INSTRUCTORS Raffi Hovasapian John Zhu

Raffi Hovasapian

Raffi Hovasapian

The Average Value of a Function

Slide Duration:

Table of Contents

Section 1: Limits and Derivatives
Overview & Slopes of Curves

42m 8s

Intro
0:00
Overview & Slopes of Curves
0:21
Differential and Integral
0:22
Fundamental Theorem of Calculus
6:36
Differentiation or Taking the Derivative
14:24
What Does the Derivative Mean and How do We Find it?
15:18
Example: f'(x)
19:24
Example: f(x) = sin (x)
29:16
General Procedure for Finding the Derivative of f(x)
37:33
More on Slopes of Curves

50m 53s

Intro
0:00
Slope of the Secant Line along a Curve
0:12
Slope of the Tangent Line to f(x) at a Particlar Point
0:13
Slope of the Secant Line along a Curve
2:59
Instantaneous Slope
6:51
Instantaneous Slope
6:52
Example: Distance, Time, Velocity
13:32
Instantaneous Slope and Average Slope
25:42
Slope & Rate of Change
29:55
Slope & Rate of Change
29:56
Example: Slope = 2
33:16
Example: Slope = 4/3
34:32
Example: Slope = 4 (m/s)
39:12
Example: Density = Mass / Volume
40:33
Average Slope, Average Rate of Change, Instantaneous Slope, and Instantaneous Rate of Change
47:46
Example Problems for Slopes of Curves

59m 12s

Intro
0:00
Example I: Water Tank
0:13
Part A: Which is the Independent Variable and Which is the Dependent?
2:00
Part B: Average Slope
3:18
Part C: Express These Slopes as Rates-of-Change
9:28
Part D: Instantaneous Slope
14:54
Example II: y = √(x-3)
28:26
Part A: Calculate the Slope of the Secant Line
30:39
Part B: Instantaneous Slope
41:26
Part C: Equation for the Tangent Line
43:59
Example III: Object in the Air
49:37
Part A: Average Velocity
50:37
Part B: Instantaneous Velocity
55:30
Desmos Tutorial

18m 43s

Intro
0:00
Desmos Tutorial
1:42
Desmos Tutorial
1:43
Things You Must Learn To Do on Your Particular Calculator
2:39
Things You Must Learn To Do on Your Particular Calculator
2:40
Example I: y=sin x
4:54
Example II: y=x³ and y = d/(dx) (x³)
9:22
Example III: y = x² {-5 <= x <= 0} and y = cos x {0 < x < 6}
13:15
The Limit of a Function

51m 53s

Intro
0:00
The Limit of a Function
0:14
The Limit of a Function
0:15
Graph: Limit of a Function
12:24
Table of Values
16:02
lim x→a f(x) Does not Say What Happens When x = a
20:05
Example I: f(x) = x²
24:34
Example II: f(x) = 7
27:05
Example III: f(x) = 4.5
30:33
Example IV: f(x) = 1/x
34:03
Example V: f(x) = 1/x²
36:43
The Limit of a Function, Cont.
38:16
Infinity and Negative Infinity
38:17
Does Not Exist
42:45
Summary
46:48
Example Problems for the Limit of a Function

24m 43s

Intro
0:00
Example I: Explain in Words What the Following Symbols Mean
0:10
Example II: Find the Following Limit
5:21
Example III: Use the Graph to Find the Following Limits
7:35
Example IV: Use the Graph to Find the Following Limits
11:48
Example V: Sketch the Graph of a Function that Satisfies the Following Properties
15:25
Example VI: Find the Following Limit
18:44
Example VII: Find the Following Limit
20:06
Calculating Limits Mathematically

53m 48s

Intro
0:00
Plug-in Procedure
0:09
Plug-in Procedure
0:10
Limit Laws
9:14
Limit Law 1
10:05
Limit Law 2
10:54
Limit Law 3
11:28
Limit Law 4
11:54
Limit Law 5
12:24
Limit Law 6
13:14
Limit Law 7
14:38
Plug-in Procedure, Cont.
16:35
Plug-in Procedure, Cont.
16:36
Example I: Calculating Limits Mathematically
20:50
Example II: Calculating Limits Mathematically
27:37
Example III: Calculating Limits Mathematically
31:42
Example IV: Calculating Limits Mathematically
35:36
Example V: Calculating Limits Mathematically
40:58
Limits Theorem
44:45
Limits Theorem 1
44:46
Limits Theorem 2: Squeeze Theorem
46:34
Example VI: Calculating Limits Mathematically
49:26
Example Problems for Calculating Limits Mathematically

21m 22s

Intro
0:00
Example I: Evaluate the Following Limit by Showing Each Application of a Limit Law
0:16
Example II: Evaluate the Following Limit
1:51
Example III: Evaluate the Following Limit
3:36
Example IV: Evaluate the Following Limit
8:56
Example V: Evaluate the Following Limit
11:19
Example VI: Calculating Limits Mathematically
13:19
Example VII: Calculating Limits Mathematically
14:59
Calculating Limits as x Goes to Infinity

50m 1s

Intro
0:00
Limit as x Goes to Infinity
0:14
Limit as x Goes to Infinity
0:15
Let's Look at f(x) = 1 / (x-3)
1:04
Summary
9:34
Example I: Calculating Limits as x Goes to Infinity
12:16
Example II: Calculating Limits as x Goes to Infinity
21:22
Example III: Calculating Limits as x Goes to Infinity
24:10
Example IV: Calculating Limits as x Goes to Infinity
36:00
Example Problems for Limits at Infinity

36m 31s

Intro
0:00
Example I: Calculating Limits as x Goes to Infinity
0:14
Example II: Calculating Limits as x Goes to Infinity
3:27
Example III: Calculating Limits as x Goes to Infinity
8:11
Example IV: Calculating Limits as x Goes to Infinity
14:20
Example V: Calculating Limits as x Goes to Infinity
20:07
Example VI: Calculating Limits as x Goes to Infinity
23:36
Continuity

53m

Intro
0:00
Definition of Continuity
0:08
Definition of Continuity
0:09
Example: Not Continuous
3:52
Example: Continuous
4:58
Example: Not Continuous
5:52
Procedure for Finding Continuity
9:45
Law of Continuity
13:44
Law of Continuity
13:45
Example I: Determining Continuity on a Graph
15:55
Example II: Show Continuity & Determine the Interval Over Which the Function is Continuous
17:57
Example III: Is the Following Function Continuous at the Given Point?
22:42
Theorem for Composite Functions
25:28
Theorem for Composite Functions
25:29
Example IV: Is cos(x³ + ln x) Continuous at x=π/2?
27:00
Example V: What Value of A Will make the Following Function Continuous at Every Point of Its Domain?
34:04
Types of Discontinuity
39:18
Removable Discontinuity
39:33
Jump Discontinuity
40:06
Infinite Discontinuity
40:32
Intermediate Value Theorem
40:58
Intermediate Value Theorem: Hypothesis & Conclusion
40:59
Intermediate Value Theorem: Graphically
43:40
Example VI: Prove That the Following Function Has at Least One Real Root in the Interval [4,6]
47:46
Derivative I

