Dan Fullerton

Maxwell's Equations

Slide Duration:

Section 1: Electricity
Electric Charge & Coulomb's Law

30m 48s

Intro
0:00
Objective
0:15
Electric Charges
0:50
Matter is Made Up of Atoms
0:52
Most Atoms are Neutral
1:02
Ions
1:11
Coulomb
1:18
Elementary Charge
1:34
Law of Conservation of Charge
2:03
Example 1
2:39
Example 2
3:42
Conductors and Insulators
4:41
Conductors Allow Electric Charges to Move Freely
4:43
Insulators Do Not Allow Electric Charges to Move Freely
4:50
Resistivity
4:58
Charging by Conduction
5:32
Conduction
5:37
Balloon Example
5:40
Charged Conductor
6:14
Example 3
6:28
The Electroscope
7:16
Charging by Induction
7:57
Bring Positive Rod Near Electroscope
8:08
Ground the Electroscope
8:27
Sever Ground Path and Remove Positive Rod
9:07
Example 4
9:39
Polarization and Electric Dipole Moment
11:46
Polarization
11:54
Electric Dipole Moment
12:05
Coulomb's Law
12:38
Electrostatic Force, Also Known as Coulombic Force
12:48
How Force of Attraction or Repulsion Determined
12:55
Formula
13:08
Coulomb's Law: Vector Form
14:18
Example 5
16:05
Example 6
18:25
Example 7
19:14
Example 8
23:21
Electric Fields

1h 19m 22s

Intro
0:00
Objectives
0:09
Electric Fields
1:33
Property of Space That Allows a Charged Object to Feel a Force
1:40
Detect the Presence of an Electric Field
1:51
Electric Field Strength Vector
2:03
Direction of the Electric Field Vector
2:21
Example 1
3:00
Visualizing the Electric Field
4:13
Electric Field Lines
4:56
E Field Due to a Point Charge
7:19
Derived from the Definition of the Electric Field and Coulomb's Law
7:24
Finding the Electric Field Due to Multiple Point Charges
8:37
Comparing Electricity to Gravity
8:51
Force
8:54
Field Strength
9:09
Constant
9:19
Charge Units vs. Mass Units
9:35
Attracts vs. Repel
9:44
Example 2
10:06
Example 3
17:25
Example 4
24:29
Example 5
25:23
Charge Densities
26:09
Linear Charge Density
26:26
Surface Charge Density
26:30
Volume Charge Density
26:47
Example 6
27:26
Example 7
37:07
Example 8
50:13
Example 9
54:01
Example 10
1:03:10
Example 11
1:13:58
Gauss's Law

52m 53s

Intro
0:00
Objectives
0:07
Electric Flux
1:16
Amount of Electric Field Penetrating a Surface
1:19
Symbol
1:23
Point Charge Inside a Hollow Sphere
4:31
Place a Point Charge Inside a Hollow Sphere of Radius R
4:39
Determine the Flux Through the Sphere
5:09
Gauss's Law
8:39
Total Flux
8:59
Gauss's Law
9:10
Example 1
9:53
Example 2
17:28
Example 3
22:37
Example 4
25:40
Example 5
30:49
Example 6
45:06
Electric Potential & Electric Potential Energy

1h 14m 3s

Intro
0:00
Objectives
0:08
Electric Potential Energy
0:58
Gravitational Potential Energy
1:02
Electric Potential Energy
1:11
Electric Potential
1:19
Example 1
1:59
Example 2
3:08
The Electron-Volt
4:02
Electronvolt
4:16
1 eV is the Amount of Work Done in Moving an Elementary Charge Through a Potential Difference of 1 Volt
4:26
Conversion Ratio
4:41
Example 3
4:52
Equipotential Lines
5:35
Topographic Maps
5:36
Lines Connecting Points of Equal Electrical Potential
5:47
Always Cross Electrical Field Lines at Right Angles
5:57
Gradient of Potential Increases As Equipotential Lines Get Closer
6:02
Electric Field Points from High to Low Potential
6:27
Drawing Equipotential Lines
6:49
E Potential Energy Due to a Point Charge
8:20
Electric Force from Electric Potential Energy
11:59
E Potential Due to a Point Charge
13:07
Example 4
14:42
Example 5
15:59
Finding Electric Field From Electric Potential
19:06
Example 6
23:41
Example 7
25:08
Example 8
26:33
Example 9
29:01
Example 10
31:26
Example 11
43:23
Example 12
51:51
Example 13
58:12
Electric Potential Due to Continuous Charge Distributions

