Browse Courses
Start learning today, and be successful in your academic & professional career. Start Today!
Loading video...
This is a quick preview of the lesson. For full access, please Log In or Sign up.
For more information, please see full course syllabus of AP Biology
  • Discussion

  • Study Guides

  • Download Lecture Slides

  • Table of Contents

  • Transcription

  • Related Books & Services

Bookmark and Share
Lecture Comments (5)

1 answer

Last reply by: Andrew Cheesman
Mon Mar 2, 2015 8:47 PM

Post by Andrew Cheesman on March 2, 2015

Hello! For the X inactivation, is this seen in female humans? If so, what characteristics are shown because of this?

0 answers

Post by Kushal Patel on December 20, 2013

Mitosis will occur? Or meiosis because its sex cells(19:15

1 answer

Last reply by: Dr Carleen Eaton
Sun Dec 16, 2012 4:51 PM

Post by Hayley Wabiszewski on December 16, 2012

so could an F3 generation female have white eyes if her father had white eyes and her mother was heterozygous?

Sex-Linked Traits and Pedigree Analysis

  • Humans have 23 pairs of autosomes and one pair of sex chromosomes. Males are XY and females are XX. Genes that are located on the sex chromosomes are called sex-linked genes.
  • In females, one copy of the X-chromosome is inactivated in each cell. The inactivated copy of the X chromosome is called a Barr body.
  • A pedigree is a diagram of a family tree that indicates the phenotype of individuals for a particular trait. Pedigree analysis can help to determine the inheritance pattern of a trait or genetic disorder.
  • Pedigrees for traits with an autosomal dominant inheritance pattern show an approximately equal number of affected males and females. Autosomal dominant traits do not skip generations.
  • When a trait is inherited in an autosomal recessive pattern, males and females are approximately equally affected. The trait may skip a generation.
  • Males are more frequently affected if a disorder has an X-linked recessive inheritance pattern. Females may be carriers and these disorders can skip a generation.

Sex-Linked Traits and Pedigree Analysis

Lecture Slides are screen-captured images of important points in the lecture. Students can download and print out these lecture slide images to do practice problems as well as take notes while watching the lecture.

Transcription: Sex-Linked Traits and Pedigree Analysis

Welcome to

We are going to continue our discussion of heredity with the topics of sex-linked traits and pedigree analysis.0002

Remember that humans have 23 pairs of chromosomes or a total of 46 chromosomes.0012

22 pairs of the chromosomes are autosomes. One pair is the sex chromosomes.0022

Males are XY and females are XX.0041

A male has 22 pairs of autosomes- one X and one Y.0051

A female human has 22 pairs of autosomes and two Xs for a total of 46 chromosomes.0055

Previously, when we talked about traits such as eye color, we were talking about traits that are found on autosomes.0066

And the pattern of inheritance is somewhat different than what you will see for a trait found on the sex chromosomes,0074

the reason being that males have one X and one Y.0084

Whereas, with the autosomes, both males and females have two of each chromosome- two chromosome 1s, two chromosome 2s and so on.0087

We are going to talk about sex-linked traits and how their pattern of inheritance differs from autosomal traits.0097

In the previous lecture, I mentioned the studies of Thomas Hunt Morgan who used the fruit fly drosophila.0105

And during those studies, one of the things that his lab elucidated was the idea of linked genes,0112

genes that are on the same chromosome and do not assort independently from other genes.0119

A second discovery that came out of Thomas Morgan's laboratory was the idea of sex-linked inheritance.0125

First of all, sex-linked genes are genes that are located on the X chromosome or the Y chromosome. They are located on the sex chromosomes.0133

We are going to back up a little bit now and talk about drosophila and then,0146

go into some of the studies that Morgan did that demonstrated this idea of sex-linked traits and how their inheritance patterns occur.0150

Drosophila was an excellent organism to choose because they can easily be bred.0161

They produce many offspring, and it only takes about a couple of weeks to get a new generation,0170

so easy to breed, produce many offspring, only a couple of weeks to get a new generation.0177

Also, they have distinct easily observable traits.0184

We are going to talk about things like eye color and wing type that could be observed in the laboratory.0188

Males can be visually distinguished from females, which becomes important when we talk about sex-linked traits.0195

And finally, drosophila only have 4 pairs of chromosomes.0202

We are going to talk a little bit about terminology with fruit fly genetics and abbreviations that are used, so you will hear the term wild type.0208

When we talk about a wild type phenotype, we are talking about the version of a trait that is most commonly seen in the natural population.0221

An example would be eye color. Wild type eye color is red.0233

There is an alternative form, which is white eye color, so the abbreviation works like this for drosophila.0240

White eye color, the allele for that is designated as w for white.0252

The allele for the red eye color is designated as w+. This little superscript with the plus indicates the wild type trait.0260

A second example that we are going to talk about is wing type, and normal wing type is vg+. That is the wild type- regular wings.0273

Smaller wings are called the vestigial wings. They are not fully developed.0291

Vestigial wings are just vg, so when you see this plus, it means the wild type trait.0295

Morgan started out breeding fruit flies, and after a couple of years of breeding, he noticed a white-eyed fly; and remember that red eyes are the wild types.0305

Most of the flies are red, and then, finally, he noticed "wow, here is a fly that actually has white eyes", and it happened to be a male fly with white eyes.0316

He took his fly, and he bred it with another fly that had red eyes. This was a female fly with red eyes.0331

And then, here is my parental generation, the F1 generation, and then, he got his F1 generation.0346

He had both male and female flies in the F1 generation, and it was all red eyes; and it turns out that white eyes are recessive to red eyes.0354

So, it is not a surprise that he got all red eyes in this generation.0366

Then, he went on and he crossed the F1 generation- some male flies in this generation, about half male, half female, and then, he went on.0372

He got his F2 generation, and all of the females in this generation had red eyes. There were no white-eyed females.0384

Half of the males had white eyes, and half of the males had red eyes.0399

When he looked at these as a whole, he did not look at whether it is a male or a female fly and just, kind, of counted them up.0410

He said "yeah, I have the expected Mendelian ratio of 3:1 red eyes to white eyes that you would expect if you were crossing a heterozygous".0416

But this did not explain the fact that no females had white eyes.0429

Well, it turns out that the allele for eye color in fruit flies is on the X chromosome.0441

Let's talk about how this is going to affect inheritance, so let's move over here and try a couple of different things and see what we end up with.0449

Let's see what we would end up with if this eye color trait was on an autosome.0461

And then, we are going to see what we end up with if it is on a sex chromosome.0467

If eye color was on an autosome, then, I have my parental generation.0472

And let's say that they are true breeding, so we are going to end up with my male w-w and the female w+- the wild type here.0479

Get the F1 generation, and all of the F1, males, females, they are all going to be heterozygous; so this is white eyes, red eyes- all red.0493

Then, I get the F2 generation, and I would be crossing a male and a female; and there is multiple possibilities that I could get w+-w+.0509

I could get the w+ with this w, and what I am going to end up with then, I could get w and w+ and w-w, OK?0534

So, I have different possibilities. I could get w+ from dad with w+ from mom.0557

I could get w+ dad with w mom, w from dad with w+ from mom and w-w for homozygous recessive, so just your basic monohybrid cross.0562

And what I am going to end up with there is my homozygous dominant with red eyes0576

I am going to end up with some flies that are heterozygotes. They are going to have red eyes, heterozygous- red eyes, homozygous recessive- white eyes.0580

And it is going to be my 1, 2, 3, 4, so 3:1 ratio.0590

What this does not explain is why there is a difference, why there were no females with white eyes.0597

Now, let’s try this cross again with the eye color gene on the X chromosome.0608

Now, we are going to have the parental generation. We are going to have the male X.0615

And we are going to do superscript w to show that he is carrying that white eye color allele on the X chromosome.0622

And then, he has a Y. He does not have a second X.0628

The female wild type is going to have X with the w+ for red eyes: Xw+.0631

So, he is going to have white eyes. She has red eyes.0640

We crossed them, and then, we get the F1 generation, and for the F1 males, they are going to get Y from dad.0643

From mom, they are going to get the wild type allele. They will have red eyes.0657

Females: from dad, in order to be a female, you have got to get an X from each parent, so they are going to get the mutant allele for white eyes.0666

From mom who is homozygous dominant, they are going to get the wild type allele.0675

And because red is dominant to white eye color, these individuals will also have red eyes.0684

Now, the F2 generation is where things get interesting.0691

First possibility: we have a male, so we know he is getting Y from dad.0699

All the males have to get Y from dad. From mom, they get an X.0708

Half of the males will get the X with the mutant allele. The other half will get the X with the wild type allele.0712

Females: females have got to get an X from each parent, so they will get the X with the wild type allele from dad and from mom.0721

So, half of the males will get this. Half of the males will get that.0736

Half of the females will get the X carrying the mutant allele from the mom.0741

The other half will get the X carrying the wild type allele from the mom, so half of the females, half of the females.0747

What we are going to end up with, then, if you look, is this male, even though we would say "oh, well, white is recessive to red", there is no second allele.0756

All there is, is white. There is no red to cover up this white allele.0766

Therefore, even though he only has one allele for white eye color, he ends up with white eyes.0771

Half of the male flies do. The other half have red eyes.0780

The females however, have two X chromosomes, so they end up with two alleles.0786

They are not going to have white eyes because they have to get an X from their father and from their mother.0792

And the father is only carrying the red allele so when they get that from him, all it takes is one red allele to get red eyes.0800

Therefore, none of the females are going to have white eyes0808

So, what you will end up with, then, the F2 generation are red-eyed females- all red females,0812

half of the males having red eyes and half of the males having white eyes.0823

And this shows a typical inheritance pattern for an X-linked recessive trait.0827

Here, we cannot say that this male is homozygous because he does not have two of the same allele.0833

We cannot say that he is heterozygous because he does not have two different alleles.0838

What we say in this case is that the male is hemizygous.0842

For an X-linked trait in a male, since there is only one X, we say that he is hemizygous for those traits.0845

Whereas, a female has two alleles, which maybe different or they may be the same.0855

When talk about sex-linked traits, we mostly talk about the X chromosome.0862

There are Y-linked traits, but there is only about 7D genes on the Y chromosome.0866

And if you did see a case of a trait that is inherited via the Y chromosome,0871

what you are going to see is transmission from father to son because all of the sons will have the father's Y chromosome.0879

Continuing on to focus on the sex chromosomes, in females, there are two copies of the X chromosome, and males have only one.0889

The fact that males only have one tells us that we do not actually need expression0899

necessarily of all the genes on the X chromosome with both alleles. Male only need one allele.0904

And in fact, what happens in females is that one copy of the X chromosome is inactivated in each cell, and this occurs during embryonic development.0910

The inactivated copy of the X chromosome is known as a Barr body.0922

And the chromosome becomes condensed, and it moves over to the edge of the nucleus.0925

This X inactivation is different for different cells. One cell may have the paternally derived.0932

So, you have two X chromosomes if you are a female- one from your mom and one from your dad.0941

Some cells might have the maternally derived X inactivated, whereas, another cell...0946

So, this X might be inactivated on one cell, and then, there might be another cell that has the other X inactivated.0952

And this occurs during embryonic development, and then, during mitosis, the same X would be inactivated from daughter cells.0960

Mitosis occurs, then, and this offspring cell is going to have the same X inactivated as its parent cell; and that is going to form a Barr body.0971

The important point is that either X can be inactivated, either the one from the father or the one female got from her mother.0990

And this process occurs during embryonic development, and then, during mitosis, cells passed along that pattern of X inactivation -0999

so, whichever one happens to be inactivated - when that cell divides, its offspring are going to have the same X inactivated.1007

The result of this is kind of interesting.1013

Oh, one other note, both Xs are usually are active in the ovary, so somehow, the other X becomes reactivated.1016

Calico cats provide an interesting example of X inactivation.1024

In calico cats, they have patches you see here like orangish, yellowish fur, black and then, white fur.1032

And the fur color genes for black fur and yellow fur are actually...the alleles are located on the X chromosomes.1040

We have the X chromosome, and if the cat gets X with the b allele, that is black fur. If the cat has X with the y allele, that is, is yellow fur.1051

We will talk about the white fur in a minute. But for now, let's say we have a female cat, and she is heterozygous.1068

She is, therefore, carrying an allele for black fur and an allele for yellow fur.1079

However, in some of her cells, in certain cells, this X is going to get inactivated.1085

In other cells, this X is going to end up inactivated, and then, mitosis occurs; and the daughter cells will have the X superscript y active.1095

The others will have the X with the b active.1106

In areas where the cells have the y allele, the X with the y allele on it active, the other one is a Barr body, you are going to see yellow fur.1109

The cells with this pattern of inactivation, you will see yellow fur.1119

Other cells have the X with the Y allele inactivated, and the X with the black allele is active; and that is where you are going to see patches of black fur.1124

It turns out that the gene for white fur is controlled on a different allele, and that is what accounts for the white fur.1134

Anyways, females are actually genetic mosaics.1142

She is showing a different phenotype in different areas due to what we call genetic mosaicism.1148

Or we could say she is a genetic mosaic, the patchwork of different phenotype.1157

A very useful tool in genetics is the pedigree.1165

And when we are studying human genetics and particularly genetic disorders, we can study the pattern of inheritance in families using a pedigree.1170

And what a pedigree is, is just a diagram of the family tree, and on it, it indicates the phenotype of individuals for a particular trait.1181

We are going to go over three major patterns that you should recognized starting out, though, with just general facts about pedigrees.1190

A square indicates a male. A circle indicates a female.1200

This line here shows their offspring, so they had one son and one daughter. The daughter married this male, and they had 1, 2, 3, 4 offspring.1208

Darkened n means the individual is affected, so affected by a disorder or demonstrating the trait, so this is an unaffected male.1221

He could be a carrier for a disorder - we do not know - but he does not have the phenotype.1234

Here, we have an affected male, and here is an unaffected female; and then, it shows the parental F1, F2 and so on.1240

The first pattern of inheritance that we are going to discuss is autosomal dominant, and a classic example of this is Huntington’s disease.1253

Huntington's disease is a progressive neurodegenerative disorder.1262

The onset of symptoms are usually around middle age, and they include cognitive decline, dementia and jerking movements that are called chorea.1267

These movements are called chorea. This is sometimes known as Huntington's chorea.1278

We are looking here at a typical autosomal dominant pattern pedigree, and there is a couple of ways to help you identify this one.1286

What I noticed is that I have 1, 2, 3, 4 affected males and 1, 2, 3 affected females.1295

That is close enough for me to say this is likely not a sex-linked disorder.1303

When you are working with studies, the more family members, the bigger the family tree, the better.1310

But with people, it's not like we're growing fruit flies in the lab, so this is what we have.1316

And 4 and 3 is close enough for me to say that males and females are approximately equally affected.1322

It is not like I am seeing all males or 8 males and 1 female even or something, but they will make it clear on the test.1332

In reality, it is not always quite as easy to see.1341

The second thing is that autosomal dominant disorder does not skip a generation.1345

When I see an offspring, I look back, one of the parents is affected offspring, affected parent, affected offspring, affected parent.1358

I did not see this skipping any generations to where there is parents who do not have the disorder, and then, the offspring do have it.1370

So, this tells me that this is likely an autosomal dominant inheritance pattern.1378

Autosomal recessive inheritance shows a different pattern on the pedigree. Examples of this: cystic fibrosis, Tay-Sachs disease and phenylketonuria.1385

Starting out actually with Tay-Sachs disease. This is a genetic disorder caused by a decrease in an enzyme that is needed to breakdown a lipid.1398

