Browse Courses
Start learning today, and be successful in your academic & professional career. Start Today!
Loading video...
This is a quick preview of the lesson. For full access, please Log In or Sign up.
For more information, please see full course syllabus of AP Biology
  • Discussion

  • Study Guides

  • Download Lecture Slides

  • Table of Contents

  • Transcription

  • Related Books & Services

Bookmark and Share
Lecture Comments (22)

1 answer

Last reply by: Dr Carleen Eaton
Tue Jun 17, 2014 7:44 PM

Post by Rachel Naiukow on May 31, 2014

Isn't the template strand (in transcription) known as the antisense strand and the coding strand as the sense strand? The sources I looked at said as such. A mnemonic I like to use is that the "sense" strand (makes sense) because it is the same as the mRNA strand being transcribed, with the exception of the Thymine replaced with Uracil. The antisense strand doesn't (make sense) and is complementary.

1 answer

Last reply by: Dr Carleen Eaton
Sun Dec 16, 2012 4:52 PM

Post by omri shick on December 12, 2012

have to thank you!!! you helped me a lot with biology class.

0 answers

Post by Dr Carleen Eaton on November 26, 2012

You are correct. I apologize for the error. For Example III the answer should be:


1 answer

Last reply by: Dr Carleen Eaton
Mon Nov 26, 2012 11:55 PM

Post by jessica chopra on November 21, 2012

at 4:32 you said C and G are purines...thats wrong...A and G are the purines

1 answer

Last reply by: Dr Carleen Eaton
Mon Nov 26, 2012 11:43 PM

Post by bakar yasin on November 14, 2012

Hi. Dr Carleen Eaton,
around 68:55 why does T in DNA becomes U in RNA?

1 answer

Last reply by: Dr Carleen Eaton
Mon Nov 26, 2012 11:44 PM

Post by Chana Heintz on October 21, 2012

in example three the base pairing is done wrong.

1 answer

Last reply by: Dr Carleen Eaton
Mon Nov 26, 2012 11:58 PM

Post by Ikze Cho on October 20, 2012

Dr. Eaton,
isn't the antisense strand complementary to the RNA?

1 answer

Last reply by: Dr Carleen Eaton
Fri Oct 14, 2011 12:20 AM

Post by Daniel Delaney on September 30, 2011

Dr. Eaton,
I can't emphasize enough how simple you made something that was introduced to me as difficult.

1 answer

Last reply by: Dr Carleen Eaton
Sun Jan 9, 2011 11:43 PM

Post by Tomer Eiges on January 8, 2011

This video really helped me, thanks Dr. Eaton

1 answer

Last reply by: Dr Carleen Eaton
Mon Jan 3, 2011 6:39 PM

Post by Samantha Tran on December 30, 2010

In your thrid example, shouldn't the second codon be GAA, not GUU?

2 answers

Last reply by: Loan Doan
Sat Mar 30, 2013 12:51 PM

Post by Dharshini Selladurai on December 7, 2010

purines are A and C Adenine and cytosine.

Transcription and Translation

  • Transcription is initiated when RNA polymerase and transcription factors bind to the promoter region of a gene. The promoter frequently includes the nucleotide sequence TATA and is known as a TATA box.
  • Following transcription, the pre-mRNA undergoes processing to form mRNA. Introns are removed through splicing and a 5' cap and a poly A tail are added to the mRNA.
  • The mRNA is transported out of the nucleus to the cytoplasm where translation takes place.
  • Nucleotide triplets, called codons, signify particular amino acids.
  • The three phases of translation are also initiation, elongation and termination.
  • Translation begins at the start codon AUG, which is also the codon for methionine. Transfer RNA (tRNA) delivers the amino acids to the ribosome to be added to the growing polypeptide chain.
  • Translation is terminated when the ribosome encounters a stop codon.
  • Mutations are changes in the DNA sequence. A change in a single base pair is a point mutations. Types of mutations include silent, missense and nonsense mutations.
  • Insertions and deletions result in base pairs being added or eliminated from the DNA sequence. This results in a frameshift mutation.

Transcription and Translation

Lecture Slides are screen-captured images of important points in the lecture. Students can download and print out these lecture slide images to do practice problems as well as take notes while watching the lecture.

Transcription: Transcription and Translation

Welcome to

We are going to continue our discussion of molecular genetics with the topics of transcription and translation.0002

Before we delve into the details, I am going to give you an overview of the process.0011

Recall that the central dogma of molecular biology is the flow of information from DNA to RNA to protein.0015

The genetic information is contained on DNA.0029

A transcript is made of RNA and this is then, transported.0033

A particular type of RNA, mRNA is transported into the cytoplasm, where it is translated into polypeptide and forms of protein.0039

This process, therefore, is called transcription.0050

The use of a DNA template to form RNA, and the process of going from RNA using that RNA transcript to form a protein is translation.0055

When a protein is made based on the information contained in DNA, we say that the gene has been expressed.0071

A person might carry a gene for red hair, and that is just the gene.0079

But the actual protein that makes the hair color red, when that is made, we say the gene is expressed. It is expressed in the form of red hair.0086

Now, looking at these names, transcription and translation, recall that DNA is made from nucleotides. The nucleotide monomers form a polynucleotide.0095

RNA is also made from nucleotide monomers.0108

There are slight differences between DNA and RNA, but the essential code is the same.0112

Therefore, a DNA template is simply copied. It is transcribed to make the RNA.0117

That is much difference between RNA and protein, so with DNA, you are working with nucleotides, with RNA, with nucleotides.0125

With protein, it is an amino acid sequence.0132

In order to go from this one type of code - nucleotides - to another code - amino acid sequence - is actually translation.0135

You are not just copying something. You are actually taking the information and translating it into a different form.0145

We are going to discuss transcription first, and to understand transcription, you need to have RNA structure down.0154

Again, this is a topic that was covered under the nucleic acid and protein lecture earlier on, but I am going to review the essentials right now.0160

Unlike DNA, RNA molecules are single stranded.0169

Another difference between RNA and DNA is that they contain uracil instead of thymine.0173

The essential structure is the same, though.0180

RNA consists of nucleotides. It is a nucleotide sequence, and looking at what a nucleotide is, there is a pentose sugar; so that is a 5-carbon sugar.0182

In the case of RNA, the sugar is ribose.0194

In DNA, this oxygen is gone. It is deoxygenated.0198

It is deoxyribose, so this is ribonucleic acid.0202

The second element is a nitrogenous base.0206

And recall that there are two sets of nitrogenous bases- the pyrimidines, which contain a 6-membered ring, and they are cytosine, thymine and uracil.0210

In RNA, you will find uracil. In DNA, you will find thymine, and cytosine is found in both.0224

For RNA, we are just going to have C and U.0233

The second type of nitrogenous base is the purines.0236

These contain a 6-membered ring fused to a 5-membered ring and consist of G and C, adenine and - excuse me - guanine and cytosine, so C, U, G, C.0243

The other thing to be aware of besides the differences between RNA and DNA is the types of RNA.0267

There are multiple types of RNA. Three main ones we will be focusing on.0275

One is messenger RNA. The other is ribosomal RNA, and the third is transfer or tRNA.0279

Messenger RNA is the type of RNA that is used for translation.0289

It is the transcript to make a protein.0297

Ribosomal RNA is not used to make a protein. The rRNA is itself, the product.0303

Ribosomes are composed largely of ribosomal RNA, so these are component of ribosomes.0309

tRNA or transfer RNA delivers amino acids to the ribosome during translation, and we will be going into detail about all three types of these as we go along.0323

We are going to start out mainly focusing on mRNA. All three of these would be transcribed.0340

DNA would be used as a template to form all three types, but as we talk about transcription, I am going to focus on mRNA.0345

And then, we are going to follow that process of transcription with translation.0352

Transcription is the process through which RNA is synthesized using a DNA molecule as a template.0359

There are three phases. Initiation, elongation and termination are the three phases.0368

We are going to go through each of these phases starting out with initiation.0375

Initiation begins with the binding of RNA polymerase to the promoter region.0379

The region on DNA, where this gets started, is known as promoter.0385

Here, we have the DNA double helix, and you see it is separated out here in order to allow transcription to occur.0392

Transcription for a particular gene occurs using only one of the DNA strands as a template.0401

In this case, here we have DNA, DNA, and then, in brown, it is the RNA; and you can see that this RNA strand is using this DNA as the template.0408

This is the template strand. Another name for template strand, we sometimes call it the sense strand, and the other is the antisense strand.0420

During initiation - I will put this right here - the RNA polymerase binds to the promoter region.0430

Promoter regions are also known as TATA boxes because they have the sequence T-A-T-A.0447

Initially, where this promoter region is, the RNA polymerase binds, is slightly upstream of where the first actual nucleotide will be transcribed.0459

Things start out, RNA polymerase binds to this promoter region, and then, slightly pass that, we will get the actual transcription of RNA.0471

In addition to RNA polymerase, there are other factors that bind to this promoter region.0487

If you take it together, the RNA polymerase plus other proteins known as transcription factors,0493

what you have is something called the transcription initiation complex.0506

And the job of these transcription factors is to help the RNA polymerase bind to the correct region.0516

We have RNA polymerase plus transcription factors. All that binds together to the promoter region to get things started.0525

And it is known as a transcription initiation complex.0531

In eukaryotes, there is actually a different type of RNA polymerase for each of those three types of RNA that I mentioned- tRNA, rRNA and mRNA.0535

We are focusing right now in messenger RNA.0550

The one that is used to transcribe DNA into what will become messenger RNA is known as RNA polymerase II.0551

RNA Pol II transcribes DNA into what is eventually messenger RNA.0559

This has occurred. This binding has occurred.0566

The transcription initiation complex has bound.0569

The next thing that needs to happen is the double helices to unwind.0571

And again, helicases are involved in this unwinding, this separating out so that the RNA can use the template strand.0575

Now, for a particular gene, the same strand is always used as a template.0584

Let's look at this DNA and say that there is a gene here that is being transcribed.0589

Well, that is what is happening, and we see that this is the template strand.0594

There might be another gene over here that needs to be transcribed, and this strand may be the template for that.0599

So, the same template is used for a particular gene, but it might be a different strand that is used for another gene, so that is initiation.0606

The next thing that needs to happen is elongation.0617

The initiation complex has bound. RNA polymerase is ready to go.0619

It is bound to the template strand. These other factors are bound.0623

We found the TATA box. The helix has been separated.0628

What is going to happen is that RNA polymerase is going to proceed in the 5' to 3' direction, just like DNA polymerase.0632

And it is going to form a strand of RNA that is complementary to the template strand.0641

Remember that complementary means that we would have G and C. Those two are complementary.0645

And with DNA, when we would say "OK, A is complementary with T", for RNA we do not have T. We have U.0656

For RNA, it is going to be A, U, G, C as complementary nucleotides.0666

Looking here at what I mean, this is the template strand for this situation.0672

This is the RNA strand. RNA polymerase is going to seed T, and that is going to tell it to add A for the nucleotide in the growing RNA strand.0681

For C, the complementary strand is going to be G. For G on the template, we are going to have C.0692

For A, if this was DNA synthesis, we would have T, but it is not. It is RNA synthesis, so instead, we are going to have U, G, C.0701

A on the DNA gives me U, A, T and so on, and recall that we just produced one strand.0713

We do not need a double helix. RNA is just single-stranded.0725

You will also notice that this is the same sequence almost as the antisense strand.0731

It is complementary to this template strand or sense strand.0736

And it is the same as antisense not a 100% the same because you will see here, I have AA GG CC T.0739

There is no T here. There is U instead, CC and U instead of T and so on.0748

OK, the first step was initiation transcription complex - excuse me - transcription initiation complex bound to the template strand.0756

Now, we have elongation. RNA, polymerase is adding nucleotides one at the time in the 5' to 3' direction.0766

And this is going to go on until a termination sequence is encountered.0774

A typical termination sequence, a common one is A-A-U-A-A-A.0784

RNA polymerase is going along, and then, it encounters a certain sequence on the DNA that is going to be transcribed into this sequence A-A-U-A-A-A.0795

That is the termination sequence.0803

Shortly after that signal, the newly produced RNA is cut free.0805

This newly produced RNA is not mRNA yet. It is actually known as pre-mRNA or sometimes hnRNA, which stands for heterogeneous nuclear RNA.0811

This is the initial transcript produced.0827

Just reviewing, we had initiation. Then, the RNA polymerase is adding nucleotides 5' to 3'.0830

It encounters a certain sequence that when transcribed it forms A-A-U-A-A-A, which is the termination sequence.0836

Shortly after that, the RNA is released from this complex, and it is free.0844

I mentioned that this initial transcript is not messenger RNA.0856

It is not mRNA. It is pre-mRNA.0860

In order to become mRNA, processing needs to occur, and there is several major types of processing.0863

One of them is splicing. The other is the addition of a 5' cap, and the third is the addition of a poly(A) tail.0871

DNA actually contains both coding and noncoding regions.0879

Coding regions can be expressed as a protein, so they can be used as instructions to form a protein.0883

Noncoding regions do not.0891

Let's first look at DNA, and say we have a piece of DNA like this and there is sections that are coding.0895

And there is sections that are noncoding- 1, 2, 3 to add one more.0909

These numbered sections are going to be the coding regions. These are called exons.0922

These sections in between with no number are introns.0928

The coding regions, again, a protein can be formed from those, and one way to remember this is just remember the introns interrupt.0932

They interrupt the coding regions, and the exons are expressed; so remember ex for expressed and/or you can remember interrupt.0940

In the initial transcript, the pre-mRNA, all of these nucleotides are transcribed.0958

We are going to end up with a transcript that has each of these nucleotides represented.0965

Introns, exons, all of it is there so 1, 2, 3 and 4.0972

However, when the ribosome goes to make the protein, it does not need these interrupting regions.0979

In fact, that would disrupt translation, so we need to get rid of these.0987

In order to form actual messenger RNA, these regions are cut out or spliced out, so this is going to be cut out, cut out, cut out.0991

The result is we are going to be left with 1, 2, 3 and 4- just the exons.1004

The introns have been removed, so we spliced those out.1016

This step is splicing, and this step is performed by spliceosomes.1022

Spliceosomes are composed of snRNPs, or they are also called snRNPs plus protein.1032

Now, what are these snRNPs? What does that stand for?1045

What are they made of?1048

Well, sn is small nuclear ribonucleoproteins. That is why it is abbreviated because it is really long.1049

And small nuclear ribonucleoproteins consist of protein plus a special type of RNA called snRNA.1065

snRNA is what is called a ribozyme. This is RNA that acts as an enzyme or it is thought to be.1076

Ribozymes are RNA that acts as an enzyme, and snRNA is believed to be a ribozyme.1095

Ribozymes, RNA that act as an enzyme. It is thought that snRNA is a ribozyme.1106

When snRNA is combined with particular proteins, it is a snRNP.1112

snRNPs plus other proteins form a particular form a spliceosome, and they are responsible for the splicing.1120

In addition to splicing, a couple other changes are made to form mRNA.1125

A 5' cap is added. Let's say this is 5' and this is 3'.1132

This 5' cap is actually a modified guanine molecule that is added to the 5' region, and then, at the other ends, this is a modified guanine for the 5' cap.1137

The poly(A) tail is on the 3'-end. It is just like you would imagine.1156

It is a string of As, and there is a modified guanine here.1161

The purpose of this cap and tail, it is partly to protect the ends. The other purpose is to mark this as mRNA.1167

In the nucleus the pre-mRNA is formed. These modifications occur, and now, it is marked for export from the nucleus.1176

The mRNA is, then, exported form the nucleus.1184

Before we go on and talk about translation, I want to just mention that there is something called alternative splicing.1187

Seeing how this has been spliced - 1, 2, 3 and 4 were spliced together - it is actually possible - let’s say we start out with the same 1, 2, 3, 4 -1195

instead of splicing it like this, it is possible to splice it differently1219

Instead of just taking out the intron, maybe you will cut out number 2.1223

Maybe you will splice that out, and then, what you will end up with is a transcript that contains1228

- and this is would be spliced out because that is an intron - 1, 3 and 4, those exons.1236

And this actually does happen - this type of alternative splicing - quite frequently with the human genome.1248

And what this allows is for a fewer number of genes - less DNA - to be needed to make a huge variety of protein.1255

And a protein like this that contains 1, 3 and 4 is going to be related to this protein, but it is going to be different.1262

Therefore, you can use a series of exons, kind of, mix and match them to create related proteins, and it is a more efficient use of DNA.1268

It could have been spliced with 2, 3 and 4 or just 4 and 1- various different ways for splicing.1277

OK, just to sum up, RNA processing consists of splicing, in which the noncoding regions are removed1284

as well as the addition of a 5- cap and a poly(A) tail to protect the ends and to let the cell know that this is mRNA.1291

Then, it is exported out of the nucleus into the cytoplasm, where translation can occur.1299

During translation, the RNA transcript is used to create a polypeptide. As I said, this occurs in the cytoplasm.1307

Recall that RNA is formed from nucleotides. Proteins are formed from amino acids.1315

How do we get from nucleotides to amino acids? How is that nucleotide sequence interpreted?1322

Well, it is something called codons.1330

Let's look at a particular RNA sequence, and I am going to cluster these in triplets- CUG, GCU, UAC.1335

I am going to cluster them that way, so that it emphasizes the fact that codons are triplets.1347

And reading from the 5' to 3'-end, I would end up with CUG, and that particular triplet specifies leucine. This is saying leucine should be added.1353

When the ribosome encounters this particular triplet, GCU signifies alanine, UAC- tyrosine.1366

This is how RNA - this is mRNA - can be translated into an amino acid sequence.1381

The ribosome is able to, and in the other translation machinery together with the ribosome,1388

are able to interpret a nucleotide sequence and translate it into an amino acid sequence.1393

You certainly do not need to memorize which codons signify particular amino acids. There is just a few things you should know, though.1400

However, AUG has a special job. It is also the start codon.1408

It specifies methionine. Methionine is always the first amino acid added, and AUG is the start codon.1414

