Enter your Sign on user name and password.

Forgot password?
• Follow us on:
Start learning today, and be successful in your academic & professional career. Start Today!
Loading video...
This is a quick preview of the lesson. For full access, please Log In or Sign up.
For more information, please see full course syllabus of Calculus BC

• ## Related Books

Lecture Comments (8)
 0 answersPost by Kevin Hong on April 27, 2014at about 5:45, you said inverse tangent of infinity is pi over 2 but how did you come up with pi over 2? 1 answerLast reply by: Huijie ShenSun Apr 19, 2015 8:55 PMPost by Mohamad Oda on April 6, 20142*sqrt(2) is the right answer 2 answersLast reply by: Thomas ZhangMon Mar 17, 2014 1:10 PMPost by Raudel Ulloa on August 6, 2012I checked in the calcuator for number 5 and the interagal is 2 radical 2, what i got, not 4 1 answerLast reply by: Raudel UlloaMon Aug 6, 2012 9:48 AMPost by Chung Teak Joon on April 29, 2012isnt progress on number four kind of wrong? or am I just misunderstanding the steps?If we integrate root u, doesnt it have to become 0.5u^0.5??? How did it suddenly become 2u^0.5????

### Improper Integrals

• Use method of improper integrals when:
• There is an infinity in either bound of the integral
• Function evaluated at any bound is undefined