Unfortunately, when this lipid accumulates, it causes very serious neurological damage with seizures,1408

blindness and eventually death usually at a very young age by the age of 3 or 4.1413

This disorder is more common in Ashkenazi Jews, and there is a blood test for carriers of this disease.1420

Cystic fibrosis is a disease that primarily affects the lungs and the pancreas.1429

It is the most common lethal genetic disease in the US and there is a test for some of the alleles that cause this.1438

It is more common in people of Northern European descent.1444

What ends up happening in the lungs is that they end up plugged with very thick mucus resulting in coughing, shortness of breath, respiratory infections.1449

And with the pancreas, due to malfunction of the pancreas,1458

digestive enzymes are not secreted properly, and individuals end up not being able to digest and absorb their food.1462

Finally, phenylketonuria, often called PKU, results in the inability to metabolize the amino acid phenylalanine.1471

And the results of this is that a by-product builds up that can cause brain damage.1483

This is actually screened before birth. It is a preventable cause of mental retardation.1491

Individuals who have this disorder have to be on a very strict diet of extremely low phenylalanine.1495

OK, just to give you some background about these disorders as we talk about1504

the application and looking at the pedigree for autosomal recessive inheritance.1509

When we look at this pedigree, one thing that you are going to notice again, this is autosomal, and I see 1, 2 males affected and 2 females.1513

So, males and females are approximately equally affected.1523

The second thing you will notice is that the disorder may skip a generation.1532

And you know this from earlier, talking about Mendelian genetics, that with the recessive trait,1542

in order to exhibit the trait, the individual needs to have the homozygous recessive.1549

An individual can be a carrier. They do not demonstrate the phenotype, but they can pass along that allele to their offspring.1554

Let's say here we have an affected male. Let's say he is little b-little b, and the little b causes the disorder, big B is the normal allele.1568

She is big B. We do not know what else she is.1584

Now, one thing I do know is that this individual is a carrier because they have the normal phenotype, but their offspring is affected.1587

She also is the normal phenotype, so she has got to have a big B, but her offspring is affected.1597

You say that the offspring have to be homozygous recessive. The only way that can be is if they inherit an allele from each parent.1603

The parents are heterozygous.1614

Autosomal recessive inheritance: males and females are approximately equally affected, and it may skip a generation.1620

This is different than X-linked recessive inheritance. We just talked about sex-linked genes today.1628

And examples of disorders with X-linked recessive inheritance are hemophilia, Duchenne muscular dystrophy and color blindness.1633

Hemophilia is a disorder of clotting. People with one type of hemophilia have a lack of factor VIII, which is a factor needed for clotting.1642

And when they are injured, they are at risk of very serious bleeding.1652

This can be treated, though, with the replacement of the factor VIII and transfusions if needed.1657

Muscular dystrophy results in progressive muscle weakness. Eventually, a person usually becomes wheelchair-bound, and it is even fatal.1664

That is also an X-linked recessive disorder.1676

Color blindness, most commonly, it is difficulty to distinguish between shades of red and green, and that is X-linked recessive inheritance, as well.1679

Looking at this, one thing you will notice is that there are 1, 2, 3 affected males, so males more commonly affected.1688

Females can be affected, but they are not as likely to be affected because1700

let's say we are talking about hemophilia, and big H will be the normal allele.1706

Little H will be the allele for hemophilia for not producing functional factor VIII.1713

A male, if he is hemizygous, he gets one of the mutant allele, he would have hemophilia.1721

A female could get hemophilia if she has two mutant alleles. If she has only one mutant allele, she is a carrier.1729

If a female had a father who had hemophilia and a mother who either had hemophilia or was a carrier,1741

she would get the hemophilia gene from her father and 50/50 chance of getting that from her mother, as well.1753

So, it is possible for females to have X-linked recessive disorders, but it is much rare than it is with males.1759

Males are more commonly affected, and it can skip a generation.1766

We have seen three of the more common inheritance patterns that you will need to know,1777

which are autosomal dominant, autosomal recessive and X-linked recessive inheritance.1782

Let's go ahead and do some examples.1787

Example one: color blindness is an X-linked recessive trait.1789

A man is color blind. His daughter Sarah has normal vision.1794

OK, let's use pedigrees to help us out.1800

We have a man who is color blind, and his daughter has normal vision.1802

Since this is X-linked trait, let’s say that X big C is the normal allele. The vision is normal.1809

X little c is the allele for color blindness, and we said this is X-linked recessive.1819

The man is color blind. His daughter Sarah has normal vision.1836

Sarah marries Jack, and he also has normal vision. What is the probability that they will have a child who is color blind?1840

When we do not know the sex of the child so we just use this diamond shape, so we do not know.1852

And they want to know the probability of a child who is color blind and the probability that Sarah and Jack will have a child who is a carrier.1858

Now, I need to start figuring out genotypes.1868

I know that the father of is Sarah. Here is Jack.1873

Here is the dad. He must have the genotype X little c Y because he is color blind, so he has got to have that allele.1881

Sarah received that allele from him.1894

Since she is a female, she did not get the Y allele. She got the X.1897

I do not know what Sarah's mother's genotype is.1901

And it actually does not matter because I know that Sarah has, at least, she has got to have one big C because she is not color blind.1905

I know that she has one big C because she has normal vision, and I know she got the little c from her father.1915

Sarah is heterozygous- X little c, X big C.1920

Jack has normal vision. He is a male so he has a Y.1924

He has also got an X with the big C because he has normal vision.1927

Now, I know the genotypes of Sarah and Jack. What is the probability they will have a child who is color blind?1931

I can do this using probabilities or a Punnett square. Let's try probabilities first.1940

A child who is color blind, if it is a male, would be X little c Y, so this is a color blind male.1949

A female who is color blind would have to have X little c, X little c, and this is a color blind female.1959

To have a daughter, both Jack and Sarah need to donate an X, but Jack only has an X with the big C.1970

Therefore, Jack and Sarah will never have a daughter with color blindness unless there is a new mutation or something.1979

But if Jack gives his X big C, Sarah could give either of these, it does not matter.1985

The daughter will have one X big C. She will have normal vision.1993

So, in order for their child to be color blind, it needs to be a son.1997

What this is really asking is what are the chances that they will have a son, and what are the chances that he will inherit the color blind allele from Sarah.2002

The chance that they will have a color blind child, the chance of it being a male is 1 out of 2.2014

If the offspring gets the Y chromosome, his going to be a male, so he gets the Y, there is 1/2 chance.2023

In order for him to be color blind, he needs to get the X little c from his mom. The chances of that are 1/2.2033

1/2 x 1/2 is 1/4. The probability that they will have a child who is color blind is 25%.2042

What is the probability they will have a child who is a carrier?2054

A male cannot be a carrier for an X-linked disorder. It has to be a female, and a female who is a carrier would have an X big C and an X little c.2058

Therefore, this child is going to need to be a female, so she needs to get the X big C from dad. The chances of her getting that are1/2.2072

The chance that she will, then, be a carrier depends on is she going to get the little c from her mom. The chances of that are 50/50.2084

So, in the multiplication rule, the chances of this and of this occurring multiply the probabilities of each occurring, and we get 1/4.2093

This plays out if you look at it as a Punnett square.2102

The Punnett square is going to help us just to diagram, and from the father, the gametes are going to be X big C and Y.2108

From the mother, the gametes are going to be, from Sarah, gametes are going to be X big C X little c.2129

Probabilities: X big C - this is a big C - X little c, X big C Y, X little C X - he has got X big C, let's make that clear - X little c Y.2139

What we have is 1/4 of the offspring are color blind- affected males. Then - let's make this clear - this is big C X big C X big C.2168

This individual is a female - so this is 1/4 - who is not a carrier. She is homozygous dominant for normal gene.2194

1/4 are normal males - do not have color blindness - and 1/4 are carrier females.2202

The chances of color blind offspring is 1/4. We see that right here.2212

The chance of the offspring being a carrier is 1/4. We see that right here, and here is the other two possibilities.2217

Example two: some members of the family whose pedigree is shown below have cystic fibrosis, a disease with an autosomal recessive inheritance pattern.2227

What is the genotype of the individuals marked number 1, 2 and 3?2237

Use big F to indicate the dominant allele and little f to indicate the recessive allele.2243

We can see typical autosomal recessive inheritance pattern because I see roughly equally affected males and females.2249

I have got two females affected, one male, and it does skip a generation.2259

So, they are asking me number 1, 2 and 3. What are their genotypes?2266

Well, in order to be affected, since this is autosomal recessive, an individual must be homozygous recessive.2274

Homozygous recessive, they are going to be affected by cystic fibrosis.2282

Heterozygotes are carriers, and then, we have individuals who are homozygous dominant.2290

They are neither carriers nor they are affected by the disease.2297

I really do not even need to look up here.2301

I can go straight to here and say that this couple, neither of them is affected yet, they have offspring with the disease.2304

Since they have offspring with the disease, but they are not affected, they have to be carriers.2315

This individual and her husband are heterozygotes.2321

And then, they each passed on - here is my number 2 - anyone who is affected I know is little f, little f.2326

Number 1 is a carrier. She is a heterozygote.2337

Number 2 is affected. She is homozygous recessive.2341

Number 3 is not affected, so I know she has one normal allele. However, her mother has the disease.2344

The only possibility that she can get from her mother in terms of allele is this little f.2361

See, the father has at least one normal allele. We do not know what his second allele is.2367

So, number 1 is a carrier. Number 2 is affected and number 3 - both of these actually - would be carriers.2377

Example three: Below is a pedigree for the tongue rolling trait?2396

Individuals with the ability to roll their tongues are shaded. Non-rollers are not.2399

What is the inheritance pattern for the ability to roll ones tongue?2406

When you look at a pedigree, one of the first things you are going to look at is are males and females equally affected?2411

1, 2, 3 affected males, 2 affected females.2418

I have got both males and females affected, so this is likely to be an autosomal pattern of inheritance.2422

I also see that this trait does not skip a generation.2433

These two are affected and so as their father. These two are affected and so as their mother.2441

I do not see any situation where there is offspring affected, and the parents are not affected.2445

If I saw this offspring affected and these parents were not, it is skipping over, but I do not see that.2451

This must be or is likely to be autosomal dominant, and in fact, tongue rolling is an autosomal dominant trait.2460

The ability to not roll ones tongue is autosomal recessive.2470

Example four: ectodermal dysplasia is a disorder, and this disorder may result in the lack of sweat gland production.2478

One form of ectodermal dysplasia is due to a mutation in a gene on the X chromosome.2486

Females who are heterozygous for the disorder have some areas of skin with sweat glands and other areas without sweat glands.2493

So there are patches of skin that have sweat glands and then, other patches that do not.2503

How can X-inactivation account for this finding?2506

So, this is a disorder that is found on the X chromosome.2510

Let's say that sweat glands is big S, and no sweat gland production is little s; so ectodermal dysplasia is little s.2518

If a female is heterozygous she is a big S-little s.2538

Recall, though, that X-inactivation occurs in females, and they form Barr bodies from one of their X chromosomes; and it is different in different cells.2542

In some cells, a female could have the little s X chromosome inactivated.2553

In other cells, the normal allele is going to be the one inactivated.2559

And then, her cells are going to undergo mitosis, and all the cells around that cell, that are offspring of that cell, are going to have the same X inactivated.2565

Therefore, cells that have the normal S active produce sweat glands, and those patches of skins are going to produce sweat glands.2573

Those groups of cells that have the normal allele inactivated and have the mutant allele active will not produce sweat glands.2587

And this is an example of genetic mosaicism similar to what we talked about with calico cats2598

and the tricolored pattern that you see with fur on calico cats due to genetic mosaicism.2610