40m 2s

Intro
0:00
Derivative
0:09
Derivative
0:10
Example I: Find the Derivative of f(x)=x³
2:20
Notations for the Derivative
7:32
Notations for the Derivative
7:33
Derivative & Rate of Change
11:14
Recall the Rate of Change
11:15
Instantaneous Rate of Change
17:04
Graphing f(x) and f'(x)
19:10
Example II: Find the Derivative of x⁴ - x²
24:00
Example III: Find the Derivative of f(x)=√x
30:51
Derivatives II

53m 45s

Intro
0:00
Example I: Find the Derivative of (2+x)/(3-x)
0:18
Derivatives II
9:02
f(x) is Differentiable if f'(x) Exists
9:03
Recall: For a Limit to Exist, Both Left Hand and Right Hand Limits Must Equal to Each Other
17:19
Geometrically: Differentiability Means the Graph is Smooth
18:44
Example II: Show Analytically that f(x) = |x| is Nor Differentiable at x=0
20:53
Example II: For x > 0
23:53
Example II: For x < 0
25:36
Example II: What is f(0) and What is the lim |x| as x→0?
30:46
Differentiability & Continuity
34:22
Differentiability & Continuity
34:23
How Can a Function Not be Differentiable at a Point?
39:38
How Can a Function Not be Differentiable at a Point?
39:39
Higher Derivatives
41:58
Higher Derivatives
41:59
Derivative Operator
45:12
Example III: Find (dy)/(dx) & (d²y)/(dx²) for y = x³
49:29
More Example Problems for The Derivative

31m 38s

Intro
0:00
Example I: Sketch f'(x)
0:10
Example II: Sketch f'(x)
2:14
Example III: Find the Derivative of the Following Function sing the Definition
3:49
Example IV: Determine f, f', and f'' on a Graph
12:43
Example V: Find an Equation for the Tangent Line to the Graph of the Following Function at the Given x-value
13:40
Example VI: Distance vs. Time
20:15
Example VII: Displacement, Velocity, and Acceleration
23:56
Example VIII: Graph the Displacement Function
28:20
Section 2: Differentiation
Differentiation of Polynomials & Exponential Functions

47m 35s

Intro
0:00
Differentiation of Polynomials & Exponential Functions
0:15
Derivative of a Function
0:16
Derivative of a Constant
2:35
Power Rule
3:08
If C is a Constant
4:19
Sum Rule
5:22
Exponential Functions
6:26
Example I: Differentiate
7:45
Example II: Differentiate
12:38
Example III: Differentiate
15:13
Example IV: Differentiate
16:20
Example V: Differentiate
19:19
Example VI: Find the Equation of the Tangent Line to a Function at a Given Point
12:18
Example VII: Find the First & Second Derivatives
25:59
Example VIII
27:47
Part A: Find the Velocity & Acceleration Functions as Functions of t
27:48
Part B: Find the Acceleration after 3 Seconds
30:12
Part C: Find the Acceleration when the Velocity is 0
30:53
Part D: Graph the Position, Velocity, & Acceleration Graphs
32:50
Example IX: Find a Cubic Function Whose Graph has Horizontal Tangents
34:53
Example X: Find a Point on a Graph
42:31
The Product, Power & Quotient Rules

47m 25s

Intro
0:00
The Product, Power and Quotient Rules
0:19
Differentiate Functions
0:20
Product Rule
5:30
Quotient Rule
9:15
Power Rule
10:00
Example I: Product Rule
13:48
Example II: Quotient Rule
16:13
Example III: Power Rule
18:28
Example IV: Find dy/dx
19:57
Example V: Find dy/dx
24:53
Example VI: Find dy/dx
28:38
Example VII: Find an Equation for the Tangent to the Curve
34:54
Example VIII: Find d²y/dx²
38:08
Derivatives of the Trigonometric Functions

41m 8s

Intro
0:00
Derivatives of the Trigonometric Functions
0:09
Let's Find the Derivative of f(x) = sin x
0:10
Important Limits to Know
4:59
d/dx (sin x)
6:06
d/dx (cos x)
6:38
d/dx (tan x)
6:50
d/dx (csc x)
7:02
d/dx (sec x)
7:15
d/dx (cot x)
7:27
Example I: Differentiate f(x) = x² - 4 cos x
7:56
Example II: Differentiate f(x) = x⁵ tan x
9:04
Example III: Differentiate f(x) = (cos x) / (3 + sin x)
10:56
Example IV: Differentiate f(x) = e^x / (tan x - sec x)
14:06
Example V: Differentiate f(x) = (csc x - 4) / (cot x)
15:37
Example VI: Find an Equation of the Tangent Line
21:48
Example VII: For What Values of x Does the Graph of the Function x + 3 cos x Have a Horizontal Tangent?
25:17
Example VIII: Ladder Problem
28:23
Example IX: Evaluate
33:22
Example X: Evaluate
36:38
The Chain Rule

24m 56s

Intro
0:00
The Chain Rule
0:13
Recall the Composite Functions
0:14
Derivatives of Composite Functions
1:34
Example I: Identify f(x) and g(x) and Differentiate
6:41
Example II: Identify f(x) and g(x) and Differentiate
9:47
Example III: Differentiate
11:03
Example IV: Differentiate f(x) = -5 / (x² + 3)³
12:15
Example V: Differentiate f(x) = cos(x² + c²)
14:35
Example VI: Differentiate f(x) = cos⁴x +c²
15:41
Example VII: Differentiate
17:03
Example VIII: Differentiate f(x) = sin(tan x²)
19:01
Example IX: Differentiate f(x) = sin(tan² x)
21:02
More Chain Rule Example Problems

25m 32s

Intro
0:00
Example I: Differentiate f(x) = sin(cos(tanx))
0:38
Example II: Find an Equation for the Line Tangent to the Given Curve at the Given Point
2:25
Example III: F(x) = f(g(x)), Find F' (6)
4:22
Example IV: Differentiate & Graph both the Function & the Derivative in the Same Window
5:35
Example V: Differentiate f(x) = ( (x-8)/(x+3) )⁴
10:18
Example VI: Differentiate f(x) = sec²(12x)
12:28
Example VII: Differentiate
14:41
Example VIII: Differentiate
19:25
Example IX: Find an Expression for the Rate of Change of the Volume of the Balloon with Respect to Time
21:13
Implicit Differentiation

52m 31s

Intro
0:00
Implicit Differentiation
0:09
Implicit Differentiation
0:10
Example I: Find (dy)/(dx) by both Implicit Differentiation and Solving Explicitly for y
12:15
Example II: Find (dy)/(dx) of x³ + x²y + 7y² = 14
19:18
Example III: Find (dy)/(dx) of x³y² + y³x² = 4x
21:43
Example IV: Find (dy)/(dx) of the Following Equation
24:13
Example V: Find (dy)/(dx) of 6sin x cos y = 1
29:00
Example VI: Find (dy)/(dx) of x² cos² y + y sin x = 2sin x cos y
31:02
Example VII: Find (dy)/(dx) of √(xy) = 7 + y²e^x
37:36
Example VIII: Find (dy)/(dx) of 4(x²+y²)² = 35(x²-y²)
41:03
Example IX: Find (d²y)/(dx²) of x² + y² = 25
44:05
Example X: Find (d²y)/(dx²) of sin x + cos y = sin(2x)
47:48
Section 3: Applications of the Derivative
Linear Approximations & Differentials