1h 1m 28s

Intro
0:00
Objectives
0:10
Potential Due to a Charged Ring
0:27
Potential Due to a Uniformly Charged Desk
3:38
Potential Due to a Spherical Shell of Charge
11:21
Potential Due to a Uniform Solid Sphere
14:50
Example 1
23:08
Example 2
30:43
Example 3
41:58
Example 4
51:41
Conductors

20m 35s

Intro
0:00
Objectives
0:08
Charges in a Conductor
0:32
Charge is Free to Move Until the
0:36
All Charge Resides at Surface
2:18
Field Lines are Perpendicular to Surface
2:34
Electric Field at the Surface of a Conductor
3:04
Looking at Just the Outer Surface
3:08
Large Electric Field Where You Have the Largest Charge Density
3:59
Hollow Conductors
4:22
Draw Hollow Conductor and Gaussian Surface
4:36
Applying Gaussian Law
4:53
Any Hollow Conductor Has Zero Electric Field in Its Interior
5:24
5:35
Electric Field and Potential Due to a Conducting Sphere
6:03
Example 1
7:31
Example 2
12:39
Capacitors

41m 23s

Intro
0:00
Objectives
0:08
What is a Capacitor?
0:42
Electric Device Used to Store Electrical Energy
0:44
Place Opposite Charges on Each Plate
1:10
Develop a Potential Difference Across the Plates
1:14
Energy is Stored in the Electric Field Between the Plates
1:17
Capacitance
1:22
Ratio of the Charge Separated on the Plates of a Capacitor to the Potential Difference Between the Plates
1:25
Units of Capacitance
1:32
1:37
Formula
1:52
Calculating Capacitance
1:59
Assume Charge on Each Conductor
2:05
Find the Electric Field
2:11
Calculate V by Integrating the Electric Field
2:21
Utilize C=Q/V to Solve for Capitance
2:33
Example 1
2:44
Example 2
5:30
Example 3
10:46
Energy Stored in a Capacitor
15:25
Work is Done Charging a Capacitor
15:28
Solve For That
15:55
Field Energy Density
18:09
Amount of Energy Stored Between the Plates of a Capacitor
18:11
Example
18:25
Dielectrics
20:44
Insulating Materials Place Between Plates of Capacitor to Increase The Devices' Capacitance
20:47
Electric Field is Weakened
21:00
The Greater the Amount of Polarization The Greater the Reduction in Electric Field Strength
21:58
Dielectric Constant (K)
22:30
Formula
23:00
Net Electric Field
23:35
Key Take Away Point
23:50
Example 4
24:00
Example 5
25:50
Example 6
26:50
Example 7
28:53
Example 8
30:57
Example 9
32:55
Example 10
34:59
Example 11
37:35
Example 12
39:57
Section 2: Current Electricity
Current & Resistance

17m 59s

Intro
0:00
Objectives
0:08
Electric Current
0:44
Flow Rate of Electric Charge
0:45
Amperes
0:49
Positive Current Flow
1:01
Current Formula
1:19
Drift Velocity
1:35
Constant Thermal Motion
1:39
Net Electron Flow
1:43
When Electric Field is Applied
1:49
Electron Drift Velocity
1:55
Derivation of Current Flow
2:12
Apply Electric Field E
2:20
Define N as the Volume Density of Charge Carriers
2:27
Current Density
4:33
Current Per Area
4:36
Formula
4:44
Resistance
5:14
Ratio of the Potential Drop Across an Object to the Current Flowing Through the Object
5:19
5:23
Resistance of a Wire
6:05
Depends on Resistivity
6:09
Resistivity Relates to the Ability of a Material to Resist the Flow of Electrons
6:25
Refining Ohm's Law
7:22
Conversion of Electric Energy to Thermal Energy
8:23
Example 1
9:54
Example 2
10:54
Example 3
11:26
Example 4
14:41
Example 5
15:24
Circuits I: Series Circuits