That concludes this lecture of

I. Chemistry of Life
  Elements, Compounds, and Chemical Bonds 56:18
   Intro 0:00 
   Elements 0:09 
    Elements 0:48 
    Matter 0:55 
    Naturally Occurring Elements 1:12 
    Atomic Number and Atomic Mass 2:39 
   Compounds 3:06 
    Molecule 3:07 
    Compounds 3:14 
    Examples 3:20 
   Atoms 4:53 
    Atoms 4:56 
    Protons, Neutrons, and Electrons 5:29 
    Isotopes 10:42 
   Energy Levels of Electrons 13:01 
    Electron Shells 13:13 
    Valence Shell 13:22 
    Example: Electron Shells and Potential Energy 13:28 
   Covalent Bonds 19:52 
    Covalent Bonds 19:54 
    Examples 20:03 
   Polar and Nonpolar Covalent Bonds 23:54 
    Polar Bond 24:07 
    Nonpolar Bonds 24:17 
    Examples 24:25 
   Ionic Bonds 29:04 
    Ionic Bond, Cations, Anions 29:19 
    Example: NaCl 29:30 
   Hydrogen Bond 33:18 
    Hydrogen Bond 33:20 
   Chemical Reactions 35:36 
    Example: Reactants, Products and Chemical Reactions 35:45 
   Molecular Mass and Molar Concentration 38:45 
    Avogadro's Number and Mol 39:12 
    Examples: Molecular Mass and Molarity 42:10 
   Example 1: Proton, Neutrons and Electrons 47:05 
   Example 2: Reactants and Products 49:35 
   Example 3: Bonding 52:39 
   Example 4: Mass 53:59 
  Properties of Water 50:23
   Intro 0:00 
   Molecular Structure of Water 0:21 
    Molecular Structure of Water 0:27 
   Properties of Water 4:30 
    Cohesive 4:55 
    Transpiration 5:29 
    Adhesion 6:20 
    Surface Tension 7:17 
   Properties of Water, cont. 9:14 
    Specific Heat 9:25 
    High Heat Capacity 13:24 
    High Heat of Evaporation 16:42 
   Water as a Solvent 21:13 
    Solution 21:28 
    Solvent 21:48 
    Example: Water as a Solvent 22:22 
   Acids and Bases 25:40 
    Example 25:41 
   pH 36:30 
    pH Scale: Acidic, Neutral, and Basic 36:35 
   Example 1: Molecular Structure and Properties of Water 41:18 
   Example 2: Special Properties of Water 42:53 
   Example 3: pH Scale 44:46 
   Example 4: Acids and Bases 46:19 
  Organic Compounds 53:54
   Intro 0:00 
   Organic Compounds 0:09 
    Organic Compounds 0:11 
    Inorganic Compounds 0:15 
    Examples: Organic Compounds 1:15 
   Isomers 5:52 
    Isomers 5:55 
    Structural Isomers 6:23 
    Geometric Isomers 8:14 
    Enantiomers 9:55 
   Functional Groups 12:46 
    Examples: Functional Groups 12:59 
    Amino Group 13:51 
    Carboxyl Group 14:38 
    Hydroxyl Group 15:22 
    Methyl Group 16:14 
    Carbonyl Group 16:30 
    Phosphate Group 17:51 
   Carbohydrates 18:26 
    Carbohydrates 19:07 
    Example: Monosaccharides 21:12 
   Carbohydrates, cont. 24:11 
    Disaccharides, Polysaccharides and Examples 24:21 
   Lipids 35:52 
    Examples of Lipids 36:04 
    Saturated and Unsaturated 38:57 
   Phospholipids 43:26 
    Phospholipids 43:29 
    Example 43:34 
   Steroids 46:24 
    Cholesterol 46:28 
   Example 1: Isomers 48:11 
   Example 2: Functional Groups 50:45 
   Example 3: Galactose, Ketose, and Aldehyde Sugar 52:24 
   Example 4: Class of Molecules 53:06 
  Nucleic Acids and Proteins 37:23
   Intro 0:00 
   Nucleic Acids 0:09 
    Deoxyribonucleic Acid (DNA) and Ribonucleic Acid (RNA) 0:29 
   Nucleic Acids, cont. 2:56 
    Purines 3:10 
    Pyrimidines 3:32 
   Double Helix 4:59 
    Double Helix and Example 5:01 
   Proteins 12:33 
    Amino Acids and Polypeptides 12:39 
    Examples: Amino Acid 13:25 
   Polypeptide Formation 18:09 
    Peptide Bonds 18:14 
    Primary Structure 18:35 
   Protein Structure 23:19 
    Secondary Structure 23:22 
    Alpha Helices and Beta Pleated Sheets 23:34 
   Protein Structure 25:43 
    Tertiary Structure 25:44 
    5 Types of Interaction 26:56 
   Example 1: Complementary DNA Strand 31:45 
   Example 2: Differences Between DNA and RNA 33:19 
   Example 3: Amino Acids 34:32 
   Example 4: Tertiary Structure of Protein 35:46 
II. Cell Structure and Function
  Cell Types (Prokaryotic and Eukaryotic) 45:50
   Intro 0:00 
   Cell Theory and Cell Types 0:12 
    Cell Theory 0:13 
    Prokaryotic and Eukaryotic Cells 0:36 
    Endosymbiotic Theory 1:13 
   Study of Cells 4:07 
    Tools and Techniques 4:08 
    Light Microscopes 5:08 
    Light vs. Electron Microscopes: Magnification 5:18 
    Light vs. Electron Microscopes: Resolution 6:26 
    Light vs. Electron Microscopes: Specimens 7:53 
    Electron Microscopes: Transmission and Scanning 8:28 
    Cell Fractionation 10:01 
    Cell Fractionation Step 1: Homogenization 10:33 
    Cell Fractionation Step 2: Spin 11:24 
    Cell Fractionation Step 3: Differential Centrifugation 11:53 
   Comparison of Prokaryotic and Eukaryotic Cells 14:12 
    Prokaryotic vs. Eukaryotic Cells: Domains 14:43 
    Prokaryotic vs. Eukaryotic Cells: Plasma Membrane 15:40 
    Prokaryotic vs. Eukaryotic Cells: Cell Walls 16:15 
    Prokaryotic vs. Eukaryotic Cells: Genetic Materials 16:38 
    Prokaryotic vs. Eukaryotic Cells: Structures 17:28 
    Prokaryotic vs. Eukaryotic Cells: Unicellular and Multicellular 18:19 
    Prokaryotic vs. Eukaryotic Cells: Size 18:31 
    Plasmids 18:52 
   Prokaryotic vs. Eukaryotic Cells 19:22 
    Nucleus 19:24 
    Organelles 19:48 
    Cytoskeleton 20:02 
    Cell Wall 20:35 
    Ribosomes 20:57 
    Size 21:37 
   Comparison of Plant and Animal Cells 22:15 
    Plasma Membrane 22:55 
    Plant Cells Only: Cell Walls 23:12 
    Plant Cells Only: Central Vacuole 25:08 
    Animal Cells Only: Centrioles 26:40 
    Animal Cells Only: Lysosomes 27:43 
   Plant vs. Animal Cells 29:16 
    Overview of Plant and Animal Cells 29:17 
   Evidence for the Endosymbiotic Theory 30:52 
    Characteristics of Mitochondria and Chloroplasts 30:54 
   Example 1: Prokaryotic vs. Eukaryotic Cells 35:44 
   Example 2: Endosymbiotic Theory and Evidence 38:38 
   Example 3: Plant and Animal Cells 41:49 
   Example 4: Cell Fractionation 43:44 
  Subcellular Structure 59:38
   Intro 0:00 
   Prokaryotic Cells 0:09 
    Shapes of Prokaryotic Cells 0:22 
    Cell Wall 1:19 
    Capsule 3:23 
    Pili/Fimbria 3:54 
    Flagella 4:35 
    Nucleoid 6:16 
    Plasmid 6:37 
    Ribosomes 7:09 
   Eukaryotic Cells (Animal Cell Structure) 8:01 
    Plasma Membrane 8:13 
    Microvilli 8:48 
    Nucleus 9:47 
    Nucleolus 11:06 
    Ribosomes: Free and Bound 12:26 
    Rough Endoplasmic Reticulum (RER) 13:43 
   Eukaryotic Cells (Animal Cell Structure), cont. 14:51 
    Endoplasmic Reticulum: Smooth and Rough 15:08 
    Golgi Apparatus 17:55 
    Vacuole 20:43 
    Lysosome 22:01 
    Mitochondria 25:40 
    Peroxisomes 28:18 
   Cytoskeleton 30:41 
    Cytoplasm and Cytosol 30:53 
    Microtubules: Centrioles, Spindel Fibers, Clagell, Cillia 32:06 
    Microfilaments 36:39 
    Intermediate Filaments and Kerotin 38:52 
   Eukaryotic Cells (Plant Cell Structure) 40:08 
    Plasma Membrane, Primary Cell Wall, and Secondary Cell Wall 40:30 
    Middle Lamella 43:21 
    Central Cauole 44:12 
    Plastids: Leucoplasts, Chromoplasts, Chrloroplasts 45:35 
    Chloroplasts 47:06 
   Example 1: Structures and Functions 48:46 
   Example 2: Cell Walls 51:19 
   Example 3: Cytoskeleton 52:53 
   Example 4: Antibiotics and the Endosymbiosis Theory 56:55 
  Cell Membranes and Transport 53:10
   Intro 0:00 
   Cell Membrane Structure 0:09 
    Phospholipids Bilayer 0:11 
    Chemical Structure: Amphipathic and Fatty Acids 0:25 
   Cell Membrane Proteins 2:44 
    Fluid Mosaic Model 2:45 
    Peripheral Proteins and Integral Proteins 3:19 
    Transmembrane Proteins 4:34 
    Cholesterol 4:48 
    Functions of Membrane Proteins 6:39 
   Transport Across Cell Membranes 9:52 
    Transport Across Cell Membranes 9:53 
   Methods of Passive Transport 12:07 
    Passive and Active Transport 12:08 
    Simple Diffusion 12:45 
    Facilitated Diffusion 15:20 
   Osmosis 17:17 
    Definition and Example of Osmosis 17:18 
    Hypertonic, Hypotonic, and Isotonic 21:47 
   Active Transport 27:57 
    Active Transport 28:17 
    Sodium and Potassium Pump 29:45 
    Cotransport 34:38 
    2 Types of Active Transport 37:09 
   Endocytosis and Exocytosis 37:38 
    Endocytosis and Exocytosis 37:51 
    Types of Endocytosis: Pinocytosis 40:39 
    Types of Endocytosis: Phagocytosis 41:02 
   Receptor Mediated Endocytosis 41:27 
    Receptor Mediated Endocytosis 41:28 
   Example 1: Cell Membrane and Permeable Substances 43:59 
   Example 2: Osmosis 45:20 
   Example 3: Active Transport, Cotransport, Simple and Facilitated Diffusion 47:36 
   Example 4: Match Terms with Definition 50:55 
  Cellular Communication 57:09
   Intro 0:00 
   Extracellular Matrix 0:28 
    The Extracellular Matrix (ECM) 0:29 
    ECM in Animal Cells 0:55 
    Fibronectin and Integrins 1:34 
   Intercellular Communication in Plants 2:48 
    Intercellular Communication in Plants: Plasmodesmata 2:50 
   Cell to Cell Communication in Animal Cells 3:39 
    Cell Junctions 3:42 
    Desmosomes 3:54 
    Tight Junctions 5:07 
    Gap Junctions 7:00 
   Cell Signaling 8:17 
    Cell Signaling: Ligand and Signal Transduction Pathway 8:18 
    Direct Contact 8:48 
    Over Distances Contact and Hormones 10:09 
   Stages of Cell Signaling 11:53 
    Reception Phase 11:54 
    Transduction Phase 13:49 
    Response Phase 14:45 
   Cell Membrane Receptors 15:37 
    G-Protein Coupled Receptor 15:38 
   Cell Membrane Receptor, Cont. 21:37 
    Receptor Tyrosine Kinases (RTKs) 21:38 
    Autophosphorylation, Monomer, and Dimer 22:57 
   Cell Membrane Receptor, Cont. 27:01 
    Ligand-Gated Ion Channels 27:02 
   Intracellular Receptors 29:43 
    Intracellular Receptor and Receptor -Ligand Complex 29:44 
   Signal Transduction 32:57 
    Signal Transduction Pathways 32:58 
    Adenylyl Cyclase and cAMP 35:53 
   Second Messengers 39:18 
     cGMP, Inositol Trisphosphate, and Diacylglycerol 39:20 
   Cell Response 45:15 
    Cell Response 45:16 
    Apoptosis 46:57 
   Example 1: Tight Junction and Gap Junction 48:29 
   Example 2: Three Phases of Cell Signaling 51:48 
   Example 3: Ligands and Binding of Hormone 54:03 
   Example 4: Signal Transduction 56:06 
III. Cell Division
  The Cell Cycle 37:49
   Intro 0:00 
   Functions of Cell Division 0:09 
    Overview of Cell Division: Reproduction, Growth, and Repair 0:11 
    Important Term: Daughter Cells 2:25 
   Chromosome Structure 3:36 
    Chromosome Structure: Sister Chromatids and Centromere 3:37 
    Chromosome Structure: Chromatin 4:31 
    Chromosome with One Chromatid or Two Chromatids 5:25 
    Chromosome Structure: Long and Short Arm 6:49 
   Mitosis and Meiosis 7:00 
    Mitosis 7:41 
    Meiosis 8:40 
   The Cell Cycle 10:43 
    Mitotic Phase and Interphase 10:44 
   Cytokinesis 15:51 
    Cytokinesis in Animal Cell: Cleavage Furrow 15:52 
    Cytokinesis in Plant Cell: Cell Plate 17:28 
   Control of the Cell Cycle 18:28 
    Cell Cycle Control System and Checkpoints 18:29 
   Cyclins and Cyclin Dependent Kinases 21:18 
    Cyclins and Cyclin Dependent Kinases (CDKSs) 21:20 
    MPF 23:17 
    Internal Factor Regulating Cell Cycle 24:00 
    External Factor Regulating Cell Cycle 24:53 
    Contact Inhibition and Anchorage Dependent 25:53 
   Cancer and the Cell Cycle 27:42 
    Cancer Cells 27:46 
   Example1: Parts of the Chromosome 30:15 
   Example 2: Cell Cycle 31:50 
   Example 3: Control of the Cell Cycle 33:32 
   Example 4: Cancer and the Cell 35:01 
  Mitosis 35:01
   Intro 0:00 
   Review of the Cell Cycle 0:09 
    Interphase: G1 Phase 0:34 
    Interphase: S Phase 0:56 
    Interphase: G2 Phase 1:31 
    M Phase: Mitosis and Cytokinesis 1:47 
   Overview of Mitosis 3:08 
    What is Mitosis? 3:10 
    Overview of Mitosis 3:17 
    Diploid and Haploid 5:37 
    Homologous Chromosomes 6:04 
   The Spindle Apparatus 11:57 
    The Spindle Apparatus 12:00 
    Centrosomes and Centrioles 12:40 
    Microtubule Organizing Center 13:03 
    Spindle Fiber of Spindle Microtubules 13:23 
    Kinetochores 14:06 
    Asters 15:45 
   Prophase 16:47 
    First Phase of Mitosis: Prophase 16:54 
   Metaphase 20:05 
    Second Phase of Mitosis: Metaphase 20:10 
   Anaphase 22:52 
    Third Phase of Mitosis: Anaphase 22:53 
   Telophase and Cytokinesis 24:34 
    Last Phase of Mitosis: Telophase and Cytokinesis 24:35 
   Summary of Mitosis 27:46 
    Summary of Mitosis 27:47 
   Example 1: Spindle Apparatus 28:50 
   Example 2: Last Phase of Mitosis 30:39 
   Example 3: Prophase 32:41 
   Example 4: Identify the Phase 33:52 
  Meiosis 1:00:58
   Intro 0:00 
   Haploid and Diploid Cells 0:09 
    Diploid and Somatic Cells 0:29 
    Haploid and Gametes 1:20 
    Example: Human Cells and Chromosomes 1:41 
    Sex Chromosomes 6:00 
   Comparison of Mitosis and Meiosis 10:42 
    Mitosis Vs. Meiosis: Cell Division 10:59 
    Mitosis Vs. Meiosis: Daughter Cells 12:31 
