Browse Courses
Start learning today, and be successful in your academic & professional career. Start Today!
Loading video...
This is a quick preview of the lesson. For full access, please Log In or Sign up.
For more information, please see full course syllabus of AP Biology
  • Discussion

  • Study Guides

  • Download Lecture Slides

  • Table of Contents

  • Transcription

  • Related Books & Services

Bookmark and Share
Lecture Comments (15)

0 answers

Post by Rebecca Stevens on October 11, 2014

I'm not really clear on the osmosis example with the U shaped tube of water. I don't really understand why the water would move to the left side. Isn't the left side hypertonic?

1 answer

Last reply by: Dr Carleen Eaton
Thu Mar 27, 2014 11:53 AM

Post by Mayra Granados on March 13, 2014

Do the peripheral protein use polar amino acids to bind to the surface of a lipid bilayer?

1 answer

Last reply by: Dr Carleen Eaton
Wed Nov 6, 2013 1:15 AM

Post by Moynul Hussain on October 31, 2013

why isnt osmosis part of the passive transport group.

0 answers

Post by Ivon Nieto Ivon Nieto on October 8, 2012

I was wondering if the K goes back in the cell and if it does, how does it happens?

2 answers

Last reply by: Marcus Lind
Sun Apr 1, 2012 8:03 AM

Post by Marcus Lind on March 30, 2012


What are the structureclasses of transmembrane proteins?

In my textbook i found helices and beta-barrels.


1 answer

Last reply by: Dr Carleen Eaton
Mon Mar 19, 2012 3:51 PM

Post by alberto vargas on March 16, 2012

what happens when a hydrophbic substance has contact with water

1 answer

Last reply by: Dr Carleen Eaton
Mon Jan 24, 2011 10:51 PM

Post by Johnathan Merfeld on January 21, 2011

What is the advantage of Receptor Meditated Endocytosis versus the "normal" way in which the cell takes up liquid\soilds in?
Is this a way of allowing certain substances to pass through the phospholipid bylair faster? more easily? is it a way of perserving certain substances that the cell must use in order to create the vesicles in the case of "normal" endocytosis?

Cell Membranes and Transport

  • The fluid mosaic model describes the cell membrane as a phospholipid bilayer embedded with proteins.
  • Phospholipids are amphipathic; they have hydrophobic fatty acid tails and hydrophilic heads composed of a phosphate group and its attachments.
  • The cell membrane is selectively permeable. It is most permeable to small, nonpolar molecules and less permeable or impermeable to larger, nonpolar molecules and ions.
  • Passive transport does not require energy. Both simple diffusion and facilitated diffusion are methods of passive transport.
  • Osmosis is the diffusion of water down its concentration gradient.
  • Active transport requires energy in order to move a substance against its concentration gradient. Cotransport uses the energy of one substance moving down its concentration gradient to move a second substance against its concentration gradient.
  • Larger substances can enter the cell via endocytosis, in which the cell engulfs materials by pinching off a portion of the cell membrane to form a vesicle. Molecules may leave the cell via exocytosis.

Cell Membranes and Transport

Lecture Slides are screen-captured images of important points in the lecture. Students can download and print out these lecture slide images to do practice problems as well as take notes while watching the lecture.

Transcription: Cell Membranes and Transport

Welcome to

We are going to continue our discussion of cell structure and function by focusing on cell membranes and transport across cell membranes.0002

We will begin by talking about the structure of cell membranes.0012

Cell membranes are composed of a phospholipid bilayer embedded with proteins.0015

Right here is the chemical structure of a phospholipid, and phospholipids have a particular property of being amphipathic.0021

Amphipathic refers to the fact that they have one region that is hydrophobic and the other that is hydrophilic.0031

The fatty acid tails right here are hydrophobic.0044

They are attached to a hydrophilic head region composed of glycerol bonded to a phosphate group, which may in turn be bonded to another group.0060

Right here, the other group is choline, although it could be serine or another group.0080

This region is hydrophobic.0088

The phosphate in its attachment groups are hydrophilic. Therefore, this is an amphipathic molecule.0091

Because of this, phospholipids congregate into bilayers, and this allows them to sequester the fatty acid tail, which are hydrophobic from the water on the outside of the cell.0098

This is a typical phospholipid bilayer structure with a hydrophobic region on the inside and the hydrophilic heads pointing outwards exposed to either the cytoplasm or the extracellular space.0115

This particular phospholipid is called phosphatidylcholine, and that is named after the type of bonds that form it as well as this choline group out here.0142

You could also have another phosphoglycerol. It has a phosphate group in the glycerol, but again, it might be phosphatidylserine or another group.0152

As I mentioned, the phospholipid bilayer contains proteins, and actually the cell membrane can be up to half protein and then, the other half phospholipids.0166

This description of the cell membrane is known as the fluid mosaic model, and let's look first at the word mosaic.0177

Mosaic is referring to the fact that it is composed of a phospholipid bilayer embedded with proteins.0185

Here, this shows, as I mentioned, the hydrophilic head regions pointing out and the hydrophobic tail regions sequestered within the cell membrane.0190

There are two major types of plasma proteins, and those are peripheral proteins.0200

Peripheral proteins are loosely associated with either the outside of the cell...they are loosely associated with the membrane0205

either at the extracellular space - let's say that this is the extracellular side - and that this is the intracellular or the cytoplasmic side.0213

Peripheral proteins are associated with one of these sides, whereas, integral proteins are embedded within the cell membrane.0226

These proteins are also amphipathic. They also have a hydrophobic region and one or more hydrophilic regions.0238

As expected, the hydrophobic region of a protein is here, embedded in the area where the lipids, which are hydrophobic are also found.0245

And the hydrophilic regions can extend outside the cell either into the extracellular space or in the cytoplasmic space.0256

These proteins do not always traverse the entire membrane. They may actually just be partially embedded.0263

You could have a protein like this, which is sticking out into the cytoplasmic side, but it does not go all the way through.0269

Those proteins that do go all the way through from one side to the other are called transmembrane proteins.0274

Another important feature of cell membranes is that cholesterol is embedded among the lipid bilayer.0289

There will be cholesterol molecules in here, and they help the cell membrane to maintain its fluidity.0297

The cell membrane is not immobile. Everything does not just stay packed in there.0302

There is actually movement, but the movement is lateral.0307

Phospholipids can actually switch places.0310

They can move back and forth, and they can actually...this one might switch places with the one adjacent. The same thing can happen over here.0313

Rarely, a phospholipid from one layer will actually flip with one with the opposite layer. Mostly, the movement is lateral.0320

Movement within the cell membrane is mostly lateral, and this is also applies to proteins.0329

Some proteins have the ability to actually move around laterally within the lipid bilayer.0335

Although, others are actually fixed in place by the cytoskeleton, by elements of the cytoskeleton.0340

Again, this fluidity refers to the fact that these are not just stuck in place. Things can move around.0350

Now, how does cholesterol help to maintain this fluidity? Well, a couple of ways.0357

First of all, because these cholesterol molecules are wedged in here, they prevent the lipid, the fatty acid tails from packing together.0362

Instead of being packed together where they cannot move, there is a little bit of space in some of these regions, and that allows for this lateral movement.0374

In addition, cholesterol stabilizes the membrane by preventing it from solidifying at low temperatures.0381

And the overall consistency of the cell membrane is similar to oil, like a type of oil that you would cook with.0390

These membrane proteins play very important functions within the cell, and we are going to talk in detail about some of these functions.0400

But to give you an overview for right now, one function of membrane proteins is that they may be enzymes.0406

Since they extend into the cytoplasmic space or at least some of them do, they can actually catalyze reactions within the cell, so there may be enzymatic activity in this region.0418

That is one function. They can function as enzymes.0428

Second is to allow for adhesion to neighboring cells, and there are various structures such as tight junctions and gap junctions and desmosomes0431

that we are going to talk about that allow for communication between neighboring cells, and they hold cells together.0441

Some proteins, which extend into the extracellular space, actually allow the cell to adhere to neighboring cells.0449

Third function is transport.0457

The cell membrane is only selectively permeable. It only allows certain substances to pass to the phospholipid bilayer.0461

In order for other substance to pass through, they need a transport protein.0468

There is a couple ways in which the proteins can transport it. It can be a channel, or it can undergo a conformational change.0473

Ether way, some of these proteins act as transfer proteins, and that is why if you look at this one it is traversing the entire cell membrane, so it could function as a transport protein.0480

Fourth function: proteins in the cell membrane maybe receptors.0492

We are going to talk in the next lecture about cell signalling, but one major way that cell signalling occurs is through receptors.0498

Molecules from another cell, for example, can come along and bind to a protein and signal the cell to grow, change in metabolism. They can be invaders that are being engulfed.0507

Again, intermembrane proteins can act as receptors.0523

And finally: recognition.0527

Cell membranes have particular types and amounts of protein depending on the type of cell, so a cell in the GI tract will have different membrane proteins than a neuron.0534

And these proteins allow other cells to recognize the cell type, and actually, what is very important in recognition are glycoproteins.0544

You can tell from the name that this is talking about proteins is actually carbohydrate chains usually that are bonded to the protein.0556

You will have proteins on the cell membrane that are extruding out into the surface of the cell, and they will have this particular carbohydrate side chains that label the cell.0565

Actually, membrane lipids can also be able to help out with the labelling. They are also glycolipids.0576

Carbohydrate chains on the lipids, in the lipid bilayer can also help to label the cell.0584

OK, now, we have looked at the structure of the cell membrane. Our next step is to discuss how substances are transported across the cell membrane.0594

Cell membranes are selectively permeable to substances, as I mentioned. What this means is that some substances can cross more easily than others.0603

Some substances cannot cross at all on their own. This allows the cell to control what enters and what leaves.0611

Permeability is dependent on several factors, in particular, size, polarity and charge.0620

First, looking at size: small molecules are more permeable to the cell membrane.0628

Very small molecules can much more easily get through the cell membrane than large molecules, so the cell is less permeable to large molecules.0633

Polarity: thinking about the structure of the cell membrane, because of that hydrophobic internal region, a molecule that can cross easily is going to be a hydrophobic molecule.0643

It is going to be a non-polar molecule.0654

Polar molecules have a much harder time crossing. Although, if they are small enough, like water - water is polar, but it is small - a very small polar molecule can cross.0656

But in general, the ones that cross most easily would be both small and non-polar.0667

Charge: again, because of that hydrophobic central region, an uncharged molecule is going to have an easier time crossing than a charged molecule such as ions.0672

Ions cannot cross to the cell membrane on their own. They need the help of a transport protein.0682

Glucose is a larger molecule. It is polar.0687

It also is not going to cross the cell membrane very easily.0689

Looking at examples of substances that do cross the cell membrane more easily, those are things such as oxygen which is small, hydrocarbons, hydrophobic.0693

I talked about water being small, and yet it is polar, CO2 small and non-polar and urea.0704

These all can cross relatively easily, whereas, larger polar molecules ions like glucose, sodium, hydrogen and calcium0711

all are going to have a difficult time crossing, if they can even cross at all without help.0721

There are two general types of transport across the cell membrane. The first is passive, and the second is active.0730

The major difference is that active transport requires energy, and in the cell, the main form of energy is ATP.0739

Active transport requires the input of energy in the form of ATP. Passive transport does not require the input of energy.0747

In this slide, we are looking just at passive transport, and there are two types of passive transport.0756

The first is simple diffusion, and the second is facilitated diffusion.0761

Starting out with simple diffusion, simple diffusion means that the substance that is crossing the cell membrane does not require a transport protein.0766

First of all, neither type requires energy, and you have to consider why that is.0777

It is actually because with diffusion of either type, a molecule is moving down its concentration gradient.0782

With diffusion, a molecule is moving down its concentration gradient.0790

Substance moves down its concentration gradient. What do we mean by down its concentration gradient?0798

Well, an area of higher concentration to an area of lower concentration- higher to lower concentration.0808

For example, imagine that on one side of the cell, I have a lot of oxygen.0820

We will have oxygen represented as just these red dots, and let's say I have a lot of oxygen molecules over here; and as you know, these can cross the cell membrane on their own.0830

They do not need the help of a transport protein.0849

Over here on the other side, let's say I have a lower concentration of oxygen.0852

Oxygen is going to want to move from the region of higher to lower oxygen concentration, so it is going to want to go in this direction.0856

Input of energy will not be required.0863

Now, if I wanted to move oxygen from this side to the other side, it would require the input of energy, and the molecule is only moving down its own concentration gradient.0866

There could be, let's say, CO2. There could be tons of CO2 - putting that in blue - on this side.0879

And that is not going to prevent the oxygen from moving this direction, even though there is a lot of solute on this side because it is only considering its own concentration gradient.0887

The CO2, if it is moving down its concentration gradient, is actually going to move in the opposite direction.0895

Alright, that is simple diffusion. In simple diffusion, we are considering substances like oxygen and molecules like CO2 that do not need the help of a transport protein.0906

They can actually cross the cell membrane.0916

Facilitated diffusion refers to substances that are still moving down their concentration gradient, but they require the help of a transport protein, for example glucose.0921

Glucose is not able to cross the cell membrane on its own generally, and I may have a lot of glucose on this side, so yellow is going to be glucose.0933

Glucose naturally wants to go down its concentration gradient, but it cannot because it cannot cross through the cell membrane.0949

However, it can use a transport protein, and this could be in a form of a channel or a protein that actually just change confirmation0957

and will allow the protein to go to the other side or...excuse me I did not mean transported to go through to the other side.0967

It is still moving down its concentration gradient. That is the important thing.0980

The fundamental difference: facilitated diffusion requires a transport protein, simple diffusion does not.0983

Water, as I mentioned, can actually cross the cell membrane on its own, but it does so relatively slowly because its polar.0991

There are particular channels called aquaporins, and they transport water across the cell membrane via facilitated diffusion.0999

And these are necessary in order to transport large quantities of water more quickly.1018

Cells like the kidney that need to move a lot of water around contain a lot of aquaporins.1023

Again, water can get across, but it can get across a lot faster through an aquaporin.1028

Osmosis is a special type of diffusion. It is diffusion of water down its concentration gradient.1039

Let's just review some terminology before we go on to discuss osmosis.1046

First of all, recall that if you have a solution, there are two parts to the solution: the liquid part, which is the solvent, and the solute, which is the substance dissolved in this liquid.1053

OK, this is a solution, and within this solution, we have a liquid, which is a solvent, and a solute, which is a substance dissolved in the liquid.1084

And as I mentioned before with diffusion, diffusion is the tendency of a substance to move down its concentration gradient.1093

If I had a container and within this container I had some water and I just dropped some sugar in the water, the sugar initially, say in a clump, is eventually going to disperse throughout.1101

It is going to move from areas of low - let's say its glucose concentration - from areas of high glucose concentration, where I dropped it, to areas of lower glucose concentration.1118

And eventually, it is going to end up being evenly dispersed throughout.1131

Now, these glucose molecules might still move around, but they are not going to all clump in one place. Overall, they are going to tend to disperse throughout.1140

Diffusion, again, is the movement of a substance from a region of higher concentration to region of lower concentration.1152

Now, let's apply that to water. Water can do the same thing.1160

Osmosis is the diffusion of water down its concentration gradient.1164

Water is going to have a tendency to move from an area of low water concentration - excuse me - high water concentration to an area of low water concentration.1167

It is going to move down its concentration gradient from a region of higher concentration to region of lower concentration.1179

Looking at these two, which is U shape, imagine that I had a membrane across here, and it was a semipermeable membrane.1186

Water can cross this membrane, but the solute that I put in cannot.1201

Imagine that I fill this tube up with water and it reaches a certain level, and on this side, I put in some sort of solute.1206

It could be salt. It could be sugar, something dissolved in here, and this substance cannot cross the membrane.1217

Water can cross the membrane.1227

What is going to happen is the water is going to move from the area of high water concentration, which is over here on the right1229

because on the left, it is lower water concentration because some of the space is being taking up by the solute.1236

The flow of water is going to be from this side to the other side.1242

What is going to end up happening, since the solute cannot cross, is I am going to end up with the level1250

of the water rising on the left side, as water moves to that side, and ending up lower on the right.1261

And this is going to occur until the point at which the concentration of water is...until it equalizes.1268

Let's say I have some solute over here but a little smaller amount, OK?1277

Then, this is going to move the water from this side to the left side until the concentration of water ends up equal on both sides.1286

That is osmosis, and osmosis can also occur in a cell because water can diffuse across the cell membrane.1298

