XXIII. Moment-Generating Functions

Moments

- Let Y be a random variable (discrete or continuous).
- **Definition**: The k-th moment of Y taken about the origin is $E(Y^k)$, $k = 0, 1, 2, 3, \dots$
- (Sometimes we use the notation μ_k' for $E(Y^k).)$
- (People also study central moments: The k-th moment about the mean is

$$\mu_k := E\left[(Y - \mu)^k \right].$$

We won't bother with central moments, because you get the same information either way, but you might see them elsewhere.

Moment-Generating Functions

• The moment-generating function for Y is

$$\boxed{m_Y(t) := E\left(e^{tY}\right)}.$$

- The MGF is a function of t (not Y).
- Use the MGF to calculate the moments:

$$\begin{bmatrix} E(Y^0) = \end{bmatrix} 1 = m_Y(0)$$

$$E(Y) = m'_Y(0)$$

$$E(Y^2) = m''_Y(0)$$

$$\vdots$$

Use it to find
$$\sigma^2 = E(Y^2) - E(Y)^2$$
.

MGFs for the Discrete Distributions

Distribution	MGF
Binomial	$\left[pe^t + (1-p)\right]^n$
Geometric	$\frac{pe^t}{1 - (1 - p)e^t}$
Negative binomial	$\left[\frac{pe^t}{1 - (1 - p)e^t}\right]^r$
Hypergeometric	No closed-form MGF.
Poisson	$e^{\lambda\left(e^t-1\right)}$

All are functions of t. In the first three, we could substitute q := 1 - p.

MGFs for the Continuous Distributions

Distribution	\mathbf{MGF}
Uniform	$\frac{e^{t\theta_2} - e^{t\theta_1}}{t\left(\theta_2 - \theta_1\right)}$
Normal	$e^{\mu t + \frac{t^2 \sigma^2}{2}}$
Gamma	$(1-\beta t)^{-\alpha}$
Exponential	$(1-\beta t)^{-1}$
Chi-square	$(1-2t)^{-\frac{\nu}{2}}$
Beta	No closed-form MGF.

Note that exponential is just gamma with $\alpha:=1,$ and chi-square is gamma with $\alpha:=\frac{\nu}{2}$ and $\beta:=2.$

Useful Formulas with MGFs

- Let Z := aY + b. Then
 - $m_Z(t) = e^{bt} m_Y(at).$
- Suppose Y_1 and Y_2 are independent variables and $Z := Y_1 + Y_2$. Then

$$m_Z(t) = m_{Y_1}(t)m_{Y_2}(t)$$

Example I

Find the moment-generating function for the binomial distribution.

$$p(y) = \binom{n}{y} p^{y} q^{n-y}, 0 \le y \le n$$

$$m_{Y}(t) := E(e^{tY})$$

$$:= \sum_{y=0}^{n} e^{ty} \binom{n}{y} p^{y} q^{n-y}$$

$$= \sum_{y=0}^{n} \binom{n}{y} (e^{t} p)^{y} q^{n-y}$$

$$= (pe^{t} + q)^{n}$$

(Remember, the mgf is always a function of t.)

Example II

Use the MGF for the binomial distribution to find the mean of the distribution.

$$m_Y(t) = (pe^t + q)^n$$

$$m'_Y(t) = n(pe^t + q)^{n-1} pe^t$$

$$m'_Y(0) = n(p+q)^{n-1} p = \lceil np \rceil$$

Example III

Find the moment-generating function for the Poisson distribution.

$$m_{Y}(t) := E\left(e^{tY}\right)$$

$$:= \sum_{y=0}^{\infty} e^{ty} p(y)$$

$$= \sum_{y=0}^{\infty} e^{ty} \frac{\lambda^{y}}{y!} e^{-\lambda}$$

$$= e^{-\lambda} \sum_{y=0}^{\infty} \frac{(\lambda e^{t})^{y}}{y!}$$

$$= e^{-\lambda} e^{\lambda e^{t}}$$

$$m_{Y}(t) = e^{\lambda (e^{t}-1)}$$

Example IV

Use the MGF for the Poisson distribution to find the mean and variance of the distribution.

$$m_{Y}(t) = e^{\lambda(e^{t}-1)}$$

$$m'_{Y}(t) = \lambda e^{t}e^{\lambda(e^{t}-1)}$$

$$\mu = m'_{Y}(0) = \lambda e^{0}e^{\lambda(e^{0}-1)} = \boxed{\lambda}$$

$$m''_{Y}(t) = \lambda e^{t}\lambda e^{t}e^{\lambda(e^{t}-1)} + \lambda e^{t}e^{\lambda(e^{t}-1)}$$

$$m''_{Y}(0) = \lambda e^{0}\lambda e^{0}e^{\lambda(e^{0}-1)} + \lambda e^{0}e^{\lambda(e^{0}-1)}$$

$$E(Y^{2}) = \lambda^{2} + \lambda$$

$$\sigma^{2} = \lambda^{2} + \lambda - \mu^{2} = \boxed{\lambda}$$

Find the moment-generating function for the uniform distribution.

$$m_Y(t) := E\left(e^{tY}\right)$$

$$= \int_{-\infty}^{\infty} e^{ty} f(y) \, dy$$

$$= \frac{1}{\theta_2 - \theta_1} \int_{\theta_1}^{\theta_2} e^{ty} \, dy$$

$$= \frac{1}{t\left(\theta_2 - \theta_1\right)} e^{ty} \Big|_{y=\theta_1}^{y=\theta_2}$$

$$m_Y(t) = \left[\frac{e^{\theta_2 t} - e^{\theta_1 t}}{t\left(\theta_2 - \theta_1\right)}\right]$$