Educator®

Please sign in to participate in this lecture discussion.

Resetting Your Password?
OR

Start Learning Now

Our free lessons will get you started (Adobe Flash® required).
Get immediate access to our entire library.

Membership Overview

  • Available 24/7. Unlimited Access to Our Entire Library.
  • Search and jump to exactly what you want to learn.
  • *Ask questions and get answers from the community and our teachers!
  • Practice questions with step-by-step solutions.
  • Download lecture slides for taking notes.
  • Track your course viewing progress.
  • Accessible anytime, anywhere with our Android and iOS apps.

Corals, crochet and the cosmos: how hyperbolic geometry pervades the universe


We have built a world of largely straight lines – the houses we live in, the skyscrapers we work in and the streets we drive on our daily commutes. Yet outside our boxes, nature teams with frilly, crenellated forms, from the fluted surfaces of lettuces and fungi to the frilled skirts of sea slugs and the gorgeous undulations of corals.

These organisms are biological manifestations of what we call hyperbolic geometry, an alternative to the Euclidean geometry we learn about in school that involves lines, shapes and angles on a flat surface or plane. In hyperbolic geometry the plane is not necessarily so flat.
Yet while nature has been playing with hyperbolic forms for hundreds of millions of years, mathematicians spent hundreds of years trying to prove that such structures were impossible.

But these efforts led to a realisation that hyperbolic geometry is logically legitimate. And that, in turn, led to the revolution that produced the kind of maths now underlying general relativity, and thus the structure of the universe.

SPECIAL OFFER!

Get full access to Educator.com’s entire library of courses.

Use

8%

Discount

CODE

Copied

SUCCESS8