There are several other special codons known as stop codons. UAA, UAG and UGA are stop codons.1422

When the ribosome encounters these, it knows translation is complete.1434

The genetic code is what is known as degenerate or redundant. What this means is that an amino acid can be specified by more than one codon.1441

This is best understood for example, so let's look at the codons for arginine.1450

CGA, CGC, CGG and CGU all code for arginine. All of these signify arginine.1455

If the ribosome encounters these, an arginine will be added there.1471

You have probably noticed that the first two - one and two - positions are the same. This third position is different.1476

This third position is known as the wobble position. Then, we will talk more about this in a minute.1484

But for right now, just be aware that the genetic code is redundant.1490

There is more than one codon for a particular amino acid, and it is that third position that changes.1494

Although it is redundant, it is non-ambiguous. There is no confusion about what amino acid to add.1502

When the ribosome gets to CGC, arginine will be added.1509

There is no question of "oh, should a valine be put here or a leucine?". It is very clear.1513

When the ribosome encounters CGG- same thing. Arginine should be added.1518

Looking at a different set of amino acids, let's look at glycine, GGU.1524

Ribosomes sees that it adds glycine- GGC, GGA and GGG. All of these code for glycine.1531

There is no ambiguity. However, there is redundancy.1545

We have more than one codon. It is redundant, not just one codon, one amino acid.1546

It is redundant- non-ambiguous but redundant.1550

We, now, understand how the code in RNA, the nucleotide sequence, is translated by the translation machinery into an amino acid sequence.1558

In order for this to occur, the elements that are required for translation are a messenger RNA transcript,1569

transfer RNA and ribosomes, as well as the amino acids to add.1578

We have got the transcript, got the amino acids, and we have got the machinery to actually carry out the job.1586

The function of tRNA is to deliver the amino acids to the ribosome, and this shows you the structure of transfer RNA.1593

This is a 2-dimensional representation. If you took the 3D, fold it up, tRNA, and flatten it out, you would get the structure.1602

And there is a couple areas on here that you should be familiar with.1610

The 3'- end is the amino acid attachment site.1613

When the tRNA is sitting there with no amino acid attached, we say that it is uncharged.1622

A charged tRNA is covalently bonded to a particular amino acid.1630

A second important site on the tRNA is this sequence, which is called the anticodon- a triplet called the anticodon.1642

This is a 3'-end, and this is the 5'-end; so if you just look at these three, we are going from 3' to 5'.1653

This anticodon can base pair with the complementary sequence on the mRNA, so let's look at mRNA and what sequence would be complementary.1662

A pairs with U. C pairs with G, and A pairs with U.1673

The ribosome is holding an mRNA, and when it gets to this particular codon,1683

the tRNA that is going to be able to pair with it is going to be the one with the anticodon that is complementary.1692

This sequence, this codon, of course, specifies an amino acid.1700

In this case it is cysteine. This is the codon for cysteine.1707

That means that this tRNA is going to be charged with cysteine.1713

If we were talking about arginine, one of the codons is CGC.1719

If there was a CGC down here, where the anticodon for that,1723

if we got a CGC here and the anticodon to compare with that, this would be holding arginine instead.1729

So, the anticodon pairs up with the codon, and whatever that codon specifies is what that type of tRNA is going to be carrying that amino acid.1736

That is how the tRNA gets the correct amino acid to the correct place.1746

Obviously, it is very important that there is a charging done correctly.1752

And the job of making sure that the correct amino acid gets bonded to the correct transfer RNA is performed by enzymes called aminoacyl tRNA synthetases.1758

There are twenty of these. There is one for each type of amino acid, and what this type of enzyme does is it holds on to a tRNA.1776

It also holds on to the amino acid that belongs to that tRNA and catalyzes the attachment of, say in this case, cysteine to this tRNA.1785

Once that is charged, it can deliver its amino acid to the ribosome at the correct place.1796

There are actually 61 codons, but they are not 61 tRNAs.1804

There is actually about 40 in bacteria and about 50 in eukaryotes, so I am going to say there is only 40 to 50 tRNAs.1810

How does that work? Each codon does not have a special tRNA.1819

Well, it has to do with the wobble position that we talked about.1827

Let's revisit arginine that we talked about- the codons for arginine: CGA, CGC, CGG and CGU.1830

In this third position, why is it called the wobble?1850

The reason it is called the wobble is there is some flexibility in the binding of the anticodon to the codon in this 5' or wobble position.1855

Focusing on, let’s say we have a tRNA and going from 3', it is GCG.1866

We would expect it to pair up with an mRNA that goes 5' CGC. That is expected.1880

That is typical Watson Crick base pairing rules is G would go with C, and A would go with T; or in RNA, A would go with U.1892

This is what I expect, that when this codon is encountered, tRNA will float in. It will base pair codon, anticodon, and CGC specifies arginine.1903

This tRNA will be holding an arginine, and argentine will get added- fine.1918

However, let's say I had a different codon. I had an mRNA that contained CGU.1922

Actually, this tRNA anticodon can base pair with this codon. GC, expected, CG, expected, GU, that is not expected, but it is allowed.1933

In this wobble position, in this 5' anticodon position, the rules of base pairing are a little bit more flexible.1946

G in the 5' wobble position can pair with C and U.1956

In the wobble position, if there is a U, it is actually allowed to pair with both A and G.1964

You see how you will not need a single tRNA for every codon.1972

Instead, there could be a tRNA with GCG, and it could add an argentine when it comes upon either this CGC codon or the CGU codon.1977

And that is because of that wobble position.1991

tRNA is one component needed for translation as well as mRNA and, of course, the amino acids.1994

The other very important component is ribosomes, and we talked about this briefly when we talked about cell structure but now delving into more detail.2002

To understand translation, you need to understand various parts of the ribosome.2010

Ribosomes consist of a large subunit, a small subunit and ribosomal RNA.2014

They contain some particular binding sites.2022

Here is the mRNA, so there is a site for the mRNA to attach.2026

There is also several places where tRNA can be located.2030

These three sites are the E-site, which is the exit site. That is a channel that the tRNA can leave through.2035

The A-site which is known as the aminoacyl site.2043

In that site, you would find tRNA attached to an amino acid, the incoming tRNA carrying the next amino acid to be added.2048

The P-site is the peptidyl site. What you would find in that site is the tRNA carrying the growing peptide chain.2058

There will be a tRNA in here, and it is going to have this peptide chain attached.2070

And then, another tRNA will come in carrying the next amino acid to be added.2077

And then, eventually the empty tRNA we will see in a second will leave through this exit site.2084

Just be aware that there is a place for the mRNA. There is an exit site, a peptidyl transfer RNA site and an aminoacyl transfer RNA site.2089

Looking at the steps of translation, we talked about transcription. There are three phases.2102

There are three phases here, as well, and they have the same names- initiation, elongation and termination.2108

Starting of course with initiation, during initiation, the two ribosomal subunits, the mRNA and the first tRNA comes together.2116

The components of translation are assembled. They come together.2128

Initially, the two ribosomal subunits are not together. The small subunit binds first, and it binds upstream of the start codon.2140

The small ribosomal subunit binds upstream of the start codon. It binds to the mRNA upstream of the start codon.2151

Remember that the start codon is AUG, and that is also the codon that signifies methionine. In addition...well, it is OK.2166

So, then, right now, we just got this small subunit, and we have got the mRNA.2188

This small subunit actually, then, after it is bound upstream, it moves downstream until it gets to the start codon.2192

It needs to reach that AUG, and at that point, the large subunit will bind.2204

During initiation, the small ribosomal subunit binds first, binds upstream of the start codon. It moves to the start codon.2208

The large subunit binds. The ribosome is assembled.2216

The other thing that comes into play is that first tRNA, and the first tRNA is known as the initiator tRNA.2219

That is what you are seeing here at the beginning of the process, the initiator tRNA.2232

And since the start codon is AUG, this initiator tRNA is going to be charged with or carrying the amino acid methionine.2236

This process is facilitated by initiation factors, and it requires GTP; so initiation requires GTP, and it is facilitated by initiation factors.2245

In addition to the ribosome, the tRNA, amino acids and mRNA, to get things started, other proteins are needed.2261

And GTP will be hydrolyzed to provide energy for the process.2270

Now, I said that the first amino acid, the one at the start codon, is methionine.2275

And this is going to end up being at the N-terminus because amino acids are put together2280

to form a polypeptide starting at the N-terminus and ending at the C-terminus.2287

However, that does not mean that every single protein ends up with a methionine first2291

because sometimes, the methionine is cleaved off later as part of posttranslational processing.2296

During the translation process, yes, methionine will be added first, but it does not necessarily stay there.2302

Alright, initiation occurred. We have got the ribosome, the mRNA.2310

We have got this initiator, tRNA, ready to go with the methionine.2315

Now, notice that this is in the P-site. That very first tRNA starts off in the peptidyl site.2318

During elongation, what is going to happen is amino acids will be added one at a time, and the order of construction is from the N-terminus to the C-terminus.2328

Here, we have our start codon. The start codon is AUG.2342

Recall that the tRNA that is carrying a codon complementary to AUG is going to be able to come in, hydrogen bond temporarily with the codon.2347

So, here we have the codon. Here, we have the anticodon, and it is going to be carrying methionine.2363

Now, let's say this next codon encodes glycine. There is tRNAs floating around.2368

and eventually, the correct tRNA, the one that is carrying the anticodon complementary to the codon, is going to float in to this A-site.2376

And it is going to be able to hydrogen bond with the codon, and it is coding for glycine; and it is going to be carrying a glycine.2387

I have this methionine charged tRNA in the P-site. Now, I have the next one to be added in the A-site, so P-site.2395

And then, the new amino acid to be added goes in the aminoacyl tRNA site.2408

What happens next during elongation is that the ribosome is going to catalyze the formation of the bond between2416

the peptide chain - right now, there is only one amino acid here, but eventually it will be a chain - in the P-site and the amino acid in the A-site.2427

During that process, this chain...right now, just one amino acid will be transferred to the tRNA on the A-site.2436

GTP is also hydrolyzed during this step. GTP is needed for elongation.2449

OK, so, we had an amino acid on this tRNA.2455

We had the incoming amino acid glycine, and now, a bond is going to be hydrolyzed between these two.2460

Now, we have a little polypeptide chain consisting of methionine and glycine. Next is translocation.2466

Elongation is going to consist of growing the polypeptide chain by catalyzing the polypeptide bond.2478

So we add amino acids and translocate the tRNAs to the next site.2491

This is now empty. It needs to just leave.2503

This tRNA is going to be translocated to this exit site, and it is going to leave.2507

It is going to float off, and it is going to pick up the correct amino acid that is floating around in the cytoplasm, be charged.2513

And then, it can go along and add another methionine where it is needed.2519

This empty tRNA goes to the E-site, and then, it leaves.2525

Now, this is no longer just one amino acid by itself. It is now a peptide chain.2528

Therefore, this tRNA is going to be translocated to the P-site.2533

The mRNA is going to be shifted over until this codon is in the A-site.2538

Let's say that this codes for valine. Let's say it is the codon for valine.2546

Then, this will be shifted to the A-site. The tRNA with the anticodon for valine and carrying valine charged with it will float into the A-site.2554

This peptide chain and this tRNA in the P-site, this one is gone. and the process will continue.2563

The essential points are that the incoming tRNA with the correct amino acid floats in and enters the A-site.2568

The ribosome catalyzes the bonding between the peptide chain on the tRNA on the P-site to the new incoming amino acid.2577

The empty tRNA exits through the exit site, and then, everything is pretty much translocated over one.2588

And the mRNA is being moved along by the ribosome 5'-end first. That is elongation.2598

This is going to continue on until the ribosome encounters a stop codon.2606

At that point, termination will occur.2612

So, along goes...the mRNA has been moved along, moved along, moved along, and then, finally, the ribosome encounters a stop codon.2616

Remember UAA, UAG and UGA.2625

If the ribosome encounters that, it does not specify an amino acid, so there is no tRNA that is going to come along and add an amino acid.2630

Instead, what is going to bind is something called a release factor.2638

The release factor is shaped like a tRNA, and it binds, then, at this A-site.2642

Once we get to a stop codon, the release factor will bind, but it does not add an amino acid.2649

Instead, what it does is it hydrolyzes the bond between the peptide and the last tRNA, so the release factor adds water.2654

Normally, elongation is going along. One amino acid is added to the chain and so on, and so on, and it grows.2668

The release factor does not add an amino acid. It adds water.2676

By adding water here, the peptide strand is released. It has let go.2679

It floats away, and then, this complex disassembles.2685

The mRNA goes off. These two subunits disassociate.2689

The tRNAs go off, and then, they can all go be used to make another protein.2693

Three main steps: initiation, elongation and termination, and termination occurs when a stop codon is encountered.2699

A release factor binds, enters that A-site and adds water instead of adding an amino acid.2707

Many ribosomes can actually translate a single mRNA molecule at once.2717

You will have this mRNA going along, and there will be a bunch of ribosomes bound to it at different points, trailing out these polypeptides.2722

And when you see this complex with a bunch of ribosomes on a single mRNA molecule, it is called a polyribosome or sometimes just a polysome.2741

Recall that once this polypeptide chain is made, a lot of times, we just say "oh the protein has been made", but technically, it is not a protein yet.2754

It is only a polypeptide.2763

The primary sequence of a protein is its amino acid sequence, the primary structure, but it will fold into a 3-dimensional shape to actually become a protein.2765

Right now, that initial product, that amino acid sequence, is just a polypeptide chain.2777

It is going to undergo folding, and we talked in an earlier lecture about the different types of folding; and we talked about protein structure.2784

Recall that there is a secondary structure, which involves a hydrogen bonding between different regions within a polypeptide chain.2795

There were alpha-helices and beta-pleated sheets that was within a single polypeptide chain, and then, there is a tertiary structure.2805

And folding occurs so that this polypeptide chain forms an overall 3-dimensional shape.2821

Sometimes the shape is more globular like with hemoglobin. The shape can also be fibrous like with keratin.2827

Finally, some proteins have a quaternary structure when they are composed of multi-polypeptide chains.2834

Again, if you need to review that, look back in the lecture on proteins and nucleic acids.2842

Finally, some posttranslational modifications may need to occur like the addition of phosphate groups, the cleavage of the sequences.2847

And at that point, you have the final product.2854

You have the polypeptide chain. It is folded up.2856

It had modifications, things added, things removed, and now you have the product.2859

Mutations are changes in DNA sequence, and this was mentioned briefly earlier on when we talked about DNA synthesis.2867

But we want to talk about the implications of mutations on protein structure.2874

Now, initially, maybe DNA polymerase adds the wrong nucleotide, but often, it catches that mistake; or that mistake is repaired quickly by mismatch repair.2881

If it is not repaired and it creates a permanent change in a base pair, then there is mutation.2891

And these mutations are going to be passed along to the daughter cells.2897

Whenever that cell replicates its DNA, and then, the cell divides, that is going to be passed along.2900

If there is a mutation in the cells that will form germ cells, then, that mutation is actually going to be passed along to an organism's offsprings.2907

Point mutations are mutations in a single base pair. They are a change in a single base pair- change in one base pair.2916

There are multiple types of point mutations. They can be substitutions, insertions and deletions.2931

In a substitution, the base pair is changed. It is a different set of nucleotides.2938

However, the number of nucleotides is still the same.2946

Insertions- nucleotides are added. Deletions- they are removed.2950

Let's focus first on substitution mutations. In substitutions, there has been a change to one base pair, but the number is the same.2954

You could have a point mutation that it is a change. It is an adding of a single base pair here.2975

It is just changing the actual nucleotide.2980

For example, looking at DNA, I have got my DNA 5' to 3', and then, I have got the complementary strand.2982

Actually let’s do this slightly differently.2997

Let's say I have DNA 3' TTC to 5', and I am going to have a complementary strand, of course, because it is a double helix.3001

But I am going to focus on this strand, and this, let’s say, is the template strand for a particular gene.3015

When transcription occurs, you are going to end up with an RNA strand that is complementary.3021

T is going to pair up with A. T is going to pair up with A.3027

C is going to signify G.3041

When this is transcribed, the product of transcription, the mRNA is going to be this sequence- AAG.3044

AAG is actually the codon for lysine, so initially, this DNA encoded the information that lysine should go in a particular spot on the protein.3058

Let's say a mutation occurs. This becomes mutated, and you instead end up with DNA template strand 3' TT; but now, the third one is also T.3069

There has been this mutation. C has been changed.3090

There is a change in the DNA sequence. C is changed to T.3094

Now, when RNA polymerase comes along, and it sees this sequence,3098

it is going to say "OK, I need to add a T - excuse me - an A. I need to add an A. I need to add another A".3103

Normally, a G would be added here. Instead, an A was added.3114

There has been a change in DNA sequence. There is a few possible outcomes.3120

As it turns out, it is pretty lucky that the change was here in this third spot because remember that the genetic code is redundant,3124

that there is more than one codon for a particular amino acid.3134

And as it happens, AAG codes for lysine, and AAA codes for lysine.3137

That third position, that wobble position, often if you change that, you get the same amino acid.3143

When the ribosome comes along, and it sees this, it is going to add lysine. If it came along and saw this instead, it is going to add lysine.3150

There is going to be no effect on the protein. The protein is going to be completely normal because the lysine went where it should be.3162

This type of mutation is called a silent mutation, so for substitutions, there are three kinds of substitutions.3168

The first kind, the result is a silent mutation. There has been no change in the amino acid that is specified.3181

When you look at the protein that resulted, it is the same. There has been no change in the amino acid sequence.3193

That is the best case because, then, there is no problem with the protein. The protein will still function correctly.3199

This mutation is silent. It is not expressed in the phenotype.3205

It is there, but it is quiet.3209

The second type of mutation is known as a missense mutation. Let's look at an example.3211

This was first. We had silent, now, missense.3219

Let's say that I have this DNA template strand, and the 3' is GAA and then, 5'-end here.3229

And it would result in a transcribed mRNA that looks like this: 5' CUU to 3'.3238