A few terms that you should be familiar with for the test that relate to osmosis: hypertonic, hypotonic and isotonic.1308

And when you talk about hyper or hypotonic, you are talking about one solution relative to another solution.1319

Let's say I have two solutions, and the one on the left has a lot of solute in it. This other one, solution two, it has a much lower solute concentration.1326

If I compare the two, I would say that number one is hypertonic, so it has a relatively high solute concentration relative to number two.1346

Hypertonic solution has the higher solute concentration.1363

Hypotonic is the opposite. I would say that two is hypotonic relative to number one.1375

Hypotonic indicates a lower solute concentration.1386

Looking over here, this side, number one is hypertonic. Side two was relatively hypotonic.1395

Now, once the water is done diffusing across, and it has equalized the solute concentration on both sides, what we are going to end up is a situation where the two sides are isotonic.1406

This means they have the same solute concentration.1418

At this point, there is going to be no net movement of water. Water may still move across, but there is going to be no net movement.1424

It is going to be overall unchanged.1431

The solute concentration is not going to change overall, although, water may move back and forth.1434

We often talk about hyper, hypotonic, isotonic in biology relative to the cell. It is relative to the tenacity of the cell.1442

You may hear about experiments, and we will talk about situations where a cell is placed in a solution; and the solution could be, like in this case, hypotonic.1454

This solution out here is hypotonic. It is less concentrated, less solute concentration relative to the cell.1468

We could place a cell in a solution that is actually hypertonic, so here is a hypertonic solution relative to the concentration of substances inside the cell.1478

Think about what is going to happen in that situation.1498

If you put a cell in a hypotonic solution, water, as usual, is going to go from a region of higher water concentration to a region of lower water concentration.1501

With this hypotonic solution, the higher water concentration is outside the cell.1515

That means that water is going to enter the cell, and if the solution is very hypotonic, so much water is going to rush in that eventually the cell will burst or lyse.1520

The cell may lyse. The cell may actually burst because water is rushing in.1535

The volume increases and increases and eventually cell just bursts open.1540

Let's look at the situation for a hypertonic solution. In this case, again, water is going to move down its concentration gradient.1543

It is going to move from a region of higher water concentration to lower water concentration, which, in this case, is going to move outward.1552

Water is going to move from inside the cell to outside of the cell.1565

The end result will be that this cell will shrink.1570

If you place a cell in a solution that is isotonic, it has the same concentration of solutes or we would mostly say the same osmolarity.1575

Osmolarity refers to solute concentration.1587

If these two solutions have the same osmolarity, inside the cell and outside, and it is in isotonic situation, water may leave the cell.1594

Water may enter the cell, but there is not going to be any net change.1608

The amount of water that leaves the cell, the volume, is going to be equal to the amount that enters the cell, and the cell size or cell volume will not change.1612

Again, three situations: hypotonic water is going to rush into the cell the cell may lyse even. It will get bigger, possibly will lyse.1625

Hypertonic solution, outside the cell, water will leave the cell. The cell will shrink.1633

And isotonic solution, no net movement of water. The cell size will remain unchanged.1640

Recall that plant cells have cell walls, and one of the functions of cell wall is to prevent lysis in a hypotonic environment like this.1645

And in fact, in a slightly hypotonic environment, plants can maintain their rigidity.1654

They have turgor from all the water inside the central vacuole pushing against the cell wall of the plants1660

and allows the plants to maintain some rigidity so that their stems and leaves maintain their shape.1667

That is one function of the cell wall.1674

OK, this is osmosis.1676

We talked already about passive transport. Passive transport does not require the input of energy.1679

Diffusion, simple diffusion and facilitated diffusion are both forms of passive transport.1686

Osmosis is a passive transport of water. It is a form of diffusion.1693

Active transport requires the input of energy in order to move a substance against its concentration gradient.1697

Recall in diffusion a substance is moving down its concentration gradient. It is moving from higher to lower concentrations just like it wants to.1705

First, looking at regular active transport, not yet a cotransport, consider a substance such as sodium, and there is a relatively high concentration of sodium outside the cell.1715

There is a relatively low concentration of sodium inside the cell.1745

Potassium is the opposite situation. There is a relatively high concentration of potassium within the cell and a relatively low concentration outside the cell.1754

Looking at which direction things are going to want to move in, sodium is going to want to go into the cell.1771

Potassium is going to want to leave the cell. It is going to want to go down its concentration gradient and so is the sodium.1779

However, in order to maintain the correct concentrations of these ions in the cell, the cell does not just allow them to move in the directions they want to go.1785

Instead, there is what is called a sodium potassium pump that maintains the correct balance of sodium and potassium, and this is done through active transport.1797

Recall first that, since sodium and potassium are ions, they cannot just cross the cell membrane on their own because of their charge.1810

Also because I want to move them against their concentration gradient energy is going to be required, so ATP will be required.1818

The sodium potassium pump pumps sodium out of the cell.1826

The sodium is going to be pumped out of the cell at the same time that potassium is being pumped against its concentration gradient, and it is being pumped into the cell.1838

And for each ATP that is used, three sodium ions are pumped out, for every two potassium ions that are pumped in, so three sodium out for every two potassium in.1853

Again, this is going to require ATP, so ATP is going to have to be hydrolyzed to ADP to provide the energy for this process of pumping sodium out of the cell1875

against its concentration gradient and pumping potassium into the cell against its concentration gradient.1888

There is another consequence of this.1900

If three sodium are being pumped out for every two that are being pumped in, there is a net loss. This means that there is a loss of one positive charge for each cycle.1902

For each ATP used or each turn of this pump, there is a loss of one positive charge because three positive charges, three sodiums are going out. Only two are coming in, net loss of 1+ out.1921

The result is going to be that the cell has a relatively negative charge compared to the outside.1936

That charge difference is called membrane potential, and we will talk about this in more detail when we talk about the neurological system, the nervous system.1943

but different cell types have different membrane potentials.1954

For example a typical neuron has a membrane potential of approximately -70mV, and that is maintained by the sodium potassium pumped in animal cells.1958

In plant cells, fungi, bacteria, the membrane potential is actually maintained by a hydrogen pump.1972

The hydrogen pump maintains the membrane potential, this chemical gradient - excuse me - electrical chemical gradient1982

because there is a chemical gradient of sodium, potassium or hydrogen as well as an electrical gradient, this difference in potential.1989

The hydrogen pump does the work in plants, animals and fungi, whereas, the sodium pump that mainly maintains that gradient in animal cells.1997

OK, this is called primary active transport because in this case, the ATP is being used directly by the transport protein.2006

There is a second type of active transport called cotransport.2016

Let's look over here on the right at this purple protein that is going to be the cotransport protein.2021

Cotransport also uses energy, but it uses it in a slightly different way.2032

Cotransport uses the energy of a substance moving down its concentration gradient to move another substance that is moving against its concentration gradient.2037

What it does is it harnesses the energy from one substance that is going the direction that it wants to go, and it uses that to push a substance going against its concentration gradient.2049

A typical example would be glucose. Glucose is involved in cotransport, is often cotransported.2062

The sodium glucose cotransport occurs in the kidney.2071

Let's say that I have got over, on this side, this high concentration of sodium, and sodium really wants to go into the cell, where there is a low concentration of sodium.2079

This cotransport protein, this is going to be the sodium glucose cotransport protein.2091

The sodium wants to go down its concentration gradient, so as it is moving down, it is releasing energy that is harnessed to move glucose.2104

Let's say that the glucose has a high concentration in the cell, for example, and a lower concentration outside of the cell; then, glucose does not want to enter the cell.2114

It has to move via active transport.2131

If you look at this, the sodium and the glucose are moving in the same direction, but the sodium is moving down its concentration gradient,2136

whereas, the glucose is moving against its concentration gradient.2144

The glucose requires energy to move in that direction, whereas, the sodium does not.2148

And actually, if there is a high concentration of glucose out here and the glucose is needed to move in the other direction,2153

the sodium still could move down its concentration gradient and provide energy to push the glucose the other way.2159

Glucose and sodium or whatever, two things are being transported. In some systems, they are physically being transported in the same direction; in others, they are not.2167

All that matters is that one is going down its concentration gradient, and the other is going against its concentration gradient.2176

I said that active transport requires energy, and here, I am talking about the release of energy.2184

Where is the energy used? Where does this energy come from?2190

Well, it comes from this earlier step.2193

In order to maintain the gradient of the sodium in this case, if I just let this go, eventually, more and more sodium would come inside2196

and equal concentration of sodium inside and out of the cell, and there would be no net movement of sodium to harness, in order to transport the glucose.2204

For this pump to continue to work or this cotransport to continue to work, the cell has to maintain the sodium gradient.2213

The energy for cotransport is used in maintaining the gradient of the substance moving down its concentration gradient, so it is in an earlier step.2219

There is two types of active transport: primary active transport, in which the energy is used directly by the transport protein and secondary active transport,2230

in which the energy is used at an earlier step, which is to maintain a concentration gradient for a substance that will eventually move down its concentration gradient.2239

OK, these are two types of active transport, and we also talked about a couple of types of passive transport.2251

Active and passive transport are methods through which substances, molecules, can move into the cell or out of the cell.2260

Now, If a cell needs to uptake larger substances such as proteins or release larger substances such as proteins, it usually uses endocytosis and exocytosis.2272

These both require energy. They require energy usually in a form of ATP.2286

First, looking at endocytosis, which is shown here, here is the inside of the cell.2295

This is a cytoplasm.2301

Out here is the extracellular space, and we see this particle; and it is moving towards the cell.2304

The cell membrane invaginates and actually pinches off, as shown here, to form a vesicle, and then, that vesicle ends up in the intracellular space.2312

This is called endocytosis, and the opposite process can occur.2324

If I started out, if I actually went from right to left, if I started out with a substance in the cell, if I had a substance in the cell, and it was packaged in the vesicle,2331

that vesicle could actually fuse with the cell membrane and then, be extruded and released outside the cell; and that is exocytosis.2349

For example, exocytosis could be used to release a protein that was made on the rough endoplasmic reticulum.2368

That protein would be, then, processed in the Golgi apparatus, packaged in the vesicle, and then, it could be released from the cell.2375

Or sometimes, this vesicle will fuse with the cell, and the protein will just end up on the cell membrane.2382

This is how cell membrane, proteins end up integrated into the membrane, or you could have a substance that has actually been released completely.2388

Neurotransmitters are released, so example, neurotransmitters are released through exocytosis also cell membrane proteins.2395

Endocytosis can be used to uptake substances such as invaders.2412

Cells of the immune systems, leukocytes, white blood cells, may ingest invaders, pathogens such as bacteria.2419

And then, the vesicle will fuse with the lysosome, which contains enzymes that can digest this invader.2429

There is a couple types of endocytosis that you should be familiar with. One is pinocytosis.2440

This is sometimes called cellular drinking because it is the process through which the cell ingests liquids.2447

If the cell pinches of a vesicle like this, and it contains a liquid, that is called pinocytosis.2455

Phagocytosis is sometimes called cellular eating. This is when solid particles are ingested by the cell through endocytosis.2462

And what I just described here with a cell-ingesting bacteria, a leukocyte, a white blood cell-ingesting bacteria, that would be a type of phagocytosis.2476

There is another type of endocytosis know as receptor-mediated endocytosis, and what this allows is for the cell to take up specific molecules.2488

The receptor shown here have specificity the same way that an enzyme has specificity for its substrate.2499

Here, we have a substance that is going to bind, and this substance that binds is going to be, once it bound, called the ligand.2508

You have a receptor and a ligand, and these two are specific.2516

They are shaped and the have a specificity to one another, so that instead of just ingesting non-specific molecules,2521

this allows certain molecules such as, a good example is LDL, cholesterol, to be ingested.2532

Here, you see the receptor binding to a ligand, and let's use LDL as an example; and these are LDL receptors and LDL.2540

The cell, again...the plasma membrane invaginates.2550

It is going to pinch off and form a vesicle in the last step, and this type of vesicle has the name coated vesicle because it is coated with its receptors bound to its ligand.2552

And then, these can be released within the cell, and then, this vesicle can actually go back; and the receptors can be recycled.2574

Or they can make their way back out to the cell membrane in a vesicle, be reused, ingest more ligand.2583

Again, LDL is a form of cholesterol found in the body that it is stands for low-density lipoprotein.2592

And there is actually a disease called familial hypercholesterolemia, which is caused by a defect in the LDL receptor.2603

Some people have a genetic defect in their LDL receptors, and the result is that they do not have enough receptors or enough functional receptors; so they do not uptake LDL.2612

If there is too much cholesterol left floating around because the cells are not taking the LDL up, the result can be heart disease, early onset of heart disease due to high cholesterol.2624

And that is a result of a defect in these receptors.2635

Let's look at some examples to sum up what we have discussed today.2641

Example one: list three characteristics of substances that are permeable to the cell membrane.2645

What type of substance will be most permeable to the cell membrane? Well, first of all, something that is small.2651

Small substances are most easily ingested, so size.2658

Second would be polarity. Non-polar molecules such as hydrocarbons are much more able to cross the cell membrane because of the hydrophobic interior of the phospholipid bilayer.2665

The third characteristic is charge. Actually an uncharged molecule is going to cross much more easily than an ion.2680

Again, this is because of the hydrophobic interior of the phospholipid membrane.2692

Molecules that are permeable to the cell membrane are likely to be small. They are going to be non-polar; and they are going to be uncharged.2699

Oxygen, CO2, water can cross because even though it is polar, it is quite small.2707

Hydrocarbons, these are all more readily permeable to the cell membrane.2714

Example two: an animal cell is placed in pure water, what would be the outcome and why?2721

Let's sketch this out, so pure water2728

Now, I put an animal cell on it, and the animal cell is going to have all kinds of solutes, substances, in the cytoplasm, whereas, the pure water is not.2734

Therefore, what you have done is to place the cell in a hypotonic environment.2745

This is hypotonic relative to the solute concentration- osmolarity within the cell.2752

Remember that water wants to go from high concentration of water to a relatively low area of low concentration of water.2757

Out here, there is a very high concentration of water because there are relatively few solutes, whereas inside, there is a lot of solutes.2769

Water is going to rush into the cell. The cell is going to become larger and larger, and it is eventually going to burst or lyse.2777

Cell takes up water. Water is going to cross the cell membrane.2786

Via osmosis, water is going to cross. Via diffusion, via osmosis, cell will take up water and eventually lyse or burst.2793

Now, let's say we repeat this procedure in a plant cell. What would possibly happen, and why would this outcome be different?2806

Again, I have a hypotonic environment, but now, I have a plant cell; and recall that an important difference between a plant and animal cell is the presence of the cell wall.2817

Therefore, water is going to rush in, and the cell will increase in size but it will not lyse. Plant cell will not lyse due to the cell wall.2828

The cell wall provides the strength and the structure so that this cell will not just keep on absorbing water to the point that it actually lyses.2846

Example three: why is an energy required for passive transport?2857

Recall that in passive transport, substances are moving down their concentration gradient. This is the direction that a substance wants to move in.2862

If there is for example a high concentration of sodium, sodium is going to want to move to an area of low concentration of sodium. Sodium will want to move in this direction.2885

That is not going to require the input of energy because it wants to move in that direction, whereas, if the sodium were to move in the opposite direction, energy input would be required.2902

What is the source of energy used to drive a molecule against its concentration gradient in cotransport?2914

How are molecules, substances, moved against their concentration gradients in cotransport?2922

Well, energy from another substance moving down its concentration gradient is harnessed to move a second substance against its concentration gradient.2928

Remember that it requires energy to maintain the concentration gradient of the first substance, otherwise, that concentration gradient would seize to exist.2973

But the immediate source of the energy during cotransport is the release of energy from a substance moving down its concentration gradient.2984

For example, sodium moving down its concentration gradient provides the energy to move glucose against its concentration gradient in sodium-glucose cotransport.2992

What is the difference between simple diffusion and facilitated diffusion?3003

Facilitated diffusion requires a transport protein. Facilitated diffusion is used to transport substances that cannot cross the cell membrane on their own.3007

Maybe they are too large, or they are polar; or they are charged.3028

How are they the same? Well, both do not require energy.3032

In both facilitated and simple diffusion, substances are moving down their concentration gradients, and they do not require the input of energy.3042

The difference is that facilitated diffusion requires a transport protein.3049

Example four: match each of the following terms with its definition, and we have exocytosis, pinocytosis, receptor-mediated endocytosis, phagocytosis and regular endocytosis.3056