29m 8s

Intro
0:00
Objectives
0:08
Ohm's Law Revisited
0:39
Relates Resistance, Potential Difference, and Current Flow
0:39
Formula
0:44
Example 1
1:09
Example 2
1:44
Example 3
2:15
Example 4
2:56
Electrical Power
3:26
Transfer of Energy Into Different Types
3:28
Light Bulb
3:37
Television
3:41
Example 5
3:49
Example 6
4:27
Example 7
5:12
Electrical Circuits
5:42
Closed-Loop Path Which Current Can Flow
5:43
Typically Comprised of Electrical Devices
5:52
Conventional Current Flows from High Potential to Low Potential
6:04
Circuit Schematics
6:26
Three-dimensional Electrical Circuits
6:37
Source of Potential Difference Required for Current to Flow
7:29
Complete Conducting Paths
7:42
Current Only Flows in Complete Paths
7:43
Left Image
7:46
Right Image
7:56
Voltmeters
8:25
Measure the Potential Difference Between Two Points in a Circuit
8:29
Can Remove Voltmeter from Circuit Without Breaking the Circuit
8:47
Very High Resistance
8:53
Ammeters
9:31
Measure the Current Flowing Through an Element of a Circuit
9:32
Very Low Resistance
9:46
Put Ammeter in Correctly
10:00
Example 8
10:24
Example 9
11:39
Example 10
12:59
Example 11
13:16
Series Circuits
13:46
Single Current Path
13:49
Removal of Any Circuit Element Causes an Open Circuit
13:54
Kirchhoff's Laws
15:48
Utilized in Analyzing Circuits
15:54
Kirchhoff's Current Law
15:58
Junction Rule
16:02
Kirchhoff's Voltage Law
16:30
Loop Rule
16:49
Example 12
16:58
Example 13
17:32
Basic Series Circuit Analysis
18:36
Example 14
22:06
Example 15
22:29
Example 16
24:02
Example 17
26:47
Circuits II: Parallel Circuits

39m 9s

Intro
0:00
Objectives
0:16
Parallel Circuits
0:38
Multiple Current Paths
0:40
Removal of a Circuit Element May Allow Other Branches of the Circuit to Continue Operating
0:44
Draw a Simple Parallel Circuit
1:02
Basic Parallel Circuit Analysis
3:06
Example 1
5:58
Example 2
8:14
Example 3
9:05
Example 4
11:56
Combination Series-Parallel Circuits
14:08
Circuit Doesn't Have to be Completely Serial or Parallel
14:10
Look for Portions of the Circuit With Parallel Elements
14:15
Lead to Systems of Equations to Solve
14:42
Analysis of a Combination Circuit
14:51
Example 5
20:23
Batteries
28:49
Electromotive Force
28:50
Pump for Charge
29:04
Ideal Batteries Have No Resistance
29:10
Real Batteries and Internal Resistance
29:20
Terminal Voltage in Real Batteries
29:33
Ideal Battery
29:50
Real Battery
30:25
Example 6
31:10
Example 7
33:23
Example 8
35:49
Example 9
38:43

34m 3s

Intro
0:00
Objectives
0:17
Capacitors in Parallel
0:51
Store Charge on Plates
0:52
Can Be Replaced with an Equivalent Capacitor
0:56
Capacitors in Series
1:12
Must Be the Same
1:13
Can Be Replaced with an Equivalent Capacitor
1:15
RC Circuits
1:30
Comprised of a Source of Potential Difference, a Resistor Network, and Capacitor
1:31
RC Circuits from the Steady-State Perspective
1:37
Key to Understanding RC Circuit Performance
1:48
Charging an RC Circuit
2:08
Discharging an RC Circuit
6:18
The Time Constant
8:49
Time Constant
8:58
By 5 Time Constant
9:19
Example 1
9:45
Example 2
13:27
Example 3
16:35
Example 4
18:03
Example 5
19:39
Example 6
26:14
RC Circuits: Transient Analysis