This is actually a codon for leucine, and let's say a mutation occurs; and we end up with 3' G, but instead of A, we get a T.3251

RNA polymerase comes along and makes an mRNA based on this, and it is going to be 5' C. T is going to specify A, and the A is going to specify U.3270

There has been a change here. There is a change from G to A up here, but it did not really matter because these both coded for lysine.3287

However, CAU does not code for leucine. It actually codes for histidine.3294

There has been an impact then. A different amino acid will be added.3303

If I took this DNA and watch it be transcribed and translated, I would see a protein with a leucine in a certain spot.3307

This DNA used to form this mRNA is going to give a protein with histidine.3314

If there is a change to a different amino acid, that is a missense mutation. There has been a change in one amino acid.3319

Sometimes it is not a big deal.3333

Maybe those two amino acids are similar like they are both hydrophobic, or they are both basic.3335

And maybe they are located outside the active site of an enzyme, or they do not make a big difference in the folding of the protein in the structure.3342

Sometimes, it will not be a major deal. Other times it is.3348

Sickle-cell anemia is a disease that is actually caused by a change in only one amino acid.3353

In sickle-cell anemia, there is a change from glutamic acid to valine. That single change causes a difference in hemoglobin structure.3360

The hemoglobin is abnormal, and hemoglobin is found in red blood cells. It carries oxygen.3376

Under conditions of low oxygen, that hemoglobin causes the red blood cell to be shaped abnormally.3381

It actually causes it to, kind of, flatten out the shape, which is a shape of a sickle, hence the name sickle-cell anemia.3388

The problem is when cells sickle like that, they clump up. They block the smaller blood vessels.3397

And they can cause organs and tissues not to get enough oxygen, which is painful and can actually damage organs and tissues.3403

There are profound effects sometimes from a change of a single amino acid.3411

The other thing to think about is that mutations account for genetic diversity. Often times, these mutations are deleterious.3415

They will cause the protein not to work as well. They will cause the organism not to be as healthy, perhaps.3425

However, sometimes, the protein may function better, or under certain conditions, it is favorable to have that mutation.3432

And when talk about evolution, we will see how the genetic diversity and selection pressure for a particular phenotypes and traits works.3440

So one source of genetic diversity is mutations.3451

We talked about silent and missense mutations. Finally, the third type of substitution mutation is a nonsense mutation.3457

Nonsense mutations result in the change from an amino acid to a stop codon.3467

Perhaps, the DNA template was a CG on the DNA, which codes for cysteine, and we get our mRNA UGC.3478

We end up with cysteine added. Then, there is a mutation.3499

Now, we have DNA that is A, C and then T, so there has been a mutation.3503

This mRNA is, then, going to give me UGA. That is one of the stop codons.3518

Silent mutation- no effect on the amino acid. Missense mutation- a single change in an amino acid.3529

Nonsense mutation is a change from an amino acid to a stop codon,3536

which means that the protein is going to be shorter than it should be and generally, non-functional3540

unless you get very lucky, and this occurred way, way, way at the end. Usually though, this is a major effect.3546

Now, we talked about substitutions, where there has been a change in the amino acid sequence.3554

But another possibility is that amino acids have been - excuse me - nucleotides have been added or removed.3562

These are known as insertions and deletions.3577

Let's say that I have DNA looks like this: AGC, TCA, CTT.3583

Well, there is what is called a reading frame.3601

If you are reading in a book, and you are reading, say, a simple sentence "The boy can see.".3604

The reason this makes sense is you know where to start. You start over here on the left, and you know how to group these, the reading frame.3619

This is a word. This is a word.3625

This is a word. This is a word.3627

The ribosome reads as the same way. This is a codon, codon, codon.3628

If I stuck a letter in here, let's say I put an A right in here, now, the reading frame would be changed if I was reading every 3 it would be TA, EBO, YCA.3633

It would not make sense if I try to group those into words. The same thing can happen here.3651

If there is a mutation, and let’s say we add a T right here, so then, this might have signified just say lysine, valine, histidine.3655

Now, instead of AGC, I have AGT. Let me see.3672

Oh, actually, we need to change that. I will left out the C.3681

Let me change that. If I add a T here, and then, I would have my C still, I would have C, TCA, CTT.3688

There we go. Now that is added.3703

I have, instead of AGC, I have AGT. The C is still there, but now, it is part of the CTC as a codon instead of TCA.3704

Then, I have ACT and so on.3717

The protein from that point downstream is going to be messed up3720

because these amino acids are completely different than the amino acids that should have been specified.3725

And in fact, what often happens in this case, is one of these ends up being a stop codon.3731

So then, the protein is just truncated, so if within insertion or a deletion.3737

If I added an amino acid or excuse me, a nucleotide, if I added a nucleotide or took one out, either way, that would change what is called the reading frame.3743

And when the reading frame is changed, it is known as a frameshift mutation.3760

Adding or deleting insertions or deletions can result in frameshift, and that is a very severe mutation.3766

It could be just a point mutation, where a single base pair is added or a single base pair is removed, or there might be a large segment added or removed.3773

When we talked about chromosomes, we talked a little bit about larger problems that can occur.3783

This is just point mutations, but recall that there could be larger problems.3787

A part of a chromosome could break off, and then, that would be a large deletion. Parts of the chromosomes could be copied- duplications.3792

During miosis, if there is unequal crossing over, you can end up with large segments that are duplicated or large segments that are left out.3801

Mutations can occur spontaneously.3812

DNA polymerase makes a mistake. It is not caught.3816

Mismatch repair does not occur. It just happens sometimes, so these mistakes made during replication that is passed along.3819

Mutations may also be initiated by mutagens.3827

It is not just part of a natural error rate of DNA polymerase, but it is some chemical or physical mechanism that causes damage to the DNA.3830

Mutagens can be chemical. Certain chemicals are known as mutagens, or they can be physical.3839

Physical factors such as excessive exposure to sunlight can be a mutagen. X-rays can be a mutagen.3854

This, then, can result in a change in the DNA sequence, and such changes can actually result in cancer sometimes.3862

And therefore, we also say that certain mutagens or many mutagens are carcinogens.3872

Excessive exposure to a certain chemical can cause a change in the DNA sequence that may cause cancer.3878

We would say that that chemical is carcinogenic. It is mutagenic, and it is carcinogenic.3884

Alright, today, we covered quite a bit. We covered transcription, translation and mutations.3890

Now, we are going to review these concepts.3895

Example one: list three types of processing that are performed on pre-mRNA.3898

Recall that the immediate product of transcription is not mRNA. It is pre-mRNA.3906

In order to form mRNA, processing needs to be done.3913

Three major types are splicing, splicing is the process of removing introns, and they are fusing together the coding regions of DNA- the exons.3918

A second type of processing that occurs is the addition of the 5'- cap. This is a modified guanine nucleotide.3936

There is also the addition of a series of adenines that is the 3' poly(A) tail.3949

And the 5' cap and poly(A) tail protect the ends of the mRNA and signify that it is mRNA destined for export from the nucleus.3958

So, these are three types of processing that occur.3966

The terms below are related to the process of translation. Match each one to its description.3972

First we have elongation- delivers amino acids to the ribosome- that is not elongation.3978

A phase during which amino acids are added to the growing polypeptide chain- that is actually correct.3987

Remember that there are three phases of translation: initiation, elongation and termination.3997

Elongation is the phase during which the amino acids are added.4005

Alright, next, tRNA- delivers amino acids to the ribosome.4010

Well, that is already the correct one. That is the function of tRNA.4018

tRNA is charged with a particular amino acid.4024

When that tRNA encounters the codon that is complementary to its anticodon, it can base pair and it is carrying that amino acid.4027

That amino acid will be added to the growing polypeptide chain by the ribosome.4035

P-site - alright, we already used up A and B - it hydrolyzes the bond between the polypeptide chain and the tRNA once translation is completed.4040

Well, the P-site is just a site. It does not hydrolyze something.4051

D: sequence on tRNA that base pairs to a complementary codon on mRNA.4057

The P-site is not a sequence on the mRNA. Site of the ribosome, where the tRNA bound to the polypeptide is located.4063

This is a site on the ribosome, and E is the correct answer.4073

The P-site is the peptidyl site. It is the site where the tRNA carrying the polypeptide chain is located.4079

Anticodon: we used up E, and we already mentioned that this is a sequence; and that is what an anticodon is.4087

It is a triplet sequence, and it is found on tRNA; and it is going to be complementary to a particular codon on mRNA, so that is D.4098

That leaves us with release factor, which must be C.4110

And does the release factor hydrolyze the bond between the polypeptide chain and the tRNA once translation is competed? Yes.4115

When the ribosome encounters a stop codon, instead of a tRNA entering the A-site,4121

a release factor will enter the release site and add water to the polypeptide chain.4127

The polypeptide chain will be freed from the tRNA it is attached to.4132

Example three: the template strand used for transcription of a gene is shown below.4139

What would the RNA sequence of the transcript be?4144

Note always that you have to pay attention to directionality.4150

Here we have a template strand, so this is DNA; and what this question is asking me is what is the complementary RNA sequence going to be.4154

When you approach these, think about the directionality because sometimes wrong answers will have 5' here and 3' here or something.4162

Make sure that you first write in the directionality- 3' and 5'.4170

Using base pairing rules, I know that A is going to pair with U for RNA. There is no T.4178

That is another mistake that gets made is people put T here.4185

G pairs with C so AT, GC for DNA. For RNA, it is going to be AU, GC.4189

C pairs with G. C specifies G for complementary.4204

T gives us the U. The complementary nucleotide, the T is a U, GC, CG, GC, UGU.4210

This is a sequence that would be found in the transcript. This would be the template strand.4224

And then, the other strand on DNA, the antisense strand, would have this sequence except that the Us would be replaced with Ts.4232

Describe the three types of substitution mutations that can occur. Substitution means that there is a change in a single base pair.4243

And there are three possible types of substitutions: silent mutations, missense mutations and nonsense mutations.4251

In silent mutations, the result is another codon that specifies the same amino acid.4265

Although the DNA sequence is changed by look, it is changed to a sequence that specifies for a codon for the same amino acid as the original sequence.4282

A missense mutation- change to a codon for a different amino acid.4294

A change has occurred in the DNA sequence, and it is going to result in a codon that for example instead of specifying for valine, it specifies for glycine.4307

There is going to be a single amino acid change in that protein.4317

Nonsense mutation is change to a stop codon, initially, a DNA sequence coded for an amino acid.4320

The codon was for an amino acid. Its change in sequence results in a stop codon in that place.4332