    Meiosis: Pairing of Homologous Chromosomes 13:40 
   Mitosis and Meiosis 14:21 
    Process of Mitosis 14:27 
    Process of Meiosis 16:12 
   Synapsis and Crossing Over 19:14 
    Prophase I: Synapsis and Crossing Over 19:15 
    Chiasmata 22:33 
   Meiosis I 25:49 
    Prophase I: Crossing Over 25:50 
    Metaphase I: Homologs Line Up 26:00 
    Anaphase I: Homologs Separate 28:16 
    Telophase I and Cytokinesis 29:15 
    Independent Assortment 30:58 
   Meiosis II 32:17 
    Propphase II 33:50 
    Metaphase II 34:06 
    Anaphase II 34:50 
    Telophase II 36:09 
    Cytokinesis 37:00 
   Summary of Meiosis 38:15 
    Summary of Meiosis 38:16 
    Cell Division Mechanism in Plants 41:57 
   Example 1: Cell Division and Meiosis 46:15 
   Example 2: Phases of Meiosis 50:22 
   Example 3: Label the Figure 54:29 
   Example 4: Four Differences Between Mitosis and Meiosis 56:37 
IV. Cellular Energetics
  Enzymes 51:03
   Intro 0:00 
   Law of Thermodynamics 0:08 
    Thermodynamics 0:09 
    The First Law of Thermodynamics 0:37 
    The Second Law of Thermodynamics 1:24 
    Entropy 1:35 
   The Gibbs Free Energy Equation 3:07 
    The Gibbs Free Energy Equation 3:08 
   ATP 8:23 
    Adenosine Triphosphate (ATP) 8:24 
    Cellular Respiration 11:32 
    Catabolic Pathways 12:28 
    Anabolic Pathways 12:54 
   Enzymes 14:31 
    Enzymes 14:32 
    Enzymes and Exergonic Reaction 14:40 
    Enzymes and Endergonic Reaction 16:36 
   Enzyme Specificity 21:29 
    Substrate 21:41 
    Induced Fit 23:04 
   Factors Affecting Enzyme Activity 25:55 
    Substrate Concentration 26:07 
    pH 27:10 
    Temperature 29:14 
    Presence of Cofactors 29:57 
   Regulation of Enzyme Activity 31:12 
    Competitive Inhibitors 32:13 
    Noncompetitive Inhibitors 33:52 
    Feedback Inhibition 35:22 
   Allosteric Interactions 36:56 
    Allosteric Regulators 37:00 
   Example 1: Is the Inhibitor Competitive or Noncompetitive? 40:49 
   Example 2: Thermophiles 44:18 
   Example 3: Exergonic or Endergonic 46:09 
   Example 4: Energy Vs. Reaction Progress Graph 48:47 
  Glycolysis and Anaerobic Respiration 38:01
   Intro 0:00 
   Cellular Respiration Overview 0:13 
    Cellular Respiration 0:14 
    Anaerobic Respiration vs. Aerobic Respiration 3:50 
   Glycolysis Overview 4:48 
    Overview of Glycolysis 4:50 
   Glycolysis Involves a Redox Reaction 7:02 
    Redox Reaction 7:04 
   Glycolysis 15:04 
    Important Facts About Glycolysis 15:07 
    Energy Invested Phase 16:12 
    Splitting of Fructose 1,6-Phosphate and Energy Payoff Phase 17:50 
    Substrate Level Phophorylation 22:12 
   Aerobic Versus Anaerobic Respiration 23:57 
    Aerobic Versus Anaerobic Respiration 23:58 
   Cellular Respiration Overview 27:15 
    When Cellular Respiration is Anaerobic 27:17 
    Glycolysis 28:26 
    Alcohol Fermentation 28:45 
    Lactic Acid Fermentation 29:58 
   Example 1: Glycolysis 31:04 
   Example 2: Glycolysis, Fermentation and Anaerobic Respiration 33:44 
   Example 3: Aerobic Respiration Vs. Anaerobic Respiration 35:25 
   Example 4: Exergonic Reaction and Endergonic Reaction 36:42 
  Aerobic Respiration 51:06
   Intro 0:00 
   Aerobic Vs. Anaerobic Respiration 0:06 
    Aerobic and Anaerobic Comparison 0:07 
   Review of Glycolysis 1:48 
    Overview of Glycolysis 2:06 
    Glycolysis: Energy Investment Phase 2:25 
    Glycolysis: Energy Payoff Phase 2:58 
   Conversion of Pyruvate to Acetyl CoA 4:55 
    Conversion of Pyruvate to Acetyl CoA 4:56 
    Energy Formation 8:06 
   Mitochondrial Structure 8:58 
    Endosymbiosis Theory 9:23 
    Matrix 10:00 
    Outer Membrane, Inner Membrane, and Intermembrane Space 10:43 
    Cristae 11:47 
   The Citric Acid Cycle 12:11 
    The Citric Acid Cycle (Also Called Krebs Cycle) 12:12 
    Substrate Level Phosphorylation 18:47 
   Summary of ATP, NADH, and FADH2 Production 23:13 
    Process: Glycolysis 23:28 
    Process: Acetyl CoA Production 23:36 
    Process: Citric Acid Cycle 23:52 
   The Electron Transport Chain 24:24 
    Oxidative Phosphorylation 24:28 
    The Electron Transport Chain and ATP Synthase 25:20 
    Carrier Molecules: Cytochromes 27:18 
    Carrier Molecules: Flavin Mononucleotide (FMN) 28:05 
   Chemiosmosis 32:46 
    The Process of Chemiosmosis 32:47 
   Summary of ATP Produced by Aerobic Respiration 38:24 
    ATP Produced by Aerobic Respiration 38:27 
   Example 1: Aerobic Respiration 43:38 
   Example 2: Label the Location for Each Process and Structure 45:08 
   Example 3: The Electron Transport Chain 47:06 
   Example 4: Mitochondrial Inner Membrane 48:38 
  Photosynthesis 1:02:52
   Intro 0:00 
   Photosynthesis 0:09 
    Introduction to Photosynthesis 0:10 
    Autotrophs and Heterotrophs 0:25 
    Overview of Photosynthesis Reaction 1:05 
   Leaf Anatomy and Chloroplast Structure 2:54 
    Chloroplast 2:55 
    Cuticle 3:16 
    Upper Epidermis 3:27 
    Mesophyll 3:40 
    Stomates 4:00 
    Guard Cells 4:45 
    Transpiration 5:01 
    Vascular Bundle 5:20 
    Stroma and Double Membrane 6:20 
    Grana 7:17 
    Thylakoids 7:30 
    Dark Reaction and Light Reaction 7:46 
   Light Reactions 8:43 
    Light Reactions 8:47 
    Pigments: Chlorophyll a, Chlorophyll b, and Carotenoids 9:19 
    Wave and Particle 12:10 
    Photon 12:34 
   Photosystems 13:24 
    Photosystems 13:28 
    Reaction-Center Complex and Light Harvesting Complexes 14:01 
   Noncyclic Photophosphorylation 17:46 
    Noncyclic Photophosphorylation Overview 17:47 
    What is Photophosphorylation? 18:25 
    Noncyclic Photophosphorylation Process 19:07 
    Photolysis and The Rest of Noncyclic Photophosphorylation 21:33 
   Cyclic Photophosphorylation 31:45 
    Cyclic Photophosphorylation 31:46 
   Light Independent Reactions 34:34 
    The Calvin Cycle 34:35 
   C3 Plants and Photorespiration 40:31 
    C3 Plants and Photorespiration 40:32 
   C4 Plants 45:32 
    C4 Plants: Structures and Functions 45:33 
   CAM Plants 50:25 
    CAM Plants: Structures and Functions 50:35 
   Example 1: Calvin Cycle 54:34 
   Example 2: C4 Plant 55:48 
   Example 3: Photosynthesis and Photorespiration 58:35 
   Example 4: CAM Plants 60:41 
V. Molecular Genetics
  DNA Synthesis 38:45
   Intro 0:00 
   Review of DNA Structure 0:09 
    DNA Molecules 0:10 
    Nitrogenous Base: Pyrimidines and Purines 1:25 
   DNA Double Helix 3:03 
    Complementary Strands of DNA 3:12 
    5' to 3' & Antiparallel 4:55 
   Overview of DNA Replication 7:10 
    DNA Replication & Semiconservative 7:11 
   DNA Replication 10:26 
    Origin of Replication 10:28 
    Helicase 11:10 
    Single-Strand Binding Protein 12:05 
    Topoisomerases 13:14 
    DNA Polymerase 14:26 
    Primase 15:55 
   Leading and Lagging Strands 16:51 
    Leading Strand and Lagging Strand 16:52 
    Okazaki Fragments 18:10 
    DNA Polymerase I 20:11 
    Ligase 21:12 
   Proofreading and Mismatch Repair 22:18 
    Proofreading 22:19 
    Mismatch 23:33 
   Telomeres 24:58 
    Telomeres 24:59 
   Example 1: Function of Enzymes During DNA Synthesis 28:09 
   Example 2: Accuracy of the DNA Sequence 31:42 
   Example 3: Leading Strand and Lagging Strand 32:38 
   Example 4: Telomeres 35:40 
  Transcription and Translation 1:17:01
   Intro 0:00 
   Transcription and Translation Overview 0:07 
    From DNA to RNA to Protein 0:09 
   Structure and Types of RNA 3:14 
    Structure and Types of RNA 3:33 
    mRNA 6:19 
    rRNA 7:02 
    tRNA 7:28 
   Transcription 7:54 
    Initiation Phase 8:11 
    Elongation Phase 12:12 
    Termination Phase 14:51 
   RNA Processing 16:11 
    Types of RNA Processing 16:12 
    Exons and Introns 16:35 
    Splicing & Spliceosomes 18:27 
    Addition of a 5' Cap and a Poly A tail 20:41 
    Alternative Splicing 21:43 
   Translation 23:41 
    Nucleotide Triplets or Codons 23:42 
    Start Codon 25:24 
    Stop Codons 25:38 
    Coding of Amino Acids and Wobble Position 25:57 
   Translation Cont. 28:29 
    Transfer RNA (tRNA): Structures and Functions 28:30 
   Ribosomes 35:15 
    Peptidyl, Aminoacyl, and Exit Site 35:23 
   Steps of Translation 36:58 
    Initiation Phase 37:12 
    Elongation Phase 43:12 
    Termination Phase 45:28 
   Mutations 49:43 
    Types of Mutations 49:44 
    Substitutions: Silent 51:11 
    Substitutions: Missense 55:27 
    Substitutions: Nonsense 59:37 
    Insertions and Deletions 61:10 
   Example 1: Three Types of Processing that are Performed on pre-mRNA 66:53 
   Example 2: The Process of Translation 69:10 
   Example 3: Transcription 72:04 
   Example 4: Three Types of Substitution Mutations 74:09 
  Viral Structure and Genetics 43:12
   Intro 0:00 
   Structure of Viruses 0:09 
    Structure of Viruses: Capsid and Envelope 0:10 
    Bacteriophage 1:48 
    Other Viruses 2:28 
   Overview of Viral Reproduction 3:15 
    Host Range 3:48 
    Step 1: Bind to Host Cell 4:39 
    Step 2: Viral Nuclei Acids Enter the Cell 5:15 
    Step 3: Viral Nucleic Acids & Proteins are Synthesized 5:54 
    Step 4: Virus Assembles 6:34 
    Step 5: Virus Exits the Cell 6:55 
   The Lytic Cycle 7:37 
    Steps in the Lytic Cycle 7:38 
   The Lysogenic Cycle 11:27 
    Temperate Phage 11:34 
    Steps in the Lysogenic Cycle 12:09 
   RNA Viruses 16:57 
    Types of RNA Viruses 17:15 
    Positive Sense 18:16 
    Negative Sense 18:48 
    Reproductive Cycle of RNA Viruses 19:32 
   Retroviruses 25:48 
    Complementary DNA (cDNA) & Reverse Transcriptase 25:49 
    Life Cycle of a Retrovirus 28:22 
   Prions 32:42 
    Prions: Definition and Examples 32:45 
    Viroids 34:46 
   Example 1: The Lytic Cycle 35:37 
   Example 2: Retrovirus 38:03 
   Example 3: Positive Sense RNA vs. Negative Sense RNA 39:10 
   Example 4: The Lysogenic Cycle 40:42 
  Bacterial Genetics and Gene Regulation 49:45
   Intro 0:00 
   Bacterial Genomes 0:09 
    Structure of Bacterial Genomes 0:16 
   Transformation 1:22 
    Transformation 1:23 
    Vector 2:49 
   Transduction 3:32 
    Process of Transduction 3:38 
   Conjugation 8:06 
    Conjugation & F factor 8:07 
   Operons 14:02 
    Definition and Example of Operon 14:52 
    Structural Genes 16:23 
    Promoter Region 17:04 
    Regulatory Protein & Operators 17:53 
   The lac Operon 20:09 
    The lac Operon: Inducible System 20:10 
   The trp Operon 28:02 
    The trp Operon: Repressible System 28:03 
    Corepressor 31:37 
    Anabolic & Catabolic 33:12 
   Positive Regulation of the lac Operon 34:39 
    Positive Regulation of the lac Operon 34:40 
   Example 1: The Process of Transformation 39:07 
   Example 2: Operon & Terms 43:29 
   Example 3: Inducible lac Operon and Repressible trp Operon 45:15 
   Example 4: lac Operon 47:10 
  Eukaryotic Gene Regulation and Mobile Genetic Elements 54:26
   Intro 0:00 
   Mechanism of Gene Regulation 0:11 
    Differential Gene Expression 0:13 
    Levels of Regulation 2:24 
   Chromatin Structure and Modification 4:35 
    Chromatin Structure 4:36 
    Levels of Packing 5:50 
    Euchromatin and Heterochromatin 8:58 
    Modification of Chromatin Structure 9:58 
    Epigenetic 12:49 
   Regulation of Transcription 14:20 
    Promoter Region, Exon, and Intron 14:26 
    Enhancers: Control Element 15:31 
    Enhancer & DNA-Bending Protein 17:25 
    Coordinate Control 21:23 
    Silencers 23:01 
   Post-Transcriptional Regulation 24:05 
    Post-Transcriptional Regulation 24:07 
    Alternative Splicing 27:19 
    Differences in mRNA Stability 28:02 
    Non-Coding RNA Molecules: micro RNA & siRNA 30:01 
   Regulation of Translation and Post-Translational Modifications 32:31 
    Regulation of Translation and Post-Translational Modifications 32:55 
    Ubiquitin 35:21 
    Proteosomes 36:04 
   Transposons 37:50 
    Mobile Genetic Elements 37:56 
    Barbara McClintock 38:37 
    Transposons & Retrotransposons 40:38 
    Insertion Sequences 43:14 
    Complex Transposons 43:58 
   Example 1: Four Mechanisms that Decrease Production of Protein 45:13 
   Example 2: Enhancers and Gene Expression 49:09 
   Example 3: Primary Transcript 50:41 
   Example 4: Retroviruses and Retrotransposons 52:11 
  Biotechnology 49:26
   Intro 0:00 
   Definition of Biotechnology 0:08 
    Biotechnology 0:09 
    Genetic Engineering 1:05 
    Example: Golden Corn 1:57 
   Recombinant DNA 2:41 
    Recombinant DNA 2:42 
    Transformation 3:24 
    Transduction 4:24 
    Restriction Enzymes, Restriction Sites, & DNA Ligase 5:32 
   Gene Cloning 13:48 
    Plasmids 14:20 
    Gene Cloning: Step 1 17:35 
    Gene Cloning: Step 2 17:57 
    Gene Cloning: Step 3 18:53 
    Gene Cloning: Step 4 19:46 
   Gel Electrophoresis 27:25 
    What is Gel Electrophoresis? 27:26 
    Gel Electrophoresis: Step 1 28:13 
    Gel Electrophoresis: Step 2 28:24 
    Gel Electrophoresis: Step 3 & 4 28:39 
    Gel Electrophoresis: Step 5 29:55 