47m 34s

Intro
0:00
Linear Approximations & Differentials
0:09
Linear Approximations & Differentials
0:10
Example I: Linear Approximations & Differentials
11:27
Example II: Linear Approximations & Differentials
20:19
Differentials
30:32
Differentials
30:33
Example III: Linear Approximations & Differentials
34:09
Example IV: Linear Approximations & Differentials
35:57
Example V: Relative Error
38:46
Related Rates

45m 33s

Intro
0:00
Related Rates
0:08
Strategy for Solving Related Rates Problems #1
0:09
Strategy for Solving Related Rates Problems #2
1:46
Strategy for Solving Related Rates Problems #3
2:06
Strategy for Solving Related Rates Problems #4
2:50
Strategy for Solving Related Rates Problems #5
3:38
Example I: Radius of a Balloon
5:15
Example II: Ladder
12:52
Example III: Water Tank
19:08
Example IV: Distance between Two Cars
29:27
Example V: Line-of-Sight
36:20
More Related Rates Examples

37m 17s

Intro
0:00
Example I: Shadow
0:14
Example II: Particle
4:45
Example III: Water Level
10:28
Example IV: Clock
20:47
Example V: Distance between a House and a Plane
29:11
Maximum & Minimum Values of a Function

40m 44s

Intro
0:00
Maximum & Minimum Values of a Function, Part 1
0:23
Absolute Maximum
2:20
Absolute Minimum
2:52
Local Maximum
3:38
Local Minimum
4:26
Maximum & Minimum Values of a Function, Part 2
6:11
Function with Absolute Minimum but No Absolute Max, Local Max, and Local Min
7:18
Function with Local Max & Min but No Absolute Max & Min
8:48
Formal Definitions
10:43
Absolute Maximum
11:18
Absolute Minimum
12:57
Local Maximum
14:37
Local Minimum
16:25
Extreme Value Theorem
18:08
Theorem: f'(c) = 0
24:40
Critical Number (Critical Value)
26:14
Procedure for Finding the Critical Values of f(x)
28:32
Example I: Find the Critical Values of f(x) x + sinx
29:51
Example II: What are the Absolute Max & Absolute Minimum of f(x) = x + 4 sinx on [0,2π]
35:31
Example Problems for Max & Min

40m 44s

Intro
0:00
Example I: Identify Absolute and Local Max & Min on the Following Graph
0:11
Example II: Sketch the Graph of a Continuous Function
3:11
Example III: Sketch the Following Graphs
4:40
Example IV: Find the Critical Values of f (x) = 3x⁴ - 7x³ + 4x²
6:13
Example V: Find the Critical Values of f(x) = |2x - 5|
8:42
Example VI: Find the Critical Values
11:42
Example VII: Find the Critical Values f(x) = cos²(2x) on [0,2π]
16:57
Example VIII: Find the Absolute Max & Min f(x) = 2sinx + 2cos x on [0,(π/3)]
20:08
Example IX: Find the Absolute Max & Min f(x) = (ln(2x)) / x on [1,3]
24:39
The Mean Value Theorem

25m 54s

Intro
0:00
Rolle's Theorem
0:08
Rolle's Theorem: If & Then
0:09
Rolle's Theorem: Geometrically
2:06
There May Be More than 1 c Such That f'( c ) = 0
3:30
Example I: Rolle's Theorem
4:58
The Mean Value Theorem
9:12
The Mean Value Theorem: If & Then
9:13
The Mean Value Theorem: Geometrically
11:07
Example II: Mean Value Theorem
13:43
Example III: Mean Value Theorem
21:19
Using Derivatives to Graph Functions, Part I

25m 54s

Intro
0:00
Using Derivatives to Graph Functions, Part I
0:12
Increasing/ Decreasing Test
0:13
Example I: Find the Intervals Over Which the Function is Increasing & Decreasing
3:26
Example II: Find the Local Maxima & Minima of the Function
19:18
Example III: Find the Local Maxima & Minima of the Function
31:39
Using Derivatives to Graph Functions, Part II

44m 58s

Intro
0:00
Using Derivatives to Graph Functions, Part II
0:13
Concave Up & Concave Down
0:14
What Does This Mean in Terms of the Derivative?
6:14
Point of Inflection
8:52
Example I: Graph the Function
13:18
Example II: Function x⁴ - 5x²
19:03
Intervals of Increase & Decrease
19:04
Local Maxes and Mins
25:01
Intervals of Concavity & X-Values for the Points of Inflection
29:18
Intervals of Concavity & Y-Values for the Points of Inflection
34:18
Graphing the Function
40:52
Example Problems I

49m 19s

Intro
0:00
Example I: Intervals, Local Maxes & Mins
0:26
Example II: Intervals, Local Maxes & Mins
5:05
Example III: Intervals, Local Maxes & Mins, and Inflection Points
13:40
Example IV: Intervals, Local Maxes & Mins, Inflection Points, and Intervals of Concavity
23:02
Example V: Intervals, Local Maxes & Mins, Inflection Points, and Intervals of Concavity
34:36
Example Problems III

59m 1s

Intro
0:00
Example I: Intervals, Local Maxes & Mins, Inflection Points, Intervals of Concavity, and Asymptotes
0:11
Example II: Intervals, Local Maxes & Mins, Inflection Points, Intervals of Concavity, and Asymptotes
21:24
Example III: Cubic Equation f(x) = Ax³ + Bx² + Cx + D
37:56
Example IV: Intervals, Local Maxes & Mins, Inflection Points, Intervals of Concavity, and Asymptotes
46:19
L'Hospital's Rule

30m 9s

Intro
0:00
L'Hospital's Rule
0:19
Indeterminate Forms
0:20
L'Hospital's Rule
3:38
Example I: Evaluate the Following Limit Using L'Hospital's Rule
8:50
Example II: Evaluate the Following Limit Using L'Hospital's Rule
10:30
Indeterminate Products
11:54
Indeterminate Products
11:55
Example III: L'Hospital's Rule & Indeterminate Products
13:57
Indeterminate Differences
17:00
Indeterminate Differences
17:01
Example IV: L'Hospital's Rule & Indeterminate Differences
18:57
Indeterminate Powers
22:20
Indeterminate Powers
22:21
Example V: L'Hospital's Rule & Indeterminate Powers
25:13
Example Problems for L'Hospital's Rule

38m 14s

Intro
0:00
Example I: Evaluate the Following Limit
0:17
Example II: Evaluate the Following Limit
2:45
Example III: Evaluate the Following Limit
6:54
Example IV: Evaluate the Following Limit
8:43
Example V: Evaluate the Following Limit
11:01
Example VI: Evaluate the Following Limit
14:48
Example VII: Evaluate the Following Limit
17:49
Example VIII: Evaluate the Following Limit
20:37
Example IX: Evaluate the Following Limit
25:16
Example X: Evaluate the Following Limit
32:44
Optimization Problems I