So, these are the three types of substitution mutations.4339

That concludes this lesson on transcription and translation.4343

Thanks for visiting

I. Chemistry of Life
  Elements, Compounds, and Chemical Bonds 56:18
   Intro 0:00 
   Elements 0:09 
    Elements 0:48 
    Matter 0:55 
    Naturally Occurring Elements 1:12 
    Atomic Number and Atomic Mass 2:39 
   Compounds 3:06 
    Molecule 3:07 
    Compounds 3:14 
    Examples 3:20 
   Atoms 4:53 
    Atoms 4:56 
    Protons, Neutrons, and Electrons 5:29 
    Isotopes 10:42 
   Energy Levels of Electrons 13:01 
    Electron Shells 13:13 
    Valence Shell 13:22 
    Example: Electron Shells and Potential Energy 13:28 
   Covalent Bonds 19:52 
    Covalent Bonds 19:54 
    Examples 20:03 
   Polar and Nonpolar Covalent Bonds 23:54 
    Polar Bond 24:07 
    Nonpolar Bonds 24:17 
    Examples 24:25 
   Ionic Bonds 29:04 
    Ionic Bond, Cations, Anions 29:19 
    Example: NaCl 29:30 
   Hydrogen Bond 33:18 
    Hydrogen Bond 33:20 
   Chemical Reactions 35:36 
    Example: Reactants, Products and Chemical Reactions 35:45 
   Molecular Mass and Molar Concentration 38:45 
    Avogadro's Number and Mol 39:12 
    Examples: Molecular Mass and Molarity 42:10 
   Example 1: Proton, Neutrons and Electrons 47:05 
   Example 2: Reactants and Products 49:35 
   Example 3: Bonding 52:39 
   Example 4: Mass 53:59 
  Properties of Water 50:23
   Intro 0:00 
   Molecular Structure of Water 0:21 
    Molecular Structure of Water 0:27 
   Properties of Water 4:30 
    Cohesive 4:55 
    Transpiration 5:29 
    Adhesion 6:20 
    Surface Tension 7:17 
   Properties of Water, cont. 9:14 
    Specific Heat 9:25 
    High Heat Capacity 13:24 
    High Heat of Evaporation 16:42 
   Water as a Solvent 21:13 
    Solution 21:28 
    Solvent 21:48 
    Example: Water as a Solvent 22:22 
   Acids and Bases 25:40 
    Example 25:41 
   pH 36:30 
    pH Scale: Acidic, Neutral, and Basic 36:35 
   Example 1: Molecular Structure and Properties of Water 41:18 
   Example 2: Special Properties of Water 42:53 
   Example 3: pH Scale 44:46 
   Example 4: Acids and Bases 46:19 
  Organic Compounds 53:54
   Intro 0:00 
   Organic Compounds 0:09 
    Organic Compounds 0:11 
    Inorganic Compounds 0:15 
    Examples: Organic Compounds 1:15 
   Isomers 5:52 
    Isomers 5:55 
    Structural Isomers 6:23 
    Geometric Isomers 8:14 
    Enantiomers 9:55 
   Functional Groups 12:46 
    Examples: Functional Groups 12:59 
    Amino Group 13:51 
    Carboxyl Group 14:38 
    Hydroxyl Group 15:22 
    Methyl Group 16:14 
    Carbonyl Group 16:30 
    Phosphate Group 17:51 
   Carbohydrates 18:26 
    Carbohydrates 19:07 
    Example: Monosaccharides 21:12 
   Carbohydrates, cont. 24:11 
    Disaccharides, Polysaccharides and Examples 24:21 
   Lipids 35:52 
    Examples of Lipids 36:04 
    Saturated and Unsaturated 38:57 
   Phospholipids 43:26 
    Phospholipids 43:29 
    Example 43:34 
   Steroids 46:24 
    Cholesterol 46:28 
   Example 1: Isomers 48:11 
   Example 2: Functional Groups 50:45 
   Example 3: Galactose, Ketose, and Aldehyde Sugar 52:24 
   Example 4: Class of Molecules 53:06 
  Nucleic Acids and Proteins 37:23
   Intro 0:00 
   Nucleic Acids 0:09 
    Deoxyribonucleic Acid (DNA) and Ribonucleic Acid (RNA) 0:29 
   Nucleic Acids, cont. 2:56 
    Purines 3:10 
    Pyrimidines 3:32 
   Double Helix 4:59 
    Double Helix and Example 5:01 
   Proteins 12:33 
    Amino Acids and Polypeptides 12:39 
    Examples: Amino Acid 13:25 
   Polypeptide Formation 18:09 
    Peptide Bonds 18:14 
    Primary Structure 18:35 
   Protein Structure 23:19 
    Secondary Structure 23:22 
    Alpha Helices and Beta Pleated Sheets 23:34 
   Protein Structure 25:43 
    Tertiary Structure 25:44 
    5 Types of Interaction 26:56 
   Example 1: Complementary DNA Strand 31:45 
   Example 2: Differences Between DNA and RNA 33:19 
   Example 3: Amino Acids 34:32 
   Example 4: Tertiary Structure of Protein 35:46 
II. Cell Structure and Function
  Cell Types (Prokaryotic and Eukaryotic) 45:50
   Intro 0:00 
   Cell Theory and Cell Types 0:12 
    Cell Theory 0:13 
    Prokaryotic and Eukaryotic Cells 0:36 
    Endosymbiotic Theory 1:13 
   Study of Cells 4:07 
    Tools and Techniques 4:08 
    Light Microscopes 5:08 
    Light vs. Electron Microscopes: Magnification 5:18 
    Light vs. Electron Microscopes: Resolution 6:26 
    Light vs. Electron Microscopes: Specimens 7:53 
    Electron Microscopes: Transmission and Scanning 8:28 
    Cell Fractionation 10:01 
    Cell Fractionation Step 1: Homogenization 10:33 
    Cell Fractionation Step 2: Spin 11:24 
    Cell Fractionation Step 3: Differential Centrifugation 11:53 
   Comparison of Prokaryotic and Eukaryotic Cells 14:12 
    Prokaryotic vs. Eukaryotic Cells: Domains 14:43 
    Prokaryotic vs. Eukaryotic Cells: Plasma Membrane 15:40 
    Prokaryotic vs. Eukaryotic Cells: Cell Walls 16:15 
    Prokaryotic vs. Eukaryotic Cells: Genetic Materials 16:38 
    Prokaryotic vs. Eukaryotic Cells: Structures 17:28 
    Prokaryotic vs. Eukaryotic Cells: Unicellular and Multicellular 18:19 
    Prokaryotic vs. Eukaryotic Cells: Size 18:31 
    Plasmids 18:52 
   Prokaryotic vs. Eukaryotic Cells 19:22 
    Nucleus 19:24 
    Organelles 19:48 
    Cytoskeleton 20:02 
    Cell Wall 20:35 
    Ribosomes 20:57 
    Size 21:37 
   Comparison of Plant and Animal Cells 22:15 
    Plasma Membrane 22:55 
    Plant Cells Only: Cell Walls 23:12 
    Plant Cells Only: Central Vacuole 25:08 
    Animal Cells Only: Centrioles 26:40 
    Animal Cells Only: Lysosomes 27:43 
   Plant vs. Animal Cells 29:16 
    Overview of Plant and Animal Cells 29:17 
   Evidence for the Endosymbiotic Theory 30:52 
    Characteristics of Mitochondria and Chloroplasts 30:54 
   Example 1: Prokaryotic vs. Eukaryotic Cells 35:44 
   Example 2: Endosymbiotic Theory and Evidence 38:38 
   Example 3: Plant and Animal Cells 41:49 
   Example 4: Cell Fractionation 43:44 
  Subcellular Structure 59:38
   Intro 0:00 
   Prokaryotic Cells 0:09 
    Shapes of Prokaryotic Cells 0:22 
    Cell Wall 1:19 
    Capsule 3:23 
    Pili/Fimbria 3:54 
    Flagella 4:35 
    Nucleoid 6:16 
    Plasmid 6:37 
    Ribosomes 7:09 
   Eukaryotic Cells (Animal Cell Structure) 8:01 
    Plasma Membrane 8:13 
    Microvilli 8:48 
    Nucleus 9:47 
    Nucleolus 11:06 
    Ribosomes: Free and Bound 12:26 
    Rough Endoplasmic Reticulum (RER) 13:43 
   Eukaryotic Cells (Animal Cell Structure), cont. 14:51 
    Endoplasmic Reticulum: Smooth and Rough 15:08 
    Golgi Apparatus 17:55 
    Vacuole 20:43 
    Lysosome 22:01 
    Mitochondria 25:40 
    Peroxisomes 28:18 
   Cytoskeleton 30:41 
    Cytoplasm and Cytosol 30:53 
    Microtubules: Centrioles, Spindel Fibers, Clagell, Cillia 32:06 
    Microfilaments 36:39 
    Intermediate Filaments and Kerotin 38:52 
   Eukaryotic Cells (Plant Cell Structure) 40:08 
    Plasma Membrane, Primary Cell Wall, and Secondary Cell Wall 40:30 
    Middle Lamella 43:21 
    Central Cauole 44:12 
    Plastids: Leucoplasts, Chromoplasts, Chrloroplasts 45:35 
    Chloroplasts 47:06 
   Example 1: Structures and Functions 48:46 
   Example 2: Cell Walls 51:19 
   Example 3: Cytoskeleton 52:53 
   Example 4: Antibiotics and the Endosymbiosis Theory 56:55 
  Cell Membranes and Transport 53:10
   Intro 0:00 
   Cell Membrane Structure 0:09 
    Phospholipids Bilayer 0:11 
    Chemical Structure: Amphipathic and Fatty Acids 0:25 
   Cell Membrane Proteins 2:44 
    Fluid Mosaic Model 2:45 
    Peripheral Proteins and Integral Proteins 3:19 
    Transmembrane Proteins 4:34 
    Cholesterol 4:48 
    Functions of Membrane Proteins 6:39 
   Transport Across Cell Membranes 9:52 
    Transport Across Cell Membranes 9:53 
   Methods of Passive Transport 12:07 
    Passive and Active Transport 12:08 
    Simple Diffusion 12:45 
    Facilitated Diffusion 15:20 
   Osmosis 17:17 
    Definition and Example of Osmosis 17:18 
    Hypertonic, Hypotonic, and Isotonic 21:47 
   Active Transport 27:57 
    Active Transport 28:17 
    Sodium and Potassium Pump 29:45 
    Cotransport 34:38 
    2 Types of Active Transport 37:09 
   Endocytosis and Exocytosis 37:38 
    Endocytosis and Exocytosis 37:51 
    Types of Endocytosis: Pinocytosis 40:39 
    Types of Endocytosis: Phagocytosis 41:02 
   Receptor Mediated Endocytosis 41:27 
    Receptor Mediated Endocytosis 41:28 
   Example 1: Cell Membrane and Permeable Substances 43:59 
   Example 2: Osmosis 45:20 
   Example 3: Active Transport, Cotransport, Simple and Facilitated Diffusion 47:36 
   Example 4: Match Terms with Definition 50:55 
  Cellular Communication 57:09
   Intro 0:00 
   Extracellular Matrix 0:28 
    The Extracellular Matrix (ECM) 0:29 
    ECM in Animal Cells 0:55 
    Fibronectin and Integrins 1:34 
   Intercellular Communication in Plants 2:48 
    Intercellular Communication in Plants: Plasmodesmata 2:50 
   Cell to Cell Communication in Animal Cells 3:39 
    Cell Junctions 3:42 
    Desmosomes 3:54 
    Tight Junctions 5:07 
    Gap Junctions 7:00 
   Cell Signaling 8:17 
    Cell Signaling: Ligand and Signal Transduction Pathway 8:18 
    Direct Contact 8:48 
    Over Distances Contact and Hormones 10:09 
   Stages of Cell Signaling 11:53 
    Reception Phase 11:54 
    Transduction Phase 13:49 
    Response Phase 14:45 
   Cell Membrane Receptors 15:37 
    G-Protein Coupled Receptor 15:38 
   Cell Membrane Receptor, Cont. 21:37 
    Receptor Tyrosine Kinases (RTKs) 21:38 
    Autophosphorylation, Monomer, and Dimer 22:57 
   Cell Membrane Receptor, Cont. 27:01 
    Ligand-Gated Ion Channels 27:02 
   Intracellular Receptors 29:43 
    Intracellular Receptor and Receptor -Ligand Complex 29:44 
   Signal Transduction 32:57 
    Signal Transduction Pathways 32:58 
    Adenylyl Cyclase and cAMP 35:53 
   Second Messengers 39:18 
     cGMP, Inositol Trisphosphate, and Diacylglycerol 39:20 
   Cell Response 45:15 
    Cell Response 45:16 
    Apoptosis 46:57 
   Example 1: Tight Junction and Gap Junction 48:29 
   Example 2: Three Phases of Cell Signaling 51:48 
   Example 3: Ligands and Binding of Hormone 54:03 
   Example 4: Signal Transduction 56:06 
III. Cell Division
  The Cell Cycle 37:49
   Intro 0:00 
   Functions of Cell Division 0:09 
    Overview of Cell Division: Reproduction, Growth, and Repair 0:11 
    Important Term: Daughter Cells 2:25 
   Chromosome Structure 3:36 
    Chromosome Structure: Sister Chromatids and Centromere 3:37 
    Chromosome Structure: Chromatin 4:31 
    Chromosome with One Chromatid or Two Chromatids 5:25 
    Chromosome Structure: Long and Short Arm 6:49 
   Mitosis and Meiosis 7:00 
    Mitosis 7:41 
    Meiosis 8:40 
   The Cell Cycle 10:43 
    Mitotic Phase and Interphase 10:44 
   Cytokinesis 15:51 
    Cytokinesis in Animal Cell: Cleavage Furrow 15:52 
    Cytokinesis in Plant Cell: Cell Plate 17:28 
   Control of the Cell Cycle 18:28 
    Cell Cycle Control System and Checkpoints 18:29 
   Cyclins and Cyclin Dependent Kinases 21:18 
    Cyclins and Cyclin Dependent Kinases (CDKSs) 21:20 
    MPF 23:17 
    Internal Factor Regulating Cell Cycle 24:00 
    External Factor Regulating Cell Cycle 24:53 
    Contact Inhibition and Anchorage Dependent 25:53 
   Cancer and the Cell Cycle 27:42 
    Cancer Cells 27:46 
   Example1: Parts of the Chromosome 30:15 
   Example 2: Cell Cycle 31:50 
   Example 3: Control of the Cell Cycle 33:32 
   Example 4: Cancer and the Cell 35:01 
  Mitosis 35:01
   Intro 0:00 
   Review of the Cell Cycle 0:09 
    Interphase: G1 Phase 0:34 
    Interphase: S Phase 0:56 
    Interphase: G2 Phase 1:31 
    M Phase: Mitosis and Cytokinesis 1:47 
   Overview of Mitosis 3:08 
    What is Mitosis? 3:10 
    Overview of Mitosis 3:17 
    Diploid and Haploid 5:37 
    Homologous Chromosomes 6:04 
   The Spindle Apparatus 11:57 
    The Spindle Apparatus 12:00 
    Centrosomes and Centrioles 12:40 
    Microtubule Organizing Center 13:03 
    Spindle Fiber of Spindle Microtubules 13:23 
    Kinetochores 14:06 
    Asters 15:45 
   Prophase 16:47 
    First Phase of Mitosis: Prophase 16:54 
   Metaphase 20:05 
    Second Phase of Mitosis: Metaphase 20:10 
   Anaphase 22:52 
    Third Phase of Mitosis: Anaphase 22:53 
   Telophase and Cytokinesis 24:34 
    Last Phase of Mitosis: Telophase and Cytokinesis 24:35 
   Summary of Mitosis 27:46 
    Summary of Mitosis 27:47 
   Example 1: Spindle Apparatus 28:50 
   Example 2: Last Phase of Mitosis 30:39 
   Example 3: Prophase 32:41 
   Example 4: Identify the Phase 33:52 
  Meiosis 1:00:58
   Intro 0:00 
   Haploid and Diploid Cells 0:09 
    Diploid and Somatic Cells 0:29 
    Haploid and Gametes 1:20 
    Example: Human Cells and Chromosomes 1:41 
    Sex Chromosomes 6:00 
   Comparison of Mitosis and Meiosis 10:42 
    Mitosis Vs. Meiosis: Cell Division 10:59 
    Mitosis Vs. Meiosis: Daughter Cells 12:31 
    Meiosis: Pairing of Homologous Chromosomes 13:40 
   Mitosis and Meiosis 14:21 
    Process of Mitosis 14:27 
    Process of Meiosis 16:12 
   Synapsis and Crossing Over 19:14 
    Prophase I: Synapsis and Crossing Over 19:15 
    Chiasmata 22:33 
   Meiosis I 25:49 
    Prophase I: Crossing Over 25:50 
    Metaphase I: Homologs Line Up 26:00 
    Anaphase I: Homologs Separate 28:16 
    Telophase I and Cytokinesis 29:15 
    Independent Assortment 30:58 
   Meiosis II 32:17 
    Propphase II 33:50 
    Metaphase II 34:06 
    Anaphase II 34:50 
    Telophase II 36:09 
    Cytokinesis 37:00 
   Summary of Meiosis 38:15 
    Summary of Meiosis 38:16 
    Cell Division Mechanism in Plants 41:57 
   Example 1: Cell Division and Meiosis 46:15 
   Example 2: Phases of Meiosis 50:22 
   Example 3: Label the Figure 54:29 
   Example 4: Four Differences Between Mitosis and Meiosis 56:37 
IV. Cellular Energetics
  Enzymes 51:03
   Intro 0:00 
   Law of Thermodynamics 0:08 
    Thermodynamics 0:09 
    The First Law of Thermodynamics 0:37 
    The Second Law of Thermodynamics 1:24 
    Entropy 1:35 
   The Gibbs Free Energy Equation 3:07 
    The Gibbs Free Energy Equation 3:08 
   ATP 8:23 
    Adenosine Triphosphate (ATP) 8:24 
    Cellular Respiration 11:32 
    Catabolic Pathways 12:28 
    Anabolic Pathways 12:54 
   Enzymes 14:31 
    Enzymes 14:32 
    Enzymes and Exergonic Reaction 14:40 
    Enzymes and Endergonic Reaction 16:36 
   Enzyme Specificity 21:29 
    Substrate 21:41 
    Induced Fit 23:04 
   Factors Affecting Enzyme Activity 25:55 
    Substrate Concentration 26:07 
    pH 27:10 
    Temperature 29:14 
    Presence of Cofactors 29:57 
   Regulation of Enzyme Activity 31:12 
    Competitive Inhibitors 32:13 
    Noncompetitive Inhibitors 33:52 
    Feedback Inhibition 35:22 
   Allosteric Interactions 36:56 
    Allosteric Regulators 37:00 
   Example 1: Is the Inhibitor Competitive or Noncompetitive? 40:49 
   Example 2: Thermophiles 44:18 
   Example 3: Exergonic or Endergonic 46:09 
   Example 4: Energy Vs. Reaction Progress Graph 48:47 
  Glycolysis and Anaerobic Respiration 38:01
   Intro 0:00 
   Cellular Respiration Overview 0:13 
    Cellular Respiration 0:14 
    Anaerobic Respiration vs. Aerobic Respiration 3:50 
   Glycolysis Overview 4:48 
    Overview of Glycolysis 4:50 
   Glycolysis Involves a Redox Reaction 7:02 
    Redox Reaction 7:04 
   Glycolysis 15:04 
    Important Facts About Glycolysis 15:07 
    Energy Invested Phase 16:12 
