I. Linear equations

Lesson Overview

• Today we’ll learn how to solve linear differential equations:

\[y'(x) + P(x)y(x) = Q(x) \]

• Notes on the form:

1. Linear means that we think of \(y \) and \(y' \) as the variables (not \(x \) and \(y \)). We think of as \(P(x) \) and \(Q(x) \) as coefficients: The equation has the form \(y' + Py = Q \), which would be a line.

2. If there is a coefficient in front of \(y'(x) \), make sure you divide it away before using the algorithm below.

How to solve linear equations

\[y'(x) + P(x)y(x) = Q(x) \]

1. Calculate the integrating factor

\[I(x) := e^{\int P(x) \, dx} \]

and multiply that by both sides.

2. This makes the left hand side into

\[e^{\int P(x) \, dx} y' + P(x) e^{\int P(x) \, dx} y = Iy' + I'y = (Iy)', \]

so we can then integrate both sides.
Solving linear equations

\[y'(x) + P(x)y(x) = Q(x) \]

3. Then you’ll get

\[I(x)y(x) = \int I(x)Q(x) \, dx + C \]

and you can solve for \(y(x) \).

Further notes

- If \(P(x) \) is negative, make sure to include that in finding \(I(x) \). And remember that \(e^{-\ln(\text{cucumber})} \) doesn’t simplify to \(-\text{cucumber})! It’s \(\frac{1}{\text{cucumber}} \).

- When you’re integrating \(P(x) \) to find the integrating factor \(I(x) \), it’s ok to leave off the constant \(C \).

- However, when you’re integrating both sides of the equation, the \(C \) is very important. And it’s important that you add it when you do the integration and keep track of it in the ensuing algebra.

Example I

Find the general solution to the following differential equation:

\[y' + xy = x^3 \]
Example I

\[y'(x) + xy = x^3 \]

Multiply both sides by \(e^{x^2} \):

\[e^{x^2} y' + x e^{x^2} y = x^3 e^{x^2} \]

Point: The LHS is now \((ye^{x^2})' \), using the Product Rule.

\[(ye^{x^2})' = x^3 e^{x^2} \quad \{ \text{Integrate both sides:} \} \]

RHS:

\[u := \frac{x^2}{2} \quad du = x \, dx \]

\[\int x^3 e^{x^2} \, dx = \int x^2 e^{x^2} x \, dx = \int 2ue^u \, du \]

Use parts:

\[= 2(ue^u - e^u) + C = 2 \left(\frac{x^2 e^{x^2}}{2} - e^{x^2} \right) + C = x^2 e^{x^2} - 2e^{x^2} + C \]

\[ye^{x^2} = (x^2 - 2)e^{x^2} + C \]

\[y = \frac{(x^2 - 2)e^{x^2} + C}{e^{x^2}} \quad \{ \text{Not } y = x^2 - 2 + C! \} \]

Now use IC (if given) to get \(C \).

Example II

Solve the following initial value problem:

\[(\cos x)y' + (\sin x)y = \cos^5 x \sin x, \quad y(0) = 2 \]
\[(\cos x)y' + (\sin x)y = \cos^5 x \sin x, \, y(0) = 2\]

\[
\begin{align*}
(\cos x)y' + (\sin x)y &= \cos^5 x \sin x, \, y(0) = 2 \\
y' + (\tan x)y &= \cos^4 x \sin x \\
I(x) &= e^{\int \tan x \, dx} \\
&= e^{-\ln \cos x} \\
&= \sec x \\
(\sec x)y' + (\sec x \tan x)y &= \cos^3 x \sin x \\
\end{align*}
\]

\[\text{At this point, check}^* \text{ whether the LHS really is the derivative of } (\sec x)y.\]

\[
\begin{align*}
(\sec x)y &= -\frac{1}{4} \cos^4 x + C \\
y &= C \cos x - \frac{1}{4} \cos^5 x \\
y(0) &= C - \frac{1}{4} = 2 \\
C &= \frac{9}{4} \\
y &= \frac{9}{4} \cos x - \frac{1}{4} \cos^5 x
\end{align*}
\]

Example III

For the linear differential equation

\[(x + 1)y' - y = \sin x, \]

what is \(I(x)\)?

\[\frac{1}{x + 1}\]

Example IV
For the linear differential equation

\[(\sin x)y' - (\cos x)y = x^2,\]

what is \(I(x)\)?

\[\csc x\]

Example V

Solve the initial value problem:

\[(t + 1)y' - 3y = t, \quad y(1) = 2\]

Example V

\[(t + 1)y' - 3y = t, \quad y(1) = 2\]
Will Murray’s Differential Equations, I. Linear equations

\[
y' - \frac{3}{t+1}y = \frac{t}{t+1}
\]

\[
I(t) := e^{-\int \frac{3}{t+1} dt} = e^{-3\ln(t+1)} = \frac{1}{(t+1)^3}
\]

\[
\frac{y'}{(t+1)^3} - \frac{3}{(t+1)^4}y = \frac{t}{(t+1)^4}
\]

\[
\left(\frac{y}{(t+1)^3}\right)' = \frac{t}{(t+1)^4}
\]

\[
y\frac{y}{(t+1)^3} = \int \frac{t}{(t+1)^4} dt \quad \{u := t + 1, du = dt\}
\]

\[
= \int \left(\frac{u-1}{u^4}\right) du
\]

\[
= \int \left(\frac{1}{u^3} - \frac{1}{u^4}\right) du
\]

\[
= -\frac{1}{2(t+1)^2} + \frac{1}{3(t+1)^3} + C
\]

\[
y = -\frac{1}{2}(t+1) + \frac{1}{3} + C(t+1)^3
\]

\[
2 = -\frac{1}{2}(2) + \frac{1}{3} + 8C
\]

\[
\frac{8}{3} = 8C
\]

\[
C = \frac{1}{3}
\]

\[
y = \frac{1}{3} \left[(t+1)^3 + 1\right] - \frac{1}{2}(t + 1)
\]

\[
= \frac{1}{3} t^3 + t^2 + \frac{1}{2} t + \frac{1}{6}
\]

Example VI
Find the general solution to the following
differential equation:

\[xy' + 3y = \cos x, \quad x > 0 \]

Example VI

\[y' + \frac{3}{x} y = \frac{\cos x}{x} \]

\[I(x) = e^{\int \frac{3}{x} \, dx} = e^{3 \ln x} = e^3 = x^3 \]

\[x^3 y' + 3x^2 y = x^2 \cos x \]

\[
\begin{array}{c|c}
 x^2 & \cos x \\
 2x & \sin x \\
 2 & -\cos x \\
 0 & -\sin x \\
\end{array}
\]

\[x^3 y = x^2 \sin x + 2x \cos x - 2 \sin x + C \]

\[y = \frac{x^2 \sin x + 2x \cos x - 2 \sin x + C}{x^3} \]