    Southern Blotting 31:25 
   Polymerase Chain Reaction (PCR) 32:11 
    Polymerase Chain Reaction (PCR) 32:12 
    Denaturing Phase 35:40 
    Annealing Phase 36:07 
    Elongation/ Extension Phase 37:06 
   DNA Sequencing and the Human Genome Project 39:19 
    DNA Sequencing and the Human Genome Project 39:20 
   Example 1: Gene Cloning 40:40 
   Example 2: Recombinant DNA 43:04 
   Example 3: Match Terms With Descriptions 45:43 
   Example 4: Polymerase Chain Reaction 47:36 
VI. Heredity
  Mendelian Genetics 1:32:08
   Intro 0:00 
   Background 0:40 
    Gregory Mendel & Mendel's Law 0:41 
    Blending Hypothesis 1:04 
    Particulate Inheritance 2:08 
   Terminology 2:55 
    Gene 3:05 
    Locus 3:57 
    Allele 4:37 
    Dominant Allele 5:48 
    Recessive Allele 7:38 
    Genotype 9:22 
    Phenotype 10:01 
    Homozygous 10:44 
    Heterozygous 11:39 
    Penetrance 11:57 
    Expressivity 14:15 
   Mendel's Experiments 15:31 
    Mendel's Experiments: Pea Plants 15:32 
   The Law of Segregation 21:16 
    Mendel's Conclusions 21:17 
    The Law of Segregation 22:57 
   Punnett Squares 28:27 
    Using Punnet Squares 28:30 
   The Law of Independent Assortment 32:35 
    Monohybrid 32:38 
    Dihybrid 33:29 
    The Law of Independent Assortment 34:00 
   The Law of Independent Assortment, cont. 38:13 
    The Law of Independent Assortment: Punnet Squares 38:29 
   Meiosis and Mendel's Laws 43:38 
    Meiosis and Mendel's Laws 43:39 
   Test Crosses 49:07 
    Test Crosses Example 49:08 
   Probability: Multiplication Rule and the Addition Rule 53:39 
    Probability Overview 53:40 
    Independent Events & Multiplication Rule 55:40 
    Mutually Exclusive Events & Addition Rule 60:25 
   Incomplete Dominance, Codominance and Multiple Alleles 62:55 
    Incomplete Dominance 62:56 
   Incomplete Dominance, Codominance and Multiple Alleles 67:06 
    Codominance and Multiple Alleles 67:08 
   Polygenic Inheritance and Pleoitropy 70:19 
    Polygenic Inheritance and Pleoitropy 70:26 
   Epistasis 72:51 
    Example of Epistasis 72:52 
   Example 1: Genetic of Eye Color and Height 77:39 
   Example 2: Blood Type 81:57 
   Example 3: Pea Plants 85:09 
   Example 4: Coat Color 88:34 
  Linked Genes and Non-Mendelian Modes of Inheritance 39:38
   Intro 0:00 
   Review of the Law of Independent Assortment 0:14 
    Review of the Law of Independent Assortment 0:24 
   Linked Genes 6:06 
    Linked Genes 6:07 
    Bateson & Pannett: Pea Plants 8:00 
   Crossing Over and Recombination 15:17 
    Crossing Over and Recombination 15:18 
   Extranuclear Genes 20:50 
    Extranuclear Genes 20:51 
    Cytoplasmic Genes 21:31 
   Genomic Imprinting 23:45 
    Genomic Imprinting 23:58 
    Methylation 24:43 
   Example 1: Recombination Frequencies & Linkage Map 27:07 
   Example 2: Linked Genes 28:39 
   Example 3: Match Terms to Correct Descriptions 36:46 
   Example 4: Leber's Optic Neuropathy 38:40 
  Sex-Linked Traits and Pedigree Analysis 43:39
   Intro 0:00 
   Sex-Linked Traits 0:09 
    Human Chromosomes, XY, and XX 0:10 
    Thomas Morgan's Drosophila 1:44 
   X-Inactivation and Barr Bodies 14:48 
    X-Inactivation Overview 14:49 
    Calico Cats Example 17:04 
   Pedigrees 19:24 
    Definition and Example of Pedigree 19:25 
   Autosomal Dominant Inheritance 20:51 
    Example: Huntington's Disease 20:52 
   Autosomal Recessive Inheritance 23:04 
    Example: Cystic Fibrosis, Tay-Sachs Disease, and Phenylketonuria 23:05 
   X-Linked Recessive Inheritance 27:06 
    Example: Hemophilia, Duchene Muscular Dystrohpy, and Color Blindess 27:07 
   Example 1: Colorblind 29:48 
   Example 2: Pedigree 37:07 
   Example 3: Inheritance Pattern 39:54 
   Example 4: X-inactivation 41:17 
VII. Evolution
  Natural Selection 1:03:28
   Intro 0:00 
   Background 0:09 
    Work of Other Scientists 0:15 
    Aristotle 0:43 
    Carl Linnaeus 1:32 
    George Cuvier 2:47 
    James Hutton 4:10 
    Thomas Malthus 5:05 
    Jean-Baptiste Lamark 5:45 
   Darwin's Theory of Natural Selection 7:50 
    Evolution 8:00 
    Natural Selection 8:43 
    Charles Darwin & The Galapagos Islands 10:20 
   Genetic Variation 20:37 
    Mutations 20:38 
    Independent Assortment 21:04 
    Crossing Over 24:40 
    Random Fertilization 25:26 
   Natural Selection and the Peppered Moth 26:37 
    Natural Selection and the Peppered Moth 26:38 
   Types of Natural Selection 29:52 
    Directional Selection 29:55 
    Stabilizing Selection 32:43 
    Disruptive Selection 34:21 
   Sexual Selection 36:18 
    Sexual Dimorphism 37:30 
    Intersexual Selection 37:57 
    Intrasexual Selection 39:20 
   Evidence for Evolution 40:55 
    Paleontology: Fossil Record 41:30 
    Biogeography 45:35 
    Continental Drift 46:06 
    Pangaea 46:28 
    Marsupials 47:11 
   Homologous and Analogous Structure 50:10 
    Homologous Structure 50:12 
    Analogous Structure 53:21 
   Example 1: Genetic Variation & Natural Selection 56:15 
   Example 2: Types of Natural Selection 58:07 
   Example 3: Mechanisms By Which Genetic Variation is Maintained Within a Population 60:12 
   Example 4: Difference Between Homologous and Analogous Structures 61:28 
  Population Genetic and Evolution 53:22
   Intro 0:00 
   Review of Natural Selection 0:12 
    Review of Natural Selection 0:13 
   Genetic Drift and Gene Flow 4:40 
    Definition of Genetic Drift 4:41 
    Example of Genetic Drift: Cholera Epidemic 5:15 
    Genetic Drift: Founder Effect 7:28 
    Genetic Drift: Bottleneck Effect 10:27 
    Gene Flow 13:00 
   Quantifying Genetic Variation 14:32 
    Average Heterozygosity 15:08 
    Nucleotide Variation 17:05 
   Maintaining Genetic Variation 18:12 
    Heterozygote Advantage 19:45 
    Example of Heterozygote Advantage: Sickle Cell Anemia 20:21 
    Diploidy 23:44 
    Geographic Variation 26:54 
    Frequency Dependent Selection and Outbreeding 28:15 
    Neutral Traits 30:55 
   The Hardy-Weinberg Equilibrium 31:11 
    The Hardy-Weinberg Equilibrium 31:49 
    The Hardy-Weinberg Conditions 32:42 
    The Hardy-Weinberg Equation 34:05 
    The Hardy-Weinberg Example 36:33 
   Example 1: Match Terms to Descriptions 42:28 
   Example 2: The Hardy-Weinberg Equilibrium 44:31 
   Example 3: The Hardy-Weinberg Equilibrium 49:10 
   Example 4: Maintaining Genetic Variation 51:30 
  Speciation and Patterns of Evolution 51:02
   Intro 0:00 
   Early Life on Earth 0:08 
    Early Earth 0:09 
    1920's Oparin & Haldane 0:58 
    Abiogenesis 2:15 
    1950's Miller & Urey 2:45 
    Ribozymes 5:34 
    3.5 Billion Years Ago 6:39 
    2.5 Billion Years Ago 7:14 
    1.5 Billion Years Ago 7:41 
    Endosymbiosis 8:00 
    540 Million Years Ago: Cambrian Explosion 9:57 
   Gradualism and Punctuated Equilibrium 11:46 
    Gradualism 11:47 
    Punctuated Equilibrium 12:45 
   Adaptive Radiation 15:08 
    Adaptive Radiation 15:09 
    Example of Adaptive Radiation: Galapogos Islands 17:11 
   Convergent Evolution, Divergent Evolution, and Coevolution 18:30 
    Convergent Evolution 18:39 
    Divergent Evolution 21:30 
    Coevolution 23:49 
   Speciation 26:27 
    Definition and Example of Species 26:29 
    Reproductive Isolation: Prezygotive 27:49 
    Reproductive Isolation: Post zygotic 29:28 
   Allopatric Speciation 30:21 
    Allopatric Speciation & Geographic Isolation 30:28 
    Genetic Drift 31:31 
   Sympatric Speciation 34:10 
    Sympatric Speciation 34:11 
    Polyploidy & Autopolyploidy 35:12 
    Habitat Isolation 39:17 
    Temporal Isolation 41:27 
    Selection Selection 41:40 
   Example 1: Pattern of Evolution 42:53 
   Example 2: Sympatric Speciation 45:16 
   Example 3: Patterns of Evolution 48:08 
   Example 4: Patterns of Evolution 49:27 
VIII. Diversity of Life
  Classification 1:00:51
   Intro 0:00 
   Systems of Classification 0:07 
    Taxonomy 0:08 
    Phylogeny 1:04 
    Phylogenetics Tree 1:44 
    Cladistics 3:37 
   Classification of Organisms 5:31 
    Example of Carl Linnaeus System 5:32 
   Domains 9:26 
    Kingdoms: Monera, Protista, Plantae, Fungi, Animalia 9:27 
    Monera 10:06 
    Phylogentics Tree: Eurkarya, Bacteria, Archaea 11:58 
    Domain Eukarya 12:50 
   Domain Bacteria 15:43 
    Domain Bacteria 15:46 
    Pathogens 16:41 
    Decomposers 18:00 
   Domain Archaea 19:43 
    Extremophiles Archaea: Thermophiles and Halophiles 19:44 
    Methanogens 20:58 
   Phototrophs, Autotrophs, Chemotrophs and Heterotrophs 24:40 
    Phototrophs and Chemotrophs 25:02 
    Autotrophs and Heterotrophs 26:54 
    Photoautotrophs 28:50 
    Photoheterotrophs 29:28 
    Chemoautotrophs 30:06 
    Chemoheterotrophs 31:37 
   Domain Eukarya 32:40 
    Domain Eukarya 32:43 
    Plant Kingdom 34:28 
    Protists 35:48 
    Fungi Kingdom 37:06 
    Animal Kingdom 38:35 
   Body Symmetry 39:25 
    Lack Symetry 39:40 
    Radial Symmetry: Sea Aneome 40:15 
    Bilateral Symmetry 41:55 
    Cephalization 43:29 
   Germ Layers 44:54 
    Diploblastic Animals 45:18 
    Triploblastic Animals 45:25 
    Ectoderm 45:36 
    Endoderm 46:07 
    Mesoderm 46:41 
   Coelomates 47:14 
    Coelom 47:15 
    Acoelomate 48:22 
    Pseudocoelomate 48:59 
    Coelomate 49:31 
    Protosomes 50:46 
    Deuterosomes 51:20 
   Example 1: Domains 53:01 
   Example 2: Match Terms with Descriptions 56:00 
   Example 3: Kingdom Monera and Domain Archaea 57:50 
   Example 4: System of Classification 59:37 
  Bacteria 36:46
   Intro 0:00 
   Comparison of Domain Archaea and Domain Bacteria 0:08 
    Overview of Archaea and Bacteria 0:09 
    Archaea vs. Bacteria: Nucleus, Organelles, and Organization of Genetic Material 1:45 
    Archaea vs. Bacteria: Cell Walls 2:20 
    Archaea vs. Bacteria: Number of Types of RNA Pol 2:29 
    Archaea vs. Bacteria: Membrane Lipids 2:53 
    Archaea vs. Bacteria: Introns 3:33 
    Bacteria: Pathogen 4:03 
    Bacteria: Decomposers and Fix Nitrogen 5:18 
    Bacteria: Aerobic, Anaerobic, Strict Anaerobes & Facultative Anaerobes 6:02 
   Phototrophs, Autotrophs, Heterotrophs and Chemotrophs 7:14 
    Phototrophs and Chemotrophs 7:50 
    Autotrophs and Heterotrophs 8:53 
    Photoautotrophs and Photoheterotrophs 10:15 
    Chemoautotroph and Chemoheterotrophs 11:07 
   Structure of Bacteria 12:21 
    Shapes: Cocci, Bacilli, Vibrio, and Spirochetes 12:26 
    Structures: Plasma Membrane and Cell Wall 14:23 
    Structures: Nucleoid Region, Plasmid, and Capsule Basal Apparatus, and Filament 15:30 
    Structures: Flagella, Basal Apparatus, Hook, and Filament 16:36 
    Structures: Pili, Fimbrae and Ribosome 18:00 
    Peptidoglycan: Gram + and Gram - 18:50 
   Bacterial Genomes and Reproduction 21:14 
    Bacterial Genomes 21:21 
    Reproduction of Bacteria 22:13 
    Transformation 23:26 
    Vector 24:34 
    Competent 25:15 
   Conjugation 25:53 
    Conjugation: F+ and R Plasmids 25:55 
   Example 1: Species 29:41 
   Example 2: Bacteria and Exchange of Genetic Material 32:31 
   Example 3: Ways in Which Bacteria are Beneficial to Other Organisms 33:48 
   Example 4: Domain Bacteria vs. Domain Archaea 34:53 
  Protists 1:18:48
   Intro 0:00 
   Classification of Protists 0:08 
    Classification of Protists 0:09 
    'Plant-like' Protists 2:06 
    'Animal-like' Protists 3:19 
    'Fungus-like' Protists 3:57 
   Serial Endosymbiosis Theory 5:15 
    Endosymbiosis Theory 5:33 
    Photosynthetic Protists 7:33 
   Life Cycles with a Diploid Adult 13:35 
    Life Cycles with a Diploid Adult 13:56 
   Life Cycles with a Haploid Adult 15:31 
    Life Cycles with a Haploid Adult 15:32 
   Alternation of Generations 17:22 
    Alternation of Generations: Multicellular Haploid & Diploid Phase 17:23 
   Plant-Like Protists 19:58 
    Euglenids 20:43 
    Dino Flagellates 22:57 
    Diatoms 26:07 
   Plant-Like Protists 28:44 
    Golden Algae 28:45 
    Brown Algeas 30:05 
   Plant-Like Protists 33:38 
    Red Algae 33:39 
    Green Algae 35:36 
    Green Algae: Chlamydomonus 37:44 
   Animal-Like Protists 40:04 
    Animal-Like Protists Overview 40:05 
    Sporozoans (Apicomplexans) 40:32 
    Alveolates 41:41 
    Sporozoans (Apicomplexans): Plasmodium & Malaria 42:59 
   Animal-Like Protists 48:44 
    Kinetoplastids 48:50 
    Example of Kinetoplastids: Trypanosomes & African Sleeping Sickness 49:30 
    Ciliate 50:42 
   Conjugation 53:16 
    Conjugation 53:26 
   Animal-Like Protists 57:08 
    Parabasilids 57:31 
    Diplomonads 59:06 
    Rhizopods 60:13 
    Forams 62:25 
    Radiolarians 63:28 
   Fungus-Like Protists 64:25 
    Fungus-Like Protists Overview 64:26 
    Slime Molds 65:15 
    Cellular Slime Molds: Feeding Stage 69:21 
    Oomycetes 71:15 
   Example 1: Alternation of Generations and Sexual Life Cycles 73:05 
   Example 2: Match Protists to Their Descriptions 74:12 