Looking at the possible definitions, molecules bind to specific receptors on the cell membrane and then, enter the cell via phagocytosis.3070

If the molecules are binding to specific receptors, and endocytosis is occurring, that would be receptor-mediated endocytosis.3083

The example I gave was with LDL. They bind to LDL receptors, and are ingested into the cell via endocytosis.3092

B: molecules contained in vesicles leave the cell by fusion of the vesicle with the cell membrane.3101

If a molecule is leaving or substance is leaving the cell in a vesicle, that is considered exocytosis.3108

So, it exiting- exo. If it is entering the cell, it is endocytosis.3119

Therefore, exocytosis, number one up here, is B, the uptake of fluids by the cell through a form of endocytosis.3123

Recall that there are a couple of types of endocytosis.3133

One is considered the cell-drinking sometimes cell-ingesting fluid by endocytosis, and that is pinocytosis.3136

D: the uptake of particles of the cell through the endocytosis, again, a particular form of endocytosis.3148

But this time, instead of fluids, we are talking about particles. It is sometimes called cellular eating.3155

And that is phagocytosis, such as when a macrophage or leukocyte ingest bacteria through the formation of a vesicle from the cell membrane.3160

Finally, molecules enter the cell by formation of vesicles derived from the cell membrane, so just the general term is endocytosis.3172