1h 1m 7s

Intro
0:00
Objectives
0:13
Charging an RC Circuit
1:11
Basic RC Circuit
1:15
Graph of Current Circuit
1:29
Graph of Charge
2:17
Graph of Voltage
2:34
Mathematically Describe the Charts
2:56
Discharging an RC Circuit
13:29
Graph of Current
13:47
Graph of Charge
14:08
Graph of Voltage
14:15
Mathematically Describe the Charts
14:30
The Time Constant
20:03
Time Constant
20:04
By 5 Time Constant
20:14
Example 1
20:39
Example 2
28:53
Example 3
27:02
Example 4
44:29
Example 5
55:24
Section 3: Magnetism
Magnets

8m 38s

Intro
0:00
Objectives
0:08
Magnetism
0:35
Force Caused by Moving Charges
0:36
Dipoles
0:40
Like Poles Repel, Opposite Poles Attract
0:53
Magnetic Domains
0:58
Random Domains
1:04
Net Magnetic Field
1:26
Example 1
1:40
Magnetic Fields
2:03
Magnetic Field Strength
2:04
Magnets are Polarized
2:16
Magnetic Field Lines
2:53
Show the Direction the North Pole of a Magnet Would Tend to Point if Placed on The Field
2:54
Direction
3:25
Magnetic Flux
3:41
The Compass
4:05
Earth is a Giant Magnet
4:07
Earth's Magnetic North Pole
4:10
Compass Lines Up with the Net Magnetic Field
4:48
Magnetic Permeability
5:00
Ratio of the magnetic Field Strength Induced in a Material to the Magnetic Field Strength of the Inducing Field
5:01
Free Space
5:13
Permeability of Matter
5:41
Highly Magnetic Materials
5:47
Magnetic Dipole Moment
5:54
The Force That a Magnet Can Exert on Moving Charges
5:59
Relative Strength of a Magnet
6:04
Example 2
6:26
Example 3
6:52
Example 4
7:32
Example 5
7:57
Moving Charges In Magnetic Fields

29m 7s

Intro
0:00
Objectives
0:08
Magnetic Fields
0:57
Vector Quantity
0:59
Tesla
1:08
Gauss
1:14
Forces on Moving Charges
1:30
Magnetic Force is Always Perpendicular to the Charged Objects Velocity
1:31
Magnetic Force Formula
2:04
Magnitude of That
2:20
Image
2:29
Direction of the Magnetic Force
3:54
Right-Hand Rule
3:57
Electron of Negative Charge
4:04
Example 1
4:51
Example 2
6:58
Path of Charged Particles in B Fields
8:07
Magnetic Force Cannot Perform Work on a Moving Charge
8:08
Magnetic Force Can Change Its Direction
8:11
Total Force on a Moving Charged Particle
9:40
E Field
9:50
B Field
9:54
Lorentz Force
9:57
Velocity Selector
10:33
Charged Particle in Crosses E and B Fields Can Undergo Constant Velocity Motion
10:37
Particle Can Travel Through the Selector Without Any Deflection
10:49
Mass Spectrometer
12:21
Magnetic Fields Accelerate Moving Charges So That They Travel in a Circle
12:26
Used to Determine the Mass of An Unknown Particle
12:32
Example 3
13:11
Example 4
15:01
Example 5
16:44
Example 6
17:33
Example 7
19:12
Example 8
19:50
Example 9
24:02
Example 10
25:21
Forces on Current-Carrying Wires