### Improper Integrals

1 [3/x]dx
• Replace the improper bound ∞ with k
• 1k [3/x]dx
• Integrate
• 1k [3/x]dx = 3[ln|x|]1k
• = 3lnk − 3ln1
= 3lnk = limk → ∞ 3lnk = ∞
− ∞0 [1/(( x + 5 )2)]dx
• Replace the improperbound ∞ with k
• k0 [1/(( x + 5 )2)]dx
• Integrate
• k0 [1/(( x + 5 )2)]dx = [ − [1/(x + 5)] ]k0.
• = − [1/(0 + 5)] + [1/(k + 5)]
= limx → − ∞ [ [1/(k + 5)] ] − [1/5] = 0 − [1/5] = − [1/5]
− ∞ [7/((x − 3)2)]dx
• Note that [7/((x − 3)2)] is an even function,and the limits are the same magnitude
• − ∞ [7/((x − 3)2)]dx = 2∫0 [7/((x − 3)2)]dx
• Replace the improper limit ∞ with k
• 2∫0 [7/((x − 3)2)]dx = 2∫0k [7/((x − 3)2)]dx
• Integrate
• 2∫0k [7/((x − 3)2)]dx = 14∫0k [1/((x − 3)2)]dx
• = 14[ − [1/(x − 3)] ]0k
• = 14[ − [1/(k − 3)] + [1/(0 − 3)] ]
• = 14[ − [1/(k − 3)] − [1/3] ]
• = 14[ − limk → ∞ [1/(k − 3)] − [1/3] ]
• = 14[ 0 − [1/3] ]
= [( − 14)/3]
37− [4/(√{x − 3} )]dx
• Replace the bound 3 with k
• 37− [4/(√{x − 3} )]dx = ∫k7− [4/(√{x − 3} )]dx
• Integrate
• k7− [4/(√{x − 3} )]dx = − 4∫k7 [1/(√{x − 3} )]dx
• = − 4[ 2√{x − 3} ]k7
• = − 4[2√{7 − 3} − 2√{k − 3} ]
• = − 4[2√4 − 2√{k − 3} ]
= − 4[4 − 0] = − 4[4] = − 16
− 2k [2/(x√{x2 − 1} )]dx
• Replace the bound 1 with k
• − 2k [2/(x√{x2 − 1} )]dx = ∫ − 2k [2/(x√{x2 − 1} )]dx
• Integrate using inverse trigonmetric identity
• − 2k [2/(x√{x2 − 1} )]dx = 2∫ − 2k [1/(x√{x2 − 1} )]dx
• = 2[ sec − 1|x| ] − 2k
• = 2[ sec − 1|k| − sec − 1| − 2| ]
= 2[ limk1 sec − 1|k| − [(π)/3] ] = 2[ 0 − [(π)/3] ] = − [(2π)/3]
0 [(x − 4)/(x2 − 3x − 4)]dx
• Factor x2 − 3x − 4 to simplify
• 0 [(x − 4)/(x2 − 3x − 4)]dx = ∫0 [(x − 4)/((x − 4)(x + 1))]dx
• = ∫0 [1/((x + 1))]dx
• Replace the improper limit ∞ with k
• 0 [1/((x + 1))]dx = ∫0k [1/((x + 1))]dx
• Integrate
• 0k [1/((x + 1))]dx = [ ln|x + 1| ]0k
• = ln|k + 1| − ln|0 + 1|
• = ln|k + 1| − ln|1|
• = ln|k + 1| − 0
• = ln|k + 1|
• = limk → ∞ ln|k + 1|
= ∞
− ∞1 [2/(x2 + 2x)]dx
• Replace the bound − ∞ with k
• − ∞1 [2/(x2 + 2x)]dx = ∫k1 [2/(x2 + 2x)]dx
• Integrate
• k1 [2/(x2 + 2x)]dx = ∫k1 [1/x] − [1/(x + 2)]dx
• = ∫k1 [1/x] − ∫k1 [1/(x + 2)]dx
• = [ ln|x| ]k1 − [ ln|x + 2| ]k1
• = ln1 − lnk − ln3 + ln|k + 2|
= limk → − ∞ [ − ln3 + ln|k + 2| − lnk ] = − ln3 − ∞− ∞ = − ln3
0 [4/((x + 1)(x + 2))] dx
• Replace the bound ∞ with k
• 0 [4/((x + 1)(x + 2))] dx = ∫0k [4/((x + 1)(x + 2))] dx
• Integrate
• 0k [4/((x + 1)(x + 2))] dx = ∫0k [4/(x + 1)] − [4/(x + 2)] dx
• = 4∫0k [1/(x + 1)] − [1/(x + 2)] dx
• = 4[ ln|x + 1| − ln|x + 2| ]0k
= 4[ limk → ∞ ln[(k + 1)/(k + 2)] − ln[1/2] ] = 4[ 0 − ln[1/2] ] = − 4ln[1/2]
− 22 [1/(√{4 − x2} )]dx
• Note the function is symmetrical and simplify
• − 22 [1/(√{4 − x2} )]dx = 2∫02 [1/(√{4 − x2} )]dx
• Replace the bound 2 with k
• 2∫02 [1/(√{4 − x2} )]dx = 2∫0k [1/(√{4 − x2} )]dx
• Apply the inverse trignometric integration identity to integrate
• 2∫0k [1/(√{4 − x2} )]dx = 2[ sin − 1[x/2] ]0k
• = 2[ sin − 1[k/2] − sin − 1[0/2] ]
• = 2[ sin − 1[k/2] ]
• = 2[ limk → 2 sin − 1[k/2] ]
• = 2[ [(π)/2] ]
= π
10.∫0 [1/(( x − 2 )3)] dx
• Replace the bound ∞ with k
• 0 [1/(( x − 2 )3)] dx = ∫0k [1/(( x − 2 )3)] dx
• Integrate
• 0k [1/(( x − 2 )3)] dx = [ − [1/(2(x − 2)2)] ]0k
• = [ − limk → ∞ [1/(2(k − 2)2)] + [1/(2(0 − 2)2)] ]
• = 0 + [1/2(4)]
= [1/8]

*These practice questions are only helpful when you work on them offline on a piece of paper and then use the solution steps function to check your answer.

Answer

### Improper Integrals

Lecture Slides are screen-captured images of important points in the lecture. Students can download and print out these lecture slide images to do practice problems as well as take notes while watching the lecture.

• Intro 0:00
• Improper Integrals 0:06
• 3 Steps
• Example 1 1:46
• Example 2 3:20
• Example 3 6:05
• Example 4 9:02
• Example 5 11:21
• Example 6 15:54