OK, we have all those taken care of, and that concludes this lesson on

Thanks for visiting.3189

I. Chemistry of Life
  Elements, Compounds, and Chemical Bonds 56:18
   Intro 0:00 
   Elements 0:09 
    Elements 0:48 
    Matter 0:55 
    Naturally Occurring Elements 1:12 
    Atomic Number and Atomic Mass 2:39 
   Compounds 3:06 
    Molecule 3:07 
    Compounds 3:14 
    Examples 3:20 
   Atoms 4:53 
    Atoms 4:56 
    Protons, Neutrons, and Electrons 5:29 
    Isotopes 10:42 
   Energy Levels of Electrons 13:01 
    Electron Shells 13:13 
    Valence Shell 13:22 
    Example: Electron Shells and Potential Energy 13:28 
   Covalent Bonds 19:52 
    Covalent Bonds 19:54 
    Examples 20:03 
   Polar and Nonpolar Covalent Bonds 23:54 
    Polar Bond 24:07 
    Nonpolar Bonds 24:17 
    Examples 24:25 
   Ionic Bonds 29:04 
    Ionic Bond, Cations, Anions 29:19 
    Example: NaCl 29:30 
   Hydrogen Bond 33:18 
    Hydrogen Bond 33:20 
   Chemical Reactions 35:36 
    Example: Reactants, Products and Chemical Reactions 35:45 
   Molecular Mass and Molar Concentration 38:45 
    Avogadro's Number and Mol 39:12 
    Examples: Molecular Mass and Molarity 42:10 
   Example 1: Proton, Neutrons and Electrons 47:05 
   Example 2: Reactants and Products 49:35 
   Example 3: Bonding 52:39 
   Example 4: Mass 53:59 
  Properties of Water 50:23
   Intro 0:00 
   Molecular Structure of Water 0:21 
    Molecular Structure of Water 0:27 
   Properties of Water 4:30 
    Cohesive 4:55 
    Transpiration 5:29 
    Adhesion 6:20 
    Surface Tension 7:17 
   Properties of Water, cont. 9:14 
    Specific Heat 9:25 
    High Heat Capacity 13:24 
    High Heat of Evaporation 16:42 
   Water as a Solvent 21:13 
    Solution 21:28 
    Solvent 21:48 
    Example: Water as a Solvent 22:22 
   Acids and Bases 25:40 
    Example 25:41 
   pH 36:30 
    pH Scale: Acidic, Neutral, and Basic 36:35 
   Example 1: Molecular Structure and Properties of Water 41:18 
   Example 2: Special Properties of Water 42:53 
   Example 3: pH Scale 44:46 
   Example 4: Acids and Bases 46:19 
  Organic Compounds 53:54
   Intro 0:00 
   Organic Compounds 0:09 
    Organic Compounds 0:11 
    Inorganic Compounds 0:15 
    Examples: Organic Compounds 1:15 
   Isomers 5:52 
    Isomers 5:55 
    Structural Isomers 6:23 
    Geometric Isomers 8:14 
    Enantiomers 9:55 
   Functional Groups 12:46 
    Examples: Functional Groups 12:59 
    Amino Group 13:51 
    Carboxyl Group 14:38 
    Hydroxyl Group 15:22 
    Methyl Group 16:14 
    Carbonyl Group 16:30 
    Phosphate Group 17:51 
   Carbohydrates 18:26 
    Carbohydrates 19:07 
    Example: Monosaccharides 21:12 
   Carbohydrates, cont. 24:11 
    Disaccharides, Polysaccharides and Examples 24:21 
   Lipids 35:52 
    Examples of Lipids 36:04 
    Saturated and Unsaturated 38:57 
   Phospholipids 43:26 
    Phospholipids 43:29 
    Example 43:34 
   Steroids 46:24 
    Cholesterol 46:28 
   Example 1: Isomers 48:11 
   Example 2: Functional Groups 50:45 
   Example 3: Galactose, Ketose, and Aldehyde Sugar 52:24 
   Example 4: Class of Molecules 53:06 
  Nucleic Acids and Proteins 37:23
   Intro 0:00 
   Nucleic Acids 0:09 
    Deoxyribonucleic Acid (DNA) and Ribonucleic Acid (RNA) 0:29 
   Nucleic Acids, cont. 2:56 
    Purines 3:10 
    Pyrimidines 3:32 
   Double Helix 4:59 
    Double Helix and Example 5:01 
   Proteins 12:33 
    Amino Acids and Polypeptides 12:39 
    Examples: Amino Acid 13:25 
   Polypeptide Formation 18:09 
    Peptide Bonds 18:14 
    Primary Structure 18:35 
   Protein Structure 23:19 
    Secondary Structure 23:22 
    Alpha Helices and Beta Pleated Sheets 23:34 
   Protein Structure 25:43 
    Tertiary Structure 25:44 
    5 Types of Interaction 26:56 
   Example 1: Complementary DNA Strand 31:45 
   Example 2: Differences Between DNA and RNA 33:19 
   Example 3: Amino Acids 34:32 
   Example 4: Tertiary Structure of Protein 35:46 
II. Cell Structure and Function
  Cell Types (Prokaryotic and Eukaryotic) 45:50
   Intro 0:00 
   Cell Theory and Cell Types 0:12 
    Cell Theory 0:13 
    Prokaryotic and Eukaryotic Cells 0:36 
    Endosymbiotic Theory 1:13 
   Study of Cells 4:07 
    Tools and Techniques 4:08 
    Light Microscopes 5:08 
    Light vs. Electron Microscopes: Magnification 5:18 
    Light vs. Electron Microscopes: Resolution 6:26 
    Light vs. Electron Microscopes: Specimens 7:53 
    Electron Microscopes: Transmission and Scanning 8:28 
    Cell Fractionation 10:01 
    Cell Fractionation Step 1: Homogenization 10:33 
    Cell Fractionation Step 2: Spin 11:24 
    Cell Fractionation Step 3: Differential Centrifugation 11:53 
   Comparison of Prokaryotic and Eukaryotic Cells 14:12 
    Prokaryotic vs. Eukaryotic Cells: Domains 14:43 
    Prokaryotic vs. Eukaryotic Cells: Plasma Membrane 15:40 
    Prokaryotic vs. Eukaryotic Cells: Cell Walls 16:15 
    Prokaryotic vs. Eukaryotic Cells: Genetic Materials 16:38 
    Prokaryotic vs. Eukaryotic Cells: Structures 17:28 
    Prokaryotic vs. Eukaryotic Cells: Unicellular and Multicellular 18:19 
    Prokaryotic vs. Eukaryotic Cells: Size 18:31 
    Plasmids 18:52 
   Prokaryotic vs. Eukaryotic Cells 19:22 
    Nucleus 19:24 
    Organelles 19:48 
    Cytoskeleton 20:02 
    Cell Wall 20:35 
    Ribosomes 20:57 
    Size 21:37 
   Comparison of Plant and Animal Cells 22:15 
    Plasma Membrane 22:55 
    Plant Cells Only: Cell Walls 23:12 
    Plant Cells Only: Central Vacuole 25:08 
    Animal Cells Only: Centrioles 26:40 
    Animal Cells Only: Lysosomes 27:43 
   Plant vs. Animal Cells 29:16 
    Overview of Plant and Animal Cells 29:17 
   Evidence for the Endosymbiotic Theory 30:52 
    Characteristics of Mitochondria and Chloroplasts 30:54 
   Example 1: Prokaryotic vs. Eukaryotic Cells 35:44 
   Example 2: Endosymbiotic Theory and Evidence 38:38 
   Example 3: Plant and Animal Cells 41:49 
   Example 4: Cell Fractionation 43:44 
  Subcellular Structure 59:38
   Intro 0:00 
   Prokaryotic Cells 0:09 
    Shapes of Prokaryotic Cells 0:22 
    Cell Wall 1:19 
    Capsule 3:23 
    Pili/Fimbria 3:54 
    Flagella 4:35 
    Nucleoid 6:16 
    Plasmid 6:37 
    Ribosomes 7:09 
   Eukaryotic Cells (Animal Cell Structure) 8:01 
    Plasma Membrane 8:13 
    Microvilli 8:48 
    Nucleus 9:47 
    Nucleolus 11:06 
    Ribosomes: Free and Bound 12:26 
    Rough Endoplasmic Reticulum (RER) 13:43 
   Eukaryotic Cells (Animal Cell Structure), cont. 14:51 
    Endoplasmic Reticulum: Smooth and Rough 15:08 
    Golgi Apparatus 17:55 
    Vacuole 20:43 
    Lysosome 22:01 
    Mitochondria 25:40 
    Peroxisomes 28:18 
   Cytoskeleton 30:41 
    Cytoplasm and Cytosol 30:53 
    Microtubules: Centrioles, Spindel Fibers, Clagell, Cillia 32:06 
    Microfilaments 36:39 
    Intermediate Filaments and Kerotin 38:52 
   Eukaryotic Cells (Plant Cell Structure) 40:08 
    Plasma Membrane, Primary Cell Wall, and Secondary Cell Wall 40:30 
    Middle Lamella 43:21 
    Central Cauole 44:12 
    Plastids: Leucoplasts, Chromoplasts, Chrloroplasts 45:35 
    Chloroplasts 47:06 
   Example 1: Structures and Functions 48:46 
   Example 2: Cell Walls 51:19 
   Example 3: Cytoskeleton 52:53 
   Example 4: Antibiotics and the Endosymbiosis Theory 56:55 
  Cell Membranes and Transport 53:10
   Intro 0:00 
   Cell Membrane Structure 0:09 
    Phospholipids Bilayer 0:11 
    Chemical Structure: Amphipathic and Fatty Acids 0:25 
   Cell Membrane Proteins 2:44 
    Fluid Mosaic Model 2:45 
    Peripheral Proteins and Integral Proteins 3:19 
    Transmembrane Proteins 4:34 
    Cholesterol 4:48 
    Functions of Membrane Proteins 6:39 
   Transport Across Cell Membranes 9:52 
    Transport Across Cell Membranes 9:53 
   Methods of Passive Transport 12:07 
    Passive and Active Transport 12:08 
    Simple Diffusion 12:45 
    Facilitated Diffusion 15:20 
   Osmosis 17:17 
    Definition and Example of Osmosis 17:18 
    Hypertonic, Hypotonic, and Isotonic 21:47 
   Active Transport 27:57 
    Active Transport 28:17 
    Sodium and Potassium Pump 29:45 
    Cotransport 34:38 
    2 Types of Active Transport 37:09 
   Endocytosis and Exocytosis 37:38 
    Endocytosis and Exocytosis 37:51 
    Types of Endocytosis: Pinocytosis 40:39 
    Types of Endocytosis: Phagocytosis 41:02 
   Receptor Mediated Endocytosis 41:27 
    Receptor Mediated Endocytosis 41:28 
   Example 1: Cell Membrane and Permeable Substances 43:59 
   Example 2: Osmosis 45:20 
   Example 3: Active Transport, Cotransport, Simple and Facilitated Diffusion 47:36 
   Example 4: Match Terms with Definition 50:55 
  Cellular Communication 57:09
   Intro 0:00 
   Extracellular Matrix 0:28 
    The Extracellular Matrix (ECM) 0:29 
    ECM in Animal Cells 0:55 
    Fibronectin and Integrins 1:34 
   Intercellular Communication in Plants 2:48 
    Intercellular Communication in Plants: Plasmodesmata 2:50 
   Cell to Cell Communication in Animal Cells 3:39 
    Cell Junctions 3:42 
    Desmosomes 3:54 
    Tight Junctions 5:07 
    Gap Junctions 7:00 
   Cell Signaling 8:17 
    Cell Signaling: Ligand and Signal Transduction Pathway 8:18 
    Direct Contact 8:48 
    Over Distances Contact and Hormones 10:09 
   Stages of Cell Signaling 11:53 
    Reception Phase 11:54 
    Transduction Phase 13:49 
    Response Phase 14:45 
   Cell Membrane Receptors 15:37 
    G-Protein Coupled Receptor 15:38 
   Cell Membrane Receptor, Cont. 21:37 
    Receptor Tyrosine Kinases (RTKs) 21:38 
    Autophosphorylation, Monomer, and Dimer 22:57 
   Cell Membrane Receptor, Cont. 27:01 
    Ligand-Gated Ion Channels 27:02 
   Intracellular Receptors 29:43 
    Intracellular Receptor and Receptor -Ligand Complex 29:44 
   Signal Transduction 32:57 
    Signal Transduction Pathways 32:58 
    Adenylyl Cyclase and cAMP 35:53 
   Second Messengers 39:18 
     cGMP, Inositol Trisphosphate, and Diacylglycerol 39:20 
   Cell Response 45:15 
    Cell Response 45:16 
    Apoptosis 46:57 
   Example 1: Tight Junction and Gap Junction 48:29 
   Example 2: Three Phases of Cell Signaling 51:48 
   Example 3: Ligands and Binding of Hormone 54:03 
   Example 4: Signal Transduction 56:06 
III. Cell Division
  The Cell Cycle 37:49
   Intro 0:00 
   Functions of Cell Division 0:09 
    Overview of Cell Division: Reproduction, Growth, and Repair 0:11 
    Important Term: Daughter Cells 2:25 
   Chromosome Structure 3:36 
    Chromosome Structure: Sister Chromatids and Centromere 3:37 
    Chromosome Structure: Chromatin 4:31 
    Chromosome with One Chromatid or Two Chromatids 5:25 
    Chromosome Structure: Long and Short Arm 6:49 
   Mitosis and Meiosis 7:00 
    Mitosis 7:41 
    Meiosis 8:40 
   The Cell Cycle 10:43 
    Mitotic Phase and Interphase 10:44 
   Cytokinesis 15:51 
    Cytokinesis in Animal Cell: Cleavage Furrow 15:52 
    Cytokinesis in Plant Cell: Cell Plate 17:28 
   Control of the Cell Cycle 18:28 
    Cell Cycle Control System and Checkpoints 18:29 
   Cyclins and Cyclin Dependent Kinases 21:18 
    Cyclins and Cyclin Dependent Kinases (CDKSs) 21:20 
    MPF 23:17 
    Internal Factor Regulating Cell Cycle 24:00 
    External Factor Regulating Cell Cycle 24:53 
    Contact Inhibition and Anchorage Dependent 25:53 
   Cancer and the Cell Cycle 27:42 
    Cancer Cells 27:46 
   Example1: Parts of the Chromosome 30:15 
   Example 2: Cell Cycle 31:50 
   Example 3: Control of the Cell Cycle 33:32 
   Example 4: Cancer and the Cell 35:01 
  Mitosis 35:01
   Intro 0:00 
   Review of the Cell Cycle 0:09 
    Interphase: G1 Phase 0:34 
    Interphase: S Phase 0:56 
    Interphase: G2 Phase 1:31 
    M Phase: Mitosis and Cytokinesis 1:47 
   Overview of Mitosis 3:08 
    What is Mitosis? 3:10 
    Overview of Mitosis 3:17 
    Diploid and Haploid 5:37 
    Homologous Chromosomes 6:04 
   The Spindle Apparatus 11:57 
    The Spindle Apparatus 12:00 
    Centrosomes and Centrioles 12:40 
    Microtubule Organizing Center 13:03 
    Spindle Fiber of Spindle Microtubules 13:23 
    Kinetochores 14:06 
    Asters 15:45 
   Prophase 16:47 
    First Phase of Mitosis: Prophase 16:54 
   Metaphase 20:05 
    Second Phase of Mitosis: Metaphase 20:10 
   Anaphase 22:52 
    Third Phase of Mitosis: Anaphase 22:53 
   Telophase and Cytokinesis 24:34 
    Last Phase of Mitosis: Telophase and Cytokinesis 24:35 
   Summary of Mitosis 27:46 
    Summary of Mitosis 27:47 
   Example 1: Spindle Apparatus 28:50 
   Example 2: Last Phase of Mitosis 30:39 
   Example 3: Prophase 32:41 
   Example 4: Identify the Phase 33:52 
  Meiosis 1:00:58
   Intro 0:00 
   Haploid and Diploid Cells 0:09 
    Diploid and Somatic Cells 0:29 
    Haploid and Gametes 1:20 
    Example: Human Cells and Chromosomes 1:41 
    Sex Chromosomes 6:00 
   Comparison of Mitosis and Meiosis 10:42 
    Mitosis Vs. Meiosis: Cell Division 10:59 
    Mitosis Vs. Meiosis: Daughter Cells 12:31 
    Meiosis: Pairing of Homologous Chromosomes 13:40 
   Mitosis and Meiosis 14:21 
    Process of Mitosis 14:27 
    Process of Meiosis 16:12 
   Synapsis and Crossing Over 19:14 
    Prophase I: Synapsis and Crossing Over 19:15 
    Chiasmata 22:33 
   Meiosis I 25:49 
    Prophase I: Crossing Over 25:50 
    Metaphase I: Homologs Line Up 26:00 
    Anaphase I: Homologs Separate 28:16 
    Telophase I and Cytokinesis 29:15 
    Independent Assortment 30:58 
   Meiosis II 32:17 
    Propphase II 33:50 
    Metaphase II 34:06 
    Anaphase II 34:50 
    Telophase II 36:09 
    Cytokinesis 37:00 
   Summary of Meiosis 38:15 
    Summary of Meiosis 38:16 
    Cell Division Mechanism in Plants 41:57 
   Example 1: Cell Division and Meiosis 46:15 
   Example 2: Phases of Meiosis 50:22 
   Example 3: Label the Figure 54:29 
   Example 4: Four Differences Between Mitosis and Meiosis 56:37 
IV. Cellular Energetics
  Enzymes 51:03
   Intro 0:00 
   Law of Thermodynamics 0:08 
    Thermodynamics 0:09 
    The First Law of Thermodynamics 0:37 
    The Second Law of Thermodynamics 1:24 
    Entropy 1:35 
   The Gibbs Free Energy Equation 3:07 
    The Gibbs Free Energy Equation 3:08 
   ATP 8:23 
    Adenosine Triphosphate (ATP) 8:24 
    Cellular Respiration 11:32 
    Catabolic Pathways 12:28 
    Anabolic Pathways 12:54 
   Enzymes 14:31 
    Enzymes 14:32 
    Enzymes and Exergonic Reaction 14:40 
    Enzymes and Endergonic Reaction 16:36 
   Enzyme Specificity 21:29 
    Substrate 21:41 
    Induced Fit 23:04 
   Factors Affecting Enzyme Activity 25:55 
    Substrate Concentration 26:07 
    pH 27:10 
    Temperature 29:14 
    Presence of Cofactors 29:57 
   Regulation of Enzyme Activity 31:12 
    Competitive Inhibitors 32:13 
    Noncompetitive Inhibitors 33:52 
    Feedback Inhibition 35:22 
   Allosteric Interactions 36:56 
    Allosteric Regulators 37:00 
   Example 1: Is the Inhibitor Competitive or Noncompetitive? 40:49 
   Example 2: Thermophiles 44:18 
   Example 3: Exergonic or Endergonic 46:09 
   Example 4: Energy Vs. Reaction Progress Graph 48:47 
  Glycolysis and Anaerobic Respiration 38:01
   Intro 0:00 
   Cellular Respiration Overview 0:13 
    Cellular Respiration 0:14 
    Anaerobic Respiration vs. Aerobic Respiration 3:50 
   Glycolysis Overview 4:48 
    Overview of Glycolysis 4:50 
   Glycolysis Involves a Redox Reaction 7:02 
    Redox Reaction 7:04 
   Glycolysis 15:04 
    Important Facts About Glycolysis 15:07 
    Energy Invested Phase 16:12 