    Splitting of Fructose 1,6-Phosphate and Energy Payoff Phase 17:50 
    Substrate Level Phophorylation 22:12 
   Aerobic Versus Anaerobic Respiration 23:57 
    Aerobic Versus Anaerobic Respiration 23:58 
   Cellular Respiration Overview 27:15 
    When Cellular Respiration is Anaerobic 27:17 
    Glycolysis 28:26 
    Alcohol Fermentation 28:45 
    Lactic Acid Fermentation 29:58 
   Example 1: Glycolysis 31:04 
   Example 2: Glycolysis, Fermentation and Anaerobic Respiration 33:44 
   Example 3: Aerobic Respiration Vs. Anaerobic Respiration 35:25 
   Example 4: Exergonic Reaction and Endergonic Reaction 36:42 
  Aerobic Respiration 51:06
   Intro 0:00 
   Aerobic Vs. Anaerobic Respiration 0:06 
    Aerobic and Anaerobic Comparison 0:07 
   Review of Glycolysis 1:48 
    Overview of Glycolysis 2:06 
    Glycolysis: Energy Investment Phase 2:25 
    Glycolysis: Energy Payoff Phase 2:58 
   Conversion of Pyruvate to Acetyl CoA 4:55 
    Conversion of Pyruvate to Acetyl CoA 4:56 
    Energy Formation 8:06 
   Mitochondrial Structure 8:58 
    Endosymbiosis Theory 9:23 
    Matrix 10:00 
    Outer Membrane, Inner Membrane, and Intermembrane Space 10:43 
    Cristae 11:47 
   The Citric Acid Cycle 12:11 
    The Citric Acid Cycle (Also Called Krebs Cycle) 12:12 
    Substrate Level Phosphorylation 18:47 
   Summary of ATP, NADH, and FADH2 Production 23:13 
    Process: Glycolysis 23:28 
    Process: Acetyl CoA Production 23:36 
    Process: Citric Acid Cycle 23:52 
   The Electron Transport Chain 24:24 
    Oxidative Phosphorylation 24:28 
    The Electron Transport Chain and ATP Synthase 25:20 
    Carrier Molecules: Cytochromes 27:18 
    Carrier Molecules: Flavin Mononucleotide (FMN) 28:05 
   Chemiosmosis 32:46 
    The Process of Chemiosmosis 32:47 
   Summary of ATP Produced by Aerobic Respiration 38:24 
    ATP Produced by Aerobic Respiration 38:27 
   Example 1: Aerobic Respiration 43:38 
   Example 2: Label the Location for Each Process and Structure 45:08 
   Example 3: The Electron Transport Chain 47:06 
   Example 4: Mitochondrial Inner Membrane 48:38 
  Photosynthesis 1:02:52
   Intro 0:00 
   Photosynthesis 0:09 
    Introduction to Photosynthesis 0:10 
    Autotrophs and Heterotrophs 0:25 
    Overview of Photosynthesis Reaction 1:05 
   Leaf Anatomy and Chloroplast Structure 2:54 
    Chloroplast 2:55 
    Cuticle 3:16 
    Upper Epidermis 3:27 
    Mesophyll 3:40 
    Stomates 4:00 
    Guard Cells 4:45 
    Transpiration 5:01 
    Vascular Bundle 5:20 
    Stroma and Double Membrane 6:20 
    Grana 7:17 
    Thylakoids 7:30 
    Dark Reaction and Light Reaction 7:46 
   Light Reactions 8:43 
    Light Reactions 8:47 
    Pigments: Chlorophyll a, Chlorophyll b, and Carotenoids 9:19 
    Wave and Particle 12:10 
    Photon 12:34 
   Photosystems 13:24 
    Photosystems 13:28 
    Reaction-Center Complex and Light Harvesting Complexes 14:01 
   Noncyclic Photophosphorylation 17:46 
    Noncyclic Photophosphorylation Overview 17:47 
    What is Photophosphorylation? 18:25 
    Noncyclic Photophosphorylation Process 19:07 
    Photolysis and The Rest of Noncyclic Photophosphorylation 21:33 
   Cyclic Photophosphorylation 31:45 
    Cyclic Photophosphorylation 31:46 
   Light Independent Reactions 34:34 
    The Calvin Cycle 34:35 
   C3 Plants and Photorespiration 40:31 
    C3 Plants and Photorespiration 40:32 
   C4 Plants 45:32 
    C4 Plants: Structures and Functions 45:33 
   CAM Plants 50:25 
    CAM Plants: Structures and Functions 50:35 
   Example 1: Calvin Cycle 54:34 
   Example 2: C4 Plant 55:48 
   Example 3: Photosynthesis and Photorespiration 58:35 
   Example 4: CAM Plants 60:41 
V. Molecular Genetics
  DNA Synthesis 38:45
   Intro 0:00 
   Review of DNA Structure 0:09 
    DNA Molecules 0:10 
    Nitrogenous Base: Pyrimidines and Purines 1:25 
   DNA Double Helix 3:03 
    Complementary Strands of DNA 3:12 
    5' to 3' & Antiparallel 4:55 
   Overview of DNA Replication 7:10 
    DNA Replication & Semiconservative 7:11 
   DNA Replication 10:26 
    Origin of Replication 10:28 
    Helicase 11:10 
    Single-Strand Binding Protein 12:05 
    Topoisomerases 13:14 
    DNA Polymerase 14:26 
    Primase 15:55 
   Leading and Lagging Strands 16:51 
    Leading Strand and Lagging Strand 16:52 
    Okazaki Fragments 18:10 
    DNA Polymerase I 20:11 
    Ligase 21:12 
   Proofreading and Mismatch Repair 22:18 
    Proofreading 22:19 
    Mismatch 23:33 
   Telomeres 24:58 
    Telomeres 24:59 
   Example 1: Function of Enzymes During DNA Synthesis 28:09 
   Example 2: Accuracy of the DNA Sequence 31:42 
   Example 3: Leading Strand and Lagging Strand 32:38 
   Example 4: Telomeres 35:40 
  Transcription and Translation 1:17:01
   Intro 0:00 
   Transcription and Translation Overview 0:07 
    From DNA to RNA to Protein 0:09 
   Structure and Types of RNA 3:14 
    Structure and Types of RNA 3:33 
    mRNA 6:19 
    rRNA 7:02 
    tRNA 7:28 
   Transcription 7:54 
    Initiation Phase 8:11 
    Elongation Phase 12:12 
    Termination Phase 14:51 
   RNA Processing 16:11 
    Types of RNA Processing 16:12 
    Exons and Introns 16:35 
    Splicing & Spliceosomes 18:27 
    Addition of a 5' Cap and a Poly A tail 20:41 
    Alternative Splicing 21:43 
   Translation 23:41 
    Nucleotide Triplets or Codons 23:42 
    Start Codon 25:24 
    Stop Codons 25:38 
    Coding of Amino Acids and Wobble Position 25:57 
   Translation Cont. 28:29 
    Transfer RNA (tRNA): Structures and Functions 28:30 
   Ribosomes 35:15 
    Peptidyl, Aminoacyl, and Exit Site 35:23 
   Steps of Translation 36:58 
    Initiation Phase 37:12 
    Elongation Phase 43:12 
    Termination Phase 45:28 
   Mutations 49:43 
    Types of Mutations 49:44 
    Substitutions: Silent 51:11 
    Substitutions: Missense 55:27 
    Substitutions: Nonsense 59:37 
    Insertions and Deletions 61:10 
   Example 1: Three Types of Processing that are Performed on pre-mRNA 66:53 
   Example 2: The Process of Translation 69:10 
   Example 3: Transcription 72:04 
   Example 4: Three Types of Substitution Mutations 74:09 
  Viral Structure and Genetics 43:12
   Intro 0:00 
   Structure of Viruses 0:09 
    Structure of Viruses: Capsid and Envelope 0:10 
    Bacteriophage 1:48 
    Other Viruses 2:28 
   Overview of Viral Reproduction 3:15 
    Host Range 3:48 
    Step 1: Bind to Host Cell 4:39 
    Step 2: Viral Nuclei Acids Enter the Cell 5:15 
    Step 3: Viral Nucleic Acids & Proteins are Synthesized 5:54 
    Step 4: Virus Assembles 6:34 
    Step 5: Virus Exits the Cell 6:55 
   The Lytic Cycle 7:37 
    Steps in the Lytic Cycle 7:38 
   The Lysogenic Cycle 11:27 
    Temperate Phage 11:34 
    Steps in the Lysogenic Cycle 12:09 
   RNA Viruses 16:57 
    Types of RNA Viruses 17:15 
    Positive Sense 18:16 
    Negative Sense 18:48 
    Reproductive Cycle of RNA Viruses 19:32 
   Retroviruses 25:48 
    Complementary DNA (cDNA) & Reverse Transcriptase 25:49 
    Life Cycle of a Retrovirus 28:22 
   Prions 32:42 
    Prions: Definition and Examples 32:45 
    Viroids 34:46 
   Example 1: The Lytic Cycle 35:37 
   Example 2: Retrovirus 38:03 
   Example 3: Positive Sense RNA vs. Negative Sense RNA 39:10 
   Example 4: The Lysogenic Cycle 40:42 
  Bacterial Genetics and Gene Regulation 49:45
   Intro 0:00 
   Bacterial Genomes 0:09 
    Structure of Bacterial Genomes 0:16 
   Transformation 1:22 
    Transformation 1:23 
    Vector 2:49 
   Transduction 3:32 
    Process of Transduction 3:38 
   Conjugation 8:06 
    Conjugation & F factor 8:07 
   Operons 14:02 
    Definition and Example of Operon 14:52 
    Structural Genes 16:23 
    Promoter Region 17:04 
    Regulatory Protein & Operators 17:53 
   The lac Operon 20:09 
    The lac Operon: Inducible System 20:10 
   The trp Operon 28:02 
    The trp Operon: Repressible System 28:03 
    Corepressor 31:37 
    Anabolic & Catabolic 33:12 
   Positive Regulation of the lac Operon 34:39 
    Positive Regulation of the lac Operon 34:40 
   Example 1: The Process of Transformation 39:07 
   Example 2: Operon & Terms 43:29 
   Example 3: Inducible lac Operon and Repressible trp Operon 45:15 
   Example 4: lac Operon 47:10 
  Eukaryotic Gene Regulation and Mobile Genetic Elements 54:26
   Intro 0:00 
   Mechanism of Gene Regulation 0:11 
    Differential Gene Expression 0:13 
    Levels of Regulation 2:24 
   Chromatin Structure and Modification 4:35 
    Chromatin Structure 4:36 
    Levels of Packing 5:50 
    Euchromatin and Heterochromatin 8:58 
    Modification of Chromatin Structure 9:58 
    Epigenetic 12:49 
   Regulation of Transcription 14:20 
    Promoter Region, Exon, and Intron 14:26 
    Enhancers: Control Element 15:31 
    Enhancer & DNA-Bending Protein 17:25 
    Coordinate Control 21:23 
    Silencers 23:01 
   Post-Transcriptional Regulation 24:05 
    Post-Transcriptional Regulation 24:07 
    Alternative Splicing 27:19 
    Differences in mRNA Stability 28:02 
    Non-Coding RNA Molecules: micro RNA & siRNA 30:01 
   Regulation of Translation and Post-Translational Modifications 32:31 
    Regulation of Translation and Post-Translational Modifications 32:55 
    Ubiquitin 35:21 
    Proteosomes 36:04 
   Transposons 37:50 
    Mobile Genetic Elements 37:56 
    Barbara McClintock 38:37 
    Transposons & Retrotransposons 40:38 
    Insertion Sequences 43:14 
    Complex Transposons 43:58 
   Example 1: Four Mechanisms that Decrease Production of Protein 45:13 
   Example 2: Enhancers and Gene Expression 49:09 
   Example 3: Primary Transcript 50:41 
   Example 4: Retroviruses and Retrotransposons 52:11 
  Biotechnology 49:26
   Intro 0:00 
   Definition of Biotechnology 0:08 
    Biotechnology 0:09 
    Genetic Engineering 1:05 
    Example: Golden Corn 1:57 
   Recombinant DNA 2:41 
    Recombinant DNA 2:42 
    Transformation 3:24 
    Transduction 4:24 
    Restriction Enzymes, Restriction Sites, & DNA Ligase 5:32 
   Gene Cloning 13:48 
    Plasmids 14:20 
    Gene Cloning: Step 1 17:35 
    Gene Cloning: Step 2 17:57 
    Gene Cloning: Step 3 18:53 
    Gene Cloning: Step 4 19:46 
   Gel Electrophoresis 27:25 
    What is Gel Electrophoresis? 27:26 
    Gel Electrophoresis: Step 1 28:13 
    Gel Electrophoresis: Step 2 28:24 
    Gel Electrophoresis: Step 3 & 4 28:39 
    Gel Electrophoresis: Step 5 29:55 
    Southern Blotting 31:25 
   Polymerase Chain Reaction (PCR) 32:11 
    Polymerase Chain Reaction (PCR) 32:12 
    Denaturing Phase 35:40 
    Annealing Phase 36:07 
    Elongation/ Extension Phase 37:06 
   DNA Sequencing and the Human Genome Project 39:19 
    DNA Sequencing and the Human Genome Project 39:20 
   Example 1: Gene Cloning 40:40 
   Example 2: Recombinant DNA 43:04 
   Example 3: Match Terms With Descriptions 45:43 
   Example 4: Polymerase Chain Reaction 47:36 
VI. Heredity
  Mendelian Genetics 1:32:08
   Intro 0:00 
   Background 0:40 
    Gregory Mendel & Mendel's Law 0:41 
    Blending Hypothesis 1:04 
    Particulate Inheritance 2:08 
   Terminology 2:55 
    Gene 3:05 
    Locus 3:57 
    Allele 4:37 
    Dominant Allele 5:48 
    Recessive Allele 7:38 
    Genotype 9:22 
    Phenotype 10:01 
    Homozygous 10:44 
    Heterozygous 11:39 
    Penetrance 11:57 
    Expressivity 14:15 
   Mendel's Experiments 15:31 
    Mendel's Experiments: Pea Plants 15:32 
   The Law of Segregation 21:16 
    Mendel's Conclusions 21:17 
    The Law of Segregation 22:57 
   Punnett Squares 28:27 
    Using Punnet Squares 28:30 
   The Law of Independent Assortment 32:35 
    Monohybrid 32:38 
    Dihybrid 33:29 
    The Law of Independent Assortment 34:00 
   The Law of Independent Assortment, cont. 38:13 
    The Law of Independent Assortment: Punnet Squares 38:29 
   Meiosis and Mendel's Laws 43:38 
    Meiosis and Mendel's Laws 43:39 
   Test Crosses 49:07 
    Test Crosses Example 49:08 
   Probability: Multiplication Rule and the Addition Rule 53:39 
    Probability Overview 53:40 
    Independent Events & Multiplication Rule 55:40 
    Mutually Exclusive Events & Addition Rule 60:25 
   Incomplete Dominance, Codominance and Multiple Alleles 62:55 
    Incomplete Dominance 62:56 
   Incomplete Dominance, Codominance and Multiple Alleles 67:06 
    Codominance and Multiple Alleles 67:08 
   Polygenic Inheritance and Pleoitropy 70:19 
    Polygenic Inheritance and Pleoitropy 70:26 
   Epistasis 72:51 
    Example of Epistasis 72:52 
   Example 1: Genetic of Eye Color and Height 77:39 
   Example 2: Blood Type 81:57 
   Example 3: Pea Plants 85:09 
   Example 4: Coat Color 88:34 
  Linked Genes and Non-Mendelian Modes of Inheritance 39:38
   Intro 0:00 
   Review of the Law of Independent Assortment 0:14 
    Review of the Law of Independent Assortment 0:24 
   Linked Genes 6:06 
    Linked Genes 6:07 
    Bateson & Pannett: Pea Plants 8:00 
   Crossing Over and Recombination 15:17 
    Crossing Over and Recombination 15:18 
   Extranuclear Genes 20:50 
    Extranuclear Genes 20:51 
    Cytoplasmic Genes 21:31 
   Genomic Imprinting 23:45 
    Genomic Imprinting 23:58 
    Methylation 24:43 
   Example 1: Recombination Frequencies & Linkage Map 27:07 
   Example 2: Linked Genes 28:39 
   Example 3: Match Terms to Correct Descriptions 36:46 
   Example 4: Leber's Optic Neuropathy 38:40 
  Sex-Linked Traits and Pedigree Analysis 43:39
   Intro 0:00 
   Sex-Linked Traits 0:09 
    Human Chromosomes, XY, and XX 0:10 
    Thomas Morgan's Drosophila 1:44 
   X-Inactivation and Barr Bodies 14:48 
    X-Inactivation Overview 14:49 
    Calico Cats Example 17:04 
   Pedigrees 19:24 
    Definition and Example of Pedigree 19:25 
   Autosomal Dominant Inheritance 20:51 
    Example: Huntington's Disease 20:52 
   Autosomal Recessive Inheritance 23:04 
    Example: Cystic Fibrosis, Tay-Sachs Disease, and Phenylketonuria 23:05 
   X-Linked Recessive Inheritance 27:06 
    Example: Hemophilia, Duchene Muscular Dystrohpy, and Color Blindess 27:07 
   Example 1: Colorblind 29:48 
   Example 2: Pedigree 37:07 
   Example 3: Inheritance Pattern 39:54 
   Example 4: X-inactivation 41:17 
VII. Evolution
  Natural Selection 1:03:28
   Intro 0:00 
   Background 0:09 
    Work of Other Scientists 0:15 
    Aristotle 0:43 
    Carl Linnaeus 1:32 
    George Cuvier 2:47 
    James Hutton 4:10 
    Thomas Malthus 5:05 
    Jean-Baptiste Lamark 5:45 
   Darwin's Theory of Natural Selection 7:50 
    Evolution 8:00 
    Natural Selection 8:43 
    Charles Darwin & The Galapagos Islands 10:20 
   Genetic Variation 20:37 
    Mutations 20:38 
    Independent Assortment 21:04 
    Crossing Over 24:40 
    Random Fertilization 25:26 
   Natural Selection and the Peppered Moth 26:37 
    Natural Selection and the Peppered Moth 26:38 
   Types of Natural Selection 29:52 
    Directional Selection 29:55 
    Stabilizing Selection 32:43 
    Disruptive Selection 34:21 
   Sexual Selection 36:18 
    Sexual Dimorphism 37:30 
    Intersexual Selection 37:57 
    Intrasexual Selection 39:20 
   Evidence for Evolution 40:55 
    Paleontology: Fossil Record 41:30 
    Biogeography 45:35 
    Continental Drift 46:06 
    Pangaea 46:28 
    Marsupials 47:11 
   Homologous and Analogous Structure 50:10 
    Homologous Structure 50:12 
    Analogous Structure 53:21 
   Example 1: Genetic Variation & Natural Selection 56:15 
   Example 2: Types of Natural Selection 58:07 