17m 52s

Intro
0:00
Objectives
0:08
Forces on Current-Carrying Wires
0:42
Moving Charges in Magnetic Fields Experience Forces
0:45
Current in a Wire is Just Flow of Charges
0:49
Direction of Force Given by RHR
4:04
Example 1
4:22
Electric Motors
5:59
Example 2
8:14
Example 3
8:53
Example 4
10:09
Example 5
11:04
Example 6
12:03
Magnetic Fields Due to Current-Carrying Wires

24m 43s

Intro
0:00
Objectives
0:08
Force on a Current-Carrying Wire
0:38
Magnetic Fields Cause a Force on Moving Charges
0:40
Current Carrying Wires
0:44
How to Find the Force
0:55
Direction Given by the Right Hand Rule
1:04
Example 1
1:17
Example 2
2:26
Magnetic Field Due to a Current-Carrying Wire
4:20
Moving Charges Create Magnetic Fields
4:24
Current-Carrying Wires Carry Moving Charges
4:27
Right Hand Rule
4:32
Multiple Wires
4:51
Current-Carrying Wires Can Exert Forces Upon Each Other
4:58
First Right Hand Rule
5:15
Example 3
6:46
Force Between Parallel Current Carrying Wires
8:01
Right Hand Rules to Determine Force Between Parallel Current Carrying Wires
8:03
Find Magnetic Field Due to First Wire, Then Find Direction of Force on 2nd Wire
8:08
Example
8:20
Gauss's Law for Magnetism
9:26
Example 4
10:35
Example 5
12:57
Example 6
14:19
Example 7
16:50
Example 8
18:15
Example 9
18:43
The Biot-Savart Law

21m 50s

Intro
0:00
Objectives
0:07
Biot-Savart Law
0:24
Brute Force Method
0:49
Draw It Out
0:54
Diagram
1:35
Example 1
3:43
Example 2
7:02
Example 3
14:31
Ampere's Law

26m 31s

Intro
0:00
Objectives
0:07
Ampere's Law
0:27
Finds the Magnetic Field Due to Current Flowing in a Wire in Situations of Planar and Cylindrical Symmetry
0:30
Formula
0:40
Example
1:00
Example 1
2:19
Example 2
4:08
Example 3
6:23
Example 4
8:06
Example 5
11:43
Example 6
13:40
Example 7
17:54
Magnetic Flux

7m 24s

Intro
0:00
Objectives
0:07
Magnetic Flux
0:31
Amount of Magnetic Field Penetrating a Surface
0:32
Webers
0:42
Flux
1:07
Total Magnetic Flux
1:27
Magnetic Flux Through Closed Surfaces
1:51
Gauss's Law for Magnetism
2:20
Total Flux Magnetic Flux Through Any Closed Surface is Zero
2:23
Formula
2:45
Example 1
3:02
Example 2
4:26

1h 4m 33s

Intro
0:00
Objectives
0:08
0:44
0:46
Direction of the Induced Current is Given by Lenz's Law
1:09
Formula
1:15
Lenz's Law
1:49
Lenz's Law
2:14
Lenz's Law
2:16
Example
2:30
Applying Lenz's Law
4:09
If B is Increasing
4:13
If B is Decreasing
4:30
Maxwell's Equations
4:55
Gauss's Law
4:59
Gauss's Law for Magnetism
5:16
Ampere's Law
5:26
5:39
Example 1
6:14
Example 2
9:36
Example 3
11:12
Example 4
19:33
Example 5
26:06
Example 6
31:55
Example 7
42:32
Example 8
48:08
Example 9
55:50
Section 4: Inductance, RL Circuits, and LC Circuits
Inductance

6m 41s

Intro
0:00
Objectives
0:08
Self Inductance
0:25
Ability of a Circuit to Oppose the Magnetic Flux That is Produced by the Circuit Itself
0:27
Changing Magnetic Field Creates an Induced EMF That Fights the Change
0:37
Henrys
0:44
Function of the Circuit's Geometry
0:53
Calculating Self Inductance
1:10
Example 1
3:40
Example 2
5:23
RL Circuits