    Splitting of Fructose 1,6-Phosphate and Energy Payoff Phase 17:50 
    Substrate Level Phophorylation 22:12 
   Aerobic Versus Anaerobic Respiration 23:57 
    Aerobic Versus Anaerobic Respiration 23:58 
   Cellular Respiration Overview 27:15 
    When Cellular Respiration is Anaerobic 27:17 
    Glycolysis 28:26 
    Alcohol Fermentation 28:45 
    Lactic Acid Fermentation 29:58 
   Example 1: Glycolysis 31:04 
   Example 2: Glycolysis, Fermentation and Anaerobic Respiration 33:44 
   Example 3: Aerobic Respiration Vs. Anaerobic Respiration 35:25 
   Example 4: Exergonic Reaction and Endergonic Reaction 36:42 
  Aerobic Respiration 51:06
   Intro 0:00 
   Aerobic Vs. Anaerobic Respiration 0:06 
    Aerobic and Anaerobic Comparison 0:07 
   Review of Glycolysis 1:48 
    Overview of Glycolysis 2:06 
    Glycolysis: Energy Investment Phase 2:25 
    Glycolysis: Energy Payoff Phase 2:58 
   Conversion of Pyruvate to Acetyl CoA 4:55 
    Conversion of Pyruvate to Acetyl CoA 4:56 
    Energy Formation 8:06 
   Mitochondrial Structure 8:58 
    Endosymbiosis Theory 9:23 
    Matrix 10:00 
    Outer Membrane, Inner Membrane, and Intermembrane Space 10:43 
    Cristae 11:47 
   The Citric Acid Cycle 12:11 
    The Citric Acid Cycle (Also Called Krebs Cycle) 12:12 
    Substrate Level Phosphorylation 18:47 
   Summary of ATP, NADH, and FADH2 Production 23:13 
    Process: Glycolysis 23:28 
    Process: Acetyl CoA Production 23:36 
    Process: Citric Acid Cycle 23:52 
   The Electron Transport Chain 24:24 
    Oxidative Phosphorylation 24:28 
    The Electron Transport Chain and ATP Synthase 25:20 
    Carrier Molecules: Cytochromes 27:18 
    Carrier Molecules: Flavin Mononucleotide (FMN) 28:05 
   Chemiosmosis 32:46 
    The Process of Chemiosmosis 32:47 
   Summary of ATP Produced by Aerobic Respiration 38:24 
    ATP Produced by Aerobic Respiration 38:27 
   Example 1: Aerobic Respiration 43:38 
   Example 2: Label the Location for Each Process and Structure 45:08 
   Example 3: The Electron Transport Chain 47:06 
   Example 4: Mitochondrial Inner Membrane 48:38 
  Photosynthesis 1:02:52
   Intro 0:00 
   Photosynthesis 0:09 
    Introduction to Photosynthesis 0:10 
    Autotrophs and Heterotrophs 0:25 
    Overview of Photosynthesis Reaction 1:05 
   Leaf Anatomy and Chloroplast Structure 2:54 
    Chloroplast 2:55 
    Cuticle 3:16 
    Upper Epidermis 3:27 
    Mesophyll 3:40 
    Stomates 4:00 
    Guard Cells 4:45 
    Transpiration 5:01 
    Vascular Bundle 5:20 
    Stroma and Double Membrane 6:20 
    Grana 7:17 
    Thylakoids 7:30 
    Dark Reaction and Light Reaction 7:46 
   Light Reactions 8:43 
    Light Reactions 8:47 
    Pigments: Chlorophyll a, Chlorophyll b, and Carotenoids 9:19 
    Wave and Particle 12:10 
    Photon 12:34 
   Photosystems 13:24 
    Photosystems 13:28 
    Reaction-Center Complex and Light Harvesting Complexes 14:01 
   Noncyclic Photophosphorylation 17:46 
    Noncyclic Photophosphorylation Overview 17:47 
    What is Photophosphorylation? 18:25 
    Noncyclic Photophosphorylation Process 19:07 
    Photolysis and The Rest of Noncyclic Photophosphorylation 21:33 
   Cyclic Photophosphorylation 31:45 
    Cyclic Photophosphorylation 31:46 
   Light Independent Reactions 34:34 
    The Calvin Cycle 34:35 
   C3 Plants and Photorespiration 40:31 
    C3 Plants and Photorespiration 40:32 
   C4 Plants 45:32 
    C4 Plants: Structures and Functions 45:33 
   CAM Plants 50:25 
    CAM Plants: Structures and Functions 50:35 
   Example 1: Calvin Cycle 54:34 
   Example 2: C4 Plant 55:48 
   Example 3: Photosynthesis and Photorespiration 58:35 
   Example 4: CAM Plants 60:41 
V. Molecular Genetics
  DNA Synthesis 38:45
   Intro 0:00 
   Review of DNA Structure 0:09 
    DNA Molecules 0:10 
    Nitrogenous Base: Pyrimidines and Purines 1:25 
   DNA Double Helix 3:03 
    Complementary Strands of DNA 3:12 
    5' to 3' & Antiparallel 4:55 
   Overview of DNA Replication 7:10 
    DNA Replication & Semiconservative 7:11 
   DNA Replication 10:26 
    Origin of Replication 10:28 
    Helicase 11:10 
    Single-Strand Binding Protein 12:05 
    Topoisomerases 13:14 
    DNA Polymerase 14:26 
    Primase 15:55 
   Leading and Lagging Strands 16:51 
    Leading Strand and Lagging Strand 16:52 
    Okazaki Fragments 18:10 
    DNA Polymerase I 20:11 
    Ligase 21:12 
   Proofreading and Mismatch Repair 22:18 
    Proofreading 22:19 
    Mismatch 23:33 
   Telomeres 24:58 
    Telomeres 24:59 
   Example 1: Function of Enzymes During DNA Synthesis 28:09 
   Example 2: Accuracy of the DNA Sequence 31:42 
   Example 3: Leading Strand and Lagging Strand 32:38 
   Example 4: Telomeres 35:40 
  Transcription and Translation 1:17:01
   Intro 0:00 
   Transcription and Translation Overview 0:07 
    From DNA to RNA to Protein 0:09 
   Structure and Types of RNA 3:14 
    Structure and Types of RNA 3:33 
    mRNA 6:19 
    rRNA 7:02 
    tRNA 7:28 
   Transcription 7:54 
    Initiation Phase 8:11 
    Elongation Phase 12:12 
    Termination Phase 14:51 
   RNA Processing 16:11 
    Types of RNA Processing 16:12 
    Exons and Introns 16:35 
    Splicing & Spliceosomes 18:27 
    Addition of a 5' Cap and a Poly A tail 20:41 
    Alternative Splicing 21:43 
   Translation 23:41 
    Nucleotide Triplets or Codons 23:42 
    Start Codon 25:24 
    Stop Codons 25:38 
    Coding of Amino Acids and Wobble Position 25:57 
   Translation Cont. 28:29 
    Transfer RNA (tRNA): Structures and Functions 28:30 
   Ribosomes 35:15 
    Peptidyl, Aminoacyl, and Exit Site 35:23 
   Steps of Translation 36:58 
    Initiation Phase 37:12 
    Elongation Phase 43:12 
    Termination Phase 45:28 
   Mutations 49:43 
    Types of Mutations 49:44 
    Substitutions: Silent 51:11 
    Substitutions: Missense 55:27 
    Substitutions: Nonsense 59:37 
    Insertions and Deletions 61:10 
   Example 1: Three Types of Processing that are Performed on pre-mRNA 66:53 
   Example 2: The Process of Translation 69:10 
   Example 3: Transcription 72:04 
   Example 4: Three Types of Substitution Mutations 74:09 
  Viral Structure and Genetics 43:12
   Intro 0:00 
   Structure of Viruses 0:09 
    Structure of Viruses: Capsid and Envelope 0:10 
    Bacteriophage 1:48 
    Other Viruses 2:28 
   Overview of Viral Reproduction 3:15 
    Host Range 3:48 
    Step 1: Bind to Host Cell 4:39 
    Step 2: Viral Nuclei Acids Enter the Cell 5:15 
    Step 3: Viral Nucleic Acids & Proteins are Synthesized 5:54 
    Step 4: Virus Assembles 6:34 
    Step 5: Virus Exits the Cell 6:55 
   The Lytic Cycle 7:37 
    Steps in the Lytic Cycle 7:38 
   The Lysogenic Cycle 11:27 
    Temperate Phage 11:34 
    Steps in the Lysogenic Cycle 12:09 
   RNA Viruses 16:57 
    Types of RNA Viruses 17:15 
    Positive Sense 18:16 
    Negative Sense 18:48 
    Reproductive Cycle of RNA Viruses 19:32 
   Retroviruses 25:48 
    Complementary DNA (cDNA) & Reverse Transcriptase 25:49 
    Life Cycle of a Retrovirus 28:22 
   Prions 32:42 
    Prions: Definition and Examples 32:45 
    Viroids 34:46 
   Example 1: The Lytic Cycle 35:37 
   Example 2: Retrovirus 38:03 
   Example 3: Positive Sense RNA vs. Negative Sense RNA 39:10 
   Example 4: The Lysogenic Cycle 40:42 
  Bacterial Genetics and Gene Regulation 49:45
   Intro 0:00 
   Bacterial Genomes 0:09 
    Structure of Bacterial Genomes 0:16 
   Transformation 1:22 
    Transformation 1:23 
    Vector 2:49 
   Transduction 3:32 
    Process of Transduction 3:38 
   Conjugation 8:06 
    Conjugation & F factor 8:07 
   Operons 14:02 
    Definition and Example of Operon 14:52 
    Structural Genes 16:23 
    Promoter Region 17:04 
    Regulatory Protein & Operators 17:53 
   The lac Operon 20:09 
    The lac Operon: Inducible System 20:10 
   The trp Operon 28:02 
    The trp Operon: Repressible System 28:03 
    Corepressor 31:37 
    Anabolic & Catabolic 33:12 
   Positive Regulation of the lac Operon 34:39 
    Positive Regulation of the lac Operon 34:40 
   Example 1: The Process of Transformation 39:07 
   Example 2: Operon & Terms 43:29 
   Example 3: Inducible lac Operon and Repressible trp Operon 45:15 
   Example 4: lac Operon 47:10 
  Eukaryotic Gene Regulation and Mobile Genetic Elements 54:26
   Intro 0:00 
   Mechanism of Gene Regulation 0:11 
    Differential Gene Expression 0:13 
    Levels of Regulation 2:24 
   Chromatin Structure and Modification 4:35 
    Chromatin Structure 4:36 
    Levels of Packing 5:50 
    Euchromatin and Heterochromatin 8:58 
    Modification of Chromatin Structure 9:58 
    Epigenetic 12:49 
   Regulation of Transcription 14:20 
    Promoter Region, Exon, and Intron 14:26 
    Enhancers: Control Element 15:31 
    Enhancer & DNA-Bending Protein 17:25 
    Coordinate Control 21:23 
    Silencers 23:01 
   Post-Transcriptional Regulation 24:05 
    Post-Transcriptional Regulation 24:07 
    Alternative Splicing 27:19 
    Differences in mRNA Stability 28:02 
    Non-Coding RNA Molecules: micro RNA & siRNA 30:01 
   Regulation of Translation and Post-Translational Modifications 32:31 
    Regulation of Translation and Post-Translational Modifications 32:55 
    Ubiquitin 35:21 
    Proteosomes 36:04 
   Transposons 37:50 
    Mobile Genetic Elements 37:56 
    Barbara McClintock 38:37 
    Transposons & Retrotransposons 40:38 
    Insertion Sequences 43:14 
    Complex Transposons 43:58 
   Example 1: Four Mechanisms that Decrease Production of Protein 45:13 
   Example 2: Enhancers and Gene Expression 49:09 
   Example 3: Primary Transcript 50:41 
   Example 4: Retroviruses and Retrotransposons 52:11 
  Biotechnology 49:26
   Intro 0:00 
   Definition of Biotechnology 0:08 
    Biotechnology 0:09 
    Genetic Engineering 1:05 
    Example: Golden Corn 1:57 
   Recombinant DNA 2:41 
    Recombinant DNA 2:42 
    Transformation 3:24 
    Transduction 4:24 
    Restriction Enzymes, Restriction Sites, & DNA Ligase 5:32 
   Gene Cloning 13:48 
    Plasmids 14:20 
    Gene Cloning: Step 1 17:35 
    Gene Cloning: Step 2 17:57 
    Gene Cloning: Step 3 18:53 
    Gene Cloning: Step 4 19:46 
   Gel Electrophoresis 27:25 
    What is Gel Electrophoresis? 27:26 
    Gel Electrophoresis: Step 1 28:13 
    Gel Electrophoresis: Step 2 28:24 
    Gel Electrophoresis: Step 3 & 4 28:39 
    Gel Electrophoresis: Step 5 29:55 
    Southern Blotting 31:25 
   Polymerase Chain Reaction (PCR) 32:11 
    Polymerase Chain Reaction (PCR) 32:12 
    Denaturing Phase 35:40 
    Annealing Phase 36:07 
    Elongation/ Extension Phase 37:06 
   DNA Sequencing and the Human Genome Project 39:19 
    DNA Sequencing and the Human Genome Project 39:20 
   Example 1: Gene Cloning 40:40 
   Example 2: Recombinant DNA 43:04 
   Example 3: Match Terms With Descriptions 45:43 
   Example 4: Polymerase Chain Reaction 47:36 
VI. Heredity
  Mendelian Genetics 1:32:08
   Intro 0:00 
   Background 0:40 
    Gregory Mendel & Mendel's Law 0:41 
    Blending Hypothesis 1:04 
    Particulate Inheritance 2:08 
   Terminology 2:55 
    Gene 3:05 
    Locus 3:57 
    Allele 4:37 
    Dominant Allele 5:48 
    Recessive Allele 7:38 
    Genotype 9:22 
    Phenotype 10:01 
    Homozygous 10:44 
    Heterozygous 11:39 
    Penetrance 11:57 
    Expressivity 14:15 
   Mendel's Experiments 15:31 
    Mendel's Experiments: Pea Plants 15:32 
   The Law of Segregation 21:16 
    Mendel's Conclusions 21:17 
    The Law of Segregation 22:57 
   Punnett Squares 28:27 
    Using Punnet Squares 28:30 
   The Law of Independent Assortment 32:35 
    Monohybrid 32:38 
    Dihybrid 33:29 
    The Law of Independent Assortment 34:00 
   The Law of Independent Assortment, cont. 38:13 
    The Law of Independent Assortment: Punnet Squares 38:29 
   Meiosis and Mendel's Laws 43:38 
    Meiosis and Mendel's Laws 43:39 
   Test Crosses 49:07 
    Test Crosses Example 49:08 
   Probability: Multiplication Rule and the Addition Rule 53:39 
    Probability Overview 53:40 
    Independent Events & Multiplication Rule 55:40 
    Mutually Exclusive Events & Addition Rule 60:25 
   Incomplete Dominance, Codominance and Multiple Alleles 62:55 
    Incomplete Dominance 62:56 
   Incomplete Dominance, Codominance and Multiple Alleles 67:06 
    Codominance and Multiple Alleles 67:08 
   Polygenic Inheritance and Pleoitropy 70:19 
    Polygenic Inheritance and Pleoitropy 70:26 
   Epistasis 72:51 
    Example of Epistasis 72:52 
   Example 1: Genetic of Eye Color and Height 77:39 
   Example 2: Blood Type 81:57 
   Example 3: Pea Plants 85:09 
   Example 4: Coat Color 88:34 
  Linked Genes and Non-Mendelian Modes of Inheritance 39:38
   Intro 0:00 
   Review of the Law of Independent Assortment 0:14 
    Review of the Law of Independent Assortment 0:24 
   Linked Genes 6:06 
    Linked Genes 6:07 
    Bateson & Pannett: Pea Plants 8:00 
   Crossing Over and Recombination 15:17 
    Crossing Over and Recombination 15:18 
   Extranuclear Genes 20:50 
    Extranuclear Genes 20:51 
    Cytoplasmic Genes 21:31 
   Genomic Imprinting 23:45 
    Genomic Imprinting 23:58 
    Methylation 24:43 
   Example 1: Recombination Frequencies & Linkage Map 27:07 
   Example 2: Linked Genes 28:39 
   Example 3: Match Terms to Correct Descriptions 36:46 
   Example 4: Leber's Optic Neuropathy 38:40 
  Sex-Linked Traits and Pedigree Analysis 43:39
   Intro 0:00 
   Sex-Linked Traits 0:09 
    Human Chromosomes, XY, and XX 0:10 
    Thomas Morgan's Drosophila 1:44 
   X-Inactivation and Barr Bodies 14:48 
    X-Inactivation Overview 14:49 
    Calico Cats Example 17:04 
   Pedigrees 19:24 
    Definition and Example of Pedigree 19:25 
   Autosomal Dominant Inheritance 20:51 
    Example: Huntington's Disease 20:52 
   Autosomal Recessive Inheritance 23:04 
    Example: Cystic Fibrosis, Tay-Sachs Disease, and Phenylketonuria 23:05 
   X-Linked Recessive Inheritance 27:06 
    Example: Hemophilia, Duchene Muscular Dystrohpy, and Color Blindess 27:07 
   Example 1: Colorblind 29:48 
   Example 2: Pedigree 37:07 
   Example 3: Inheritance Pattern 39:54 
   Example 4: X-inactivation 41:17 
VII. Evolution
  Natural Selection 1:03:28
   Intro 0:00 
   Background 0:09 
    Work of Other Scientists 0:15 
    Aristotle 0:43 
    Carl Linnaeus 1:32 
    George Cuvier 2:47 
    James Hutton 4:10 
    Thomas Malthus 5:05 
    Jean-Baptiste Lamark 5:45 
   Darwin's Theory of Natural Selection 7:50 
    Evolution 8:00 
    Natural Selection 8:43 
    Charles Darwin & The Galapagos Islands 10:20 
   Genetic Variation 20:37 
    Mutations 20:38 
    Independent Assortment 21:04 
    Crossing Over 24:40 
    Random Fertilization 25:26 
   Natural Selection and the Peppered Moth 26:37 
    Natural Selection and the Peppered Moth 26:38 
   Types of Natural Selection 29:52 
    Directional Selection 29:55 
    Stabilizing Selection 32:43 
    Disruptive Selection 34:21 
   Sexual Selection 36:18 
    Sexual Dimorphism 37:30 
    Intersexual Selection 37:57 
    Intrasexual Selection 39:20 
   Evidence for Evolution 40:55 
    Paleontology: Fossil Record 41:30 
    Biogeography 45:35 
    Continental Drift 46:06 
    Pangaea 46:28 
    Marsupials 47:11 
   Homologous and Analogous Structure 50:10 
    Homologous Structure 50:12 
    Analogous Structure 53:21 
   Example 1: Genetic Variation & Natural Selection 56:15 
   Example 2: Types of Natural Selection 58:07 
   Example 3: Mechanisms By Which Genetic Variation is Maintained Within a Population 60:12 
