Sign In | Subscribe
INSTRUCTORS Carleen Eaton Grant Fraser Eric Smith
Start learning today, and be successful in your academic & professional career. Start Today!
Loading video...
This is a quick preview of the lesson. For full access, please Log In or Sign up.
For more information, please see full course syllabus of Algebra 1
  • Discussion

  • Study Guides

  • Practice Questions

  • Download Lecture Slides

  • Table of Contents

  • Related Books

Bookmark and Share

Start Learning Now

Our free lessons will get you started (Adobe Flash® required).
Get immediate access to our entire library.

Sign up for Educator.com

Membership Overview

  • Unlimited access to our entire library of courses.
  • Search and jump to exactly what you want to learn.
  • *Ask questions and get answers from the community and our teachers!
  • Practice questions with step-by-step solutions.
  • Download lesson files for programming and software training practice.
  • Track your course viewing progress.
  • Download lecture slides for taking notes.
  • Learn at your own pace... anytime, anywhere!

Inequalities with Absolute Values

  • To solve an inequality involving absolute value, convert the original inequality into a compound inequality that does not involve absolute value, using the definition of absolute value. For example, |2x + 3| > 4 would become: either 2x + 3 > 4 or 2x + 3 < -4.
  • Describe the solution set of a compound inequality using either a number line or set builder notation.

Inequalities with Absolute Values

Solve | b − 6 | ≥ 7
  • b − 6 ≥ 7 b − 6 ≤ − 7
  • b − 6 ≥ 7
  • b ≥ 13
  • b − 6 ≤ − 7
  • b ≤ − 1
b ≥ 13 and b ≤ − 1
| 5a − 2 | < 18
  • 5a − 2 < 185a − 2 > − 18
  • 5a − 2 < 18
  • 5a < 20
  • a < 4
  • 5a − 2 > − 18
  • 5a > − 16
  • a > − [16/5]
  • a > - 3[1/5]
a < 4 and a > − 3[1/5]
− 3[1/5] < a < 4
| w − 3 | ≤ 18
  • w − 3 ≤ 18
    w − 3 ≥ − 18
  • w − 3 ≤ 18
  • w ≤ 21
  • w − 3 ≥ − 18
  • w ≥ − 15
w ≤ 21 and w ≥ − 15
− 15 ≤ w ≤ 21
| f − 8 | < 17
  • f − 8 < 17f − 8 > − 17
  • f − 8 < 17
  • f < 25
  • f − 8 > − 17
  • f > − 9
f < 25 and f > − 9
− 9 < f < 25
| m + 7 | > 1
  • m + 7 > 1m + 7 < − 1
  • m + 7 > 1
  • m > − 6
  • m + 7 < − 1
  • m < − 8
m > − 6 and m < − 8
| r + 10 | ≤ 3
  • r + 10 ≤ 3r + 10 ≥ − 3
  • r + 10 ≤ 3
  • r ≤ − 7
  • r + 10 ≥ − 3
  • r ≥ − 13
r ≤ − 7 and r ≥ − 13
− 13 ≤ r ≤ − 7
| y + 16 | < 49
  • y + 16 < 49y + 16 > − 49
  • y + 16 < 49
  • y < 33
  • y + 16 > − 49
  • y > − 65
y < 33 and y > − 65
− 65 < y < 33
| 2d − 6 | > 10
  • 2d − 6 > 102d − 6 < − 10
  • 2d − 6 > 10
  • 2d > 16
  • d > 8
  • 2d − 6 < − 10
  • 2d < − 4
  • d < − 2
d > 8 and d < − 2
| 4x − 3 | > 13
  • 4x − 3 > 134x − 3 < − 13
  • 4x − 3 > 13
  • 4x > 16
  • x > 4
  • 4x − 3 < − 13
  • 4x < 10
  • x < [10/4]
  • x < 2[2/5]
x > 4 and x < 2[2/5]
| 5m − 10 | > 35
  • 5m − 10 > 355m − 10 < − 35
  • 5m − 10 > 35
  • 5m > 45
  • m > 9
  • 5m − 10 < − 35
  • 5m < 25
  • m < 5
m > 9 and m < 5

*These practice questions are only helpful when you work on them offline on a piece of paper and then use the solution steps function to check your answer.

Answer

Inequalities with Absolute Values

Lecture Slides are screen-captured images of important points in the lecture. Students can download and print out these lecture slide images to do practice problems as well as take notes while watching the lecture.

  • Intro 0:00
  • Inequalities of the Form |x|< n 0:07
    • Values that Satisfy Both Inequalities
    • Example
  • Inequalities of the Form |x|> n 3:58
    • Values that Satisfy Either Inequalities
    • Example
  • Example 1: Solve the Inequality 6:38
  • Example 2: Solve the Inequality 9:54
  • Example 3: Solve the Inequality 12:05
  • Example 4: Solve the Inequality 14:50