49m 59s

Intro
0:00
Example I: Find the Dimensions of the Box that Gives the Greatest Volume
1:23
Fundamentals of Optimization Problems
18:08
Fundamental #1
18:33
Fundamental #2
19:09
Fundamental #3
19:19
Fundamental #4
20:59
Fundamental #5
21:55
Fundamental #6
23:44
Example II: Demonstrate that of All Rectangles with a Given Perimeter, the One with the Largest Area is a Square
24:36
Example III: Find the Points on the Ellipse 9x² + y² = 9 Farthest Away from the Point (1,0)
35:13
Example IV: Find the Dimensions of the Rectangle of Largest Area that can be Inscribed in a Circle of Given Radius R
43:10
Optimization Problems II

55m 10s

Intro
0:00
Example I: Optimization Problem
0:13
Example II: Optimization Problem
17:34
Example III: Optimization Problem
35:06
Example IV: Revenue, Cost, and Profit
43:22
Newton's Method

30m 22s

Intro
0:00
Newton's Method
0:45
Newton's Method
0:46
Example I: Find x2 and x3
13:18
Example II: Use Newton's Method to Approximate
15:48
Example III: Find the Root of the Following Equation to 6 Decimal Places
19:57
Example IV: Use Newton's Method to Find the Coordinates of the Inflection Point
23:11
Section 4: Integrals
Antiderivatives

55m 26s

Intro
0:00
Antiderivatives
0:23
Definition of an Antiderivative
0:24
Antiderivative Theorem
7:58
Function & Antiderivative
12:10
x^n
12:30
1/x
13:00
e^x
13:08
cos x
13:18
sin x
14:01
sec² x
14:11
secxtanx
14:18
1/√(1-x²)
14:26
1/(1+x²)
14:36
-1/√(1-x²)
14:45
Example I: Find the Most General Antiderivative for the Following Functions
15:07
Function 1: f(x) = x³ -6x² + 11x - 9
15:42
Function 2: f(x) = 14√(x) - 27 4√x
19:12
Function 3: (fx) = cos x - 14 sinx
20:53
Function 4: f(x) = (x⁵+2√x )/( x^(4/3) )
22:10
Function 5: f(x) = (3e^x) - 2/(1+x²)
25:42
Example II: Given the Following, Find the Original Function f(x)
26:37
Function 1: f'(x) = 5x³ - 14x + 24, f(2) = 40
27:55
Function 2: f'(x) 3 sinx + sec²x, f(π/6) = 5
30:34
Function 3: f''(x) = 8x - cos x, f(1.5) = 12.7, f'(1.5) = 4.2
32:54
Function 4: f''(x) = 5/(√x), f(2) 15, f'(2) = 7
37:54
Example III: Falling Object
41:58
Problem 1: Find an Equation for the Height of the Ball after t Seconds
42:48
Problem 2: How Long Will It Take for the Ball to Strike the Ground?
48:30
Problem 3: What is the Velocity of the Ball as it Hits the Ground?
49:52
Problem 4: Initial Velocity of 6 m/s, How Long Does It Take to Reach the Ground?
50:46
The Area Under a Curve

51m 3s

Intro
0:00
The Area Under a Curve
0:13
Approximate Using Rectangles
0:14
Let's Do This Again, Using 4 Different Rectangles
9:40
Approximate with Rectangles
16:10
Left Endpoint
18:08
Right Endpoint
25:34
Left Endpoint vs. Right Endpoint
30:58
Number of Rectangles
34:08
True Area
37:36
True Area
37:37
Sigma Notation & Limits
43:32
When You Have to Explicitly Solve Something
47:56
Example Problems for Area Under a Curve

33m 7s

Intro
0:00
Example I: Using Left Endpoint & Right Endpoint to Approximate Area Under a Curve
0:10
Example II: Using 5 Rectangles, Approximate the Area Under the Curve
11:32
Example III: Find the True Area by Evaluating the Limit Expression
16:07
Example IV: Find the True Area by Evaluating the Limit Expression
24:52
The Definite Integral

43m 19s

Intro
0:00
The Definite Integral
0:08
Definition to Find the Area of a Curve
0:09
Definition of the Definite Integral
4:08
Symbol for Definite Integral
8:45
Regions Below the x-axis
15:18
Associating Definite Integral to a Function
19:38
Integrable Function
27:20
Evaluating the Definite Integral
29:26
Evaluating the Definite Integral
29:27
Properties of the Definite Integral
35:24
Properties of the Definite Integral
35:25
Example Problems for The Definite Integral

32m 14s

Intro
0:00
Example I: Approximate the Following Definite Integral Using Midpoints & Sub-intervals
0:11
Example II: Express the Following Limit as a Definite Integral
5:28
Example III: Evaluate the Following Definite Integral Using the Definition
6:28
Example IV: Evaluate the Following Integral Using the Definition
17:06
Example V: Evaluate the Following Definite Integral by Using Areas
25:41
Example VI: Definite Integral
30:36
The Fundamental Theorem of Calculus

24m 17s

Intro
0:00
The Fundamental Theorem of Calculus
0:17
Evaluating an Integral
0:18
Lim as x → ∞
12:19
Taking the Derivative
14:06
Differentiation & Integration are Inverse Processes
15:04
1st Fundamental Theorem of Calculus
20:08
1st Fundamental Theorem of Calculus
20:09
2nd Fundamental Theorem of Calculus
22:30
2nd Fundamental Theorem of Calculus
22:31
Example Problems for the Fundamental Theorem

25m 21s

Intro
0:00
Example I: Find the Derivative of the Following Function
0:17
Example II: Find the Derivative of the Following Function
1:40
Example III: Find the Derivative of the Following Function
2:32
Example IV: Find the Derivative of the Following Function
5:55
Example V: Evaluate the Following Integral
7:13
Example VI: Evaluate the Following Integral
9:46
Example VII: Evaluate the Following Integral
12:49
Example VIII: Evaluate the Following Integral
13:53
Example IX: Evaluate the Following Graph
15:24
Local Maxs and Mins for g(x)
15:25
Where Does g(x) Achieve Its Absolute Max on [0,8]
20:54
On What Intervals is g(x) Concave Up/Down?
22:20
Sketch a Graph of g(x)
24:34
More Example Problems, Including Net Change Applications

34m 22s

Intro
0:00
Example I: Evaluate the Following Indefinite Integral
0:10
Example II: Evaluate the Following Definite Integral
0:59
Example III: Evaluate the Following Integral
2:59
Example IV: Velocity Function
7:46
Part A: Net Displacement
7:47
Part B: Total Distance Travelled
13:15
Example V: Linear Density Function
20:56
Example VI: Acceleration Function
25:10
Part A: Velocity Function at Time t
25:11
Part B: Total Distance Travelled During the Time Interval
28:38
Solving Integrals by Substitution

27m 20s

Intro
0:00
Table of Integrals
0:35
Example I: Evaluate the Following Indefinite Integral
2:02
Example II: Evaluate the Following Indefinite Integral
7:27
Example IIII: Evaluate the Following Indefinite Integral
10:57
Example IV: Evaluate the Following Indefinite Integral
12:33
Example V: Evaluate the Following
14:28
Example VI: Evaluate the Following
16:00
Example VII: Evaluate the Following
19:01
Example VIII: Evaluate the Following
21:49
Example IX: Evaluate the Following
24:34
Section 5: Applications of Integration
Areas Between Curves