   Example 3: Mechanisms By Which Genetic Variation is Maintained Within a Population 60:12 
   Example 4: Difference Between Homologous and Analogous Structures 61:28 
  Population Genetic and Evolution 53:22
   Intro 0:00 
   Review of Natural Selection 0:12 
    Review of Natural Selection 0:13 
   Genetic Drift and Gene Flow 4:40 
    Definition of Genetic Drift 4:41 
    Example of Genetic Drift: Cholera Epidemic 5:15 
    Genetic Drift: Founder Effect 7:28 
    Genetic Drift: Bottleneck Effect 10:27 
    Gene Flow 13:00 
   Quantifying Genetic Variation 14:32 
    Average Heterozygosity 15:08 
    Nucleotide Variation 17:05 
   Maintaining Genetic Variation 18:12 
    Heterozygote Advantage 19:45 
    Example of Heterozygote Advantage: Sickle Cell Anemia 20:21 
    Diploidy 23:44 
    Geographic Variation 26:54 
    Frequency Dependent Selection and Outbreeding 28:15 
    Neutral Traits 30:55 
   The Hardy-Weinberg Equilibrium 31:11 
    The Hardy-Weinberg Equilibrium 31:49 
    The Hardy-Weinberg Conditions 32:42 
    The Hardy-Weinberg Equation 34:05 
    The Hardy-Weinberg Example 36:33 
   Example 1: Match Terms to Descriptions 42:28 
   Example 2: The Hardy-Weinberg Equilibrium 44:31 
   Example 3: The Hardy-Weinberg Equilibrium 49:10 
   Example 4: Maintaining Genetic Variation 51:30 
  Speciation and Patterns of Evolution 51:02
   Intro 0:00 
   Early Life on Earth 0:08 
    Early Earth 0:09 
    1920's Oparin & Haldane 0:58 
    Abiogenesis 2:15 
    1950's Miller & Urey 2:45 
    Ribozymes 5:34 
    3.5 Billion Years Ago 6:39 
    2.5 Billion Years Ago 7:14 
    1.5 Billion Years Ago 7:41 
    Endosymbiosis 8:00 
    540 Million Years Ago: Cambrian Explosion 9:57 
   Gradualism and Punctuated Equilibrium 11:46 
    Gradualism 11:47 
    Punctuated Equilibrium 12:45 
   Adaptive Radiation 15:08 
    Adaptive Radiation 15:09 
    Example of Adaptive Radiation: Galapogos Islands 17:11 
   Convergent Evolution, Divergent Evolution, and Coevolution 18:30 
    Convergent Evolution 18:39 
    Divergent Evolution 21:30 
    Coevolution 23:49 
   Speciation 26:27 
    Definition and Example of Species 26:29 
    Reproductive Isolation: Prezygotive 27:49 
    Reproductive Isolation: Post zygotic 29:28 
   Allopatric Speciation 30:21 
    Allopatric Speciation & Geographic Isolation 30:28 
    Genetic Drift 31:31 
   Sympatric Speciation 34:10 
    Sympatric Speciation 34:11 
    Polyploidy & Autopolyploidy 35:12 
    Habitat Isolation 39:17 
    Temporal Isolation 41:27 
    Selection Selection 41:40 
   Example 1: Pattern of Evolution 42:53 
   Example 2: Sympatric Speciation 45:16 
   Example 3: Patterns of Evolution 48:08 
   Example 4: Patterns of Evolution 49:27 
VIII. Diversity of Life
  Classification 1:00:51
   Intro 0:00 
   Systems of Classification 0:07 
    Taxonomy 0:08 
    Phylogeny 1:04 
    Phylogenetics Tree 1:44 
    Cladistics 3:37 
   Classification of Organisms 5:31 
    Example of Carl Linnaeus System 5:32 
   Domains 9:26 
    Kingdoms: Monera, Protista, Plantae, Fungi, Animalia 9:27 
    Monera 10:06 
    Phylogentics Tree: Eurkarya, Bacteria, Archaea 11:58 
    Domain Eukarya 12:50 
   Domain Bacteria 15:43 
    Domain Bacteria 15:46 
    Pathogens 16:41 
    Decomposers 18:00 
   Domain Archaea 19:43 
    Extremophiles Archaea: Thermophiles and Halophiles 19:44 
    Methanogens 20:58 
   Phototrophs, Autotrophs, Chemotrophs and Heterotrophs 24:40 
    Phototrophs and Chemotrophs 25:02 
    Autotrophs and Heterotrophs 26:54 
    Photoautotrophs 28:50 
    Photoheterotrophs 29:28 
    Chemoautotrophs 30:06 
    Chemoheterotrophs 31:37 
   Domain Eukarya 32:40 
    Domain Eukarya 32:43 
    Plant Kingdom 34:28 
    Protists 35:48 
    Fungi Kingdom 37:06 
    Animal Kingdom 38:35 
   Body Symmetry 39:25 
    Lack Symetry 39:40 
    Radial Symmetry: Sea Aneome 40:15 
    Bilateral Symmetry 41:55 
    Cephalization 43:29 
   Germ Layers 44:54 
    Diploblastic Animals 45:18 
    Triploblastic Animals 45:25 
    Ectoderm 45:36 
    Endoderm 46:07 
    Mesoderm 46:41 
   Coelomates 47:14 
    Coelom 47:15 
    Acoelomate 48:22 
    Pseudocoelomate 48:59 
    Coelomate 49:31 
    Protosomes 50:46 
    Deuterosomes 51:20 
   Example 1: Domains 53:01 
   Example 2: Match Terms with Descriptions 56:00 
   Example 3: Kingdom Monera and Domain Archaea 57:50 
   Example 4: System of Classification 59:37 
  Bacteria 36:46
   Intro 0:00 
   Comparison of Domain Archaea and Domain Bacteria 0:08 
    Overview of Archaea and Bacteria 0:09 
    Archaea vs. Bacteria: Nucleus, Organelles, and Organization of Genetic Material 1:45 
    Archaea vs. Bacteria: Cell Walls 2:20 
    Archaea vs. Bacteria: Number of Types of RNA Pol 2:29 
    Archaea vs. Bacteria: Membrane Lipids 2:53 
    Archaea vs. Bacteria: Introns 3:33 
    Bacteria: Pathogen 4:03 
    Bacteria: Decomposers and Fix Nitrogen 5:18 
    Bacteria: Aerobic, Anaerobic, Strict Anaerobes & Facultative Anaerobes 6:02 
   Phototrophs, Autotrophs, Heterotrophs and Chemotrophs 7:14 
    Phototrophs and Chemotrophs 7:50 
    Autotrophs and Heterotrophs 8:53 
    Photoautotrophs and Photoheterotrophs 10:15 
    Chemoautotroph and Chemoheterotrophs 11:07 
   Structure of Bacteria 12:21 
    Shapes: Cocci, Bacilli, Vibrio, and Spirochetes 12:26 
    Structures: Plasma Membrane and Cell Wall 14:23 
    Structures: Nucleoid Region, Plasmid, and Capsule Basal Apparatus, and Filament 15:30 
    Structures: Flagella, Basal Apparatus, Hook, and Filament 16:36 
    Structures: Pili, Fimbrae and Ribosome 18:00 
    Peptidoglycan: Gram + and Gram - 18:50 
   Bacterial Genomes and Reproduction 21:14 
    Bacterial Genomes 21:21 
    Reproduction of Bacteria 22:13 
    Transformation 23:26 
    Vector 24:34 
    Competent 25:15 
   Conjugation 25:53 
    Conjugation: F+ and R Plasmids 25:55 
   Example 1: Species 29:41 
   Example 2: Bacteria and Exchange of Genetic Material 32:31 
   Example 3: Ways in Which Bacteria are Beneficial to Other Organisms 33:48 
   Example 4: Domain Bacteria vs. Domain Archaea 34:53 
  Protists 1:18:48
   Intro 0:00 
   Classification of Protists 0:08 
    Classification of Protists 0:09 
    'Plant-like' Protists 2:06 
    'Animal-like' Protists 3:19 
    'Fungus-like' Protists 3:57 
   Serial Endosymbiosis Theory 5:15 
    Endosymbiosis Theory 5:33 
    Photosynthetic Protists 7:33 
   Life Cycles with a Diploid Adult 13:35 
    Life Cycles with a Diploid Adult 13:56 
   Life Cycles with a Haploid Adult 15:31 
    Life Cycles with a Haploid Adult 15:32 
   Alternation of Generations 17:22 
    Alternation of Generations: Multicellular Haploid & Diploid Phase 17:23 
   Plant-Like Protists 19:58 
    Euglenids 20:43 
    Dino Flagellates 22:57 
    Diatoms 26:07 
   Plant-Like Protists 28:44 
    Golden Algae 28:45 
    Brown Algeas 30:05 
   Plant-Like Protists 33:38 
    Red Algae 33:39 
    Green Algae 35:36 
    Green Algae: Chlamydomonus 37:44 
   Animal-Like Protists 40:04 
    Animal-Like Protists Overview 40:05 
    Sporozoans (Apicomplexans) 40:32 
    Alveolates 41:41 
    Sporozoans (Apicomplexans): Plasmodium & Malaria 42:59 
   Animal-Like Protists 48:44 
    Kinetoplastids 48:50 
    Example of Kinetoplastids: Trypanosomes & African Sleeping Sickness 49:30 
    Ciliate 50:42 
   Conjugation 53:16 
    Conjugation 53:26 
   Animal-Like Protists 57:08 
    Parabasilids 57:31 
    Diplomonads 59:06 
    Rhizopods 60:13 
    Forams 62:25 
    Radiolarians 63:28 
   Fungus-Like Protists 64:25 
    Fungus-Like Protists Overview 64:26 
    Slime Molds 65:15 
    Cellular Slime Molds: Feeding Stage 69:21 
    Oomycetes 71:15 
   Example 1: Alternation of Generations and Sexual Life Cycles 73:05 
   Example 2: Match Protists to Their Descriptions 74:12 
   Example 3: Three Structures that Protists Use for Motility 76:22 
   Example 4: Paramecium 77:04 
  Fungi 35:24
   Intro 0:00 
   Introduction to Fungi 0:09 
    Introduction to Fungi 0:10 
    Mycologist 0:34 
    Examples of Fungi 0:45 
    Hyphae, Mycelia, Chitin, and Coencytic Fungi 2:26 
    Ancestral Protists 5:00 
   Role of Fungi in the Environment 5:35 
    Fungi as Decomposers 5:36 
    Mycorrrhiza 6:19 
    Lichen 8:52 
   Life Cycle of Fungi 11:32 
    Asexual Reproduction 11:33 
    Sexual Reproduction & Dikaryotic Cell 13:16 
   Chytridiomycota 18:12 
    Phylum Chytridiomycota 18:17 
    Zoospores 18:50 
   Zygomycota 19:07 
    Coenocytic & Zygomycota Life Cycle 19:08 
   Basidiomycota 24:27 
    Basidiomycota Overview 24:28 
    Basidiomycota Life Cycle 26:11 
   Ascomycota 28:00 
    Ascomycota Overview 28:01 
    Ascomycota Reproduction 28:50 
   Example 1: Fungi Fill in the Blank 31:02 
   Example 2: Name Two Roles Played by Fungi in the Environment 32:09 
   Example 3: Difference Between Diploid Cell and Dikaryon Cell 33:42 
   Example 4: Phylum of Fungi, Flagellated Spore, Coencytic 34:36 
  Invertebrates 1:03:03
   Intro 0:00 
   Porifera (Sponges) 0:33 
    Chordata 0:56 
    Porifera (Sponges): Sessile, Layers, Aceolomates, and Filter Feeders 1:24 
    Amoebocytes Cell 4:47 
    Choanocytes Cell 5:56 
    Sexual Reproduction 6:28 
   Cnidaria 8:05 
    Cnidaria Overview 8:06 
    Polyp & Medusa: Gastrovasular Cavity 8:29 
    Cnidocytes 9:42 
    Anthozoa 10:40 
    Cubozoa 11:23 
    Hydrozoa 11:53 
    Scyphoza 13:25 
   Platyhelminthes (Flatworms) 13:58 
    Flatworms: Tribloblastic, Bilateral Symmetry, and Cephalization 13:59 
    GI System 15:33 
    Excretory System 16:07 
    Nervous System 17:00 
    Turbellarians 17:36 
    Trematodes 18:42 
    Monageneans 21:32 
    Cestoda 21:55 
   Rotifera (Rotifers) 23:45 
    Rotifers: Digestive Tract, Pseudocoelem, and Stuctures 23:46 
    Reproduction: Parthenogenesis 25:33 
   Nematoda (Roundworms) 26:44 
    Nematoda (Roundworms) 26:45 
    Parasites: Pinworms & Hookworms 27:26 
   Annelida 28:36 
    Annelida Overview 28:37 
    Open Circulatory 29:21 
    Closed Circulatory 30:18 
    Nervous System 31:19 
    Excretory System 31:43 
    Oligochaete 32:07 
    Leeches 33:22 
    Polychaetes 34:42 
   Mollusca 35:26 
    Mollusca Features 35:27 
    Major Part 1: Visceral Mass 36:21 
    Major Part 2: Head-foot Region 36:49 
    Major Part 3: Mantle 37:13 
    Radula 37:49 
    Circulatory, Reproductive, Excretory, and Nervous System 38:14 
   Major Classes of Molluscs 39:12 
    Gastropoda 39:17 
    Polyplacophora 40:15 
    Bivales 40:41 
    Cephalopods 41:42 
   Arthropoda 43:35 
    Arthropoda Overview 43:36 
    Segmented Bodies 44:14 
    Exoskeleton 44:52 
    Jointed Appendages 45:28 
    Hemolyph, Excretory & Respiratory System 45:41 
    Myriapoda & Centipedes 47:15 
    Cheliceriforms 48:20 
    Crustcea 49:31 
    Herapoda 50:03 
   Echinodermata 52:59 
    Echinodermata 53:00 
    Watrer Vascular System 54:20 
   Selected Characteristics of Invertebrates 57:11 
    Selected Characteristics of Invertebrates 57:12 
   Example 1: Phylum Description 58:43 
   Example 2: Complex Animals 59:50 
   Example 3: Match Organisms to the Correct Phylum 61:03 
   Example 4: Phylum Arthropoda 62:01 
  Vertebrates 1:00:07
   Intro 0:00 
   Phylum Chordata 0:06 
    Chordates Overview 0:07 
    Notochord and Dorsal Hollow Nerve Chord 1:24 
    Pharyngeal Clefts, Arches, and Post-anal Tail 3:41 
   Invertebrate Chordates 6:48 
    Lancelets 7:13 
    Tunicates 8:02 
    Hagfishes: Craniates 8:55 
   Vertebrate Chordates 10:41 
    Veterbrates Overview 10:42 
    Lampreys 11:00 
    Gnathostomes 12:20 
    Six Major Classes of Vertebrates 12:53 
   chondrichthyes 14:23 
    Chondrichthyes Overview 14:24 
    Ectothermic and Endothermic 14:42 
    Sharks: Lateral Line System, Neuromastsn, and Gills 15:27 
    Oviparous and Viviparous 17:23 
   Osteichthyes (Bony Fishes) 18:12 
    Osteichythes (Bony Fishes) Overview 18:13 
    Operculum 19:05 
    Swim Bladder 19:53 
    Ray-Finned Fishes 20:34 
    Lobe-Finned Fishes 20:58 
   Tetrapods 22:36 
    Tetrapods: Definition and Examples 22:37 
   Amphibians 23:53 
    Amphibians Overview 23:54 
    Order Urodela 25:51 
    Order Apoda 27:03 
    Order Anura 27:55 
   Reptiles 30:19 
    Reptiles Overview 30:20 
    Amniotes 30:37 
    Examples of Reptiles 32:46 
    Reptiles: Ectotherms, Gas Exchange, and Heart 33:40 
   Orders of Reptiles 34:17 
    Sphenodontia, Squamata, Testudines, and Crocodilia 34:21 
   Birds 36:09 
    Birds and Dinosaurs 36:18 
    Theropods 38:00 
    Birds: High Metabolism, Respiratory System, Lungs, and Heart 39:04 
    Birds: Endothermic, Bones, and Feathers 40:15 
   Mammals 42:33 
    Mammals Overview 42:35 
    Diaphragm and Heart 42:57 
    Diphydont 43:44 
    Synapsids 44:41 
   Monotremes 46:36 
    Monotremes 46:37 
   Marsupials 47:12 
    Marsupials: Definition and Examples 47:16 
    Convergent Evolution 48:09 
   Eutherians (Placental Mammals) 49:42 
    Placenta 49:43 
    Order Carnivora 50:48 
    Order Raodentia 51:00 
    Order Cetaceans 51:14 
   Primates 51:41 
    Primates Overview 51:42 
    Nails and Hands 51:58 
    Vision 52:51 
    Social Care for Young 53:28 
    Brain 53:43 
   Example 1: Distinguishing Characteristics of Chordates 54:33 
   Example 2: Match Description to Correct Term 55:56 
   Example 3: Bird's Anatomy 57:38 
   Example 4: Vertebrate Animal, Marine Environment, and Ectothermic 59:14 
IX. Plants
  Seedless Plants 34:31
   Intro 0:00 
   Origin and Classification of Plants 0:06 
    Origin and Classification of Plants 0:07 
    Non-Vascular vs. Vascular Plants 1:29 
    Seedless Vascular & Seed Plants 2:28 
    Angiosperms & Gymnosperms 2:50 
   Alternation of Generations 3:54 
    Alternation of Generations 3:55 
   Bryophytes 7:58 
    Overview of Bryrophytes 7:59 
    Example: Moss Gametophyte 9:29 
    Example: Moss Sporophyte 9:50 
   Moss Life Cycle 10:12 
    Moss Life Cycle 10:13 
   Seedless Vascular Plants 13:23 
    Vascular Structures: Cell Walls, and Lignin 13:24 
    Homosporous 17:11 
    Heterosporous 17:48 
   Adaptations to Life on land 21:10 
    Adaptation 1: Cell Walls 21:38 
    Adaptation 2: Vascular Plants 21:59 
    Adaptation 3 : Xylem & Phloem 22:31 
    Adaptation 4: Seeds 23:07 
    Adaptation 5: Pollen 23:35 
    Adaptation 6: Stomata 24:45 
    Adaptation 7: Reduced Gametophyte Generation 25:32 
   Example 1: Bryophytes 26:39 
   Example 2: Sporangium, Lignin, Gametophyte, and Antheridium 28:34 
   Example 3: Adaptations to Life on Land 29:47 
   Example 4: Life Cycle of Plant 32:06 
  Plant Structure 1:01:21
   Intro 0:00 
   Plant Tissue 0:05 
    Dermal Tissue 0:15 
    Vascular Tissue 0:39 
    Ground Tissue 1:31 
   Cell Types in Plants 2:14 
    Parenchyma Cells 2:24 
    Collenchyma Cells 3:21 
    Sclerenchyma Cells 3:59 
   Xylem 5:04 
    Xylem: Tracheids and Vessel Elements 6:12 
    Gymnosperms vs. Angiosperms 7:53 
   Phloem 8:37 
    Phloem: Structures and Function 8:38 
    Sieve-Tube Elements 8:45 
    Companion Cells & Sieve Plates 9:11 
   Roots 10:08 
    Taproots & Fibrous 10:09 
    Aerial Roots & Prop Roots 11:41 
    Structures and Functions of Root: Dicot & Monocot 13:00 
    Pericyle 16:57 
   The Nitrogen Cylce 18:05 
    The Nitrogen Cycle 18:06 
   Mycorrhizae 24:20 
    Mycorrhizae 24:23 
    Ectomycorrhiza 26:03 
    Endomycorrhiza 26:25 
   Stems 26:53 
    Stems 26:54 
    Vascular Bundles of Monocots and Dicots 28:18 
   Leaves 29:48 
    Blade & Petiole 30:13 