   Example 3: Three Structures that Protists Use for Motility 76:22 
   Example 4: Paramecium 77:04 
  Fungi 35:24
   Intro 0:00 
   Introduction to Fungi 0:09 
    Introduction to Fungi 0:10 
    Mycologist 0:34 
    Examples of Fungi 0:45 
    Hyphae, Mycelia, Chitin, and Coencytic Fungi 2:26 
    Ancestral Protists 5:00 
   Role of Fungi in the Environment 5:35 
    Fungi as Decomposers 5:36 
    Mycorrrhiza 6:19 
    Lichen 8:52 
   Life Cycle of Fungi 11:32 
    Asexual Reproduction 11:33 
    Sexual Reproduction & Dikaryotic Cell 13:16 
   Chytridiomycota 18:12 
    Phylum Chytridiomycota 18:17 
    Zoospores 18:50 
   Zygomycota 19:07 
    Coenocytic & Zygomycota Life Cycle 19:08 
   Basidiomycota 24:27 
    Basidiomycota Overview 24:28 
    Basidiomycota Life Cycle 26:11 
   Ascomycota 28:00 
    Ascomycota Overview 28:01 
    Ascomycota Reproduction 28:50 
   Example 1: Fungi Fill in the Blank 31:02 
   Example 2: Name Two Roles Played by Fungi in the Environment 32:09 
   Example 3: Difference Between Diploid Cell and Dikaryon Cell 33:42 
   Example 4: Phylum of Fungi, Flagellated Spore, Coencytic 34:36 
  Invertebrates 1:03:03
   Intro 0:00 
   Porifera (Sponges) 0:33 
    Chordata 0:56 
    Porifera (Sponges): Sessile, Layers, Aceolomates, and Filter Feeders 1:24 
    Amoebocytes Cell 4:47 
    Choanocytes Cell 5:56 
    Sexual Reproduction 6:28 
   Cnidaria 8:05 
    Cnidaria Overview 8:06 
    Polyp & Medusa: Gastrovasular Cavity 8:29 
    Cnidocytes 9:42 
    Anthozoa 10:40 
    Cubozoa 11:23 
    Hydrozoa 11:53 
    Scyphoza 13:25 
   Platyhelminthes (Flatworms) 13:58 
    Flatworms: Tribloblastic, Bilateral Symmetry, and Cephalization 13:59 
    GI System 15:33 
    Excretory System 16:07 
    Nervous System 17:00 
    Turbellarians 17:36 
    Trematodes 18:42 
    Monageneans 21:32 
    Cestoda 21:55 
   Rotifera (Rotifers) 23:45 
    Rotifers: Digestive Tract, Pseudocoelem, and Stuctures 23:46 
    Reproduction: Parthenogenesis 25:33 
   Nematoda (Roundworms) 26:44 
    Nematoda (Roundworms) 26:45 
    Parasites: Pinworms & Hookworms 27:26 
   Annelida 28:36 
    Annelida Overview 28:37 
    Open Circulatory 29:21 
    Closed Circulatory 30:18 
    Nervous System 31:19 
    Excretory System 31:43 
    Oligochaete 32:07 
    Leeches 33:22 
    Polychaetes 34:42 
   Mollusca 35:26 
    Mollusca Features 35:27 
    Major Part 1: Visceral Mass 36:21 
    Major Part 2: Head-foot Region 36:49 
    Major Part 3: Mantle 37:13 
    Radula 37:49 
    Circulatory, Reproductive, Excretory, and Nervous System 38:14 
   Major Classes of Molluscs 39:12 
    Gastropoda 39:17 
    Polyplacophora 40:15 
    Bivales 40:41 
    Cephalopods 41:42 
   Arthropoda 43:35 
    Arthropoda Overview 43:36 
    Segmented Bodies 44:14 
    Exoskeleton 44:52 
    Jointed Appendages 45:28 
    Hemolyph, Excretory & Respiratory System 45:41 
    Myriapoda & Centipedes 47:15 
    Cheliceriforms 48:20 
    Crustcea 49:31 
    Herapoda 50:03 
   Echinodermata 52:59 
    Echinodermata 53:00 
    Watrer Vascular System 54:20 
   Selected Characteristics of Invertebrates 57:11 
    Selected Characteristics of Invertebrates 57:12 
   Example 1: Phylum Description 58:43 
   Example 2: Complex Animals 59:50 
   Example 3: Match Organisms to the Correct Phylum 61:03 
   Example 4: Phylum Arthropoda 62:01 
  Vertebrates 1:00:07
   Intro 0:00 
   Phylum Chordata 0:06 
    Chordates Overview 0:07 
    Notochord and Dorsal Hollow Nerve Chord 1:24 
    Pharyngeal Clefts, Arches, and Post-anal Tail 3:41 
   Invertebrate Chordates 6:48 
    Lancelets 7:13 
    Tunicates 8:02 
    Hagfishes: Craniates 8:55 
   Vertebrate Chordates 10:41 
    Veterbrates Overview 10:42 
    Lampreys 11:00 
    Gnathostomes 12:20 
    Six Major Classes of Vertebrates 12:53 
   chondrichthyes 14:23 
    Chondrichthyes Overview 14:24 
    Ectothermic and Endothermic 14:42 
    Sharks: Lateral Line System, Neuromastsn, and Gills 15:27 
    Oviparous and Viviparous 17:23 
   Osteichthyes (Bony Fishes) 18:12 
    Osteichythes (Bony Fishes) Overview 18:13 
    Operculum 19:05 
    Swim Bladder 19:53 
    Ray-Finned Fishes 20:34 
    Lobe-Finned Fishes 20:58 
   Tetrapods 22:36 
    Tetrapods: Definition and Examples 22:37 
   Amphibians 23:53 
    Amphibians Overview 23:54 
    Order Urodela 25:51 
    Order Apoda 27:03 
    Order Anura 27:55 
   Reptiles 30:19 
    Reptiles Overview 30:20 
    Amniotes 30:37 
    Examples of Reptiles 32:46 
    Reptiles: Ectotherms, Gas Exchange, and Heart 33:40 
   Orders of Reptiles 34:17 
    Sphenodontia, Squamata, Testudines, and Crocodilia 34:21 
   Birds 36:09 
    Birds and Dinosaurs 36:18 
    Theropods 38:00 
    Birds: High Metabolism, Respiratory System, Lungs, and Heart 39:04 
    Birds: Endothermic, Bones, and Feathers 40:15 
   Mammals 42:33 
    Mammals Overview 42:35 
    Diaphragm and Heart 42:57 
    Diphydont 43:44 
    Synapsids 44:41 
   Monotremes 46:36 
    Monotremes 46:37 
   Marsupials 47:12 
    Marsupials: Definition and Examples 47:16 
    Convergent Evolution 48:09 
   Eutherians (Placental Mammals) 49:42 
    Placenta 49:43 
    Order Carnivora 50:48 
    Order Raodentia 51:00 
    Order Cetaceans 51:14 
   Primates 51:41 
    Primates Overview 51:42 
    Nails and Hands 51:58 
    Vision 52:51 
    Social Care for Young 53:28 
    Brain 53:43 
   Example 1: Distinguishing Characteristics of Chordates 54:33 
   Example 2: Match Description to Correct Term 55:56 
   Example 3: Bird's Anatomy 57:38 
   Example 4: Vertebrate Animal, Marine Environment, and Ectothermic 59:14 
IX. Plants
  Seedless Plants 34:31
   Intro 0:00 
   Origin and Classification of Plants 0:06 
    Origin and Classification of Plants 0:07 
    Non-Vascular vs. Vascular Plants 1:29 
    Seedless Vascular & Seed Plants 2:28 
    Angiosperms & Gymnosperms 2:50 
   Alternation of Generations 3:54 
    Alternation of Generations 3:55 
   Bryophytes 7:58 
    Overview of Bryrophytes 7:59 
    Example: Moss Gametophyte 9:29 
    Example: Moss Sporophyte 9:50 
   Moss Life Cycle 10:12 
    Moss Life Cycle 10:13 
   Seedless Vascular Plants 13:23 
    Vascular Structures: Cell Walls, and Lignin 13:24 
    Homosporous 17:11 
    Heterosporous 17:48 
   Adaptations to Life on land 21:10 
    Adaptation 1: Cell Walls 21:38 
    Adaptation 2: Vascular Plants 21:59 
    Adaptation 3 : Xylem & Phloem 22:31 
    Adaptation 4: Seeds 23:07 
    Adaptation 5: Pollen 23:35 
    Adaptation 6: Stomata 24:45 
    Adaptation 7: Reduced Gametophyte Generation 25:32 
   Example 1: Bryophytes 26:39 
   Example 2: Sporangium, Lignin, Gametophyte, and Antheridium 28:34 
   Example 3: Adaptations to Life on Land 29:47 
   Example 4: Life Cycle of Plant 32:06 
  Plant Structure 1:01:21
   Intro 0:00 
   Plant Tissue 0:05 
    Dermal Tissue 0:15 
    Vascular Tissue 0:39 
    Ground Tissue 1:31 
   Cell Types in Plants 2:14 
    Parenchyma Cells 2:24 
    Collenchyma Cells 3:21 
    Sclerenchyma Cells 3:59 
   Xylem 5:04 
    Xylem: Tracheids and Vessel Elements 6:12 
    Gymnosperms vs. Angiosperms 7:53 
   Phloem 8:37 
    Phloem: Structures and Function 8:38 
    Sieve-Tube Elements 8:45 
    Companion Cells & Sieve Plates 9:11 
   Roots 10:08 
    Taproots & Fibrous 10:09 
    Aerial Roots & Prop Roots 11:41 
    Structures and Functions of Root: Dicot & Monocot 13:00 
    Pericyle 16:57 
   The Nitrogen Cylce 18:05 
    The Nitrogen Cycle 18:06 
   Mycorrhizae 24:20 
    Mycorrhizae 24:23 
    Ectomycorrhiza 26:03 
    Endomycorrhiza 26:25 
   Stems 26:53 
    Stems 26:54 
    Vascular Bundles of Monocots and Dicots 28:18 
   Leaves 29:48 
    Blade & Petiole 30:13 
    Upper Epidermis, Lower Epidermis & Cuticle 30:39 
    Ground Tissue, Palisade Mesophyll, Spongy Mesophyll 31:35 
    Stomata Pores 33:23 
    Guard Cells 34:15 
    Vascular Tissues: Vascular Bundles and Bundle Sheath 34:46 
   Stomata 36:12 
    Stomata & Gas Exchange 36:16 
    Guard Cells, Flaccid, and Turgid 36:43 
    Water Potential 38:03 
    Factors for Opening Stoma 40:35 
    Factors Causing Stoma to Close 42:44 
   Overview of Plant Growth 44:23 
    Overview of Plant Growth 44:24 
   Primary Plant Growth 46:19 
    Apical Meristems 46:25 
    Root Growth: Zone of Cell Division 46:44 
    Root Growth: Zone of Cell Elongation 47:35 
    Root Growth: Zone of Cell Differentiation 47:55 
    Stem Growth: Leaf Primodia 48:16 
   Secondary Plant Growth 48:48 
    Secondary Plant Growth Overview 48:59 
    Vascular Cambium: Secondary Xylem and Phloem 49:38 
    Cork Cambium: Periderm and Lenticels 51:10 
   Example 1: Leaf Structures 53:30 
   Example 2: List Three Types of Plant Tissue and their Major Functions 55:13 
   Example 3: What are Two Factors that Stimulate the Opening or Closing of Stomata? 56:58 
   Example 4: Plant Growth 59:18 
  Gymnosperms and Angiosperms 1:01:51
   Intro 0:00 
   Seed Plants 0:22 
    Sporopollenin 0:58 
    Heterosporous: Megasporangia 2:49 
    Heterosporous: Microsporangia 3:19 
   Gymnosperms 5:20 
    Gymnosperms 5:21 
   Gymnosperm Life Cycle 7:30 
    Gymnosperm Life Cycle 7:31 
   Flower Structure 15:15 
    Petal & Pollination 15:48 
    Sepal 16:52 
    Stamen: Anther, Filament 17:05 
    Pistill: Stigma, Style, Ovule, Ovary 17:55 
    Complete Flowers 20:14 
   Angiosperm Gametophyte Formation 20:47 
    Male Gametophyte: Microsporocytes, Microsporangia & Meiosis 20:57 
    Female Gametophyte: Megasporocytes & Meiosis 24:22 
   Double Fertilization 25:43 
    Double Fertilization: Pollen Tube and Endosperm 25:44 
   Angiosperm Life Cycle 29:43 
    Angiosperm Life Cycle 29:48 
   Seed Structure and Development 33:37 
    Seed Structure and Development 33:38 
   Pollen Dispersal 37:53 
    Abiotic 38:28 
    Biotic 39:30 
   Prevention of Self-Pollination 40:48 
    Mechanism 1 41:08 
    Mechanism 2: Dioecious 41:37 
    Mechanism 3 42:32 
    Self-Incompatibility 43:08 
    Gametophytic Self-Incompatibility 44:38 
    Sporophytic Self-Incompatibility 46:50 
   Asexual Reproduction 48:33 
    Asexual Reproduction & Vegetative Propagation 48:34 
    Graftiry 50:19 
   Monocots and Dicots 51:34 
    Monocots vs.Dicots 51:35 
   Example 1: Double Fertilization 54:43 
   Example 2: Mechanisms of Self-Fertilization 56:02 
   Example 3: Monocots vs. Dicots 58:11 
   Example 4: Flower Structures 60:11 
  Transport of Nutrients and Water in Plants 40:30
   Intro 0:00 
   Review of Plant Cell Structure 0:14 
    Cell Wall, Plasma Membrane, Middle lamella, and Cytoplasm 0:15 
    Plasmodesmata, Chloroplasts, and Central Vacuole 3:24 
   Water Absorption by Plants 4:28 
    Root Hairs and Mycorrhizae 4:30 
    Osmosis and Water Potential 5:41 
   Apoplast and Symplast Pathways 10:01 
    Apoplast and Symplast Pathways 10:02 
   Xylem Structure 21:02 
    Tracheids and Vessel Elements 21:03 
   Bulk Flow 23:00 
    Transpiration 23:26 
    Cohesion 25:10 
    Adhesion 26:10 
   Phloem Structure 27:25 
    Pholem 27:26 
    Sieve-Tube Elements 27:48 
    Companion Cells 28:17 
   Translocation 28:42 
    Sugar Source and Sugar Sink Overview 28:43 
    Example of Sugar Sink 30:01 
    Example of Sugar Source 30:48 
   Example 1: Match the Following Terms to their Description 33:17 
   Example 2: Water Potential 34:58 
   Example 3: Bulk Flow 36:56 
   Example 4: Sugar Sink and Sugar Source 38:33 
  Plant Hormones and Tropisms 48:10
   Intro 0:00 
   Plant Cell Signaling 0:17 
    Plant Cell Signaling Overview 0:18 
    Step 1: Reception 1:03 
    Step 2: Transduction 2:32 
    Step 3: Response 2:58 
    Second Messengers 3:52 
    Protein Kinases 4:42 
   Auxins 6:14 
    Auxins 6:18 
    Indoleacetic Acid (IAA) 7:23 
   Cytokinins and Gibberellins 11:10 
    Cytokinins: Apical Dominance & Delay of Aging 11:16 
    Gibberellins: 'Bolting' 13:51 
   Ethylene 15:33 
    Ethylene 15:34 
    Positive Feedback 15:46 
    Leaf Abscission 18:05 
    Mechanical Stress: Triple Response 19:36 
   Abscisic Acid 21:10 
    Abscisic Acid 21:15 
   Tropisms 23:11 
    Positive Tropism 23:50 
    Negative Tropism 24:07 
    Statoliths 26:21 
   Phytochromes and Photoperiodism 27:48 
    Phytochromes: PR and PFR 27:56 
    Circadian Rhythms 32:06 
    Photoperiod 33:13 
    Photoperiodism 33:38 
    Gerner & Allard 34:35 
    Short-Day Plant 35:22 
    Long-Day Plant 37:00 
   Example 1: Plant Hormones 41:28 
   Example 2: Cytokinins & Gibberellins 43:00 
   Example 3: Match the Following Terms to their Description 44:46 
   Example 4: Hormones & Cell Response 46:14 
X. Animal Structure and Physiology
  The Respiratory System 48:14
   Intro 0:00 
   Gas Exchange in Animals 0:17 
    Respiration 0:19 
    Ventilation 1:09 
    Characteristics of Respiratory Surfaces 1:53 
   Gas Exchange in Aquatic Animals 3:05 
    Simple Aquatic Animals 3:06 