34m 56s

Intro
0:00
Areas Between Two Curves: Function of x
0:08
Graph 1: Area Between f(x) & g(x)
0:09
Graph 2: Area Between f(x) & g(x)
4:07
Is It Possible to Write as a Single Integral?
8:20
Area Between the Curves on [a,b]
9:24
Absolute Value
10:32
Formula for Areas Between Two Curves: Top Function - Bottom Function
17:03
Areas Between Curves: Function of y
17:49
What if We are Given Functions of y?
17:50
Formula for Areas Between Two Curves: Right Function - Left Function
21:48
Finding a & b
22:32
Example Problems for Areas Between Curves

42m 55s

Intro
0:00
Instructions for the Example Problems
0:10
Example I: y = 7x - x² and y=x
0:37
Example II: x=y²-3, x=e^((1/2)y), y=-1, and y=2
6:25
Example III: y=(1/x), y=(1/x³), and x=4
12:25
Example IV: 15-2x² and y=x²-5
15:52
Example V: x=(1/8)y³ and x=6-y²
20:20
Example VI: y=cos x, y=sin(2x), [0,π/2]
24:34
Example VII: y=2x², y=10x², 7x+2y=10
29:51
Example VIII: Velocity vs. Time
33:23
Part A: At 2.187 Minutes, Which care is Further Ahead?
33:24
Part B: If We Shaded the Region between the Graphs from t=0 to t=2.187, What Would This Shaded Area Represent?
36:32
Part C: At 4 Minutes Which Car is Ahead?
37:11
Part D: At What Time Will the Cars be Side by Side?
37:50
Volumes I: Slices

34m 15s

Intro
0:00
Volumes I: Slices
0:18
Rotate the Graph of y=√x about the x-axis
0:19
How can I use Integration to Find the Volume?
3:16
Slice the Solid Like a Loaf of Bread
5:06
Volumes Definition
8:56
Example I: Find the Volume of the Solid Obtained by Rotating the Region Bounded by the Given Functions about the Given Line of Rotation
12:18
Example II: Find the Volume of the Solid Obtained by Rotating the Region Bounded by the Given Functions about the Given Line of Rotation
19:05
Example III: Find the Volume of the Solid Obtained by Rotating the Region Bounded by the Given Functions about the Given Line of Rotation
25:28
Volumes II: Volumes by Washers

51m 43s

Intro
0:00
Volumes II: Volumes by Washers
0:11
Rotating Region Bounded by y=x³ & y=x around the x-axis
0:12
Equation for Volumes by Washer
11:14
Process for Solving Volumes by Washer
13:40
Example I: Find the Volume of the Solid Obtained by Rotating the Region Bounded by the Following Functions around the Given Axis
15:58
Example II: Find the Volume of the Solid Obtained by Rotating the Region Bounded by the Following Functions around the Given Axis
25:07
Example III: Find the Volume of the Solid Obtained by Rotating the Region Bounded by the Following Functions around the Given Axis
34:20
Example IV: Find the Volume of the Solid Obtained by Rotating the Region Bounded by the Following Functions around the Given Axis
44:05
Volumes III: Solids That Are Not Solids-of-Revolution

49m 36s

Intro
0:00
Solids That Are Not Solids-of-Revolution
0:11
Cross-Section Area Review
0:12
Cross-Sections That Are Not Solids-of-Revolution
7:36
Example I: Find the Volume of a Pyramid Whose Base is a Square of Side-length S, and Whose Height is H
10:54
Example II: Find the Volume of a Solid Whose Cross-sectional Areas Perpendicular to the Base are Equilateral Triangles
20:39
Example III: Find the Volume of a Pyramid Whose Base is an Equilateral Triangle of Side-Length A, and Whose Height is H
29:27
Example IV: Find the Volume of a Solid Whose Base is Given by the Equation 16x² + 4y² = 64
36:47
Example V: Find the Volume of a Solid Whose Base is the Region Bounded by the Functions y=3-x² and the x-axis
46:13
Volumes IV: Volumes By Cylindrical Shells

50m 2s

Intro
0:00
Volumes by Cylindrical Shells
0:11
Find the Volume of the Following Region
0:12
Volumes by Cylindrical Shells: Integrating Along x
14:12
Volumes by Cylindrical Shells: Integrating Along y
14:40
Volumes by Cylindrical Shells Formulas
16:22
Example I: Using the Method of Cylindrical Shells, Find the Volume of the Solid
18:33
Example II: Using the Method of Cylindrical Shells, Find the Volume of the Solid
25:57
Example III: Using the Method of Cylindrical Shells, Find the Volume of the Solid
31:38
Example IV: Using the Method of Cylindrical Shells, Find the Volume of the Solid
38:44
Example V: Using the Method of Cylindrical Shells, Find the Volume of the Solid
44:03
The Average Value of a Function

32m 13s

Intro
0:00
The Average Value of a Function
0:07
Average Value of f(x)
0:08
What if The Domain of f(x) is Not Finite?
2:23
Let's Calculate Average Value for f(x) = x² [2,5]
4:46
Mean Value Theorem for Integrate
9:25
Example I: Find the Average Value of the Given Function Over the Given Interval
14:06
Example II: Find the Average Value of the Given Function Over the Given Interval
18:25
Example III: Find the Number A Such that the Average Value of the Function f(x) = -4x² + 8x + 4 Equals 2 Over the Interval [-1,A]
24:04
Example IV: Find the Average Density of a Rod
27:47
Section 6: Techniques of Integration
Integration by Parts

50m 32s

Intro
0:00
Integration by Parts
0:08
The Product Rule for Differentiation
0:09
Integrating Both Sides Retains the Equality
0:52
Differential Notation
2:24
Example I: ∫ x cos x dx
5:41
Example II: ∫ x² sin(2x)dx
12:01
Example III: ∫ (e^x) cos x dx
18:19
Example IV: ∫ (sin^-1) (x) dx
23:42
Example V: ∫₁⁵ (lnx)² dx
28:25
Summary
32:31
Tabular Integration
35:08
Case 1
35:52
Example: ∫x³sinx dx
36:39
Case 2
40:28
Example: ∫e^(2x) sin 3x
41:14
Trigonometric Integrals I

24m 50s

Intro
0:00
Example I: ∫ sin³ (x) dx
1:36
Example II: ∫ cos⁵(x)sin²(x)dx
4:36
Example III: ∫ sin⁴(x)dx
9:23
Summary for Evaluating Trigonometric Integrals of the Following Type: ∫ (sin^m) (x) (cos^p) (x) dx
15:59
#1: Power of sin is Odd
16:00
#2: Power of cos is Odd
16:41
#3: Powers of Both sin and cos are Odd
16:55
#4: Powers of Both sin and cos are Even
17:10
Example IV: ∫ tan⁴ (x) sec⁴ (x) dx
17:34
Example V: ∫ sec⁹(x) tan³(x) dx
20:55
Summary for Evaluating Trigonometric Integrals of the Following Type: ∫ (sec^m) (x) (tan^p) (x) dx
23:31
#1: Power of sec is Odd
23:32
#2: Power of tan is Odd
24:04
#3: Powers of sec is Odd and/or Power of tan is Even
24:18
Trigonometric Integrals II