    Upper Epidermis, Lower Epidermis & Cuticle 30:39 
    Ground Tissue, Palisade Mesophyll, Spongy Mesophyll 31:35 
    Stomata Pores 33:23 
    Guard Cells 34:15 
    Vascular Tissues: Vascular Bundles and Bundle Sheath 34:46 
   Stomata 36:12 
    Stomata & Gas Exchange 36:16 
    Guard Cells, Flaccid, and Turgid 36:43 
    Water Potential 38:03 
    Factors for Opening Stoma 40:35 
    Factors Causing Stoma to Close 42:44 
   Overview of Plant Growth 44:23 
    Overview of Plant Growth 44:24 
   Primary Plant Growth 46:19 
    Apical Meristems 46:25 
    Root Growth: Zone of Cell Division 46:44 
    Root Growth: Zone of Cell Elongation 47:35 
    Root Growth: Zone of Cell Differentiation 47:55 
    Stem Growth: Leaf Primodia 48:16 
   Secondary Plant Growth 48:48 
    Secondary Plant Growth Overview 48:59 
    Vascular Cambium: Secondary Xylem and Phloem 49:38 
    Cork Cambium: Periderm and Lenticels 51:10 
   Example 1: Leaf Structures 53:30 
   Example 2: List Three Types of Plant Tissue and their Major Functions 55:13 
   Example 3: What are Two Factors that Stimulate the Opening or Closing of Stomata? 56:58 
   Example 4: Plant Growth 59:18 
  Gymnosperms and Angiosperms 1:01:51
   Intro 0:00 
   Seed Plants 0:22 
    Sporopollenin 0:58 
    Heterosporous: Megasporangia 2:49 
    Heterosporous: Microsporangia 3:19 
   Gymnosperms 5:20 
    Gymnosperms 5:21 
   Gymnosperm Life Cycle 7:30 
    Gymnosperm Life Cycle 7:31 
   Flower Structure 15:15 
    Petal & Pollination 15:48 
    Sepal 16:52 
    Stamen: Anther, Filament 17:05 
    Pistill: Stigma, Style, Ovule, Ovary 17:55 
    Complete Flowers 20:14 
   Angiosperm Gametophyte Formation 20:47 
    Male Gametophyte: Microsporocytes, Microsporangia & Meiosis 20:57 
    Female Gametophyte: Megasporocytes & Meiosis 24:22 
   Double Fertilization 25:43 
    Double Fertilization: Pollen Tube and Endosperm 25:44 
   Angiosperm Life Cycle 29:43 
    Angiosperm Life Cycle 29:48 
   Seed Structure and Development 33:37 
    Seed Structure and Development 33:38 
   Pollen Dispersal 37:53 
    Abiotic 38:28 
    Biotic 39:30 
   Prevention of Self-Pollination 40:48 
    Mechanism 1 41:08 
    Mechanism 2: Dioecious 41:37 
    Mechanism 3 42:32 
    Self-Incompatibility 43:08 
    Gametophytic Self-Incompatibility 44:38 
    Sporophytic Self-Incompatibility 46:50 
   Asexual Reproduction 48:33 
    Asexual Reproduction & Vegetative Propagation 48:34 
    Graftiry 50:19 
   Monocots and Dicots 51:34 
    Monocots vs.Dicots 51:35 
   Example 1: Double Fertilization 54:43 
   Example 2: Mechanisms of Self-Fertilization 56:02 
   Example 3: Monocots vs. Dicots 58:11 
   Example 4: Flower Structures 60:11 
  Transport of Nutrients and Water in Plants 40:30
   Intro 0:00 
   Review of Plant Cell Structure 0:14 
    Cell Wall, Plasma Membrane, Middle lamella, and Cytoplasm 0:15 
    Plasmodesmata, Chloroplasts, and Central Vacuole 3:24 
   Water Absorption by Plants 4:28 
    Root Hairs and Mycorrhizae 4:30 
    Osmosis and Water Potential 5:41 
   Apoplast and Symplast Pathways 10:01 
    Apoplast and Symplast Pathways 10:02 
   Xylem Structure 21:02 
    Tracheids and Vessel Elements 21:03 
   Bulk Flow 23:00 
    Transpiration 23:26 
    Cohesion 25:10 
    Adhesion 26:10 
   Phloem Structure 27:25 
    Pholem 27:26 
    Sieve-Tube Elements 27:48 
    Companion Cells 28:17 
   Translocation 28:42 
    Sugar Source and Sugar Sink Overview 28:43 
    Example of Sugar Sink 30:01 
    Example of Sugar Source 30:48 
   Example 1: Match the Following Terms to their Description 33:17 
   Example 2: Water Potential 34:58 
   Example 3: Bulk Flow 36:56 
   Example 4: Sugar Sink and Sugar Source 38:33 
  Plant Hormones and Tropisms 48:10
   Intro 0:00 
   Plant Cell Signaling 0:17 
    Plant Cell Signaling Overview 0:18 
    Step 1: Reception 1:03 
    Step 2: Transduction 2:32 
    Step 3: Response 2:58 
    Second Messengers 3:52 
    Protein Kinases 4:42 
   Auxins 6:14 
    Auxins 6:18 
    Indoleacetic Acid (IAA) 7:23 
   Cytokinins and Gibberellins 11:10 
    Cytokinins: Apical Dominance & Delay of Aging 11:16 
    Gibberellins: 'Bolting' 13:51 
   Ethylene 15:33 
    Ethylene 15:34 
    Positive Feedback 15:46 
    Leaf Abscission 18:05 
    Mechanical Stress: Triple Response 19:36 
   Abscisic Acid 21:10 
    Abscisic Acid 21:15 
   Tropisms 23:11 
    Positive Tropism 23:50 
    Negative Tropism 24:07 
    Statoliths 26:21 
   Phytochromes and Photoperiodism 27:48 
    Phytochromes: PR and PFR 27:56 
    Circadian Rhythms 32:06 
    Photoperiod 33:13 
    Photoperiodism 33:38 
    Gerner & Allard 34:35 
    Short-Day Plant 35:22 
    Long-Day Plant 37:00 
   Example 1: Plant Hormones 41:28 
   Example 2: Cytokinins & Gibberellins 43:00 
   Example 3: Match the Following Terms to their Description 44:46 
   Example 4: Hormones & Cell Response 46:14 
X. Animal Structure and Physiology
  The Respiratory System 48:14
   Intro 0:00 
   Gas Exchange in Animals 0:17 
    Respiration 0:19 
    Ventilation 1:09 
    Characteristics of Respiratory Surfaces 1:53 
   Gas Exchange in Aquatic Animals 3:05 
    Simple Aquatic Animals 3:06 
    Gills & Gas Exchange in Complex Aquatic Animals 3:49 
    Countercurrent Exchange 6:12 
   Gas Exchange in Terrestrial Animals 13:46 
    Earthworms 14:07 
    Internal Respiratory 15:35 
    Insects 16:55 
    Circulatory Fluid 19:06 
   The Human Respiratory System 21:21 
    Nasal Cavity, Pharynx, Larynx, and Epiglottis 21:50 
    Bronchus, Bronchiole, Trachea, and Alveoli 23:38 
    Pulmonary Surfactants 28:05 
    Circulatory System: Hemoglobin 29:13 
   Ventilation 30:28 
    Inspiration/Expiration: Diaphragm, Thorax, and Abdomen 30:33 
    Breathing Control Center: Regulation of pH 34:34 
   Example 1: Tracheal System in Insects 39:08 
   Example 2: Countercurrent Exchange 42:09 
   Example 3: Respiratory System 44:10 
   Example 4: Diaphragm, Ventilation, pH, and Regulation of Breathing 45:31 
  The Circulatory System 1:20:21
   Intro 0:00 
   Types of Circulatory Systems 0:07 
    Circulatory System Overview 0:08 
    Open Circulatory System 3:19 
    Closed Circulatory System 5:58 
   Blood Vessels 7:51 
    Arteries 8:16 
    Veins 10:01 
    Capillaries 12:35 
   Vasoconstriction and Vasodilation 13:10 
    Vasoconstriction 13:11 
    Vasodilation 13:47 
    Thermoregulation 14:32 
   Blood 15:53 
    Plasma 15:54 
    Cellular Component: Red Blood Cells 17:41 
    Cellular Component: White Blood Cells 20:18 
    Platelets 21:14 
    Blood Types 21:35 
   Clotting 27:04 
    Blood, Fibrin, and Clotting 27:05 
    Hemophilia 30:26 
   The Heart 31:09 
    Structures and Functions of the Heart 31:19 
   Pulmonary and Systemic Circulation 40:20 
    Double Circuit: Pulmonary Circuit and Systemic Circuit 40:21 
   The Cardiac Cycle 42:35 
    The Cardiac Cycle 42:36 
    Autonomic Nervous System 50:00 
   Hemoglobin 51:25 
    Hemoglobin & Hemocyanin 51:26 
   Oxygen-Hemoglobin Dissociation Curve 55:30 
    Oxygen-Hemoglobin Dissociation Curve 55:44 
   Transport of Carbon Dioxide 66:31 
    Transport of Carbon Dioxide 66:37 
   Example 1: Pathway of Blood 72:48 
   Example 2: Oxygenated Blood, Pacemaker, and Clotting 75:24 
   Example 3: Vasodilation and Vasoconstriction 76:19 
   Example 4: Oxygen-Hemoglobin Dissociation Curve 78:13 
  The Digestive System 56:11
   Intro 0:00 
   Introduction to Digestion 0:07 
    Digestive Process 0:08 
    Intracellular Digestion 0:45 
    Extracellular Digestion 1:44 
   Types of Digestive Tracts 2:08 
    Gastrovascular Cavity 2:09 
    Complete Gastrointestinal Tract (Alimentary Canal) 3:54 
    'Crop' 4:43 
   The Human Digestive System 5:41 
    Structures of the Human Digestive System 5:47 
   The Oral Cavity and Esophagus 7:47 
    Mechanical & Chemical Digestion 7:48 
    Salivary Glands 8:55 
    Pharynx and Epigloltis 9:43 
    Peristalsis 11:35 
   The Stomach 12:57 
    Lower Esophageal Sphincter 13:00 
    Gastric Gland, Parietal Cells, and Pepsin 14:32 
    Mucus Cell 15:48 
    Chyme & Pyloric Sphincter 17:32 
   The Pancreas 18:31 
    Endocrine and Exocrine 19:03 
    Amylase 20:05 
    Proteases 20:51 
    Lipases 22:20 
   The Liver 23:08 
    The Liver & Production of Bile 23:09 
   The Small Intestine 24:37 
    The Small Intestine 24:38 
    Duodenum 27:44 
    Intestinal Enzymes 28:41 
   Digestive Enzyme 33:30 
    Site of Production: Mouth 33:43 
    Site of Production: Stomach 34:03 
    Site of Production: Pancreas 34:16 
    Site of Production: Small Intestine 36:18 
   Absorption of Nutrients 37:51 
    Absorption of Nutrients: Jejunum and Ileum 37:52 
   The Large Intestine 44:52 
    The Large Intestine: Colon, Cecum, and Rectum 44:53 
   Regulation of Digestion by Hormones 46:55 
    Gastrin 47:21 
    Secretin 47:50 
    Cholecystokinin (CCK) 48:00 
   Example 1: Intestinal Cell, Bile, and Digestion of Fats 48:29 
   Example 2: Matching 51:06 
   Example 3: Digestion and Absorption of Starch 52:18 
   Example 4: Large Intestine and Gastric Fluids 54:52 
  The Excretory System 1:12:14
   Intro 0:00 
   Nitrogenous Wastes 0:08 
    Nitrogenous Wastes Overview 0:09 
    NH3 0:39 
    Urea 2:43 
    Uric Acid 3:31 
   Osmoregulation 4:56 
    Osmoregulation 5:05 
    Saltwater Fish vs. Freshwater Fish 8:58 
   Types of Excretory Systems 13:42 
    Protonephridia 13:50 
    Metanephridia 16:15 
    Malpighian Tubule 19:05 
   The Human Excretory System 20:45 
    Kidney, Ureter, bladder, Urethra, Medula, and Cortex 20:53 
   Filtration, Reabsorption and Secretion 22:53 
    Filtration 22:54 
    Reabsorption 24:16 
    Secretion 25:20 
   The Nephron 26:23 
    The Nephron 26:24 
   The Nephron, cont. 41:45 
    Descending Loop of Henle 41:46 
    Ascending Loop of Henle 45:45 
   Antidiuretic Hormone 54:30 
    Antidiuretic Hormone (ADH) 54:31 
   Aldosterone 58:58 
    Aldosterone 58:59 
   Example 1: Nephron of an Aquatic Mammal 64:21 
   Example 2: Uric Acid & Saltwater Fish 66:36 
   Example 3: Nephron 69:14 
   Example 4: Gastrointestinal Infection 70:41 
  The Endocrine System 51:12
   Intro 0:00 
   The Endocrine System Overview 0:07 
    Thyroid 0:08 
    Exocrine 1:56 
    Pancreas 2:44 
    Paracrine Signaling 4:06 
    Pheromones 5:15 
   Mechanisms of Hormone Action 6:06 
    Reception, Transduction, and Response 7:06 
    Classes of Hormone 10:05 
    Negative Feedback: Testosterone Example 12:16 
   The Pancreas 15:11 
    The Pancreas & islets of Langerhan 15:12 
    Insulin 16:02 
    Glucagon 17:28 
   The Anterior Pituitary 19:25 
    Thyroid Stimulating Hormone 20:24 
    Adrenocorticotropic Hormone 21:16 
    Follide Stimulating Hormone 22:04 
    Luteinizing Hormone 22:45 
    Growth Hormone 23:45 
    Prolactin 24:24 
    Melanocyte Stimulating Hormone 24:55 
   The Hypothalamus and Posterior Pituitary 25:45 
    Hypothalamus, Oxytocin, Antidiuretic Hormone (ADH), and Posterior Pituitary 25:46 
   The Adrenal Glands 31:20 
    Adrenal Cortex 31:56 
    Adrenal Medulla 34:29 
   The Thyroid 35:54 
    Thyroxine 36:09 
    Calcitonin 40:27 
   The Parathyroids 41:44 
    Parathyroids Hormone (PTH) 41:45 
   The Ovaries and Testes 43:32 
    Estrogen, Progesterone, and Testosterone 43:33 
   Example 1: Match the Following Hormones with their Descriptions 45:38 
   Example 2: Pancreas, Endocrine Organ & Exocrine Organ 47:06 
   Example 3: Insulin and Glucagon 48:28 
   Example 4: Increased Level of Cortisol in Blood 50:25 
  The Nervous System 1:10:38
   Intro 0:00 
   Types of Nervous Systems 0:28 
    Nerve Net 0:37 
    Flatworm 1:07 
    Cephalization 1:52 
    Arthropods 2:44 
    Echinoderms 3:11 
   Nervous System Organization 3:40 
    Nervous System Organization Overview 3:41 
    Automatic Nervous System: Sympathetic & Parasympathetic 4:42 
   Neuron Structure 6:57 
    Cell Body & Dendrites 7:16 
    Axon & Axon Hillock 8:20 
    Synaptic Terminals, Mylenin, and Nodes of Ranvier 9:01 
   Pre-synaptic and Post-synaptic Cells 10:16 
    Pre-synaptic Cells 10:17 
    Post-synaptic Cells 11:05 
   Types of Neurons 11:50 
    Sensory Neurons 11:54 
    Motor Neurons 13:12 
    Interneurons 14:24 
   Resting Potential 15:14 
    Membrane Potential 15:25 
    Resting Potential: Chemical Gradient 16:06 
    Resting Potential: Electrical Gradient 19:18 
   Gated Ion Channels 24:40 
    Voltage-Gated & Ligand-Gated Ion Channels 24:48 
   Action Potential 30:09 
    Action Potential Overview 30:10 
    Step 1 32:07 
    Step 2 32:17 
    Step 3 33:12 
    Step 4 35:14 
    Step 5 36:39 
   Action Potential Transmission 39:04 
    Action Potential Transmission 39:05 
    Speed of Conduction 41:19 
    Saltatory Conduction 42:58 
   The Synapse 44:17 
    The Synapse: Presynaptic & Postsynaptic Cell 44:31 
    Examples of Neurotransmitters 50:05 
   Brain Structure 51:57 
    Meniges 52:19 
    Cerebrum 52:56 
    Corpus Callosum 53:13 
    Gray & White Matter 53:38 
    Cerebral Lobes 55:35 
    Cerebellum 56:00 
    Brainstem 56:30 
    Medulla 56:51 
    Pons 57:22 
    Midbrain 57:55 
    Thalamus 58:25 
    Hypothalamus 58:58 
    Ventricles 59:51 
   The Spinal Cord 60:29 
    Sensory Stimuli 60:30 
    Reflex Arc 61:41 
   Example 1: Automatic Nervous System 64:38 
   Example 2: Synaptic Terminal and the Release of Neurotransmitters 66:22 
   Example 3: Volted-Gated Ion Channels 68:00 
   Example 4: Neuron Structure 69:26 
  Musculoskeletal System 39:29
   Intro 0:00 
   Skeletal System Types and Function 0:30 
    Skeletal System 0:31 
    Exoskeleton 1:34 
    Endoskeleton 2:32 
   Skeletal System Components 2:55 
    Bone 3:06 
    Cartilage 5:04 
    Tendons 6:18 
    Ligaments 6:34 
   Skeletal Muscle 6:52 
    Skeletal Muscle 7:24 
    Sarcomere 9:50 
   The Sliding Filament Theory 13:12 
    The Sliding Filament Theory: Muscle Contraction 13:13 
   The Neuromuscular Junction 17:24 
    The Neuromuscular Junction: Motor Neuron & Muscle Fiber 17:26 
    Sarcolemma, Sarcoplasmic 21:54 
    Tropomyosin & Troponin 23:35 
   Summation and Tetanus 25:26 
    Single Twitch, Summation of Two Twitches, and Tetanus 25:27 
   Smooth Muscle 28:50 
    Smooth Muscle 28:58 
   Cardiac Muscle 30:40 
    Cardiac Muscle 30:42 
   Summary of Muscle Types 32:07 
    Summary of Muscle Types 32:08 
   Example 1: Contraction and Skeletal Muscle 33:15 
   Example 2: Skeletal Muscle and Smooth Muscle 36:23 
   Example 3: Muscle Contraction, Bone, and Nonvascularized Connective Tissue 37:31 
   Example 4: Sarcomere 38:17 
  The Immune System 1:24:28
   Intro 0:00 
   The Lymphatic System 0:16 
    The Lymphatic System Overview 0:17 
    Function 1 1:23 
    Function 2 2:27 
   Barrier Defenses 3:41 
    Nonspecific vs. Specific Immune Defenses 3:42 
    Barrier Defenses 5:12 
   Nonspecific Cellular Defenses 7:50 
    Nonspecific Cellular Defenses Overview 7:53 
    Phagocytes 9:29 
    Neutrophils 11:43 
    Macrophages 12:15 
    Natural Killer Cells 12:55 
    Inflammatory Response 14:19 
    Complement 18:16 
    Interferons 18:40 
   Specific Defenses - Acquired Immunity 20:12 
    T lymphocytes and B lymphocytes 20:13 
   B Cells 23:35 
    B Cells & Humoral Immunity 23:41 
   Clonal Selection 29:50 
    Clonal Selection 29:51 
    Primary Immune Response 34:28 
    Secondary Immune Response 35:31 
    Cytotoxic T Cells 38:41 
    Helper T Cells 39:20 