   Example 4: Difference Between Homologous and Analogous Structures 61:28 
  Population Genetic and Evolution 53:22
   Intro 0:00 
   Review of Natural Selection 0:12 
    Review of Natural Selection 0:13 
   Genetic Drift and Gene Flow 4:40 
    Definition of Genetic Drift 4:41 
    Example of Genetic Drift: Cholera Epidemic 5:15 
    Genetic Drift: Founder Effect 7:28 
    Genetic Drift: Bottleneck Effect 10:27 
    Gene Flow 13:00 
   Quantifying Genetic Variation 14:32 
    Average Heterozygosity 15:08 
    Nucleotide Variation 17:05 
   Maintaining Genetic Variation 18:12 
    Heterozygote Advantage 19:45 
    Example of Heterozygote Advantage: Sickle Cell Anemia 20:21 
    Diploidy 23:44 
    Geographic Variation 26:54 
    Frequency Dependent Selection and Outbreeding 28:15 
    Neutral Traits 30:55 
   The Hardy-Weinberg Equilibrium 31:11 
    The Hardy-Weinberg Equilibrium 31:49 
    The Hardy-Weinberg Conditions 32:42 
    The Hardy-Weinberg Equation 34:05 
    The Hardy-Weinberg Example 36:33 
   Example 1: Match Terms to Descriptions 42:28 
   Example 2: The Hardy-Weinberg Equilibrium 44:31 
   Example 3: The Hardy-Weinberg Equilibrium 49:10 
   Example 4: Maintaining Genetic Variation 51:30 
  Speciation and Patterns of Evolution 51:02
   Intro 0:00 
   Early Life on Earth 0:08 
    Early Earth 0:09 
    1920's Oparin & Haldane 0:58 
    Abiogenesis 2:15 
    1950's Miller & Urey 2:45 
    Ribozymes 5:34 
    3.5 Billion Years Ago 6:39 
    2.5 Billion Years Ago 7:14 
    1.5 Billion Years Ago 7:41 
    Endosymbiosis 8:00 
    540 Million Years Ago: Cambrian Explosion 9:57 
   Gradualism and Punctuated Equilibrium 11:46 
    Gradualism 11:47 
    Punctuated Equilibrium 12:45 
   Adaptive Radiation 15:08 
    Adaptive Radiation 15:09 
    Example of Adaptive Radiation: Galapogos Islands 17:11 
   Convergent Evolution, Divergent Evolution, and Coevolution 18:30 
    Convergent Evolution 18:39 
    Divergent Evolution 21:30 
    Coevolution 23:49 
   Speciation 26:27 
    Definition and Example of Species 26:29 
    Reproductive Isolation: Prezygotive 27:49 
    Reproductive Isolation: Post zygotic 29:28 
   Allopatric Speciation 30:21 
    Allopatric Speciation & Geographic Isolation 30:28 
    Genetic Drift 31:31 
   Sympatric Speciation 34:10 
    Sympatric Speciation 34:11 
    Polyploidy & Autopolyploidy 35:12 
    Habitat Isolation 39:17 
    Temporal Isolation 41:27 
    Selection Selection 41:40 
   Example 1: Pattern of Evolution 42:53 
   Example 2: Sympatric Speciation 45:16 
   Example 3: Patterns of Evolution 48:08 
   Example 4: Patterns of Evolution 49:27 
VIII. Diversity of Life
  Classification 1:00:51
   Intro 0:00 
   Systems of Classification 0:07 
    Taxonomy 0:08 
    Phylogeny 1:04 
    Phylogenetics Tree 1:44 
    Cladistics 3:37 
   Classification of Organisms 5:31 
    Example of Carl Linnaeus System 5:32 
   Domains 9:26 
    Kingdoms: Monera, Protista, Plantae, Fungi, Animalia 9:27 
    Monera 10:06 
    Phylogentics Tree: Eurkarya, Bacteria, Archaea 11:58 
    Domain Eukarya 12:50 
   Domain Bacteria 15:43 
    Domain Bacteria 15:46 
    Pathogens 16:41 
    Decomposers 18:00 
   Domain Archaea 19:43 
    Extremophiles Archaea: Thermophiles and Halophiles 19:44 
    Methanogens 20:58 
   Phototrophs, Autotrophs, Chemotrophs and Heterotrophs 24:40 
    Phototrophs and Chemotrophs 25:02 
    Autotrophs and Heterotrophs 26:54 
    Photoautotrophs 28:50 
    Photoheterotrophs 29:28 
    Chemoautotrophs 30:06 
    Chemoheterotrophs 31:37 
   Domain Eukarya 32:40 
    Domain Eukarya 32:43 
    Plant Kingdom 34:28 
    Protists 35:48 
    Fungi Kingdom 37:06 
    Animal Kingdom 38:35 
   Body Symmetry 39:25 
    Lack Symetry 39:40 
    Radial Symmetry: Sea Aneome 40:15 
    Bilateral Symmetry 41:55 
    Cephalization 43:29 
   Germ Layers 44:54 
    Diploblastic Animals 45:18 
    Triploblastic Animals 45:25 
    Ectoderm 45:36 
    Endoderm 46:07 
    Mesoderm 46:41 
   Coelomates 47:14 
    Coelom 47:15 
    Acoelomate 48:22 
    Pseudocoelomate 48:59 
    Coelomate 49:31 
    Protosomes 50:46 
    Deuterosomes 51:20 
   Example 1: Domains 53:01 
   Example 2: Match Terms with Descriptions 56:00 
   Example 3: Kingdom Monera and Domain Archaea 57:50 
   Example 4: System of Classification 59:37 
  Bacteria 36:46
   Intro 0:00 
   Comparison of Domain Archaea and Domain Bacteria 0:08 
    Overview of Archaea and Bacteria 0:09 
    Archaea vs. Bacteria: Nucleus, Organelles, and Organization of Genetic Material 1:45 
    Archaea vs. Bacteria: Cell Walls 2:20 
    Archaea vs. Bacteria: Number of Types of RNA Pol 2:29 
    Archaea vs. Bacteria: Membrane Lipids 2:53 
    Archaea vs. Bacteria: Introns 3:33 
    Bacteria: Pathogen 4:03 
    Bacteria: Decomposers and Fix Nitrogen 5:18 
    Bacteria: Aerobic, Anaerobic, Strict Anaerobes & Facultative Anaerobes 6:02 
   Phototrophs, Autotrophs, Heterotrophs and Chemotrophs 7:14 
    Phototrophs and Chemotrophs 7:50 
    Autotrophs and Heterotrophs 8:53 
    Photoautotrophs and Photoheterotrophs 10:15 
    Chemoautotroph and Chemoheterotrophs 11:07 
   Structure of Bacteria 12:21 
    Shapes: Cocci, Bacilli, Vibrio, and Spirochetes 12:26 
    Structures: Plasma Membrane and Cell Wall 14:23 
    Structures: Nucleoid Region, Plasmid, and Capsule Basal Apparatus, and Filament 15:30 
    Structures: Flagella, Basal Apparatus, Hook, and Filament 16:36 
    Structures: Pili, Fimbrae and Ribosome 18:00 
    Peptidoglycan: Gram + and Gram - 18:50 
   Bacterial Genomes and Reproduction 21:14 
    Bacterial Genomes 21:21 
    Reproduction of Bacteria 22:13 
    Transformation 23:26 
    Vector 24:34 
    Competent 25:15 
   Conjugation 25:53 
    Conjugation: F+ and R Plasmids 25:55 
   Example 1: Species 29:41 
   Example 2: Bacteria and Exchange of Genetic Material 32:31 
   Example 3: Ways in Which Bacteria are Beneficial to Other Organisms 33:48 
   Example 4: Domain Bacteria vs. Domain Archaea 34:53 
  Protists 1:18:48
   Intro 0:00 
   Classification of Protists 0:08 
    Classification of Protists 0:09 
    'Plant-like' Protists 2:06 
    'Animal-like' Protists 3:19 
    'Fungus-like' Protists 3:57 
   Serial Endosymbiosis Theory 5:15 
    Endosymbiosis Theory 5:33 
    Photosynthetic Protists 7:33 
   Life Cycles with a Diploid Adult 13:35 
    Life Cycles with a Diploid Adult 13:56 
   Life Cycles with a Haploid Adult 15:31 
    Life Cycles with a Haploid Adult 15:32 
   Alternation of Generations 17:22 
    Alternation of Generations: Multicellular Haploid & Diploid Phase 17:23 
   Plant-Like Protists 19:58 
    Euglenids 20:43 
    Dino Flagellates 22:57 
    Diatoms 26:07 
   Plant-Like Protists 28:44 
    Golden Algae 28:45 
    Brown Algeas 30:05 
   Plant-Like Protists 33:38 
    Red Algae 33:39 
    Green Algae 35:36 
    Green Algae: Chlamydomonus 37:44 
   Animal-Like Protists 40:04 
    Animal-Like Protists Overview 40:05 
    Sporozoans (Apicomplexans) 40:32 
    Alveolates 41:41 
    Sporozoans (Apicomplexans): Plasmodium & Malaria 42:59 
   Animal-Like Protists 48:44 
    Kinetoplastids 48:50 
    Example of Kinetoplastids: Trypanosomes & African Sleeping Sickness 49:30 
    Ciliate 50:42 
   Conjugation 53:16 
    Conjugation 53:26 
   Animal-Like Protists 57:08 
    Parabasilids 57:31 
    Diplomonads 59:06 
    Rhizopods 60:13 
    Forams 62:25 
    Radiolarians 63:28 
   Fungus-Like Protists 64:25 
    Fungus-Like Protists Overview 64:26 
    Slime Molds 65:15 
    Cellular Slime Molds: Feeding Stage 69:21 
    Oomycetes 71:15 
   Example 1: Alternation of Generations and Sexual Life Cycles 73:05 
   Example 2: Match Protists to Their Descriptions 74:12 
   Example 3: Three Structures that Protists Use for Motility 76:22 
   Example 4: Paramecium 77:04 
  Fungi 35:24
   Intro 0:00 
   Introduction to Fungi 0:09 
    Introduction to Fungi 0:10 
    Mycologist 0:34 
    Examples of Fungi 0:45 
    Hyphae, Mycelia, Chitin, and Coencytic Fungi 2:26 
    Ancestral Protists 5:00 
   Role of Fungi in the Environment 5:35 
    Fungi as Decomposers 5:36 
    Mycorrrhiza 6:19 
    Lichen 8:52 
   Life Cycle of Fungi 11:32 
    Asexual Reproduction 11:33 
    Sexual Reproduction & Dikaryotic Cell 13:16 
   Chytridiomycota 18:12 
    Phylum Chytridiomycota 18:17 
    Zoospores 18:50 
   Zygomycota 19:07 
    Coenocytic & Zygomycota Life Cycle 19:08 
   Basidiomycota 24:27 
    Basidiomycota Overview 24:28 
    Basidiomycota Life Cycle 26:11 
   Ascomycota 28:00 
    Ascomycota Overview 28:01 
    Ascomycota Reproduction 28:50 
   Example 1: Fungi Fill in the Blank 31:02 
   Example 2: Name Two Roles Played by Fungi in the Environment 32:09 
   Example 3: Difference Between Diploid Cell and Dikaryon Cell 33:42 
   Example 4: Phylum of Fungi, Flagellated Spore, Coencytic 34:36 
  Invertebrates 1:03:03
   Intro 0:00 
   Porifera (Sponges) 0:33 
    Chordata 0:56 
    Porifera (Sponges): Sessile, Layers, Aceolomates, and Filter Feeders 1:24 
    Amoebocytes Cell 4:47 
    Choanocytes Cell 5:56 
    Sexual Reproduction 6:28 
   Cnidaria 8:05 
    Cnidaria Overview 8:06 
    Polyp & Medusa: Gastrovasular Cavity 8:29 
    Cnidocytes 9:42 
    Anthozoa 10:40 
    Cubozoa 11:23 
    Hydrozoa 11:53 
    Scyphoza 13:25 
   Platyhelminthes (Flatworms) 13:58 
    Flatworms: Tribloblastic, Bilateral Symmetry, and Cephalization 13:59 
    GI System 15:33 
    Excretory System 16:07 
    Nervous System 17:00 
    Turbellarians 17:36 
    Trematodes 18:42 
    Monageneans 21:32 
    Cestoda 21:55 
   Rotifera (Rotifers) 23:45 
    Rotifers: Digestive Tract, Pseudocoelem, and Stuctures 23:46 
    Reproduction: Parthenogenesis 25:33 
   Nematoda (Roundworms) 26:44 
    Nematoda (Roundworms) 26:45 
    Parasites: Pinworms & Hookworms 27:26 
   Annelida 28:36 
    Annelida Overview 28:37 
    Open Circulatory 29:21 
    Closed Circulatory 30:18 
    Nervous System 31:19 
    Excretory System 31:43 
    Oligochaete 32:07 
    Leeches 33:22 
    Polychaetes 34:42 
   Mollusca 35:26 
    Mollusca Features 35:27 
    Major Part 1: Visceral Mass 36:21 
    Major Part 2: Head-foot Region 36:49 
    Major Part 3: Mantle 37:13 
    Radula 37:49 
    Circulatory, Reproductive, Excretory, and Nervous System 38:14 
   Major Classes of Molluscs 39:12 
    Gastropoda 39:17 
    Polyplacophora 40:15 
    Bivales 40:41 
    Cephalopods 41:42 
   Arthropoda 43:35 
    Arthropoda Overview 43:36 
    Segmented Bodies 44:14 
    Exoskeleton 44:52 
    Jointed Appendages 45:28 
    Hemolyph, Excretory & Respiratory System 45:41 
    Myriapoda & Centipedes 47:15 
    Cheliceriforms 48:20 
    Crustcea 49:31 
    Herapoda 50:03 
   Echinodermata 52:59 
    Echinodermata 53:00 
    Watrer Vascular System 54:20 
   Selected Characteristics of Invertebrates 57:11 
    Selected Characteristics of Invertebrates 57:12 
   Example 1: Phylum Description 58:43 
   Example 2: Complex Animals 59:50 
   Example 3: Match Organisms to the Correct Phylum 61:03 
   Example 4: Phylum Arthropoda 62:01 
  Vertebrates 1:00:07
   Intro 0:00 
   Phylum Chordata 0:06 
    Chordates Overview 0:07 
    Notochord and Dorsal Hollow Nerve Chord 1:24 
    Pharyngeal Clefts, Arches, and Post-anal Tail 3:41 
   Invertebrate Chordates 6:48 
    Lancelets 7:13 
    Tunicates 8:02 
    Hagfishes: Craniates 8:55 
   Vertebrate Chordates 10:41 
    Veterbrates Overview 10:42 
    Lampreys 11:00 
    Gnathostomes 12:20 
    Six Major Classes of Vertebrates 12:53 
   chondrichthyes 14:23 
    Chondrichthyes Overview 14:24 
    Ectothermic and Endothermic 14:42 
    Sharks: Lateral Line System, Neuromastsn, and Gills 15:27 
    Oviparous and Viviparous 17:23 
   Osteichthyes (Bony Fishes) 18:12 
    Osteichythes (Bony Fishes) Overview 18:13 
    Operculum 19:05 
    Swim Bladder 19:53 
    Ray-Finned Fishes 20:34 
    Lobe-Finned Fishes 20:58 
   Tetrapods 22:36 
    Tetrapods: Definition and Examples 22:37 
   Amphibians 23:53 
    Amphibians Overview 23:54 
    Order Urodela 25:51 
    Order Apoda 27:03 
    Order Anura 27:55 
   Reptiles 30:19 
    Reptiles Overview 30:20 
    Amniotes 30:37 
    Examples of Reptiles 32:46 
    Reptiles: Ectotherms, Gas Exchange, and Heart 33:40 
   Orders of Reptiles 34:17 
    Sphenodontia, Squamata, Testudines, and Crocodilia 34:21 
   Birds 36:09 
    Birds and Dinosaurs 36:18 
    Theropods 38:00 
    Birds: High Metabolism, Respiratory System, Lungs, and Heart 39:04 
    Birds: Endothermic, Bones, and Feathers 40:15 
   Mammals 42:33 
    Mammals Overview 42:35 
    Diaphragm and Heart 42:57 
    Diphydont 43:44 
    Synapsids 44:41 
   Monotremes 46:36 
    Monotremes 46:37 
   Marsupials 47:12 
    Marsupials: Definition and Examples 47:16 
    Convergent Evolution 48:09 
   Eutherians (Placental Mammals) 49:42 
    Placenta 49:43 
    Order Carnivora 50:48 
    Order Raodentia 51:00 
    Order Cetaceans 51:14 
   Primates 51:41 
    Primates Overview 51:42 
    Nails and Hands 51:58 
    Vision 52:51 
    Social Care for Young 53:28 
    Brain 53:43 
   Example 1: Distinguishing Characteristics of Chordates 54:33 
   Example 2: Match Description to Correct Term 55:56 
   Example 3: Bird's Anatomy 57:38 
   Example 4: Vertebrate Animal, Marine Environment, and Ectothermic 59:14 
IX. Plants
  Seedless Plants 34:31
   Intro 0:00 
   Origin and Classification of Plants 0:06 
    Origin and Classification of Plants 0:07 
    Non-Vascular vs. Vascular Plants 1:29 
    Seedless Vascular & Seed Plants 2:28 
    Angiosperms & Gymnosperms 2:50 
   Alternation of Generations 3:54 
    Alternation of Generations 3:55 
   Bryophytes 7:58 
    Overview of Bryrophytes 7:59 
    Example: Moss Gametophyte 9:29 
    Example: Moss Sporophyte 9:50 
   Moss Life Cycle 10:12 
    Moss Life Cycle 10:13 
   Seedless Vascular Plants 13:23 
    Vascular Structures: Cell Walls, and Lignin 13:24 
    Homosporous 17:11 
    Heterosporous 17:48 
   Adaptations to Life on land 21:10 
    Adaptation 1: Cell Walls 21:38 
    Adaptation 2: Vascular Plants 21:59 
    Adaptation 3 : Xylem & Phloem 22:31 
    Adaptation 4: Seeds 23:07 
    Adaptation 5: Pollen 23:35 
    Adaptation 6: Stomata 24:45 
    Adaptation 7: Reduced Gametophyte Generation 25:32 
   Example 1: Bryophytes 26:39 
   Example 2: Sporangium, Lignin, Gametophyte, and Antheridium 28:34 
   Example 3: Adaptations to Life on Land 29:47 
   Example 4: Life Cycle of Plant 32:06 
  Plant Structure 1:01:21
   Intro 0:00 
   Plant Tissue 0:05 
    Dermal Tissue 0:15 
    Vascular Tissue 0:39 
    Ground Tissue 1:31 
   Cell Types in Plants 2:14 
    Parenchyma Cells 2:24 
    Collenchyma Cells 3:21 
    Sclerenchyma Cells 3:59 
   Xylem 5:04 
    Xylem: Tracheids and Vessel Elements 6:12 
    Gymnosperms vs. Angiosperms 7:53 
   Phloem 8:37 
    Phloem: Structures and Function 8:38 
    Sieve-Tube Elements 8:45 
    Companion Cells & Sieve Plates 9:11 
   Roots 10:08 
    Taproots & Fibrous 10:09 
    Aerial Roots & Prop Roots 11:41 
    Structures and Functions of Root: Dicot & Monocot 13:00 
    Pericyle 16:57 
   The Nitrogen Cylce 18:05 
    The Nitrogen Cycle 18:06 
   Mycorrhizae 24:20 
    Mycorrhizae 24:23 
    Ectomycorrhiza 26:03 
    Endomycorrhiza 26:25 
   Stems 26:53 
    Stems 26:54 
    Vascular Bundles of Monocots and Dicots 28:18 
   Leaves 29:48 
    Blade & Petiole 30:13 