22m 12s

Intro
0:00
Trigonometric Integrals II
0:09
Recall: ∫tanx dx
0:10
Let's Find ∫secx dx
3:23
Example I: ∫ tan⁵ (x) dx
6:23
Example II: ∫ sec⁵ (x) dx
11:41
Summary: How to Deal with Integrals of Different Types
19:04
Identities to Deal with Integrals of Different Types
19:05
Example III: ∫cos(5x)sin(9x)dx
19:57
More Example Problems for Trigonometric Integrals

17m 22s

Intro
0:00
Example I: ∫sin²(x)cos⁷(x)dx
0:14
Example II: ∫x sin²(x) dx
3:56
Example III: ∫csc⁴ (x/5)dx
8:39
Example IV: ∫( (1-tan²x)/(sec²x) ) dx
11:17
Example V: ∫ 1 / (sinx-1) dx
13:19
Integration by Partial Fractions I

55m 12s

Intro
0:00
Integration by Partial Fractions I
0:11
Recall the Idea of Finding a Common Denominator
0:12
Decomposing a Rational Function to Its Partial Fractions
4:10
2 Types of Rational Function: Improper & Proper
5:16
Improper Rational Function
7:26
Improper Rational Function
7:27
Proper Rational Function
11:16
Proper Rational Function & Partial Fractions
11:17
Linear Factors
14:04
Irreducible Quadratic Factors
15:02
Case 1: G(x) is a Product of Distinct Linear Factors
17:10
Example I: Integration by Partial Fractions
20:33
Case 2: D(x) is a Product of Linear Factors
40:58
Example II: Integration by Partial Fractions
44:41
Integration by Partial Fractions II

42m 57s

Intro
0:00
Case 3: D(x) Contains Irreducible Factors
0:09
Example I: Integration by Partial Fractions
5:19
Example II: Integration by Partial Fractions
16:22
Case 4: D(x) has Repeated Irreducible Quadratic Factors
27:30
Example III: Integration by Partial Fractions
30:19
Section 7: Differential Equations
Introduction to Differential Equations

46m 37s

Intro
0:00
Introduction to Differential Equations
0:09
Overview
0:10
Differential Equations Involving Derivatives of y(x)
2:08
Differential Equations Involving Derivatives of y(x) and Function of y(x)
3:23
Equations for an Unknown Number
6:28
What are These Differential Equations Saying?
10:30
Verifying that a Function is a Solution of the Differential Equation
13:00
Verifying that a Function is a Solution of the Differential Equation
13:01
Verify that y(x) = 4e^x + 3x² + 6x + e^π is a Solution of this Differential Equation
17:20
General Solution
22:00
Particular Solution
24:36
Initial Value Problem
27:42
Example I: Verify that a Family of Functions is a Solution of the Differential Equation
32:24
Example II: For What Values of K Does the Function Satisfy the Differential Equation
36:07
Example III: Verify the Solution and Solve the Initial Value Problem
39:47
Separation of Variables

28m 8s

Intro
0:00
Separation of Variables
0:28
Separation of Variables
0:29
Example I: Solve the Following g Initial Value Problem
8:29
Example II: Solve the Following g Initial Value Problem
13:46
Example III: Find an Equation of the Curve
18:48
Population Growth: The Standard & Logistic Equations

51m 7s

Intro
0:00
Standard Growth Model
0:30
Definition of the Standard/Natural Growth Model
0:31
Initial Conditions
8:00
The General Solution
9:16
Example I: Standard Growth Model
10:45
Logistic Growth Model
18:33
Logistic Growth Model
18:34
Solving the Initial Value Problem
25:21
What Happens When t → ∞
36:42
Example II: Solve the Following g Initial Value Problem
41:50
Relative Growth Rate
46:56
Relative Growth Rate
46:57
Relative Growth Rate Version for the Standard model
49:04
Slope Fields

24m 37s

Intro
0:00
Slope Fields
0:35
Slope Fields
0:36
Graphing the Slope Fields, Part 1
11:12
Graphing the Slope Fields, Part 2
15:37
Graphing the Slope Fields, Part 3
17:25
Steps to Solving Slope Field Problems
20:24
Example I: Draw or Generate the Slope Field of the Differential Equation y'=x cos y
22:38
Section 8: AP Practic Exam
AP Practice Exam: Section 1, Part A No Calculator

45m 29s

Intro
0:00
Exam Link
0:10
Problem #1
1:26
Problem #2
2:52
Problem #3
4:42
Problem #4
7:03
Problem #5
10:01
Problem #6
13:49
Problem #7
15:16
Problem #8
19:06
Problem #9
23:10
Problem #10
28:10
Problem #11
31:30
Problem #12
33:53
Problem #13
37:45
Problem #14
41:17
AP Practice Exam: Section 1, Part A No Calculator, cont.

41m 55s

Intro
0:00
Problem #15
0:22
Problem #16
3:10
Problem #17
5:30
Problem #18
8:03
Problem #19
9:53
Problem #20
14:51
Problem #21
17:30
Problem #22
22:12
Problem #23
25:48
Problem #24
29:57
Problem #25
33:35
Problem #26
35:57
Problem #27
37:57
Problem #28
40:04
AP Practice Exam: Section I, Part B Calculator Allowed

58m 47s

Intro
0:00
Problem #1
1:22
Problem #2
4:55
Problem #3
10:49
Problem #4
13:05
Problem #5
14:54
Problem #6
17:25
Problem #7
18:39
Problem #8
20:27
Problem #9
26:48
Problem #10
28:23
Problem #11
34:03
Problem #12
36:25
Problem #13
39:52
Problem #14
43:12
Problem #15
47:18
Problem #16
50:41
Problem #17
56:38
AP Practice Exam: Section II, Part A Calculator Allowed

25m 40s

Intro
0:00
Problem #1: Part A
1:14
Problem #1: Part B
4:46
Problem #1: Part C
8:00
Problem #2: Part A
12:24
Problem #2: Part B
16:51
Problem #2: Part C
17:17
Problem #3: Part A
18:16
Problem #3: Part B
19:54
Problem #3: Part C
21:44
Problem #3: Part D
22:57
AP Practice Exam: Section II, Part B No Calculator

31m 20s

Intro
0:00
Problem #4: Part A
1:35
Problem #4: Part B
5:54
Problem #4: Part C
8:50
Problem #4: Part D
9:40
Problem #5: Part A
11:26
Problem #5: Part B
13:11
Problem #5: Part C
15:07
Problem #5: Part D
19:57
Problem #6: Part A
22:01
Problem #6: Part B
25:34
Problem #6: Part C
28:54
Loading...
This is a quick preview of the lesson. For full access, please Log In or Sign up.
For more information, please see full course syllabus of AP Calculus AB
Bookmark & Share Embed

Share this knowledge with your friends!

Copy & Paste this embed code into your website’s HTML

Please ensure that your website editor is in text mode when you paste the code.
(In Wordpress, the mode button is on the top right corner.)
  ×
  • - Allow users to view the embedded video in full-size.
Since this lesson is not free, only the preview will appear on your website.
  • Discussion

  • Answer Engine

  • Download Lecture Slides

  • Table of Contents

  • Transcription

Start Learning Now

Our free lessons will get you started (Adobe Flash® required).
Get immediate access to our entire library.