42m 17s

Intro
0:00
Objectives
0:11
Inductors in Circuits
0:49
Inductor Opposes Current Flow and Acts Like an Open Circuit When Circuit is First Turned On
0:52
Inductor Keeps Current Going and Acts as a Short
1:04
If the Battery is Removed After a Long Time
1:16
Resister Dissipates Power, Current Will Decay
1:36
Current in RL Circuits
2:00
Define the Diagram
2:03
Mathematically Solve
3:07
Voltage in RL Circuits
7:51
Voltage Formula
7:52
Solve
8:17
Rate of Change of Current in RL Circuits
9:42
Current and Voltage Graphs
10:54
Current Graph
10:57
Voltage Graph
11:34
Example 1
12:25
Example 2
23:44
Example 3
34:44
LC Circuits

9m 47s

Intro
0:00
Objectives
0:08
LC Circuits
0:30
Assume Capacitor is Fully Charged When Circuit is First Turned On
0:38
Interplay of Capacitor and Inductor Creates an Oscillating System
0:42
Charge in LC Circuit
0:57
Current and Potential in LC Circuits
7:14
Graphs of LC Circuits
8:27
Section 5: Maxwell's Equations
Maxwell's Equations

3m 38s

Intro
0:00
Objectives
0:07
Maxwell's Equations
0:19
Gauss's Law
0:20
Gauss's Law for Magnetism
0:44
1:00
Ampere's Law
1:18
Revising Ampere's Law
1:49
Allows Us to Calculate the Magnetic Field Due to an Electric Current
1:50
Changing Electric Field Produces a Magnetic Field
1:58
Conduction Current
2:33
Displacement Current
2:44
Maxwell's Equations (Complete)
2:58
Section 6: Sample AP Exams
1998 AP Practice Exam: Multiple Choice Questions

32m 33s

Intro
0:00
0:11
Multiple Choice 36
0:36
Multiple Choice 37
2:07
Multiple Choice 38
2:53
Multiple Choice 39
3:32
Multiple Choice 40
4:37
Multiple Choice 41
4:43
Multiple Choice 42
5:22
Multiple Choice 43
6:00
Multiple Choice 44
8:09
Multiple Choice 45
8:27
Multiple Choice 46
9:03
Multiple Choice 47
9:30
Multiple Choice 48
10:19
Multiple Choice 49
10:47
Multiple Choice 50
12:25
Multiple Choice 51
13:10
Multiple Choice 52
15:06
Multiple Choice 53
16:01
Multiple Choice 54
16:44
Multiple Choice 55
17:10
Multiple Choice 56
19:08
Multiple Choice 57
20:39
Multiple Choice 58
22:24
Multiple Choice 59
22:52
Multiple Choice 60
23:34
Multiple Choice 61
24:09
Multiple Choice 62
24:40
Multiple Choice 63
25:06
Multiple Choice 64
26:07
Multiple Choice 65
27:26
Multiple Choice 66
28:32
Multiple Choice 67
29:14
Multiple Choice 68
29:41
Multiple Choice 69
31:23
Multiple Choice 70
31:49
1998 AP Practice Exam: Free Response Questions

29m 55s

Intro
0:00
0:14
Free Response 1
0:22
Free Response 2
10:04
Free Response 3
16:22
Bookmark & Share Embed

## Copy & Paste this embed code into your website’s HTML

Please ensure that your website editor is in text mode when you paste the code.
(In Wordpress, the mode button is on the top right corner.)
×
• - Allow users to view the embedded video in full-size.
Since this lesson is not free, only the preview will appear on your website.

• ## Related Books

### Start Learning Now

Our free lessons will get you started (Adobe Flash® required).

### Membership Overview

• *Ask questions and get answers from the community and our teachers!
• Practice questions with step-by-step solutions.
• Track your course viewing progress.
• Learn at your own pace... anytime, anywhere!