    Gills & Gas Exchange in Complex Aquatic Animals 3:49 
    Countercurrent Exchange 6:12 
   Gas Exchange in Terrestrial Animals 13:46 
    Earthworms 14:07 
    Internal Respiratory 15:35 
    Insects 16:55 
    Circulatory Fluid 19:06 
   The Human Respiratory System 21:21 
    Nasal Cavity, Pharynx, Larynx, and Epiglottis 21:50 
    Bronchus, Bronchiole, Trachea, and Alveoli 23:38 
    Pulmonary Surfactants 28:05 
    Circulatory System: Hemoglobin 29:13 
   Ventilation 30:28 
    Inspiration/Expiration: Diaphragm, Thorax, and Abdomen 30:33 
    Breathing Control Center: Regulation of pH 34:34 
   Example 1: Tracheal System in Insects 39:08 
   Example 2: Countercurrent Exchange 42:09 
   Example 3: Respiratory System 44:10 
   Example 4: Diaphragm, Ventilation, pH, and Regulation of Breathing 45:31 
  The Circulatory System 1:20:21
   Intro 0:00 
   Types of Circulatory Systems 0:07 
    Circulatory System Overview 0:08 
    Open Circulatory System 3:19 
    Closed Circulatory System 5:58 
   Blood Vessels 7:51 
    Arteries 8:16 
    Veins 10:01 
    Capillaries 12:35 
   Vasoconstriction and Vasodilation 13:10 
    Vasoconstriction 13:11 
    Vasodilation 13:47 
    Thermoregulation 14:32 
   Blood 15:53 
    Plasma 15:54 
    Cellular Component: Red Blood Cells 17:41 
    Cellular Component: White Blood Cells 20:18 
    Platelets 21:14 
    Blood Types 21:35 
   Clotting 27:04 
    Blood, Fibrin, and Clotting 27:05 
    Hemophilia 30:26 
   The Heart 31:09 
    Structures and Functions of the Heart 31:19 
   Pulmonary and Systemic Circulation 40:20 
    Double Circuit: Pulmonary Circuit and Systemic Circuit 40:21 
   The Cardiac Cycle 42:35 
    The Cardiac Cycle 42:36 
    Autonomic Nervous System 50:00 
   Hemoglobin 51:25 
    Hemoglobin & Hemocyanin 51:26 
   Oxygen-Hemoglobin Dissociation Curve 55:30 
    Oxygen-Hemoglobin Dissociation Curve 55:44 
   Transport of Carbon Dioxide 66:31 
    Transport of Carbon Dioxide 66:37 
   Example 1: Pathway of Blood 72:48 
   Example 2: Oxygenated Blood, Pacemaker, and Clotting 75:24 
   Example 3: Vasodilation and Vasoconstriction 76:19 
   Example 4: Oxygen-Hemoglobin Dissociation Curve 78:13 
  The Digestive System 56:11
   Intro 0:00 
   Introduction to Digestion 0:07 
    Digestive Process 0:08 
    Intracellular Digestion 0:45 
    Extracellular Digestion 1:44 
   Types of Digestive Tracts 2:08 
    Gastrovascular Cavity 2:09 
    Complete Gastrointestinal Tract (Alimentary Canal) 3:54 
    'Crop' 4:43 
   The Human Digestive System 5:41 
    Structures of the Human Digestive System 5:47 
   The Oral Cavity and Esophagus 7:47 
    Mechanical & Chemical Digestion 7:48 
    Salivary Glands 8:55 
    Pharynx and Epigloltis 9:43 
    Peristalsis 11:35 
   The Stomach 12:57 
    Lower Esophageal Sphincter 13:00 
    Gastric Gland, Parietal Cells, and Pepsin 14:32 
    Mucus Cell 15:48 
    Chyme & Pyloric Sphincter 17:32 
   The Pancreas 18:31 
    Endocrine and Exocrine 19:03 
    Amylase 20:05 
    Proteases 20:51 
    Lipases 22:20 
   The Liver 23:08 
    The Liver & Production of Bile 23:09 
   The Small Intestine 24:37 
    The Small Intestine 24:38 
    Duodenum 27:44 
    Intestinal Enzymes 28:41 
   Digestive Enzyme 33:30 
    Site of Production: Mouth 33:43 
    Site of Production: Stomach 34:03 
    Site of Production: Pancreas 34:16 
    Site of Production: Small Intestine 36:18 
   Absorption of Nutrients 37:51 
    Absorption of Nutrients: Jejunum and Ileum 37:52 
   The Large Intestine 44:52 
    The Large Intestine: Colon, Cecum, and Rectum 44:53 
   Regulation of Digestion by Hormones 46:55 
    Gastrin 47:21 
    Secretin 47:50 
    Cholecystokinin (CCK) 48:00 
   Example 1: Intestinal Cell, Bile, and Digestion of Fats 48:29 
   Example 2: Matching 51:06 
   Example 3: Digestion and Absorption of Starch 52:18 
   Example 4: Large Intestine and Gastric Fluids 54:52 
  The Excretory System 1:12:14
   Intro 0:00 
   Nitrogenous Wastes 0:08 
    Nitrogenous Wastes Overview 0:09 
    NH3 0:39 
    Urea 2:43 
    Uric Acid 3:31 
   Osmoregulation 4:56 
    Osmoregulation 5:05 
    Saltwater Fish vs. Freshwater Fish 8:58 
   Types of Excretory Systems 13:42 
    Protonephridia 13:50 
    Metanephridia 16:15 
    Malpighian Tubule 19:05 
   The Human Excretory System 20:45 
    Kidney, Ureter, bladder, Urethra, Medula, and Cortex 20:53 
   Filtration, Reabsorption and Secretion 22:53 
    Filtration 22:54 
    Reabsorption 24:16 
    Secretion 25:20 
   The Nephron 26:23 
    The Nephron 26:24 
   The Nephron, cont. 41:45 
    Descending Loop of Henle 41:46 
    Ascending Loop of Henle 45:45 
   Antidiuretic Hormone 54:30 
    Antidiuretic Hormone (ADH) 54:31 
   Aldosterone 58:58 
    Aldosterone 58:59 
   Example 1: Nephron of an Aquatic Mammal 64:21 
   Example 2: Uric Acid & Saltwater Fish 66:36 
   Example 3: Nephron 69:14 
   Example 4: Gastrointestinal Infection 70:41 
  The Endocrine System 51:12
   Intro 0:00 
   The Endocrine System Overview 0:07 
    Thyroid 0:08 
    Exocrine 1:56 
    Pancreas 2:44 
    Paracrine Signaling 4:06 
    Pheromones 5:15 
   Mechanisms of Hormone Action 6:06 
    Reception, Transduction, and Response 7:06 
    Classes of Hormone 10:05 
    Negative Feedback: Testosterone Example 12:16 
   The Pancreas 15:11 
    The Pancreas & islets of Langerhan 15:12 
    Insulin 16:02 
    Glucagon 17:28 
   The Anterior Pituitary 19:25 
    Thyroid Stimulating Hormone 20:24 
    Adrenocorticotropic Hormone 21:16 
    Follide Stimulating Hormone 22:04 
    Luteinizing Hormone 22:45 
    Growth Hormone 23:45 
    Prolactin 24:24 
    Melanocyte Stimulating Hormone 24:55 
   The Hypothalamus and Posterior Pituitary 25:45 
    Hypothalamus, Oxytocin, Antidiuretic Hormone (ADH), and Posterior Pituitary 25:46 
   The Adrenal Glands 31:20 
    Adrenal Cortex 31:56 
    Adrenal Medulla 34:29 
   The Thyroid 35:54 
    Thyroxine 36:09 
    Calcitonin 40:27 
   The Parathyroids 41:44 
    Parathyroids Hormone (PTH) 41:45 
   The Ovaries and Testes 43:32 
    Estrogen, Progesterone, and Testosterone 43:33 
   Example 1: Match the Following Hormones with their Descriptions 45:38 
   Example 2: Pancreas, Endocrine Organ & Exocrine Organ 47:06 
   Example 3: Insulin and Glucagon 48:28 
   Example 4: Increased Level of Cortisol in Blood 50:25 
  The Nervous System 1:10:38
   Intro 0:00 
   Types of Nervous Systems 0:28 
    Nerve Net 0:37 
    Flatworm 1:07 
    Cephalization 1:52 
    Arthropods 2:44 
    Echinoderms 3:11 
   Nervous System Organization 3:40 
    Nervous System Organization Overview 3:41 
    Automatic Nervous System: Sympathetic & Parasympathetic 4:42 
   Neuron Structure 6:57 
    Cell Body & Dendrites 7:16 
    Axon & Axon Hillock 8:20 
    Synaptic Terminals, Mylenin, and Nodes of Ranvier 9:01 
   Pre-synaptic and Post-synaptic Cells 10:16 
    Pre-synaptic Cells 10:17 
    Post-synaptic Cells 11:05 
   Types of Neurons 11:50 
    Sensory Neurons 11:54 
    Motor Neurons 13:12 
    Interneurons 14:24 
   Resting Potential 15:14 
    Membrane Potential 15:25 
    Resting Potential: Chemical Gradient 16:06 
    Resting Potential: Electrical Gradient 19:18 
   Gated Ion Channels 24:40 
    Voltage-Gated & Ligand-Gated Ion Channels 24:48 
   Action Potential 30:09 
    Action Potential Overview 30:10 
    Step 1 32:07 
    Step 2 32:17 
    Step 3 33:12 
    Step 4 35:14 
    Step 5 36:39 
   Action Potential Transmission 39:04 
    Action Potential Transmission 39:05 
    Speed of Conduction 41:19 
    Saltatory Conduction 42:58 
   The Synapse 44:17 
    The Synapse: Presynaptic & Postsynaptic Cell 44:31 
    Examples of Neurotransmitters 50:05 
   Brain Structure 51:57 
    Meniges 52:19 
    Cerebrum 52:56 
    Corpus Callosum 53:13 
    Gray & White Matter 53:38 
    Cerebral Lobes 55:35 
    Cerebellum 56:00 
    Brainstem 56:30 
    Medulla 56:51 
    Pons 57:22 
    Midbrain 57:55 
    Thalamus 58:25 
    Hypothalamus 58:58 
    Ventricles 59:51 
   The Spinal Cord 60:29 
    Sensory Stimuli 60:30 
    Reflex Arc 61:41 
   Example 1: Automatic Nervous System 64:38 
   Example 2: Synaptic Terminal and the Release of Neurotransmitters 66:22 
   Example 3: Volted-Gated Ion Channels 68:00 
   Example 4: Neuron Structure 69:26 
  Musculoskeletal System 39:29
   Intro 0:00 
   Skeletal System Types and Function 0:30 
    Skeletal System 0:31 
    Exoskeleton 1:34 
    Endoskeleton 2:32 
   Skeletal System Components 2:55 
    Bone 3:06 
    Cartilage 5:04 
    Tendons 6:18 
    Ligaments 6:34 
   Skeletal Muscle 6:52 
    Skeletal Muscle 7:24 
    Sarcomere 9:50 
   The Sliding Filament Theory 13:12 
    The Sliding Filament Theory: Muscle Contraction 13:13 
   The Neuromuscular Junction 17:24 
    The Neuromuscular Junction: Motor Neuron & Muscle Fiber 17:26 
    Sarcolemma, Sarcoplasmic 21:54 
    Tropomyosin & Troponin 23:35 
   Summation and Tetanus 25:26 
    Single Twitch, Summation of Two Twitches, and Tetanus 25:27 
   Smooth Muscle 28:50 
    Smooth Muscle 28:58 
   Cardiac Muscle 30:40 
    Cardiac Muscle 30:42 
   Summary of Muscle Types 32:07 
    Summary of Muscle Types 32:08 
   Example 1: Contraction and Skeletal Muscle 33:15 
   Example 2: Skeletal Muscle and Smooth Muscle 36:23 
   Example 3: Muscle Contraction, Bone, and Nonvascularized Connective Tissue 37:31 
   Example 4: Sarcomere 38:17 
  The Immune System 1:24:28
   Intro 0:00 
   The Lymphatic System 0:16 
    The Lymphatic System Overview 0:17 
    Function 1 1:23 
    Function 2 2:27 
   Barrier Defenses 3:41 
    Nonspecific vs. Specific Immune Defenses 3:42 
    Barrier Defenses 5:12 
   Nonspecific Cellular Defenses 7:50 
    Nonspecific Cellular Defenses Overview 7:53 
    Phagocytes 9:29 
    Neutrophils 11:43 
    Macrophages 12:15 
    Natural Killer Cells 12:55 
    Inflammatory Response 14:19 
    Complement 18:16 
    Interferons 18:40 
   Specific Defenses - Acquired Immunity 20:12 
    T lymphocytes and B lymphocytes 20:13 
   B Cells 23:35 
    B Cells & Humoral Immunity 23:41 
   Clonal Selection 29:50 
    Clonal Selection 29:51 
    Primary Immune Response 34:28 
    Secondary Immune Response 35:31 
    Cytotoxic T Cells 38:41 
    Helper T Cells 39:20 
   Major Histocompatibility Complex Molecules 40:44 
    Major Histocompatibility Complex Molecules 40:55 
   Helper T Cells 52:36 
    Helper T Cells 52:37 
   Mechanisms of Antibody Action 59:00 
    Mechanisms of Antibody Action 59:01 
    Opsonization 60:01 
    Complement System 61:57 
   Classes of Antibodies 62:45 
    IgM 63:01 
    IgA 63:17 
    IgG 63:53 
    IgE 64:10 
   Passive and Active Immunity 65:00 
    Passive Immunity 65:01 
    Active Immunity 67:49 
   Recognition of Self and Non-Self 69:32 
    Recognition of Self and Non-Self 69:33 
    Self-Tolerance & Autoimmune Diseases 70:50 
   Immunodeficiency 73:27 
    Immunodeficiency 73:28 
    Chemotherapy 73:56 
    AID 74:27 
   Example 1: Match the Following Terms with their Descriptions 75:26 
   Example 2: Three Components of Non-specific Immunity 77:59 
   Example 3: Immunodeficient 81:19 
   Example 4: Self-tolerance and Autoimmune Diseases 83:07 
XI. Animal Reproduction and Development
  Reproduction 1:01:41
   Intro 0:00 
   Asexual Reproduction 0:17 
    Fragmentation 0:53 
    Fission 1:54 
    Parthenogenesis 2:38 
   Sexual Reproduction 4:00 
    Sexual Reproduction 4:01 
    Hermaphrodite 8:08 
   The Male Reproduction System 8:54 
    Seminiferous Tubules & Leydig Cells 8:55 
    Epididymis 9:48 
    Seminal Vesicle 11:19 
    Bulbourethral 12:37 
   The Female Reproductive System 13:25 
    Ovaries 13:28 
    Fallopian 14:50 
    Endometrium, Uterus, Cilia, and Cervix 15:03 
    Mammary Glands 16:44 
   Spermatogenesis 17:08 
    Spermatogenesis 17:09 
   Oogenesis 21:01 
    Oogenesis 21:02 
   The Menstrual Cycle 27:56 
    The Menstrual Cycle: Ovarian and Uterine Cycle 27:57 
   Summary of the Ovarian and Uterine Cycles 42:54 
    Ovarian 42:55 
    Uterine 44:51 
   Oxytocin and Prolactin 46:33 
    Oxytocin 46:34 
    Prolactin 47:00 
   Regulation of the Male Reproductive System 47:28 
    Hormones: GnRH, LH, FSH, and Testosterone 47:29 
   Fertilization 50:11 
    Fertilization 50:12 
    Structures of Egg 50:28 
    Acrosomal Reaction 51:36 
    Cortical Reaction 53:09 
   Example 1: List Three Differences between Spermatogenesis and oogenesis 55:36 
   Example 2: Match the Following Terms to their Descriptions 57:34 
   Example 3: Pregnancy and the Ovarian Cycle 58:44 
   Example 4: Hormone 60:43 
  Development 50:05
   Intro 0:00 
   Cleavage 0:31 
    Cleavage 0:32 
    Meroblastic 2:06 
    Holoblastic Cleavage 3:23 
    Protostomes 4:34 
    Deuterostomes 5:13 
    Totipotent 5:52 
   Blastula Formation 6:42 
    Blastula 6:46 
   Gastrula Formation 8:12 
