet (malleability) are physical changes.

*These practice questions are only helpful when you work on them offline on a piece of paper and then use the solution steps function to check your answer.

Answer

Properties of Matter

Lecture Slides are screen-captured images of important points in the lecture. Students can download and print out these lecture slide images to do practice problems as well as take notes while watching the lecture.

  • Intro 0:00
  • Matter 0:07
    • Matter
    • Substance, Element, and Compound
    • Homogeneous and Heterogeneous Mixture
    • Suspension, Colloid, and Solution
  • Physical Properties 5:25
    • Appearance: Color, Shape, Size, Density, and State of Matter
    • Behavior: Viscosity, Magnetism, Malleability, and Ductility
  • Physical Changes 10:29
    • Physical Changes
  • Chemical Properties 14:38
    • Chemical Properties
  • Chemical Changes 16:35
    • Chemical Changes
    • Signs of Chemical Change
  • Example 1: Identify the Mixtures Listed 19:21
  • Example 2: Physical or Chemical Change? 23:38
  • Example 3: How Can You Separate a Mixture of Sand, Gravel, Iron, Filings, Salt, and Water? 25:04
  • Example 4: Physical/Chemical Property and Change 27:27
Educator®

Please sign in for full access to this lesson.

Sign-InORCreate Account

Enter your Sign-on user name and password.

Forgot password?

Start Learning Now

Our free lessons will get you started (Adobe Flash® required).
Get immediate access to our entire library.

Sign up for Educator.com

Membership Overview

  • Unlimited access to our entire library of courses.
  • Search and jump to exactly what you want to learn.
  • *Ask questions and get answers from the community and our teachers!
  • Practice questions with step-by-step solutions.
  • Download lesson files for programming and software training practice.
  • Track your course viewing progress.
  • Download lecture slides for taking notes.

Use this form or mail us to .

For support articles click here.