    Upper Epidermis, Lower Epidermis & Cuticle 30:39 
    Ground Tissue, Palisade Mesophyll, Spongy Mesophyll 31:35 
    Stomata Pores 33:23 
    Guard Cells 34:15 
    Vascular Tissues: Vascular Bundles and Bundle Sheath 34:46 
   Stomata 36:12 
    Stomata & Gas Exchange 36:16 
    Guard Cells, Flaccid, and Turgid 36:43 
    Water Potential 38:03 
    Factors for Opening Stoma 40:35 
    Factors Causing Stoma to Close 42:44 
   Overview of Plant Growth 44:23 
    Overview of Plant Growth 44:24 
   Primary Plant Growth 46:19 
    Apical Meristems 46:25 
    Root Growth: Zone of Cell Division 46:44 
    Root Growth: Zone of Cell Elongation 47:35 
    Root Growth: Zone of Cell Differentiation 47:55 
    Stem Growth: Leaf Primodia 48:16 
   Secondary Plant Growth 48:48 
    Secondary Plant Growth Overview 48:59 
    Vascular Cambium: Secondary Xylem and Phloem 49:38 
    Cork Cambium: Periderm and Lenticels 51:10 
   Example 1: Leaf Structures 53:30 
   Example 2: List Three Types of Plant Tissue and their Major Functions 55:13 
   Example 3: What are Two Factors that Stimulate the Opening or Closing of Stomata? 56:58 
   Example 4: Plant Growth 59:18 
  Gymnosperms and Angiosperms 1:01:51
   Intro 0:00 
   Seed Plants 0:22 
    Sporopollenin 0:58 
    Heterosporous: Megasporangia 2:49 
    Heterosporous: Microsporangia 3:19 
   Gymnosperms 5:20 
    Gymnosperms 5:21 
   Gymnosperm Life Cycle 7:30 
    Gymnosperm Life Cycle 7:31 
   Flower Structure 15:15 
    Petal & Pollination 15:48 
    Sepal 16:52 
    Stamen: Anther, Filament 17:05 
    Pistill: Stigma, Style, Ovule, Ovary 17:55 
    Complete Flowers 20:14 
   Angiosperm Gametophyte Formation 20:47 
    Male Gametophyte: Microsporocytes, Microsporangia & Meiosis 20:57 
    Female Gametophyte: Megasporocytes & Meiosis 24:22 
   Double Fertilization 25:43 
    Double Fertilization: Pollen Tube and Endosperm 25:44 
   Angiosperm Life Cycle 29:43 
    Angiosperm Life Cycle 29:48 
   Seed Structure and Development 33:37 
    Seed Structure and Development 33:38 
   Pollen Dispersal 37:53 
    Abiotic 38:28 
    Biotic 39:30 
   Prevention of Self-Pollination 40:48 
    Mechanism 1 41:08 
    Mechanism 2: Dioecious 41:37 
    Mechanism 3 42:32 
    Self-Incompatibility 43:08 
    Gametophytic Self-Incompatibility 44:38 
    Sporophytic Self-Incompatibility 46:50 
   Asexual Reproduction 48:33 
    Asexual Reproduction & Vegetative Propagation 48:34 
    Graftiry 50:19 
   Monocots and Dicots 51:34 
    Monocots vs.Dicots 51:35 
   Example 1: Double Fertilization 54:43 
   Example 2: Mechanisms of Self-Fertilization 56:02 
   Example 3: Monocots vs. Dicots 58:11 
   Example 4: Flower Structures 60:11 
  Transport of Nutrients and Water in Plants 40:30
   Intro 0:00 
   Review of Plant Cell Structure 0:14 
    Cell Wall, Plasma Membrane, Middle lamella, and Cytoplasm 0:15 
    Plasmodesmata, Chloroplasts, and Central Vacuole 3:24 
   Water Absorption by Plants 4:28 
    Root Hairs and Mycorrhizae 4:30 
    Osmosis and Water Potential 5:41 
   Apoplast and Symplast Pathways 10:01 
    Apoplast and Symplast Pathways 10:02 
   Xylem Structure 21:02 
    Tracheids and Vessel Elements 21:03 
   Bulk Flow 23:00 
    Transpiration 23:26 
    Cohesion 25:10 
    Adhesion 26:10 
   Phloem Structure 27:25 
    Pholem 27:26 
    Sieve-Tube Elements 27:48 
    Companion Cells 28:17 
   Translocation 28:42 
    Sugar Source and Sugar Sink Overview 28:43 
    Example of Sugar Sink 30:01 
    Example of Sugar Source 30:48 
   Example 1: Match the Following Terms to their Description 33:17 
   Example 2: Water Potential 34:58 
   Example 3: Bulk Flow 36:56 
   Example 4: Sugar Sink and Sugar Source 38:33 
  Plant Hormones and Tropisms 48:10
   Intro 0:00 
   Plant Cell Signaling 0:17 
    Plant Cell Signaling Overview 0:18 
    Step 1: Reception 1:03 
    Step 2: Transduction 2:32 
    Step 3: Response 2:58 
    Second Messengers 3:52 
    Protein Kinases 4:42 
   Auxins 6:14 
    Auxins 6:18 
    Indoleacetic Acid (IAA) 7:23 
   Cytokinins and Gibberellins 11:10 
    Cytokinins: Apical Dominance & Delay of Aging 11:16 
    Gibberellins: 'Bolting' 13:51 
   Ethylene 15:33 
    Ethylene 15:34 
    Positive Feedback 15:46 
    Leaf Abscission 18:05 
    Mechanical Stress: Triple Response 19:36 
   Abscisic Acid 21:10 
    Abscisic Acid 21:15 
   Tropisms 23:11 
    Positive Tropism 23:50 
    Negative Tropism 24:07 
    Statoliths 26:21 
   Phytochromes and Photoperiodism 27:48 
    Phytochromes: PR and PFR 27:56 
    Circadian Rhythms 32:06 
    Photoperiod 33:13 
    Photoperiodism 33:38 
    Gerner & Allard 34:35 
    Short-Day Plant 35:22 
    Long-Day Plant 37:00 
   Example 1: Plant Hormones 41:28 
   Example 2: Cytokinins & Gibberellins 43:00 
   Example 3: Match the Following Terms to their Description 44:46 
   Example 4: Hormones & Cell Response 46:14 
X. Animal Structure and Physiology
  The Respiratory System 48:14
   Intro 0:00 
   Gas Exchange in Animals 0:17 
    Respiration 0:19 
    Ventilation 1:09 
    Characteristics of Respiratory Surfaces 1:53 
   Gas Exchange in Aquatic Animals 3:05 
    Simple Aquatic Animals 3:06 
    Gills & Gas Exchange in Complex Aquatic Animals 3:49 
    Countercurrent Exchange 6:12 
   Gas Exchange in Terrestrial Animals 13:46 
    Earthworms 14:07 
    Internal Respiratory 15:35 
    Insects 16:55 
    Circulatory Fluid 19:06 
   The Human Respiratory System 21:21 
    Nasal Cavity, Pharynx, Larynx, and Epiglottis 21:50 
    Bronchus, Bronchiole, Trachea, and Alveoli 23:38 
    Pulmonary Surfactants 28:05 
    Circulatory System: Hemoglobin 29:13 
   Ventilation 30:28 
    Inspiration/Expiration: Diaphragm, Thorax, and Abdomen 30:33 
    Breathing Control Center: Regulation of pH 34:34 
   Example 1: Tracheal System in Insects 39:08 
   Example 2: Countercurrent Exchange 42:09 
   Example 3: Respiratory System 44:10 
   Example 4: Diaphragm, Ventilation, pH, and Regulation of Breathing 45:31 
  The Circulatory System 1:20:21
   Intro 0:00 
   Types of Circulatory Systems 0:07 
    Circulatory System Overview 0:08 
    Open Circulatory System 3:19 
    Closed Circulatory System 5:58 
   Blood Vessels 7:51 
    Arteries 8:16 
    Veins 10:01 
    Capillaries 12:35 
   Vasoconstriction and Vasodilation 13:10 
    Vasoconstriction 13:11 
    Vasodilation 13:47 
    Thermoregulation 14:32 
   Blood 15:53 
    Plasma 15:54 
    Cellular Component: Red Blood Cells 17:41 
    Cellular Component: White Blood Cells 20:18 
    Platelets 21:14 
    Blood Types 21:35 
   Clotting 27:04 
    Blood, Fibrin, and Clotting 27:05 
    Hemophilia 30:26 
   The Heart 31:09 
    Structures and Functions of the Heart 31:19 
   Pulmonary and Systemic Circulation 40:20 
    Double Circuit: Pulmonary Circuit and Systemic Circuit 40:21 
   The Cardiac Cycle 42:35 
    The Cardiac Cycle 42:36 
    Autonomic Nervous System 50:00 
   Hemoglobin 51:25 
    Hemoglobin & Hemocyanin 51:26 
   Oxygen-Hemoglobin Dissociation Curve 55:30 
    Oxygen-Hemoglobin Dissociation Curve 55:44 
   Transport of Carbon Dioxide 66:31 
    Transport of Carbon Dioxide 66:37 
   Example 1: Pathway of Blood 72:48 
   Example 2: Oxygenated Blood, Pacemaker, and Clotting 75:24 
   Example 3: Vasodilation and Vasoconstriction 76:19 
   Example 4: Oxygen-Hemoglobin Dissociation Curve 78:13 
  The Digestive System 56:11
   Intro 0:00 
   Introduction to Digestion 0:07 
    Digestive Process 0:08 
    Intracellular Digestion 0:45 
    Extracellular Digestion 1:44 
   Types of Digestive Tracts 2:08 
    Gastrovascular Cavity 2:09 
    Complete Gastrointestinal Tract (Alimentary Canal) 3:54 
    'Crop' 4:43 
   The Human Digestive System 5:41 
    Structures of the Human Digestive System 5:47 
   The Oral Cavity and Esophagus 7:47 
    Mechanical & Chemical Digestion 7:48 
    Salivary Glands 8:55 
    Pharynx and Epigloltis 9:43 
    Peristalsis 11:35 
   The Stomach 12:57 
    Lower Esophageal Sphincter 13:00 
    Gastric Gland, Parietal Cells, and Pepsin 14:32 
    Mucus Cell 15:48 
    Chyme & Pyloric Sphincter 17:32 
   The Pancreas 18:31 
    Endocrine and Exocrine 19:03 
    Amylase 20:05 
    Proteases 20:51 
    Lipases 22:20 
   The Liver 23:08 
    The Liver & Production of Bile 23:09 
   The Small Intestine 24:37 
    The Small Intestine 24:38 
    Duodenum 27:44 
    Intestinal Enzymes 28:41 
   Digestive Enzyme 33:30 
    Site of Production: Mouth 33:43 
    Site of Production: Stomach 34:03 
    Site of Production: Pancreas 34:16 
    Site of Production: Small Intestine 36:18 
   Absorption of Nutrients 37:51 
    Absorption of Nutrients: Jejunum and Ileum 37:52 
   The Large Intestine 44:52 
    The Large Intestine: Colon, Cecum, and Rectum 44:53 
   Regulation of Digestion by Hormones 46:55 
    Gastrin 47:21 
    Secretin 47:50 
    Cholecystokinin (CCK) 48:00 
   Example 1: Intestinal Cell, Bile, and Digestion of Fats 48:29 
   Example 2: Matching 51:06 
   Example 3: Digestion and Absorption of Starch 52:18 
   Example 4: Large Intestine and Gastric Fluids 54:52 
  The Excretory System 1:12:14
   Intro 0:00 
   Nitrogenous Wastes 0:08 
    Nitrogenous Wastes Overview 0:09 
    NH3 0:39 
    Urea 2:43 
    Uric Acid 3:31 
   Osmoregulation 4:56 
    Osmoregulation 5:05 
    Saltwater Fish vs. Freshwater Fish 8:58 
   Types of Excretory Systems 13:42 
    Protonephridia 13:50 
    Metanephridia 16:15 
    Malpighian Tubule 19:05 
   The Human Excretory System 20:45 
    Kidney, Ureter, bladder, Urethra, Medula, and Cortex 20:53 
   Filtration, Reabsorption and Secretion 22:53 
    Filtration 22:54 
    Reabsorption 24:16 
    Secretion 25:20 
   The Nephron 26:23 
    The Nephron 26:24 
   The Nephron, cont. 41:45 
    Descending Loop of Henle 41:46 
    Ascending Loop of Henle 45:45 
   Antidiuretic Hormone 54:30 
    Antidiuretic Hormone (ADH) 54:31 
   Aldosterone 58:58 
    Aldosterone 58:59 
   Example 1: Nephron of an Aquatic Mammal 64:21 
   Example 2: Uric Acid & Saltwater Fish 66:36 
   Example 3: Nephron 69:14 
   Example 4: Gastrointestinal Infection 70:41 
  The Endocrine System 51:12
   Intro 0:00 
   The Endocrine System Overview 0:07 
    Thyroid 0:08 
    Exocrine 1:56 
    Pancreas 2:44 
    Paracrine Signaling 4:06 
    Pheromones 5:15 
   Mechanisms of Hormone Action 6:06 
    Reception, Transduction, and Response 7:06 
    Classes of Hormone 10:05 
    Negative Feedback: Testosterone Example 12:16 
   The Pancreas 15:11 
    The Pancreas & islets of Langerhan 15:12 
    Insulin 16:02 
    Glucagon 17:28 
   The Anterior Pituitary 19:25 
    Thyroid Stimulating Hormone 20:24 
    Adrenocorticotropic Hormone 21:16 
    Follide Stimulating Hormone 22:04 
    Luteinizing Hormone 22:45 
    Growth Hormone 23:45 
    Prolactin 24:24 
    Melanocyte Stimulating Hormone 24:55 
   The Hypothalamus and Posterior Pituitary 25:45 
    Hypothalamus, Oxytocin, Antidiuretic Hormone (ADH), and Posterior Pituitary 25:46 
   The Adrenal Glands 31:20 
    Adrenal Cortex 31:56 
    Adrenal Medulla 34:29 
   The Thyroid 35:54 
    Thyroxine 36:09 
    Calcitonin 40:27 
   The Parathyroids 41:44 
    Parathyroids Hormone (PTH) 41:45 
   The Ovaries and Testes 43:32 
    Estrogen, Progesterone, and Testosterone 43:33 
   Example 1: Match the Following Hormones with their Descriptions 45:38 
   Example 2: Pancreas, Endocrine Organ & Exocrine Organ 47:06 
   Example 3: Insulin and Glucagon 48:28 
   Example 4: Increased Level of Cortisol in Blood 50:25 
  The Nervous System 1:10:38
   Intro 0:00 
   Types of Nervous Systems 0:28 
    Nerve Net 0:37 
    Flatworm 1:07 
    Cephalization 1:52 
    Arthropods 2:44 
    Echinoderms 3:11 
   Nervous System Organization 3:40 
    Nervous System Organization Overview 3:41 
    Automatic Nervous System: Sympathetic & Parasympathetic 4:42 
   Neuron Structure 6:57 
    Cell Body & Dendrites 7:16 
    Axon & Axon Hillock 8:20 
    Synaptic Terminals, Mylenin, and Nodes of Ranvier 9:01 
   Pre-synaptic and Post-synaptic Cells 10:16 
    Pre-synaptic Cells 10:17 
    Post-synaptic Cells 11:05 
   Types of Neurons 11:50 
    Sensory Neurons 11:54 
    Motor Neurons 13:12 
    Interneurons 14:24 
   Resting Potential 15:14 
    Membrane Potential 15:25 
    Resting Potential: Chemical Gradient 16:06 
    Resting Potential: Electrical Gradient 19:18 
   Gated Ion Channels 24:40 
    Voltage-Gated & Ligand-Gated Ion Channels 24:48 
   Action Potential 30:09 
    Action Potential Overview 30:10 
    Step 1 32:07 
    Step 2 32:17 
    Step 3 33:12 
    Step 4 35:14 
    Step 5 36:39 
   Action Potential Transmission 39:04 
    Action Potential Transmission 39:05 
    Speed of Conduction 41:19 
    Saltatory Conduction 42:58 
   The Synapse 44:17 
    The Synapse: Presynaptic & Postsynaptic Cell 44:31 
    Examples of Neurotransmitters 50:05 
   Brain Structure 51:57 
    Meniges 52:19 
    Cerebrum 52:56 
    Corpus Callosum 53:13 
    Gray & White Matter 53:38 
    Cerebral Lobes 55:35 
    Cerebellum 56:00 
    Brainstem 56:30 
    Medulla 56:51 
    Pons 57:22 
    Midbrain 57:55 
    Thalamus 58:25 
    Hypothalamus 58:58 
    Ventricles 59:51 
   The Spinal Cord 60:29 
    Sensory Stimuli 60:30 
    Reflex Arc 61:41 
   Example 1: Automatic Nervous System 64:38 
   Example 2: Synaptic Terminal and the Release of Neurotransmitters 66:22 
   Example 3: Volted-Gated Ion Channels 68:00 
   Example 4: Neuron Structure 69:26 
  Musculoskeletal System 39:29
   Intro 0:00 
   Skeletal System Types and Function 0:30 
    Skeletal System 0:31 
    Exoskeleton 1:34 
    Endoskeleton 2:32 
   Skeletal System Components 2:55 
    Bone 3:06 
    Cartilage 5:04 
    Tendons 6:18 
    Ligaments 6:34 
   Skeletal Muscle 6:52 
    Skeletal Muscle 7:24 
    Sarcomere 9:50 
   The Sliding Filament Theory 13:12 
    The Sliding Filament Theory: Muscle Contraction 13:13 
   The Neuromuscular Junction 17:24 
    The Neuromuscular Junction: Motor Neuron & Muscle Fiber 17:26 
    Sarcolemma, Sarcoplasmic 21:54 
    Tropomyosin & Troponin 23:35 
   Summation and Tetanus 25:26 
    Single Twitch, Summation of Two Twitches, and Tetanus 25:27 
   Smooth Muscle 28:50 
    Smooth Muscle 28:58 
   Cardiac Muscle 30:40 
    Cardiac Muscle 30:42 
   Summary of Muscle Types 32:07 
    Summary of Muscle Types 32:08 
   Example 1: Contraction and Skeletal Muscle 33:15 
   Example 2: Skeletal Muscle and Smooth Muscle 36:23 
   Example 3: Muscle Contraction, Bone, and Nonvascularized Connective Tissue 37:31 
   Example 4: Sarcomere 38:17 
  The Immune System 1:24:28
   Intro 0:00 
   The Lymphatic System 0:16 
    The Lymphatic System Overview 0:17 
    Function 1 1:23 
    Function 2 2:27 
   Barrier Defenses 3:41 
    Nonspecific vs. Specific Immune Defenses 3:42 
    Barrier Defenses 5:12 
   Nonspecific Cellular Defenses 7:50 
    Nonspecific Cellular Defenses Overview 7:53 
    Phagocytes 9:29 
    Neutrophils 11:43 
    Macrophages 12:15 
    Natural Killer Cells 12:55 
    Inflammatory Response 14:19 
    Complement 18:16 
    Interferons 18:40 
   Specific Defenses - Acquired Immunity 20:12 
    T lymphocytes and B lymphocytes 20:13 
   B Cells 23:35 
    B Cells & Humoral Immunity 23:41 
   Clonal Selection 29:50 
    Clonal Selection 29:51 
    Primary Immune Response 34:28 
    Secondary Immune Response 35:31 
    Cytotoxic T Cells 38:41 
    Helper T Cells 39:20 