    Deuterostomes 11:02 
    Protostome 11:44 
    Ectoderm 12:17 
    Mesoderm 12:55 
    Endoderm 13:40 
   Cytoplasmic Determinants 15:19 
    Cytoplasmic Determinants 15:23 
   The Bird Embryo 22:52 
    Cleavage 23:35 
    Blastoderm 23:55 
    Primitive Streak 25:38 
    Migration and Differentiation 27:09 
   Extraembryonic Membranes 28:33 
    Extraembryonic Membranes 28:34 
    Chorion 30:02 
    Yolk Sac 30:36 
    Allantois 31:04 
   The Mammalian Embryo 32:18 
    Cleavage 32:28 
    Blastocyst 32:44 
    Trophoblast 34:37 
    Following Implantation 35:48 
   Organogenesis 37:04 
    Organogenesis, Notochord and Neural Tube 37:05 
   Induction 40:15 
    Induction 40:39 
    Fate Mapping 41:40 
   Example 1: Processes and Stages of Embryological Development 42:49 
   Example 2: Transplanted Cells 44:33 
   Example 3: Germ Layer 46:41 
   Example 4: Extraembryonic Membranes 47:28 
XII. Animal Behavior
  Animal Behavior 47:48
   Intro 0:00 
   Introduction to Animal Behavior 0:05 
    Introduction to Animal Behavior 0:06 
    Ethology 1:04 
    Proximate Cause & Ultimate Cause 1:46 
   Fixed Action Pattern 3:07 
    Sign Stimulus 3:40 
    Releases and Example 3:55 
    Exploitation and Example 7:23 
   Learning 8:56 
    Habituation, Associative Learning, and Imprinting 8:57 
   Habituation 10:03 
    Habituation: Definition and Example 10:04 
   Associative Learning 11:47 
    Classical 12:19 
    Operant Conditioning 13:40 
    Positive & Negative Reinforcement 14:59 
    Positive & Negative Punishment 16:13 
    Extinction 17:28 
   Imprinting 17:47 
    Imprinting: Definition and Example 17:48 
   Social Behavior 20:12 
    Cooperation 20:38 
    Agonistic 21:37 
    Dorminance Heirarchies 23:23 
    Territoriality 24:08 
    Altruism 24:55 
   Communication 26:56 
    Communication 26:57 
   Mating 32:38 
    Mating Overview 32:40 
    Promiscuous 33:13 
    Monogamous 33:32 
    Polygamous 33:48 
    Intrasexual 34:22 
    Intersexual Selection 35:08 
   Foraging 36:08 
    Optimal Foraging Model 36:39 
    Foraging 37:47 
   Movement 39:12 
    Kinesis 39:20 
    Taxis 40:17 
    Migration 40:54 
   Lunar Cycles 42:02 
    Lunar Cycles 42:08 
   Example 1: Types of Conditioning 43:19 
   Example 2: Match the Following Terms to their Descriptions 44:12 
   Example 3: How is the Optimal Foraging Model Used to Explain Foraging Behavior 45:47 
   Example 4: Learning 46:54 
XIII. Ecology
  Biomes 58:49
   Intro 0:00 
   Ecology 0:08 
    Ecology 0:14 
    Environment 0:22 
    Integrates 1:41 
    Environment Impacts 2:20 
   Population and Distribution 3:20 
    Population 3:21 
    Range 4:50 
    Potential Range 5:10 
    Abiotic 5:46 
    Biotic 6:22 
   Climate 7:55 
    Temperature 8:40 
    Precipitation 10:00 
    Wind 10:37 
    Sunlight 10:54 
    Macroclimates & Microclimates 11:31 
   Other Abiotic Factors 12:20 
    Geography 12:28 
    Water 13:17 
    Soil and Rocks 13:48 
   Sunlight 14:42 
    Sunlight 14:43 
   Seasons 15:43 
    June Solstice, December Solstice, March Equinox, and September Equinox 15:44 
    Tropics 19:00 
    Seasonability 19:39 
   Wind and Weather Patterns 20:44 
    Vertical Circulation 20:51 
    Surface Wind Patterns 25:18 
   Local Climate Effects 26:51 
    Local Climate Effects 26:52 
   Terrestrial Biomes 30:04 
    Biome 30:05 
    Forest 31:02 
   Tropical Forest 32:00 
    Tropical Forest 32:01 
   Temperate Broadleaf Forest 32:55 
    Temperate Broadleaf Forest 32:56 
   Coniferous/Taiga Forest 34:10 
    Coniferous/Taiga Forest 34:11 
   Desert 36:05 
    Desert 36:06 
   Grassland 37:45 
    Grassland 37:46 
   Tundra 40:09 
    Tundra 40:10 
   Freshwater Biomes 42:25 
    Freshwater Biomes: Zones 42:27 
    Eutrophic Lakes 44:24 
    Oligotrophic Lakes 45:01 
    Lakes Turnover 46:03 
    Rivers 46:51 
    Wetlands 47:40 
    Estuary 48:11 
   Marine Biomes 48:45 
    Marine Biomes: Zones 48:46 
   Example 1: Diversity of Life 52:18 
   Example 2: Marine Biome 53:08 
   Example 3: Season 54:20 
   Example 4: Biotic vs. Abiotic 55:54 
  Population 41:16
   Intro 0:00 
   Population 0:07 
    Size 'N' 0:16 
    Density 0:41 
    Dispersion 1:01 
    Measure Population: Count Individuals, Sampling, and Proxymeasure 2:26 
   Mortality 7:29 
    Mortality and Survivorship 7:30 
   Age Structure Diagrams 11:52 
    Expanding with Rapid Growth, Expanding, and Stable 11:58 
   Population Growth 15:39 
    Biotic Potential & Exponential Growth 15:43 
   Logistic Population Growth 19:07 
    Carrying Capacity (K) 19:18 
    Limiting Factors 20:55 
   Logistic Model and Oscillation 22:55 
    Logistic Model and Oscillation 22:56 
   Changes to the Carrying Capacity 24:36 
    Changes to the Carrying Capacity 24:37 
   Growth Strategies 26:07 
    'r-selected' or 'r-strategist' 26:23 
    'K-selected' or 'K-strategist' 27:47 
   Human Population 30:15 
    Human Population and Exponential Growth 30:21 
   Case Study - Lynx and Hare 31:54 
    Case Study - Lynx and Hare 31:55 
   Example 1: Estimating Population Size 34:35 
   Example 2: Population Growth 36:45 
   Example 3: Carrying Capacity 38:17 
   Example 4: Types of Dispersion 40:15 
  Communities 1:06:26
   Intro 0:00 
   Community 0:07 
    Ecosystem 0:40 
    Interspecific Interactions 1:14 
   Competition 2:45 
    Competition Overview 2:46 
    Competitive Exclusion 3:57 
    Resource Partitioning 4:45 
    Character Displacement 6:22 
   Predation 7:46 
    Predation 7:47 
    True Predation 8:05 
    Grazing/ Herbivory 8:39 
   Predator Adaptation 10:13 
    Predator Strategies 10:22 
    Physical Features 11:02 
   Prey Adaptation 12:14 
    Prey Adaptation 12:23 
    Aposematic Coloration 13:35 
    Batesian Mimicry 14:32 
    Size 15:42 
   Parasitism 16:48 
    Symbiotic Relationship 16:54 
    Ectoparasites 18:31 
    Endoparasites 18:53 
    Hyperparisitism 19:21 
    Vector 20:08 
    Parasitoids 20:54 
   Mutualism 21:23 
    Resource - Resource mutualism 21:34 
    Service - Resource Mutualism 23:31 
    Service - Service Mutualism: Obligate & Facultative 24:23 
   Commensalism 26:01 
    Commensalism 26:03 
    Symbiosis 27:31 
   Trophic Structure 28:35 
    Producers & Consumers: Autotrophs & Heterotrophs 28:36 
   Food Chain 33:26 
    Producer & Consumers 33:38 
   Food Web 39:01 
    Food Web 39:06 
   Significant Species within Communities 41:42 
    Dominant Species 41:50 
    Keystone Species 42:44 
    Foundation Species 43:41 
   Community Dynamics and Disturbances 44:31 
    Disturbances 44:33 
    Duration 47:01 
    Areal Coverage 47:22 
    Frequency 47:48 
    Intensity 48:04 
    Intermediate Level of Disturbance 48:20 
   Ecological Succession 50:29 
    Primary and Secondary Ecological Succession 50:30 
   Example 1: Competition Situation & Outcome 57:18 
   Example 2: Food Chains 60:08 
   Example 3: Ecological Units 62:44 
   Example 4: Disturbances & Returning to the Original Climax Community 64:30 
  Energy and Ecosystems 57:42
   Intro 0:00 
   Ecosystem: Biotic & Abiotic Components 0:15 
    First Law of Thermodynamics & Energy Flow 0:40 
    Gross Primary Productivity (GPP) 3:52 
    Net Primary Productivity (NPP) 4:50 
   Biogeochemical Cycles 7:16 
    Law of Conservation of Mass & Biogeochemical Cycles 7:17 
   Water Cycle 10:55 
    Water Cycle 10:57 
   Carbon Cycle 17:52 
    Carbon Cycle 17:53 
   Nitrogen Cycle 22:40 
    Nitrogen Cycle 22:41 
   Phosphorous Cycle 29:34 
    Phosphorous Cycle 29:35 
   Climate Change 33:20 
    Climate Change 33:21 
   Eutrophication 39:38 
    Nitrogen 40:34 
    Phosphorous 41:29 
    Eutrophication 42:55 
   Example 1: Energy and Ecosystems 45:28 
   Example 2: Atmospheric CO2 48:44 
   Example 3: Nitrogen Cycle 51:22 
   Example 4: Conversion of a Forest near a Lake to Farmland 53:20 
XIV. Laboratory Review
  Laboratory Review 2:04:30
   Intro 0:00 
   Lab 1: Diffusion and Osmosis 0:09 
    Lab 1: Diffusion and Osmosis 0:10 
   Lab 1: Water Potential 11:55 
    Lab 1: Water Potential 11:56 
   Lab 2: Enzyme Catalysis 18:30 
    Lab 2: Enzyme Catalysis 18:31 
   Lab 3: Mitosis and Meiosis 27:40 
    Lab 3: Mitosis and Meiosis 27:41 
   Lab 3: Mitosis and Meiosis 31:50 
    Ascomycota Life Cycle 31:51 
   Lab 4: Plant Pigments and Photosynthesis 40:36 
    Lab 4: Plant Pigments and Photosynthesis 40:37 
   Lab 5: Cell Respiration 49:56 
    Lab 5: Cell Respiration 49:57 
   Lab 6: Molecular Biology 55:06 
    Lab 6: Molecular Biology & Transformation 1st Part 55:07 
   Lab 6: Molecular Biology 61:16 
    Lab 6: Molecular Biology 2nd Part 61:17 
   Lab 7: Genetics of Organisms 67:32 
    Lab 7: Genetics of Organisms 67:33 
   Lab 7: Chi-square Analysis 73:00 
    Lab 7: Chi-square Analysis 73:03 
   Lab 8: Population Genetics and Evolution 80:41 
    Lab 8: Population Genetics and Evolution 80:42 
   Lab 9: Transpiration 84:02 
    Lab 9: Transpiration 84:03 
   Lab 10: Physiology of the Circulatory System 91:05 
    Lab 10: Physiology of the Circulatory System 91:06 
   Lab 10: Temperature and Metabolism in Ectotherms 98:25 
    Lab 10: Temperature and Metabolism in Ectotherms 98:30 
   Lab 11: Animal Behavior 100:52 
    Lab 11: Animal Behavior 100:53 
   Lab 12: Dissolved Oxygen & Aquatic Primary Productivity 105:36 
    Lab 12: Dissolved Oxygen & Aquatic Primary Productivity 105:37 
   Lab 12: Primary Productivity 109:06 
    Lab 12: Primary Productivity 109:07 
   Example 1: Chi-square Analysis 116:31 
   Example 2: Mitosis 119:28 
   Example 3: Transpiration of Plants 120:27 
   Example 4: Population Genetic 121:16 
XV. The AP Biology Test
  Understanding the Basics 13:02
   Intro 0:00 
   AP Biology Structure 0:18 
    Section I 0:31 
    Section II 1:16 
   Scoring 2:04 
   The Four 'Big Ideas' 3:51 
    Process of Evolution 4:37 
    Biological Systems Utilize 4:44 
    Living Systems 4:55 
    Biological Systems Interact 5:03 
   Items to Bring to the Test 7:56 
   Test Taking Tips 9:53 
XVI. Practice Test (Barron's 4th Edition)
  AP Biology Practice Exam: Section I, Part A, Multiple Choice Questions 1-31 1:04:29
   Intro 0:00 
   AP Biology Practice Exam 0:14 
   Multiple Choice 1 0:40 
   Multiple Choice 2 2:27 
   Multiple Choice 3 4:30 
   Multiple Choice 4 6:43 
   Multiple Choice 5 9:27 
   Multiple Choice 6 11:32 
   Multiple Choice 7 12:54 
   Multiple Choice 8 14:42 
   Multiple Choice 9 17:06 
   Multiple Choice 10 18:42 
   Multiple Choice 11 20:49 
   Multiple Choice 12 23:23 
   Multiple Choice 13 26:20 
   Multiple Choice 14 27:52 
   Multiple Choice 15 28:44 
   Multiple Choice 16 33:07 
   Multiple Choice 17 35:31 
   Multiple Choice 18 39:43 
   Multiple Choice 19 40:37 
   Multiple Choice 20 42:47 
   Multiple Choice 21 45:58 
   Multiple Choice 22 49:49 
   Multiple Choice 23 53:44 
   Multiple Choice 24 55:12 
   Multiple Choice 25 55:59 
   Multiple Choice 26 56:50 
   Multiple Choice 27 58:08 
   Multiple Choice 28 59:54 
   Multiple Choice 29 61:36 
   Multiple Choice 30 62:31 
   Multiple Choice 31 63:50 
  AP Biology Practice Exam: Section I, Part A, Multiple Choice Questions 32-63 50:44
   Intro 0:00 
   AP Biology Practice Exam 0:14 
   Multiple Choice 32 0:27 
   Multiple Choice 33 4:14 
   Multiple Choice 34 5:12 
   Multiple Choice 35 6:51 
   Multiple Choice 36 10:46 
   Multiple Choice 37 11:27 
   Multiple Choice 38 12:17 
   Multiple Choice 39 13:49 
   Multiple Choice 40 17:02 
   Multiple Choice 41 18:27 
   Multiple Choice 42 19:35 
   Multiple Choice 43 21:10 
   Multiple Choice 44 23:35 
   Multiple Choice 45 25:00 
   Multiple Choice 46 26:20 
   Multiple Choice 47 28:40 
   Multiple Choice 48 30:14 
   Multiple Choice 49 31:24 
   Multiple Choice 50 32:45 
   Multiple Choice 51 33:41 
   Multiple Choice 52 34:40 
   Multiple Choice 53 36:12 
   Multiple Choice 54 38:06 
   Multiple Choice 55 38:37 
   Multiple Choice 56 40:00 
   Multiple Choice 57 41:18 
   Multiple Choice 58 43:12 
   Multiple Choice 59 44:25 
   Multiple Choice 60 45:02 
   Multiple Choice 61 46:10 
   Multiple Choice 62 47:54 
   Multiple Choice 63 49:01 
  AP Biology Practice Exam: Section I, Part B, Grid In 21:52
   Intro 0:00 
   AP Biology Practice Exam 0:17 
   Grid In Question 1 0:29 
   Grid In Question 2 3:49 
   Grid In Question 3 11:04 
   Grid In Question 4 13:18 
   Grid In Question 5 17:01 
   Grid In Question 6 19:30 
  AP Biology Practice Exam: Section II, Long Free Response Questions 31:22
   Intro 0:00 
   AP Biology Practice Exam 0:18 
   Free Response 1 0:29 
   Free Response 2 20:47 
  AP Biology Practice Exam: Section II, Short Free Response Questions 24:41
   Intro 0:00 
   AP Biology Practice Exam 0:15 
   Free Response 3 0:26 
   Free Response 4 5:21 
   Free Response 5 8:25 
   Free Response 6 11:38 
   Free Response 7 14:48 
   Free Response 8 22:14