   Major Histocompatibility Complex Molecules 40:44 
    Major Histocompatibility Complex Molecules 40:55 
   Helper T Cells 52:36 
    Helper T Cells 52:37 
   Mechanisms of Antibody Action 59:00 
    Mechanisms of Antibody Action 59:01 
    Opsonization 60:01 
    Complement System 61:57 
   Classes of Antibodies 62:45 
    IgM 63:01 
    IgA 63:17 
    IgG 63:53 
    IgE 64:10 
   Passive and Active Immunity 65:00 
    Passive Immunity 65:01 
    Active Immunity 67:49 
   Recognition of Self and Non-Self 69:32 
    Recognition of Self and Non-Self 69:33 
    Self-Tolerance & Autoimmune Diseases 70:50 
   Immunodeficiency 73:27 
    Immunodeficiency 73:28 
    Chemotherapy 73:56 
    AID 74:27 
   Example 1: Match the Following Terms with their Descriptions 75:26 
   Example 2: Three Components of Non-specific Immunity 77:59 
   Example 3: Immunodeficient 81:19 
   Example 4: Self-tolerance and Autoimmune Diseases 83:07 
XI. Animal Reproduction and Development
  Reproduction 1:01:41
   Intro 0:00 
   Asexual Reproduction 0:17 
    Fragmentation 0:53 
    Fission 1:54 
    Parthenogenesis 2:38 
   Sexual Reproduction 4:00 
    Sexual Reproduction 4:01 
    Hermaphrodite 8:08 
   The Male Reproduction System 8:54 
    Seminiferous Tubules & Leydig Cells 8:55 
    Epididymis 9:48 
    Seminal Vesicle 11:19 
    Bulbourethral 12:37 
   The Female Reproductive System 13:25 
    Ovaries 13:28 
    Fallopian 14:50 
    Endometrium, Uterus, Cilia, and Cervix 15:03 
    Mammary Glands 16:44 
   Spermatogenesis 17:08 
    Spermatogenesis 17:09 
   Oogenesis 21:01 
    Oogenesis 21:02 
   The Menstrual Cycle 27:56 
    The Menstrual Cycle: Ovarian and Uterine Cycle 27:57 
   Summary of the Ovarian and Uterine Cycles 42:54 
    Ovarian 42:55 
    Uterine 44:51 
   Oxytocin and Prolactin 46:33 
    Oxytocin 46:34 
    Prolactin 47:00 
   Regulation of the Male Reproductive System 47:28 
    Hormones: GnRH, LH, FSH, and Testosterone 47:29 
   Fertilization 50:11 
    Fertilization 50:12 
    Structures of Egg 50:28 
    Acrosomal Reaction 51:36 
    Cortical Reaction 53:09 
   Example 1: List Three Differences between Spermatogenesis and oogenesis 55:36 
   Example 2: Match the Following Terms to their Descriptions 57:34 
   Example 3: Pregnancy and the Ovarian Cycle 58:44 
   Example 4: Hormone 60:43 
  Development 50:05
   Intro 0:00 
   Cleavage 0:31 
    Cleavage 0:32 
    Meroblastic 2:06 
    Holoblastic Cleavage 3:23 
    Protostomes 4:34 
    Deuterostomes 5:13 
    Totipotent 5:52 
   Blastula Formation 6:42 
    Blastula 6:46 
   Gastrula Formation 8:12 
    Deuterostomes 11:02 
    Protostome 11:44 
    Ectoderm 12:17 
    Mesoderm 12:55 
    Endoderm 13:40 
   Cytoplasmic Determinants 15:19 
    Cytoplasmic Determinants 15:23 
   The Bird Embryo 22:52 
    Cleavage 23:35 
    Blastoderm 23:55 
    Primitive Streak 25:38 
    Migration and Differentiation 27:09 
   Extraembryonic Membranes 28:33 
    Extraembryonic Membranes 28:34 
    Chorion 30:02 
    Yolk Sac 30:36 
    Allantois 31:04 
   The Mammalian Embryo 32:18 
    Cleavage 32:28 
    Blastocyst 32:44 
    Trophoblast 34:37 
    Following Implantation 35:48 
   Organogenesis 37:04 
    Organogenesis, Notochord and Neural Tube 37:05 
   Induction 40:15 
    Induction 40:39 
    Fate Mapping 41:40 
   Example 1: Processes and Stages of Embryological Development 42:49 
   Example 2: Transplanted Cells 44:33 
   Example 3: Germ Layer 46:41 
   Example 4: Extraembryonic Membranes 47:28 
XII. Animal Behavior
  Animal Behavior 47:48
   Intro 0:00 
   Introduction to Animal Behavior 0:05 
    Introduction to Animal Behavior 0:06 
    Ethology 1:04 
    Proximate Cause & Ultimate Cause 1:46 
   Fixed Action Pattern 3:07 
    Sign Stimulus 3:40 
    Releases and Example 3:55 
    Exploitation and Example 7:23 
   Learning 8:56 
    Habituation, Associative Learning, and Imprinting 8:57 
   Habituation 10:03 
    Habituation: Definition and Example 10:04 
   Associative Learning 11:47 
    Classical 12:19 
    Operant Conditioning 13:40 
    Positive & Negative Reinforcement 14:59 
    Positive & Negative Punishment 16:13 
    Extinction 17:28 
   Imprinting 17:47 
    Imprinting: Definition and Example 17:48 
   Social Behavior 20:12 
    Cooperation 20:38 
    Agonistic 21:37 
    Dorminance Heirarchies 23:23 
    Territoriality 24:08 
    Altruism 24:55 
   Communication 26:56 
    Communication 26:57 
   Mating 32:38 
    Mating Overview 32:40 
    Promiscuous 33:13 
    Monogamous 33:32 
    Polygamous 33:48 
    Intrasexual 34:22 
    Intersexual Selection 35:08 
   Foraging 36:08 
    Optimal Foraging Model 36:39 
    Foraging 37:47 
   Movement 39:12 
    Kinesis 39:20 
    Taxis 40:17 
    Migration 40:54 
   Lunar Cycles 42:02 
    Lunar Cycles 42:08 
   Example 1: Types of Conditioning 43:19 
   Example 2: Match the Following Terms to their Descriptions 44:12 
   Example 3: How is the Optimal Foraging Model Used to Explain Foraging Behavior 45:47 
   Example 4: Learning 46:54 
XIII. Ecology
  Biomes 58:49
   Intro 0:00 
   Ecology 0:08 
    Ecology 0:14 
    Environment 0:22 
    Integrates 1:41 
    Environment Impacts 2:20 
   Population and Distribution 3:20 
    Population 3:21 
    Range 4:50 
    Potential Range 5:10 
    Abiotic 5:46 
    Biotic 6:22 
   Climate 7:55 
    Temperature 8:40 
    Precipitation 10:00 
    Wind 10:37 
    Sunlight 10:54 
    Macroclimates & Microclimates 11:31 
   Other Abiotic Factors 12:20 
    Geography 12:28 
    Water 13:17 
    Soil and Rocks 13:48 
   Sunlight 14:42 
    Sunlight 14:43 
   Seasons 15:43 
    June Solstice, December Solstice, March Equinox, and September Equinox 15:44 
    Tropics 19:00 
    Seasonability 19:39 
   Wind and Weather Patterns 20:44 
    Vertical Circulation 20:51 
    Surface Wind Patterns 25:18 
   Local Climate Effects 26:51 
    Local Climate Effects 26:52 
   Terrestrial Biomes 30:04 
    Biome 30:05 
    Forest 31:02 
   Tropical Forest 32:00 
    Tropical Forest 32:01 
   Temperate Broadleaf Forest 32:55 
    Temperate Broadleaf Forest 32:56 
   Coniferous/Taiga Forest 34:10 
    Coniferous/Taiga Forest 34:11 
   Desert 36:05 
    Desert 36:06 
   Grassland 37:45 
    Grassland 37:46 
   Tundra 40:09 
    Tundra 40:10 
   Freshwater Biomes 42:25 
    Freshwater Biomes: Zones 42:27 
    Eutrophic Lakes 44:24 
    Oligotrophic Lakes 45:01 
    Lakes Turnover 46:03 
    Rivers 46:51 
    Wetlands 47:40 
    Estuary 48:11 
   Marine Biomes 48:45 
    Marine Biomes: Zones 48:46 
   Example 1: Diversity of Life 52:18 
   Example 2: Marine Biome 53:08 
   Example 3: Season 54:20 
   Example 4: Biotic vs. Abiotic 55:54 
  Population 41:16
   Intro 0:00 
   Population 0:07 
    Size 'N' 0:16 
    Density 0:41 
    Dispersion 1:01 
    Measure Population: Count Individuals, Sampling, and Proxymeasure 2:26 
   Mortality 7:29 
    Mortality and Survivorship 7:30 
   Age Structure Diagrams 11:52 
    Expanding with Rapid Growth, Expanding, and Stable 11:58 
   Population Growth 15:39 
    Biotic Potential & Exponential Growth 15:43 
   Logistic Population Growth 19:07 
    Carrying Capacity (K) 19:18 
    Limiting Factors 20:55 
   Logistic Model and Oscillation 22:55 
    Logistic Model and Oscillation 22:56 
   Changes to the Carrying Capacity 24:36 
    Changes to the Carrying Capacity 24:37 
   Growth Strategies 26:07 
    'r-selected' or 'r-strategist' 26:23 
    'K-selected' or 'K-strategist' 27:47 
   Human Population 30:15 
    Human Population and Exponential Growth 30:21 
   Case Study - Lynx and Hare 31:54 
    Case Study - Lynx and Hare 31:55 
   Example 1: Estimating Population Size 34:35 
   Example 2: Population Growth 36:45 
   Example 3: Carrying Capacity 38:17 
   Example 4: Types of Dispersion 40:15 
  Communities 1:06:26
   Intro 0:00 
   Community 0:07 
    Ecosystem 0:40 
    Interspecific Interactions 1:14 
   Competition 2:45 
    Competition Overview 2:46 
    Competitive Exclusion 3:57 
    Resource Partitioning 4:45 
    Character Displacement 6:22 
   Predation 7:46 
    Predation 7:47 
    True Predation 8:05 
    Grazing/ Herbivory 8:39 
   Predator Adaptation 10:13 
    Predator Strategies 10:22 
    Physical Features 11:02 
   Prey Adaptation 12:14 
    Prey Adaptation 12:23 
    Aposematic Coloration 13:35 
    Batesian Mimicry 14:32 
    Size 15:42 
   Parasitism 16:48 
    Symbiotic Relationship 16:54 
    Ectoparasites 18:31 
    Endoparasites 18:53 
    Hyperparisitism 19:21 
    Vector 20:08 
    Parasitoids 20:54 
   Mutualism 21:23 
    Resource - Resource mutualism 21:34 
    Service - Resource Mutualism 23:31 
    Service - Service Mutualism: Obligate & Facultative 24:23 
   Commensalism 26:01 
    Commensalism 26:03 
    Symbiosis 27:31 
   Trophic Structure 28:35 
    Producers & Consumers: Autotrophs & Heterotrophs 28:36 
   Food Chain 33:26 
    Producer & Consumers 33:38 
   Food Web 39:01 
    Food Web 39:06 
   Significant Species within Communities 41:42 
    Dominant Species 41:50 
    Keystone Species 42:44 
    Foundation Species 43:41 
   Community Dynamics and Disturbances 44:31 
    Disturbances 44:33 
    Duration 47:01 
    Areal Coverage 47:22 
    Frequency 47:48 
    Intensity 48:04 
    Intermediate Level of Disturbance 48:20 
   Ecological Succession 50:29 
    Primary and Secondary Ecological Succession 50:30 
   Example 1: Competition Situation & Outcome 57:18 
   Example 2: Food Chains 60:08 
   Example 3: Ecological Units 62:44 
   Example 4: Disturbances & Returning to the Original Climax Community 64:30 
  Energy and Ecosystems 57:42
   Intro 0:00 
   Ecosystem: Biotic & Abiotic Components 0:15 
    First Law of Thermodynamics & Energy Flow 0:40 
    Gross Primary Productivity (GPP) 3:52 
    Net Primary Productivity (NPP) 4:50 
   Biogeochemical Cycles 7:16 
    Law of Conservation of Mass & Biogeochemical Cycles 7:17 
   Water Cycle 10:55 
    Water Cycle 10:57 
   Carbon Cycle 17:52 
    Carbon Cycle 17:53 
   Nitrogen Cycle 22:40 
    Nitrogen Cycle 22:41 
   Phosphorous Cycle 29:34 
    Phosphorous Cycle 29:35 
   Climate Change 33:20 
    Climate Change 33:21 
   Eutrophication 39:38 
    Nitrogen 40:34 
    Phosphorous 41:29 
    Eutrophication 42:55 
   Example 1: Energy and Ecosystems 45:28 
   Example 2: Atmospheric CO2 48:44 
   Example 3: Nitrogen Cycle 51:22 
   Example 4: Conversion of a Forest near a Lake to Farmland 53:20 
XIV. Laboratory Review
  Laboratory Review 2:04:30
   Intro 0:00 
   Lab 1: Diffusion and Osmosis 0:09 
    Lab 1: Diffusion and Osmosis 0:10 
   Lab 1: Water Potential 11:55 
    Lab 1: Water Potential 11:56 
   Lab 2: Enzyme Catalysis 18:30 
    Lab 2: Enzyme Catalysis 18:31 
   Lab 3: Mitosis and Meiosis 27:40 
    Lab 3: Mitosis and Meiosis 27:41 
   Lab 3: Mitosis and Meiosis 31:50 
    Ascomycota Life Cycle 31:51 
   Lab 4: Plant Pigments and Photosynthesis 40:36 
    Lab 4: Plant Pigments and Photosynthesis 40:37 
   Lab 5: Cell Respiration 49:56 
    Lab 5: Cell Respiration 49:57 
   Lab 6: Molecular Biology 55:06 
    Lab 6: Molecular Biology & Transformation 1st Part 55:07 
   Lab 6: Molecular Biology 61:16 
    Lab 6: Molecular Biology 2nd Part 61:17 
   Lab 7: Genetics of Organisms 67:32 
    Lab 7: Genetics of Organisms 67:33 
   Lab 7: Chi-square Analysis 73:00 
    Lab 7: Chi-square Analysis 73:03 
   Lab 8: Population Genetics and Evolution 80:41 
    Lab 8: Population Genetics and Evolution 80:42 
   Lab 9: Transpiration 84:02 
    Lab 9: Transpiration 84:03 
   Lab 10: Physiology of the Circulatory System 91:05 
    Lab 10: Physiology of the Circulatory System 91:06 
   Lab 10: Temperature and Metabolism in Ectotherms 98:25 
    Lab 10: Temperature and Metabolism in Ectotherms 98:30 
   Lab 11: Animal Behavior 100:52 
    Lab 11: Animal Behavior 100:53 
   Lab 12: Dissolved Oxygen & Aquatic Primary Productivity 105:36 
    Lab 12: Dissolved Oxygen & Aquatic Primary Productivity 105:37 
   Lab 12: Primary Productivity 109:06 
    Lab 12: Primary Productivity 109:07 
   Example 1: Chi-square Analysis 116:31 
   Example 2: Mitosis 119:28 
   Example 3: Transpiration of Plants 120:27 
   Example 4: Population Genetic 121:16 
XV. The AP Biology Test
  Understanding the Basics 13:02
   Intro 0:00 
   AP Biology Structure 0:18 
    Section I 0:31 
    Section II 1:16 
   Scoring 2:04 
   The Four 'Big Ideas' 3:51 
    Process of Evolution 4:37 
    Biological Systems Utilize 4:44 
    Living Systems 4:55 
    Biological Systems Interact 5:03 
   Items to Bring to the Test 7:56 
   Test Taking Tips 9:53 
XVI. Practice Test (Barron's 4th Edition)
  AP Biology Practice Exam: Section I, Part A, Multiple Choice Questions 1-31 1:04:29
   Intro 0:00 
   AP Biology Practice Exam 0:14 
   Multiple Choice 1 0:40 
   Multiple Choice 2 2:27 
   Multiple Choice 3 4:30 
   Multiple Choice 4 6:43 
   Multiple Choice 5 9:27 
   Multiple Choice 6 11:32 
   Multiple Choice 7 12:54 
   Multiple Choice 8 14:42 
   Multiple Choice 9 17:06 
   Multiple Choice 10 18:42 
   Multiple Choice 11 20:49 
   Multiple Choice 12 23:23 
   Multiple Choice 13 26:20 
   Multiple Choice 14 27:52 
   Multiple Choice 15 28:44 
   Multiple Choice 16 33:07 
   Multiple Choice 17 35:31 
   Multiple Choice 18 39:43 
   Multiple Choice 19 40:37 
   Multiple Choice 20 42:47 
   Multiple Choice 21 45:58 
   Multiple Choice 22 49:49 
   Multiple Choice 23 53:44 
   Multiple Choice 24 55:12 
   Multiple Choice 25 55:59 
   Multiple Choice 26 56:50 
   Multiple Choice 27 58:08 
   Multiple Choice 28 59:54 
   Multiple Choice 29 61:36 
   Multiple Choice 30 62:31 
   Multiple Choice 31 63:50 
  AP Biology Practice Exam: Section I, Part A, Multiple Choice Questions 32-63 50:44
   Intro 0:00 
   AP Biology Practice Exam 0:14 
   Multiple Choice 32 0:27 
   Multiple Choice 33 4:14 
   Multiple Choice 34 5:12 
   Multiple Choice 35 6:51 
   Multiple Choice 36 10:46 
   Multiple Choice 37 11:27 
   Multiple Choice 38 12:17 
   Multiple Choice 39 13:49 
   Multiple Choice 40 17:02 
   Multiple Choice 41 18:27 
   Multiple Choice 42 19:35 
   Multiple Choice 43 21:10 
   Multiple Choice 44 23:35 
   Multiple Choice 45 25:00 
   Multiple Choice 46 26:20 
   Multiple Choice 47 28:40 
   Multiple Choice 48 30:14 
   Multiple Choice 49 31:24 
   Multiple Choice 50 32:45 
   Multiple Choice 51 33:41 
   Multiple Choice 52 34:40 
   Multiple Choice 53 36:12 
   Multiple Choice 54 38:06 
   Multiple Choice 55 38:37 
   Multiple Choice 56 40:00 
   Multiple Choice 57 41:18 
   Multiple Choice 58 43:12 
   Multiple Choice 59 44:25 
   Multiple Choice 60 45:02 
   Multiple Choice 61 46:10 
   Multiple Choice 62 47:54 
   Multiple Choice 63 49:01 
  AP Biology Practice Exam: Section I, Part B, Grid In 21:52
   Intro 0:00 
   AP Biology Practice Exam 0:17 
   Grid In Question 1 0:29 
   Grid In Question 2 3:49 
   Grid In Question 3 11:04 
   Grid In Question 4 13:18 
   Grid In Question 5 17:01 
   Grid In Question 6 19:30 
  AP Biology Practice Exam: Section II, Long Free Response Questions 31:22
   Intro 0:00 
   AP Biology Practice Exam 0:18 
   Free Response 1 0:29 
   Free Response 2 20:47 
  AP Biology Practice Exam: Section II, Short Free Response Questions 24:41
   Intro 0:00 
   AP Biology Practice Exam 0:15 
   Free Response 3 0:26 
   Free Response 4 5:21 
   Free Response 5 8:25 
   Free Response 6 11:38 
   Free Response 7 14:48 
   Free Response 8 22:14