Sign up for Educator.com

Membership Overview

  • Unlimited access to our entire library of courses.
  • Search and jump to exactly what you want to learn.
  • *Ask questions and get answers from the community and our teachers!
  • Practice questions with step-by-step solutions.
  • Download lesson files for programming and software training practice.
  • Track your course viewing progress.
  • Download lecture slides for taking notes.
  • Learn at your own pace... anytime, anywhere!

The Average Value of a Function

Lecture Slides are screen-captured images of important points in the lecture. Students can download and print out these lecture slide images to do practice problems as well as take notes while watching the lecture.

  • Intro 0:00
  • The Average Value of a Function 0:07
    • Average Value of f(x)
    • What if The Domain of f(x) is Not Finite?
    • Let's Calculate Average Value for f(x) = x² [2,5]
    • Mean Value Theorem for Integrate
  • Example I: Find the Average Value of the Given Function Over the Given Interval 14:06
  • Example II: Find the Average Value of the Given Function Over the Given Interval 18:25
  • Example III: Find the Number A Such that the Average Value of the Function f(x) = -4x² + 8x + 4 Equals 2 Over the Interval [-1,A] 24:04
  • Example IV: Find the Average Density of a Rod 27:47

Transcription: The Average Value of a Function

Hello, welcome back to www.educator.com, and welcome back to AP Calculus.0000

Today, we are going to be talking about the average value of a function.0004

Let us jump right on in, let us work in blue here.0007

Let f(x) be defined by the following table of values.0012

We have x and then we have different values for f(x).0030

Let us take 1, 2, 3, 4, 5, and then, 6, 7, 8, 9, and 10.0036

We have 10 discreet points and our values are going to be 2, 2.7, 3.6, let us say 2.5, 6.8.0050

I have 9.7, 10.2, 10, and 9 is 13.4, we have 11.7.0064

What is the average value of this function?0091

In other words, what is the average value of f(x)?0097

It is very simple, like any average value, you add them all up and you divide by the number of points that there are.0100

What is the average value of f(x)?0109

It is exactly what you think.0123

The average = 1/10 because there are 10 points.0126

The sum as x goes from 1 to 10 of f(x).0130

f(1)+ f(2) + f(3) + f(4), all divided by 10, like any other average.0138

Now the question is what if the domain of f(x) is not finite?0144

It is a finite domain, I have 10 numbers in it.0160

I take an interval, like from 0 to 5.0164

The length of that interval is 5 but the number of points in that interval is infinite,0168

because there is an infinite number of points on the real number line.0175

How do we find the average value of the function then?0180

Such as, if I have the function f(x) is equal to x².0189

If I have x is in the interval from 2 to 5.0195

What is going to be the average value of the function?0200

Between 2 and 5, f(x) is going to take on an infinite number of values.0202

How do I find the average?0208

It is the same thing, we add and we divide by the length, so to speak.0209

Same thing here, except adding when we are dealing with an infinite domain becomes integration.0215

Because we are adding smaller and smaller things, we passed the integration, when we passed the limit.0221

We integrate the function and then we divide by the length which in this case is going to be 5/2.0227

Average value, here the average value = 1/ the length, which is going to be b – a.0233

This is the b, this is the a.0250

The integral from a to b of f(x) dx, that is it, that is the definition of the average value of a function.0251

It is going to be the integral of the function from a to b, the lower limit to the upper limit divided by the length of the interval.0260

It is essentially what we did here.0271

We are adding up all the values of the function and we are dividing by the number there are.0273

Here we are adding up all values of the function, the integral.0277

And we are dividing by the number there are which is essentially going to be the length of the interval.0280

Let us calculate the average value for f(x) = x², on the interval from 2 to 5.0287

Let me go back to blue here.0309

The average value is going to be 1/ 5 - 2 × the integral from 2 to 5 of x² dx.0315

It is just going to equal 1/3 x³/ 3 from 2 to 50329

which is going to equal 1/3, 125/3 - 8/3 which is going to equal 13.0339

What does this mean?0355

The average value of f(x)² from 2 to 5 is 13, what is that mean?0357

What does this mean? It means this.0372

I know my x² function look something like that.0376

If I have 2 and if I have 5, from 2 the value of f(x) is going to be 4.0380

At 5, the f(x) value is going to be 25.0388

What this means is that, when x goes from 2 to 5, f(x) takes on values from 4 to 25.0401

From 4 to 25, it takes on all the values from 4 to 25.0424

The average of those values is 13, that is it.0432

The average of those values given the weight of the function is not linear.0439

It is not y = x, the average of those values is 13.0447

Now you have an average, you have a way of finding an average of a finite number of terms.0454

Now you have a way of finding the average of an infinite number of terms.0459

That is all we are doing, we are using integration.0462

That is all, very simple.0467

The hardest issue is going to be integration itself.0470

We can find the average of an infinite sum, if you will, an infinite sum of numbers.0476

We just passed the integration.0497

Again, for f(x) such that x is in the interval from a to b.0503

The average value of f/ that interval is equal to 1/ b - a × the integral from a to b of f(x) dx.0520

Now we know what the integral from a to b of f(x) dx is, it is the area under the curve from a to b.0532

It is the area under the curve from a to b.0548

It turns out, we have something called the mean value theorem for integrals.0562

We have the mean value theorem for derivatives, way back when.0571

The mean value theorem for integrals says if f(x) is continuous on a closed interval ab,0575

then there exist a number c which is contained in ab.0605

There is a number c between a and b, such that f of that c is actually equal to the average value0619

or another way of saying this, I can move this a/b to the other side.0641

There is a c such that f of that c × the length of the interval actually = the area under the curve.0646

What that means is the following.0664

Something like that.0667

This is a, this is b.0671

Let us go ahead and use our example that we did.0679

This is our x² function, y = x².0683

This is 4, this is 25, this was our 13.0688

What the mean value theorem for integrals is saying is that there is some number c here.0698

There is some number c such that, let us draw this out actually.0715

Let me draw that again.0720

I have got 2, this is not a and b, this was 2 and this was 5.0723

Let us make it specific, 5 and 13.0729

The mean value theorem says that the f(c), there is some c.0744

In this particular case, it is going to be √13 because f (c) is 13.0752

The average value of the function, f(c) which was 13 × 5 - 2 = the integral from 2 to 5 of the x² dx.0758

In other words, f(c) × b - a = the integral from a to b of f(x) dx.0772

What this means geometrically is that the area under the curve, this area right here,0783

there is some c such that f(c) × f(c) which is in this case 13 × the length.0788

This is the 13, that is our height.0799

This is the 5 – 2, that is 3, where the area underneath that rectangle is the area underneath the curve.0801

That is it, average value, that is all that means.0809

Here we have the area under the curve.0814

Here is the area of the interval length × the average value.0825

That is it, mean value theorem for integrals.0840

Let us do some examples.0845

Find the average value of the given function over the given interval y = t³ e⁻²⁴ from 0 to 4, very simple.0849

Let us go ahead and work in blue here.0858

We know that our f average is equal to 1/ b – a, the integral from a to b of f(x) dx.0863