   Major Histocompatibility Complex Molecules 40:44 
    Major Histocompatibility Complex Molecules 40:55 
   Helper T Cells 52:36 
    Helper T Cells 52:37 
   Mechanisms of Antibody Action 59:00 
    Mechanisms of Antibody Action 59:01 
    Opsonization 60:01 
    Complement System 61:57 
   Classes of Antibodies 62:45 
    IgM 63:01 
    IgA 63:17 
    IgG 63:53 
    IgE 64:10 
   Passive and Active Immunity 65:00 
    Passive Immunity 65:01 
    Active Immunity 67:49 
   Recognition of Self and Non-Self 69:32 
    Recognition of Self and Non-Self 69:33 
    Self-Tolerance & Autoimmune Diseases 70:50 
   Immunodeficiency 73:27 
    Immunodeficiency 73:28 
    Chemotherapy 73:56 
    AID 74:27 
   Example 1: Match the Following Terms with their Descriptions 75:26 
   Example 2: Three Components of Non-specific Immunity 77:59 
   Example 3: Immunodeficient 81:19 
   Example 4: Self-tolerance and Autoimmune Diseases 83:07 
XI. Animal Reproduction and Development
  Reproduction 1:01:41
   Intro 0:00 
   Asexual Reproduction 0:17 
    Fragmentation 0:53 
    Fission 1:54 
    Parthenogenesis 2:38 
   Sexual Reproduction 4:00 
    Sexual Reproduction 4:01 
    Hermaphrodite 8:08 
   The Male Reproduction System 8:54 
    Seminiferous Tubules & Leydig Cells 8:55 
    Epididymis 9:48 
    Seminal Vesicle 11:19 
    Bulbourethral 12:37 
   The Female Reproductive System 13:25 
    Ovaries 13:28 
    Fallopian 14:50 
    Endometrium, Uterus, Cilia, and Cervix 15:03 
    Mammary Glands 16:44 
   Spermatogenesis 17:08 
    Spermatogenesis 17:09 
   Oogenesis 21:01 
    Oogenesis 21:02 
   The Menstrual Cycle 27:56 
    The Menstrual Cycle: Ovarian and Uterine Cycle 27:57 
   Summary of the Ovarian and Uterine Cycles 42:54 
    Ovarian 42:55 
    Uterine 44:51 
   Oxytocin and Prolactin 46:33 
    Oxytocin 46:34 
    Prolactin 47:00 
   Regulation of the Male Reproductive System 47:28 
    Hormones: GnRH, LH, FSH, and Testosterone 47:29 
   Fertilization 50:11 
    Fertilization 50:12 
    Structures of Egg 50:28 
    Acrosomal Reaction 51:36 
    Cortical Reaction 53:09 
   Example 1: List Three Differences between Spermatogenesis and oogenesis 55:36 
   Example 2: Match the Following Terms to their Descriptions 57:34 
   Example 3: Pregnancy and the Ovarian Cycle 58:44 
   Example 4: Hormone 60:43 
  Development 50:05
   Intro 0:00 
   Cleavage 0:31 
    Cleavage 0:32 
    Meroblastic 2:06 
    Holoblastic Cleavage 3:23 
    Protostomes 4:34 
    Deuterostomes 5:13 
    Totipotent 5:52 
   Blastula Formation 6:42 
    Blastula 6:46 
   Gastrula Formation 8:12 
    Deuterostomes 11:02 
    Protostome 11:44 
    Ectoderm 12:17 
    Mesoderm 12:55 
    Endoderm 13:40 
   Cytoplasmic Determinants 15:19 
    Cytoplasmic Determinants 15:23 
   The Bird Embryo 22:52 
    Cleavage 23:35 
    Blastoderm 23:55 
    Primitive Streak 25:38 
    Migration and Differentiation 27:09 
   Extraembryonic Membranes 28:33 
    Extraembryonic Membranes 28:34 
    Chorion 30:02 
    Yolk Sac 30:36 
    Allantois 31:04 
   The Mammalian Embryo 32:18 
    Cleavage 32:28 
    Blastocyst 32:44 
    Trophoblast 34:37 
    Following Implantation 35:48 
   Organogenesis 37:04 
    Organogenesis, Notochord and Neural Tube 37:05 
   Induction 40:15 
    Induction 40:39 
    Fate Mapping 41:40 
   Example 1: Processes and Stages of Embryological Development 42:49 
   Example 2: Transplanted Cells 44:33 
   Example 3: Germ Layer 46:41 
   Example 4: Extraembryonic Membranes 47:28 
XII. Animal Behavior
  Animal Behavior 47:48
   Intro 0:00 
   Introduction to Animal Behavior 0:05 
    Introduction to Animal Behavior 0:06 
    Ethology 1:04 
    Proximate Cause & Ultimate Cause 1:46 
   Fixed Action Pattern 3:07 
    Sign Stimulus 3:40 
    Releases and Example 3:55 
    Exploitation and Example 7:23 
   Learning 8:56 
    Habituation, Associative Learning, and Imprinting 8:57 
   Habituation 10:03 
    Habituation: Definition and Example 10:04 
   Associative Learning 11:47 
    Classical 12:19 
    Operant Conditioning 13:40 
    Positive & Negative Reinforcement 14:59 
    Positive & Negative Punishment 16:13 
    Extinction 17:28 
   Imprinting 17:47 
    Imprinting: Definition and Example 17:48 
   Social Behavior 20:12 
    Cooperation 20:38 
    Agonistic 21:37 
    Dorminance Heirarchies 23:23 
    Territoriality 24:08 
    Altruism 24:55 
   Communication 26:56 
    Communication 26:57 
   Mating 32:38 
    Mating Overview 32:40 
    Promiscuous 33:13 
    Monogamous 33:32 
    Polygamous 33:48 
    Intrasexual 34:22 
    Intersexual Selection 35:08 
   Foraging 36:08 
    Optimal Foraging Model 36:39 
    Foraging 37:47 
   Movement 39:12 
    Kinesis 39:20 
    Taxis 40:17 
    Migration 40:54 
   Lunar Cycles 42:02 
    Lunar Cycles 42:08 
   Example 1: Types of Conditioning 43:19 
   Example 2: Match the Following Terms to their Descriptions 44:12 
   Example 3: How is the Optimal Foraging Model Used to Explain Foraging Behavior 45:47 
   Example 4: Learning 46:54 
XIII. Ecology
  Biomes 58:49
   Intro 0:00 
   Ecology 0:08 
    Ecology 0:14 
    Environment 0:22 
    Integrates 1:41 
    Environment Impacts 2:20 
   Population and Distribution 3:20 
    Population 3:21 
    Range 4:50 
    Potential Range 5:10 
    Abiotic 5:46 
    Biotic 6:22 
   Climate 7:55 
    Temperature 8:40 
    Precipitation 10:00 
    Wind 10:37 
    Sunlight 10:54 
    Macroclimates & Microclimates 11:31 
   Other Abiotic Factors 12:20 
    Geography 12:28 
    Water 13:17 
    Soil and Rocks 13:48 
   Sunlight 14:42 
    Sunlight 14:43 
   Seasons 15:43 
    June Solstice, December Solstice, March Equinox, and September Equinox 15:44 
    Tropics 19:00 
    Seasonability 19:39 
   Wind and Weather Patterns 20:44 
    Vertical Circulation 20:51 
    Surface Wind Patterns 25:18 
   Local Climate Effects 26:51 
    Local Climate Effects 26:52 
   Terrestrial Biomes 30:04 
    Biome 30:05 
    Forest 31:02 
   Tropical Forest 32:00 
    Tropical Forest 32:01 
   Temperate Broadleaf Forest 32:55 
    Temperate Broadleaf Forest 32:56 
   Coniferous/Taiga Forest 34:10 
    Coniferous/Taiga Forest 34:11 
   Desert 36:05 
    Desert 36:06 
   Grassland 37:45 
    Grassland 37:46 
   Tundra 40:09 
    Tundra 40:10 
   Freshwater Biomes 42:25 
    Freshwater Biomes: Zones 42:27 
    Eutrophic Lakes 44:24 
    Oligotrophic Lakes 45:01 
    Lakes Turnover 46:03 
    Rivers 46:51 
    Wetlands 47:40 
    Estuary 48:11 
   Marine Biomes 48:45 
    Marine Biomes: Zones 48:46 
   Example 1: Diversity of Life 52:18 
   Example 2: Marine Biome 53:08 
   Example 3: Season 54:20 
   Example 4: Biotic vs. Abiotic 55:54 
  Population 41:16
   Intro 0:00 
   Population 0:07 
    Size 'N' 0:16 
    Density 0:41 
    Dispersion 1:01 
    Measure Population: Count Individuals, Sampling, and Proxymeasure 2:26 
   Mortality 7:29 
    Mortality and Survivorship 7:30 
   Age Structure Diagrams 11:52 
    Expanding with Rapid Growth, Expanding, and Stable 11:58 
   Population Growth 15:39 
    Biotic Potential & Exponential Growth 15:43 
   Logistic Population Growth 19:07 
    Carrying Capacity (K) 19:18 
    Limiting Factors 20:55 
   Logistic Model and Oscillation 22:55 
    Logistic Model and Oscillation 22:56 
   Changes to the Carrying Capacity 24:36 
    Changes to the Carrying Capacity 24:37 
   Growth Strategies 26:07 
    'r-selected' or 'r-strategist' 26:23 
    'K-selected' or 'K-strategist' 27:47 
   Human Population 30:15 
    Human Population and Exponential Growth 30:21 
   Case Study - Lynx and Hare 31:54 
    Case Study - Lynx and Hare 31:55 
   Example 1: Estimating Population Size 34:35 
   Example 2: Population Growth 36:45 
   Example 3: Carrying Capacity 38:17 
   Example 4: Types of Dispersion 40:15 
  Communities 1:06:26
   Intro 0:00 
   Community 0:07 
    Ecosystem 0:40 
    Interspecific Interactions 1:14 
   Competition 2:45 
    Competition Overview 2:46 
    Competitive Exclusion 3:57 
    Resource Partitioning 4:45 
    Character Displacement 6:22 
   Predation 7:46 
    Predation 7:47 
    True Predation 8:05 
    Grazing/ Herbivory 8:39 
   Predator Adaptation 10:13 
    Predator Strategies 10:22 
    Physical Features 11:02 
   Prey Adaptation 12:14 
    Prey Adaptation 12:23 
    Aposematic Coloration 13:35 
    Batesian Mimicry 14:32 
    Size 15:42 
   Parasitism 16:48 
    Symbiotic Relationship 16:54 
    Ectoparasites 18:31 
    Endoparasites 18:53 
    Hyperparisitism 19:21 
    Vector 20:08 
    Parasitoids 20:54 
   Mutualism 21:23 
    Resource - Resource mutualism 21:34 
    Service - Resource Mutualism 23:31 
    Service - Service Mutualism: Obligate & Facultative 24:23 
   Commensalism 26:01 
    Commensalism 26:03 
    Symbiosis 27:31 
   Trophic Structure 28:35 
    Producers & Consumers: Autotrophs & Heterotrophs 28:36 
   Food Chain 33:26 
    Producer & Consumers 33:38 
   Food Web 39:01 
    Food Web 39:06 
   Significant Species within Communities 41:42 
    Dominant Species 41:50 
    Keystone Species 42:44 
    Foundation Species 43:41 
   Community Dynamics and Disturbances 44:31 
    Disturbances 44:33 
    Duration 47:01 
    Areal Coverage 47:22 
    Frequency 47:48 
    Intensity 48:04 
    Intermediate Level of Disturbance 48:20 
   Ecological Succession 50:29 
    Primary and Secondary Ecological Succession 50:30 
   Example 1: Competition Situation & Outcome 57:18 
   Example 2: Food Chains 60:08 
   Example 3: Ecological Units 62:44 
   Example 4: Disturbances & Returning to the Original Climax Community 64:30 
  Energy and Ecosystems 57:42
   Intro 0:00 
   Ecosystem: Biotic & Abiotic Components 0:15 
    First Law of Thermodynamics & Energy Flow 0:40 
    Gross Primary Productivity (GPP) 3:52 
    Net Primary Productivity (NPP) 4:50 
   Biogeochemical Cycles 7:16 
    Law of Conservation of Mass & Biogeochemical Cycles 7:17 
   Water Cycle 10:55 
    Water Cycle 10:57 
   Carbon Cycle 17:52 
    Carbon Cycle 17:53 
   Nitrogen Cycle 22:40 
    Nitrogen Cycle 22:41 
   Phosphorous Cycle 29:34 
    Phosphorous Cycle 29:35 
   Climate Change 33:20 
    Climate Change 33:21 
   Eutrophication 39:38 
    Nitrogen 40:34 
    Phosphorous 41:29 
    Eutrophication 42:55 
   Example 1: Energy and Ecosystems 45:28 
   Example 2: Atmospheric CO2 48:44 
   Example 3: Nitrogen Cycle 51:22 
   Example 4: Conversion of a Forest near a Lake to Farmland 53:20 
XIV. Laboratory Review
  Laboratory Review 2:04:30
   Intro 0:00 
   Lab 1: Diffusion and Osmosis 0:09 
    Lab 1: Diffusion and Osmosis 0:10 
   Lab 1: Water Potential 11:55 
    Lab 1: Water Potential 11:56 
   Lab 2: Enzyme Catalysis 18:30 
    Lab 2: Enzyme Catalysis 18:31 
   Lab 3: Mitosis and Meiosis 27:40 
    Lab 3: Mitosis and Meiosis 27:41 
   Lab 3: Mitosis and Meiosis 31:50 
    Ascomycota Life Cycle 31:51 
   Lab 4: Plant Pigments and Photosynthesis 40:36 
    Lab 4: Plant Pigments and Photosynthesis 40:37 
   Lab 5: Cell Respiration 49:56 
    Lab 5: Cell Respiration 49:57 
   Lab 6: Molecular Biology 55:06 
    Lab 6: Molecular Biology & Transformation 1st Part 55:07 
   Lab 6: Molecular Biology 61:16 
    Lab 6: Molecular Biology 2nd Part 61:17 
   Lab 7: Genetics of Organisms 67:32 
    Lab 7: Genetics of Organisms 67:33 
   Lab 7: Chi-square Analysis 73:00 
    Lab 7: Chi-square Analysis 73:03 
   Lab 8: Population Genetics and Evolution 80:41 
    Lab 8: Population Genetics and Evolution 80:42 
   Lab 9: Transpiration 84:02 
    Lab 9: Transpiration 84:03 
   Lab 10: Physiology of the Circulatory System 91:05 
    Lab 10: Physiology of the Circulatory System 91:06 
   Lab 10: Temperature and Metabolism in Ectotherms 98:25 
    Lab 10: Temperature and Metabolism in Ectotherms 98:30 
   Lab 11: Animal Behavior 100:52 
    Lab 11: Animal Behavior 100:53 
   Lab 12: Dissolved Oxygen & Aquatic Primary Productivity 105:36 
    Lab 12: Dissolved Oxygen & Aquatic Primary Productivity 105:37 
   Lab 12: Primary Productivity 109:06 
    Lab 12: Primary Productivity 109:07 
   Example 1: Chi-square Analysis 116:31 
   Example 2: Mitosis 119:28 
   Example 3: Transpiration of Plants 120:27 
   Example 4: Population Genetic 121:16 
XV. The AP Biology Test
  Understanding the Basics 13:02
   Intro 0:00 
   AP Biology Structure 0:18 
    Section I 0:31 
    Section II 1:16 
   Scoring 2:04 
   The Four 'Big Ideas' 3:51 
    Process of Evolution 4:37 
    Biological Systems Utilize 4:44 
    Living Systems 4:55 
    Biological Systems Interact 5:03 
   Items to Bring to the Test 7:56 
   Test Taking Tips 9:53 
XVI. Practice Test (Barron's 4th Edition)
  AP Biology Practice Exam: Section I, Part A, Multiple Choice Questions 1-31 1:04:29
   Intro 0:00 
   AP Biology Practice Exam 0:14 
   Multiple Choice 1 0:40 
   Multiple Choice 2 2:27 
   Multiple Choice 3 4:30 
   Multiple Choice 4 6:43 
   Multiple Choice 5 9:27 
   Multiple Choice 6 11:32 
   Multiple Choice 7 12:54 
   Multiple Choice 8 14:42 
   Multiple Choice 9 17:06 
   Multiple Choice 10 18:42 
   Multiple Choice 11 20:49 
   Multiple Choice 12 23:23 
   Multiple Choice 13 26:20 
   Multiple Choice 14 27:52 
   Multiple Choice 15 28:44 
   Multiple Choice 16 33:07 
   Multiple Choice 17 35:31 
   Multiple Choice 18 39:43 
   Multiple Choice 19 40:37 
   Multiple Choice 20 42:47 
   Multiple Choice 21 45:58 
   Multiple Choice 22 49:49 
   Multiple Choice 23 53:44 
   Multiple Choice 24 55:12 
   Multiple Choice 25 55:59 
   Multiple Choice 26 56:50 
   Multiple Choice 27 58:08 
   Multiple Choice 28 59:54 
   Multiple Choice 29 61:36 
   Multiple Choice 30 62:31 
   Multiple Choice 31 63:50 
  AP Biology Practice Exam: Section I, Part A, Multiple Choice Questions 32-63 50:44
   Intro 0:00 
   AP Biology Practice Exam 0:14 
   Multiple Choice 32 0:27 
   Multiple Choice 33 4:14 
   Multiple Choice 34 5:12 
   Multiple Choice 35 6:51 
   Multiple Choice 36 10:46 
   Multiple Choice 37 11:27 
   Multiple Choice 38 12:17 
   Multiple Choice 39 13:49 
   Multiple Choice 40 17:02 
   Multiple Choice 41 18:27 
   Multiple Choice 42 19:35 
   Multiple Choice 43 21:10 
   Multiple Choice 44 23:35 
   Multiple Choice 45 25:00 
   Multiple Choice 46 26:20 
   Multiple Choice 47 28:40 
   Multiple Choice 48 30:14 
   Multiple Choice 49 31:24 
   Multiple Choice 50 32:45 
   Multiple Choice 51 33:41 
   Multiple Choice 52 34:40 
   Multiple Choice 53 36:12 
   Multiple Choice 54 38:06 
   Multiple Choice 55 38:37 
   Multiple Choice 56 40:00 
   Multiple Choice 57 41:18 
   Multiple Choice 58 43:12 
   Multiple Choice 59 44:25 
   Multiple Choice 60 45:02 
   Multiple Choice 61 46:10 
   Multiple Choice 62 47:54 
   Multiple Choice 63 49:01 
  AP Biology Practice Exam: Section I, Part B, Grid In 21:52
   Intro 0:00 
   AP Biology Practice Exam 0:17 
   Grid In Question 1 0:29 
   Grid In Question 2 3:49 
   Grid In Question 3 11:04 
   Grid In Question 4 13:18 
   Grid In Question 5 17:01 
   Grid In Question 6 19:30 
  AP Biology Practice Exam: Section II, Long Free Response Questions 31:22
   Intro 0:00 
   AP Biology Practice Exam 0:18 
   Free Response 1 0:29 
   Free Response 2 20:47 
  AP Biology Practice Exam: Section II, Short Free Response Questions 24:41
   Intro 0:00 
   AP Biology Practice Exam 0:15 
   Free Response 3 0:26 
   Free Response 4 5:21 
   Free Response 5 8:25 
   Free Response 6 11:38 
   Free Response 7 14:48 
   Free Response 8 22:14