### Maxwell's Equations

• Gauss’s Law allows you to find the electric field in situations of spherical, cylindrical, and planar symmetry.
• Gauss’s Law for Magnetism states that the total magnetic flux through any closed surface is zero, and is a direct outcome to the finding that there are no magnetic monopoles.
• Faraday’s Law allows you to find the inducted emf due to a changing magnetic flux.
• Ampere’s Law allows us to calculate the magnetic field due to an electric current as well as a changing electric field. The contribution due to the penetrating current is known as the conduction current, and the contribution due to the changing electric field is known as the displacement current.

### Maxwell's Equations

Lecture Slides are screen-captured images of important points in the lecture. Students can download and print out these lecture slide images to do practice problems as well as take notes while watching the lecture.

• Intro 0:00
• Objectives 0:07
• Maxwell's Equations 0:19
• Gauss's Law
• Gauss's Law for Magnetism
• Ampere's Law
• Revising Ampere's Law 1:49
• Allows Us to Calculate the Magnetic Field Due to an Electric Current
• Changing Electric Field Produces a Magnetic Field
• Conduction Current
• Displacement Current
• Maxwell's Equations (Complete) 2:58

### Transcription: Maxwell's Equations

Hello, everyone, and welcome back to www.educator.com.0000

In this lesson, we are just going to review Maxwell’s equations.0004

Our objectives include making sure students are familiar with these equation so they can associate each equation with its implications.0008

Let us take a look at Maxwell’s equations as we define them so far.0015

First we have Gauss’s law, the integral / the closed surface E ⋅ DA is the total close charge divided by ε₀.0021

This was very useful, although it is always true, it is mostly useful0030

when you are looking for the electric field indications where you have some sort of symmetry.0034

Symmetry typically being planar, cylindrical, or spherical.0040

Gauss’s law for magnetism, the integral / the close surface of B ⋅ DA = 0.0044

It was another way of stating that magnetic monopoles do not exist.0050

Any closed surface whatever magnetic field lines go in, the same amount of magnetic field lines come out.0054

Faraday's law, the integral / the closed loop of E ⋅ DL = - D/ DT the derivative/ the open surface of B ⋅ DA,0061

this is really the magnetic flux.0070

When we have no change in magnetic flux, this simplified down to Kirchhoff’s voltage law.0072

Ampere’s law, we said the integral / the closed loop of B ⋅ DL = μ₀ I.0079

We use this to find the magnetic field in situations of symmetry that was a much more elegant than0085

when we used the more challenging Biot-Savart law.0092

We put the asterisk here, there was more that we had to talk about it.0096

By the way, that is penetrating current.0100

There is a little bit more to ampere’s law and that is what we are going to develop next.0104

Ampere’s law as written, allows us to calculate the magnetic field due to some electric current that penetrates our Amperian loop.0109

However, we also know that the change in electric field produces a magnetic field and we have not taken that into account yet.0117

That piece looks like this, the integral/ the closed loop of B ⋅ DL is the permeability × the permittivity × the time rate of change of the electric flux.0124

Or if you wanted to expand out our electric flux, μ₀ ε₀ × the derivative of and0136

there is our electric flux, integral / the open surface of E ⋅ DA.0141

That is the piece that we have not thrown into the equation yet, even though we know it exists.0147

How do we put all that together?0152

To combine the effects, we are going to take a look at the contribution due to the penetrating current0155

which we are going to call conduction current.0161

The contribution due to the changing electric field, the changing electric flux, and that is what we called the displacement current.0164

Putting all of those together to come up with a refined version of Ampere’s law, our final Maxwell's equation looks like this.0172

Gauss’s law for magnetism, faraday’s law, and Ampere’s law, now the integral / the closed loop of B ⋅ DL = μ₀ I penetrating,0183

our conduction current piece + our displacement current piece μ₀ ε₀ × the derivative of the electric flux.0194

That is our complete Maxwell’s equations and that completes the basic content of the course for E & M AP Physics C.0205

Thank you so much for watching www.educator.com.0214

Make it a great day everybody.0217

OR

### Start Learning Now

Our free lessons will get you started (Adobe Flash® required).