Here that is equal to 1/ 4 – 0, the integral from 0 to 4 of t³ e ⁻t⁴ dt.0876

That is all, that is all we are doing, this is just an integration problem.0888

This is going to equal 1/4 × the integral from 0 to 4 of,0893

Let me do it over here first.0906

I’m going to do a u substitution.0908

I’m going to call u - t⁴, du is going to be -3t³ dt.0912

Therefore, t³ dt is going to equal -1/3 du.0926

The du = -1/4 t³, there we go dt.0941

Take a breath, slow down, there we go.0960

-4t³ dt, there we go.0962

Now we have t³ dt is equal to -du/4.0966

Now I'm going to go ahead and put these in.0979

It is going to be ¼, that is that one, the integral, t³ dt.0982

t³ dt is going to be - du/4 × e ⁺u = -1/16 0⁴ e ⁺u du = -1/16 e ⁺u0989

= -1/16 e ^- t⁴, from 0 to 4 = -1/16 × 1/ e ⁺256 – e⁰ which is 1.1021

If you want, I can go ahead and just leave it that way.1050

The graph is going to look as follows.1055

This is the function, this is y = t³ e ⁻t⁴.1059

The average value is a particular something.1071

We went from 0 to 4, past here.1073

Clearly, even though the majority of it is you are getting up to like 0.38, 0.39,1080

but we are actually taking all of these average values from about 1.6, 1.7, all the way to 4 is virtually 0,1089

which is why the average value of this function from here to 4 is actually going to be very small.1096

Find the average value of the given function over the given interval,1107

then find the number c in the given interval such that f(c) = the f average.1110

Our function is this and our interval is 3,8.1119

Let us see, our f average is equal to 1/ b - a which is 8,3, 3 to 8 of 5 × cos(x) – sin(5x) dx.1124

This is going to equal 1/5, the integral from 3 to 8 of 5 cos x - 1/5 the integral from 3 to 8 of sin 5x and my dx.1149

5 comes out, we are left with just the integral of cos x which is going to be sin x from 3 to 8.1172

This is going to be -1/5 × 1/5.1188

The integral of sin is –cos, this is going to be × a - cos 5x from 3 to 8.1198

Let us see what I have got.1219

When I actually do this, I should have sin x, from 3 to 8 this is going to be, we have +1/25.1223

That is fine, 1/25.1249

You know what, I do not need simplify it, just go ahead and put these in.1258

I have got sin 8 - sin 3 -, when I multiply all these out, putting 8 and 3, keeping this negative sign here,1265

I left the negative sign in here, I just pulled off the 1/5 to turn it into 1/25.1278

I left it like that.1282

What you are going to end up getting once you expand is going to be cos of 40/25 - cos 15/25.1285

I ended up with the value of 0.852, that is the average value of this function.1296

Here is what it looks like.1304

We are going from 3 to 8, this is the actual graph itself.1306

This is y = 5 cos x – sin 5x.1310

We are going from 3 to 8.1318

Some negative values, some positive values, some negative values.1325

On average, we are going to end up with 0.852.1329

We want to find the c such that f(c) = the average value.1341

f(c) is just 5 × cos(c) - sin 5c = the average value which is 0.852.1360

When I solve this equation for c, I move this over to the left to set it equal to 0.1381

Use my calculator or whatever graphical utility I have, I get c is equal to 4.685 and c is equal to 7.611.1385

The interval was from 3 to 8.1405

Both of those numbers are in the interval from 3 to 8.1410

Therefore, both of these, there are two numbers.1414

It does not have to be just one, you can have more.1418

There are two numbers c, such that f of these c’s is equal to 1/ b - a × the integral from a to b of f(x) dx.1421

Example 3, find the number a such that the average value of the function = 2/ the interval from -1 to a.1446

The average value of the function 1/ b – a, a - -1 × the integral from -1 to a of -4x² + 8x + 4 dx.1462

We want this average value to equal 2.1485

Solve this equation for a.1490

I get 1/ a + 1, the integral here is -4x³/ 3 + 8x²/ 2.1494

This is going to be + 4x² + 4x from -1 to a is equal to 2 – 4a³/ 31515

+ 4a² + 4a - 4/3 + 4 - 4 = 2 × a + 1,1537

multiplied through, solve for that.1557

I end up with -4a/ 3 + 4a² + 4a - 4/3 + 2a + 2.1560

Combine terms, a’s, numbers, I get – 4a³/ 3.1577

I simplify this equation, I bring things together, multiply by 3.1592

My final equation I get is, once I have gotten rid of the fractions, -4a³ + 12a² + 6a - 10 = 0.1596

When I solve this, I get a = -1, I get a = 0.775, and I get a = 3.225.1610

-1 to -1, we can ignore this one.1628

We have -1 to 0.775, two possible values, and -1 to 3.225.1635

There you go, that function is the graph of the function.1644

We are going from -1, this is one value of a and this is our second value of a.1650

That makes this average value equal 2.1658

That is it, we are just using the definition of average value.1663

The linear density of a rod 10 m long is a function of the distance from one end.1668

The density function is this, 17/ √3x + 5 kg/m, find the average density of the rod.1674

The average density is 1/, what does this rod looks like?1688

We have a rod which is going to be 10 m long.1694

This is 0, this is 10.1698

They are telling me as I move along the x axis, as x increases from 0 to 10, the density changes.1701

It is a variable density, as we move along the rod.1708

The average value is just , the density average = 1/ 10 - 01712

the integral from 0 to 10 of the functions 17/ √3x + 5 dx.1728

How are we going to solve that integral?1739

Let us go ahead and do this.1746

Let us do u is equal to 3x + 5¹/2, that is going to make du = ½ 3x + 5 ^½ × 3 dx,1748

which gives me 2 du divided by 3 is equal to dx/ √3x + 5.1781

Perfect, that means our average density is equal to 1/10 from 0 to 10,1792

2 du/ 3 because now dx/ 3x + 5 is that right there.1815

That is just 2/3 du, then × 17.1825

We are going to get 2 × 17 is 34/30.1830

We are going to get 34/30 × the integral du from 0 to 10 which = 34/30 u from 0 to 10 = 34 ⁺30.1837

u is equal to √3x + 5, from 0 to 10.1862

When we solve this, we end up with 4.17 kg/m.1872

That is it, the average value of the depth, they have given you a function.1877

All this means is that when we move from 0 to 10, this is the density.1884

As you move along the rod, it is more dense here, towards the left end of the rod.1889

As you move to the right, the density starts to decrease.1894

That is it, that is all that is going on here.1897

The average density is going to be the average value of the function.1898

That is all hope, I hope that makes sense.1902

Once again, the average value of the function over the interval from a to b is equal to 1/ b – a, the integral from a to b of f(x) dx.1910

Thank you so much for joining us here at www.educator.com.1930

We will see you next time, bye.1932

Educator®

Please sign in to participate in this lecture discussion.

Resetting Your Password?
OR

Start Learning Now

Our free lessons will get you started (Adobe Flash® required).
Get immediate access to our entire library.

Membership Overview

  • Available 24/7. Unlimited Access to Our Entire Library.
  • Search and jump to exactly what you want to learn.
  • *Ask questions and get answers from the community and our teachers!
  • Practice questions with step-by-step solutions.
  • Download lecture slides for taking notes.
  • Track your course viewing progress.
  • Accessible anytime, anywhere with our Android and iOS apps.